545 lines
18 KiB
C
545 lines
18 KiB
C
|
//======- CFLGraph.h - Abstract stratified sets implementation. --------======//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
/// \file
|
||
|
/// This file defines CFLGraph, an auxiliary data structure used by CFL-based
|
||
|
/// alias analysis.
|
||
|
///
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_ANALYSIS_CFLGRAPH_H
|
||
|
#define LLVM_ANALYSIS_CFLGRAPH_H
|
||
|
|
||
|
#include "AliasAnalysisSummary.h"
|
||
|
#include "llvm/ADT/SmallPtrSet.h"
|
||
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
||
|
#include "llvm/IR/InstVisitor.h"
|
||
|
#include "llvm/IR/Instructions.h"
|
||
|
|
||
|
namespace llvm {
|
||
|
namespace cflaa {
|
||
|
|
||
|
/// \brief The Program Expression Graph (PEG) of CFL analysis
|
||
|
/// CFLGraph is auxiliary data structure used by CFL-based alias analysis to
|
||
|
/// describe flow-insensitive pointer-related behaviors. Given an LLVM function,
|
||
|
/// the main purpose of this graph is to abstract away unrelated facts and
|
||
|
/// translate the rest into a form that can be easily digested by CFL analyses.
|
||
|
/// Each Node in the graph is an InstantiatedValue, and each edge represent a
|
||
|
/// pointer assignment between InstantiatedValue. Pointer
|
||
|
/// references/dereferences are not explicitly stored in the graph: we
|
||
|
/// implicitly assume that for each node (X, I) it has a dereference edge to (X,
|
||
|
/// I+1) and a reference edge to (X, I-1).
|
||
|
class CFLGraph {
|
||
|
public:
|
||
|
typedef InstantiatedValue Node;
|
||
|
|
||
|
struct Edge {
|
||
|
Node Other;
|
||
|
};
|
||
|
|
||
|
typedef std::vector<Edge> EdgeList;
|
||
|
|
||
|
struct NodeInfo {
|
||
|
EdgeList Edges, ReverseEdges;
|
||
|
AliasAttrs Attr;
|
||
|
};
|
||
|
|
||
|
class ValueInfo {
|
||
|
std::vector<NodeInfo> Levels;
|
||
|
|
||
|
public:
|
||
|
bool addNodeToLevel(unsigned Level) {
|
||
|
auto NumLevels = Levels.size();
|
||
|
if (NumLevels > Level)
|
||
|
return false;
|
||
|
Levels.resize(Level + 1);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
NodeInfo &getNodeInfoAtLevel(unsigned Level) {
|
||
|
assert(Level < Levels.size());
|
||
|
return Levels[Level];
|
||
|
}
|
||
|
const NodeInfo &getNodeInfoAtLevel(unsigned Level) const {
|
||
|
assert(Level < Levels.size());
|
||
|
return Levels[Level];
|
||
|
}
|
||
|
|
||
|
unsigned getNumLevels() const { return Levels.size(); }
|
||
|
};
|
||
|
|
||
|
private:
|
||
|
typedef DenseMap<Value *, ValueInfo> ValueMap;
|
||
|
ValueMap ValueImpls;
|
||
|
|
||
|
NodeInfo *getNode(Node N) {
|
||
|
auto Itr = ValueImpls.find(N.Val);
|
||
|
if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
|
||
|
return nullptr;
|
||
|
return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
typedef ValueMap::const_iterator const_value_iterator;
|
||
|
|
||
|
bool addNode(Node N, AliasAttrs Attr = AliasAttrs()) {
|
||
|
assert(N.Val != nullptr);
|
||
|
auto &ValInfo = ValueImpls[N.Val];
|
||
|
auto Changed = ValInfo.addNodeToLevel(N.DerefLevel);
|
||
|
ValInfo.getNodeInfoAtLevel(N.DerefLevel).Attr |= Attr;
|
||
|
return Changed;
|
||
|
}
|
||
|
|
||
|
void addAttr(Node N, AliasAttrs Attr) {
|
||
|
auto *Info = getNode(N);
|
||
|
assert(Info != nullptr);
|
||
|
Info->Attr |= Attr;
|
||
|
}
|
||
|
|
||
|
void addEdge(Node From, Node To, int64_t Offset = 0) {
|
||
|
auto *FromInfo = getNode(From);
|
||
|
assert(FromInfo != nullptr);
|
||
|
auto *ToInfo = getNode(To);
|
||
|
assert(ToInfo != nullptr);
|
||
|
|
||
|
FromInfo->Edges.push_back(Edge{To});
|
||
|
ToInfo->ReverseEdges.push_back(Edge{From});
|
||
|
}
|
||
|
|
||
|
const NodeInfo *getNode(Node N) const {
|
||
|
auto Itr = ValueImpls.find(N.Val);
|
||
|
if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
|
||
|
return nullptr;
|
||
|
return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
|
||
|
}
|
||
|
|
||
|
AliasAttrs attrFor(Node N) const {
|
||
|
auto *Info = getNode(N);
|
||
|
assert(Info != nullptr);
|
||
|
return Info->Attr;
|
||
|
}
|
||
|
|
||
|
iterator_range<const_value_iterator> value_mappings() const {
|
||
|
return make_range<const_value_iterator>(ValueImpls.begin(),
|
||
|
ValueImpls.end());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
///\brief A builder class used to create CFLGraph instance from a given function
|
||
|
/// The CFL-AA that uses this builder must provide its own type as a template
|
||
|
/// argument. This is necessary for interprocedural processing: CFLGraphBuilder
|
||
|
/// needs a way of obtaining the summary of other functions when callinsts are
|
||
|
/// encountered.
|
||
|
/// As a result, we expect the said CFL-AA to expose a getAliasSummary() public
|
||
|
/// member function that takes a Function& and returns the corresponding summary
|
||
|
/// as a const AliasSummary*.
|
||
|
template <typename CFLAA> class CFLGraphBuilder {
|
||
|
// Input of the builder
|
||
|
CFLAA &Analysis;
|
||
|
const TargetLibraryInfo &TLI;
|
||
|
|
||
|
// Output of the builder
|
||
|
CFLGraph Graph;
|
||
|
SmallVector<Value *, 4> ReturnedValues;
|
||
|
|
||
|
// Helper class
|
||
|
/// Gets the edges our graph should have, based on an Instruction*
|
||
|
class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
|
||
|
CFLAA &AA;
|
||
|
const TargetLibraryInfo &TLI;
|
||
|
|
||
|
CFLGraph &Graph;
|
||
|
SmallVectorImpl<Value *> &ReturnValues;
|
||
|
|
||
|
static bool hasUsefulEdges(ConstantExpr *CE) {
|
||
|
// ConstantExpr doesn't have terminators, invokes, or fences, so only
|
||
|
// needs
|
||
|
// to check for compares.
|
||
|
return CE->getOpcode() != Instruction::ICmp &&
|
||
|
CE->getOpcode() != Instruction::FCmp;
|
||
|
}
|
||
|
|
||
|
// Returns possible functions called by CS into the given SmallVectorImpl.
|
||
|
// Returns true if targets found, false otherwise.
|
||
|
static bool getPossibleTargets(CallSite CS,
|
||
|
SmallVectorImpl<Function *> &Output) {
|
||
|
if (auto *Fn = CS.getCalledFunction()) {
|
||
|
Output.push_back(Fn);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// TODO: If the call is indirect, we might be able to enumerate all
|
||
|
// potential
|
||
|
// targets of the call and return them, rather than just failing.
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void addNode(Value *Val, AliasAttrs Attr = AliasAttrs()) {
|
||
|
assert(Val != nullptr && Val->getType()->isPointerTy());
|
||
|
if (auto GVal = dyn_cast<GlobalValue>(Val)) {
|
||
|
if (Graph.addNode(InstantiatedValue{GVal, 0},
|
||
|
getGlobalOrArgAttrFromValue(*GVal)))
|
||
|
Graph.addNode(InstantiatedValue{GVal, 1}, getAttrUnknown());
|
||
|
} else if (auto CExpr = dyn_cast<ConstantExpr>(Val)) {
|
||
|
if (hasUsefulEdges(CExpr)) {
|
||
|
if (Graph.addNode(InstantiatedValue{CExpr, 0}))
|
||
|
visitConstantExpr(CExpr);
|
||
|
}
|
||
|
} else
|
||
|
Graph.addNode(InstantiatedValue{Val, 0}, Attr);
|
||
|
}
|
||
|
|
||
|
void addAssignEdge(Value *From, Value *To, int64_t Offset = 0) {
|
||
|
assert(From != nullptr && To != nullptr);
|
||
|
if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
|
||
|
return;
|
||
|
addNode(From);
|
||
|
if (To != From) {
|
||
|
addNode(To);
|
||
|
Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 0},
|
||
|
Offset);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void addDerefEdge(Value *From, Value *To, bool IsRead) {
|
||
|
assert(From != nullptr && To != nullptr);
|
||
|
if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
|
||
|
return;
|
||
|
addNode(From);
|
||
|
addNode(To);
|
||
|
if (IsRead) {
|
||
|
Graph.addNode(InstantiatedValue{From, 1});
|
||
|
Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0});
|
||
|
} else {
|
||
|
Graph.addNode(InstantiatedValue{To, 1});
|
||
|
Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 1});
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void addLoadEdge(Value *From, Value *To) { addDerefEdge(From, To, true); }
|
||
|
void addStoreEdge(Value *From, Value *To) { addDerefEdge(From, To, false); }
|
||
|
|
||
|
public:
|
||
|
GetEdgesVisitor(CFLGraphBuilder &Builder)
|
||
|
: AA(Builder.Analysis), TLI(Builder.TLI), Graph(Builder.Graph),
|
||
|
ReturnValues(Builder.ReturnedValues) {}
|
||
|
|
||
|
void visitInstruction(Instruction &) {
|
||
|
llvm_unreachable("Unsupported instruction encountered");
|
||
|
}
|
||
|
|
||
|
void visitReturnInst(ReturnInst &Inst) {
|
||
|
if (auto RetVal = Inst.getReturnValue()) {
|
||
|
if (RetVal->getType()->isPointerTy()) {
|
||
|
addNode(RetVal);
|
||
|
ReturnValues.push_back(RetVal);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void visitPtrToIntInst(PtrToIntInst &Inst) {
|
||
|
auto *Ptr = Inst.getOperand(0);
|
||
|
addNode(Ptr, getAttrEscaped());
|
||
|
}
|
||
|
|
||
|
void visitIntToPtrInst(IntToPtrInst &Inst) {
|
||
|
auto *Ptr = &Inst;
|
||
|
addNode(Ptr, getAttrUnknown());
|
||
|
}
|
||
|
|
||
|
void visitCastInst(CastInst &Inst) {
|
||
|
auto *Src = Inst.getOperand(0);
|
||
|
addAssignEdge(Src, &Inst);
|
||
|
}
|
||
|
|
||
|
void visitBinaryOperator(BinaryOperator &Inst) {
|
||
|
auto *Op1 = Inst.getOperand(0);
|
||
|
auto *Op2 = Inst.getOperand(1);
|
||
|
addAssignEdge(Op1, &Inst);
|
||
|
addAssignEdge(Op2, &Inst);
|
||
|
}
|
||
|
|
||
|
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
|
||
|
auto *Ptr = Inst.getPointerOperand();
|
||
|
auto *Val = Inst.getNewValOperand();
|
||
|
addStoreEdge(Val, Ptr);
|
||
|
}
|
||
|
|
||
|
void visitAtomicRMWInst(AtomicRMWInst &Inst) {
|
||
|
auto *Ptr = Inst.getPointerOperand();
|
||
|
auto *Val = Inst.getValOperand();
|
||
|
addStoreEdge(Val, Ptr);
|
||
|
}
|
||
|
|
||
|
void visitPHINode(PHINode &Inst) {
|
||
|
for (Value *Val : Inst.incoming_values())
|
||
|
addAssignEdge(Val, &Inst);
|
||
|
}
|
||
|
|
||
|
void visitGetElementPtrInst(GetElementPtrInst &Inst) {
|
||
|
auto *Op = Inst.getPointerOperand();
|
||
|
addAssignEdge(Op, &Inst);
|
||
|
}
|
||
|
|
||
|
void visitSelectInst(SelectInst &Inst) {
|
||
|
// Condition is not processed here (The actual statement producing
|
||
|
// the condition result is processed elsewhere). For select, the
|
||
|
// condition is evaluated, but not loaded, stored, or assigned
|
||
|
// simply as a result of being the condition of a select.
|
||
|
|
||
|
auto *TrueVal = Inst.getTrueValue();
|
||
|
auto *FalseVal = Inst.getFalseValue();
|
||
|
addAssignEdge(TrueVal, &Inst);
|
||
|
addAssignEdge(FalseVal, &Inst);
|
||
|
}
|
||
|
|
||
|
void visitAllocaInst(AllocaInst &Inst) { addNode(&Inst); }
|
||
|
|
||
|
void visitLoadInst(LoadInst &Inst) {
|
||
|
auto *Ptr = Inst.getPointerOperand();
|
||
|
auto *Val = &Inst;
|
||
|
addLoadEdge(Ptr, Val);
|
||
|
}
|
||
|
|
||
|
void visitStoreInst(StoreInst &Inst) {
|
||
|
auto *Ptr = Inst.getPointerOperand();
|
||
|
auto *Val = Inst.getValueOperand();
|
||
|
addStoreEdge(Val, Ptr);
|
||
|
}
|
||
|
|
||
|
void visitVAArgInst(VAArgInst &Inst) {
|
||
|
// We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it
|
||
|
// does
|
||
|
// two things:
|
||
|
// 1. Loads a value from *((T*)*Ptr).
|
||
|
// 2. Increments (stores to) *Ptr by some target-specific amount.
|
||
|
// For now, we'll handle this like a landingpad instruction (by placing
|
||
|
// the
|
||
|
// result in its own group, and having that group alias externals).
|
||
|
addNode(&Inst, getAttrUnknown());
|
||
|
}
|
||
|
|
||
|
static bool isFunctionExternal(Function *Fn) {
|
||
|
return !Fn->hasExactDefinition();
|
||
|
}
|
||
|
|
||
|
bool tryInterproceduralAnalysis(CallSite CS,
|
||
|
const SmallVectorImpl<Function *> &Fns) {
|
||
|
assert(Fns.size() > 0);
|
||
|
|
||
|
if (CS.arg_size() > MaxSupportedArgsInSummary)
|
||
|
return false;
|
||
|
|
||
|
// Exit early if we'll fail anyway
|
||
|
for (auto *Fn : Fns) {
|
||
|
if (isFunctionExternal(Fn) || Fn->isVarArg())
|
||
|
return false;
|
||
|
// Fail if the caller does not provide enough arguments
|
||
|
assert(Fn->arg_size() <= CS.arg_size());
|
||
|
if (!AA.getAliasSummary(*Fn))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
for (auto *Fn : Fns) {
|
||
|
auto Summary = AA.getAliasSummary(*Fn);
|
||
|
assert(Summary != nullptr);
|
||
|
|
||
|
auto &RetParamRelations = Summary->RetParamRelations;
|
||
|
for (auto &Relation : RetParamRelations) {
|
||
|
auto IRelation = instantiateExternalRelation(Relation, CS);
|
||
|
if (IRelation.hasValue()) {
|
||
|
Graph.addNode(IRelation->From);
|
||
|
Graph.addNode(IRelation->To);
|
||
|
Graph.addEdge(IRelation->From, IRelation->To);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
auto &RetParamAttributes = Summary->RetParamAttributes;
|
||
|
for (auto &Attribute : RetParamAttributes) {
|
||
|
auto IAttr = instantiateExternalAttribute(Attribute, CS);
|
||
|
if (IAttr.hasValue())
|
||
|
Graph.addNode(IAttr->IValue, IAttr->Attr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void visitCallSite(CallSite CS) {
|
||
|
auto Inst = CS.getInstruction();
|
||
|
|
||
|
// Make sure all arguments and return value are added to the graph first
|
||
|
for (Value *V : CS.args())
|
||
|
if (V->getType()->isPointerTy())
|
||
|
addNode(V);
|
||
|
if (Inst->getType()->isPointerTy())
|
||
|
addNode(Inst);
|
||
|
|
||
|
// Check if Inst is a call to a library function that
|
||
|
// allocates/deallocates
|
||
|
// on the heap. Those kinds of functions do not introduce any aliases.
|
||
|
// TODO: address other common library functions such as realloc(),
|
||
|
// strdup(),
|
||
|
// etc.
|
||
|
if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI) ||
|
||
|
isFreeCall(Inst, &TLI))
|
||
|
return;
|
||
|
|
||
|
// TODO: Add support for noalias args/all the other fun function
|
||
|
// attributes
|
||
|
// that we can tack on.
|
||
|
SmallVector<Function *, 4> Targets;
|
||
|
if (getPossibleTargets(CS, Targets))
|
||
|
if (tryInterproceduralAnalysis(CS, Targets))
|
||
|
return;
|
||
|
|
||
|
// Because the function is opaque, we need to note that anything
|
||
|
// could have happened to the arguments (unless the function is marked
|
||
|
// readonly or readnone), and that the result could alias just about
|
||
|
// anything, too (unless the result is marked noalias).
|
||
|
if (!CS.onlyReadsMemory())
|
||
|
for (Value *V : CS.args()) {
|
||
|
if (V->getType()->isPointerTy()) {
|
||
|
// The argument itself escapes.
|
||
|
Graph.addAttr(InstantiatedValue{V, 0}, getAttrEscaped());
|
||
|
// The fate of argument memory is unknown. Note that since
|
||
|
// AliasAttrs is transitive with respect to dereference, we only
|
||
|
// need to specify it for the first-level memory.
|
||
|
Graph.addNode(InstantiatedValue{V, 1}, getAttrUnknown());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (Inst->getType()->isPointerTy()) {
|
||
|
auto *Fn = CS.getCalledFunction();
|
||
|
if (Fn == nullptr || !Fn->doesNotAlias(0))
|
||
|
// No need to call addNode() since we've added Inst at the
|
||
|
// beginning of this function and we know it is not a global.
|
||
|
Graph.addAttr(InstantiatedValue{Inst, 0}, getAttrUnknown());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Because vectors/aggregates are immutable and unaddressable, there's
|
||
|
/// nothing we can do to coax a value out of them, other than calling
|
||
|
/// Extract{Element,Value}. We can effectively treat them as pointers to
|
||
|
/// arbitrary memory locations we can store in and load from.
|
||
|
void visitExtractElementInst(ExtractElementInst &Inst) {
|
||
|
auto *Ptr = Inst.getVectorOperand();
|
||
|
auto *Val = &Inst;
|
||
|
addLoadEdge(Ptr, Val);
|
||
|
}
|
||
|
|
||
|
void visitInsertElementInst(InsertElementInst &Inst) {
|
||
|
auto *Vec = Inst.getOperand(0);
|
||
|
auto *Val = Inst.getOperand(1);
|
||
|
addAssignEdge(Vec, &Inst);
|
||
|
addStoreEdge(Val, &Inst);
|
||
|
}
|
||
|
|
||
|
void visitLandingPadInst(LandingPadInst &Inst) {
|
||
|
// Exceptions come from "nowhere", from our analysis' perspective.
|
||
|
// So we place the instruction its own group, noting that said group may
|
||
|
// alias externals
|
||
|
addNode(&Inst, getAttrUnknown());
|
||
|
}
|
||
|
|
||
|
void visitInsertValueInst(InsertValueInst &Inst) {
|
||
|
auto *Agg = Inst.getOperand(0);
|
||
|
auto *Val = Inst.getOperand(1);
|
||
|
addAssignEdge(Agg, &Inst);
|
||
|
addStoreEdge(Val, &Inst);
|
||
|
}
|
||
|
|
||
|
void visitExtractValueInst(ExtractValueInst &Inst) {
|
||
|
auto *Ptr = Inst.getAggregateOperand();
|
||
|
addLoadEdge(Ptr, &Inst);
|
||
|
}
|
||
|
|
||
|
void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
|
||
|
auto *From1 = Inst.getOperand(0);
|
||
|
auto *From2 = Inst.getOperand(1);
|
||
|
addAssignEdge(From1, &Inst);
|
||
|
addAssignEdge(From2, &Inst);
|
||
|
}
|
||
|
|
||
|
void visitConstantExpr(ConstantExpr *CE) {
|
||
|
switch (CE->getOpcode()) {
|
||
|
default:
|
||
|
llvm_unreachable("Unknown instruction type encountered!");
|
||
|
// Build the switch statement using the Instruction.def file.
|
||
|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
||
|
case Instruction::OPCODE: \
|
||
|
this->visit##OPCODE(*(CLASS *)CE); \
|
||
|
break;
|
||
|
#include "llvm/IR/Instruction.def"
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Helper functions
|
||
|
|
||
|
// Determines whether or not we an instruction is useless to us (e.g.
|
||
|
// FenceInst)
|
||
|
static bool hasUsefulEdges(Instruction *Inst) {
|
||
|
bool IsNonInvokeRetTerminator = isa<TerminatorInst>(Inst) &&
|
||
|
!isa<InvokeInst>(Inst) &&
|
||
|
!isa<ReturnInst>(Inst);
|
||
|
return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) &&
|
||
|
!IsNonInvokeRetTerminator;
|
||
|
}
|
||
|
|
||
|
void addArgumentToGraph(Argument &Arg) {
|
||
|
if (Arg.getType()->isPointerTy()) {
|
||
|
Graph.addNode(InstantiatedValue{&Arg, 0},
|
||
|
getGlobalOrArgAttrFromValue(Arg));
|
||
|
// Pointees of a formal parameter is known to the caller
|
||
|
Graph.addNode(InstantiatedValue{&Arg, 1}, getAttrCaller());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Given an Instruction, this will add it to the graph, along with any
|
||
|
// Instructions that are potentially only available from said Instruction
|
||
|
// For example, given the following line:
|
||
|
// %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
|
||
|
// addInstructionToGraph would add both the `load` and `getelementptr`
|
||
|
// instructions to the graph appropriately.
|
||
|
void addInstructionToGraph(GetEdgesVisitor &Visitor, Instruction &Inst) {
|
||
|
if (!hasUsefulEdges(&Inst))
|
||
|
return;
|
||
|
|
||
|
Visitor.visit(Inst);
|
||
|
}
|
||
|
|
||
|
// Builds the graph needed for constructing the StratifiedSets for the given
|
||
|
// function
|
||
|
void buildGraphFrom(Function &Fn) {
|
||
|
GetEdgesVisitor Visitor(*this);
|
||
|
|
||
|
for (auto &Bb : Fn.getBasicBlockList())
|
||
|
for (auto &Inst : Bb.getInstList())
|
||
|
addInstructionToGraph(Visitor, Inst);
|
||
|
|
||
|
for (auto &Arg : Fn.args())
|
||
|
addArgumentToGraph(Arg);
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
CFLGraphBuilder(CFLAA &Analysis, const TargetLibraryInfo &TLI, Function &Fn)
|
||
|
: Analysis(Analysis), TLI(TLI) {
|
||
|
buildGraphFrom(Fn);
|
||
|
}
|
||
|
|
||
|
const CFLGraph &getCFLGraph() const { return Graph; }
|
||
|
const SmallVector<Value *, 4> &getReturnValues() const {
|
||
|
return ReturnedValues;
|
||
|
}
|
||
|
};
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|