freebsd-dev/sys/sparc64/include/intr_machdep.h

110 lines
3.2 KiB
C
Raw Normal View History

2001-08-10 04:48:48 +00:00
/*-
* Copyright (c) 2001 Jake Burkholder.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _MACHINE_INTR_MACHDEP_H_
#define _MACHINE_INTR_MACHDEP_H_
#define IRSR_BUSY (1 << 5)
2001-08-10 04:48:48 +00:00
#define PIL_MAX (1 << 4)
#define IV_MAX (1 << 11)
#define IV_NAMLEN 1024
#define IR_FREE (PIL_MAX * 2)
2001-08-10 04:48:48 +00:00
#define IH_SHIFT PTR_SHIFT
2001-08-10 04:48:48 +00:00
#define IQE_SHIFT 5
o Revamp the sparc64 interrupt code in order to be able to interface with the INTR_FILTER-enabled MI code. Basically this consists of registering an interrupt controller (of which there can be multiple and optionally different ones either per host-to-foo bridge or shared amongst host-to-foo bridges in any one machine) along with an interrupt vector as specific argument for all the interrupt vectors used by a given host-to-foo bridge (roughly similar to registering interrupt sources on amd64 and i386), providing functions to enable, clear and disable the interrupts of the children beneath the bridge. This also includes: - No longer entering a critical section in tl0_intr() and tl1_intr() for executing interrupt handlers but rather let the handlers enter it themselves so in the case of intr_event_handle() we don't enter a nested critical section. - Adding infrastructure for binding delivery of interrupt vectors to specific CPUs which later on can be interfaced with the code from amd64/i386 for binding interrupts to specific CPUs. - Getting rid of the wrapper hack introduced along the lines of the API changes for INTR_FILTER which as a side-effect caused interrupts associated with ithread handlers only to get the elevated priority of those associated with filters ("fast handlers") (this removes the hack also in the non-INTR_FILTER case). - Disabling (by not clearing) an interrupt in the interrupt controller until all associated handlers have been executed, which is crucial for the typical locking strategy of NIC drivers in order to work correctly in case of shared interrupts. This was a more or less theoretical problem on sparc64 though, as shared interrupts are rather uncommon there except for the on-board SCCs and UARTs. Note that due to the behavior of at least of some of the interrupt controllers used on sparc64 an enable+EOI instead of a disable+EOI approach (as implied by the INTR_FILTER MI code and implemented on other architectures) is used as the latter can cause lost interrupts or in the worst case interrupt starvation. o Correct a typo in sbus_alloc_resource() which caused (pass-through) allocations to only work down to the grandchildren of the bus, which wasn't a real problem so far as we don't support any devices which are great-grandchildren or greater of a U2S bridge, yet. o In fhc(4) use bus_{read,write}_4() instead of bus_space_{read,write}_4() in order to get rid of sc_bh and sc_bt in the fhc_softc. Also get rid of some other unneeded members in fhc_softc. Reviewed by: marcel (earlier version) Approved by: re (kensmith)
2007-09-06 19:16:30 +00:00
#define IV_SHIFT 6
2001-08-10 04:48:48 +00:00
#define PIL_LOW 1 /* stray interrupts */
#define PIL_ITHREAD 2 /* interrupts that use ithreads */
#define PIL_RENDEZVOUS 3 /* smp rendezvous ipi */
#define PIL_AST 4 /* ast ipi */
#define PIL_STOP 5 /* stop cpu ipi */
#define PIL_PREEMPT 6 /* preempt idle thread cpu ipi */
#define PIL_FAST 13 /* fast interrupts */
2001-08-10 04:48:48 +00:00
#define PIL_TICK 14
#ifndef LOCORE
2002-05-29 19:25:14 +00:00
struct trapframe;
2001-08-10 04:48:48 +00:00
typedef void ih_func_t(struct trapframe *);
typedef void iv_func_t(void *);
struct intr_request {
struct intr_request *ir_next;
iv_func_t *ir_func;
void *ir_arg;
u_int ir_vec;
u_int ir_pri;
2001-08-10 04:48:48 +00:00
};
o Revamp the sparc64 interrupt code in order to be able to interface with the INTR_FILTER-enabled MI code. Basically this consists of registering an interrupt controller (of which there can be multiple and optionally different ones either per host-to-foo bridge or shared amongst host-to-foo bridges in any one machine) along with an interrupt vector as specific argument for all the interrupt vectors used by a given host-to-foo bridge (roughly similar to registering interrupt sources on amd64 and i386), providing functions to enable, clear and disable the interrupts of the children beneath the bridge. This also includes: - No longer entering a critical section in tl0_intr() and tl1_intr() for executing interrupt handlers but rather let the handlers enter it themselves so in the case of intr_event_handle() we don't enter a nested critical section. - Adding infrastructure for binding delivery of interrupt vectors to specific CPUs which later on can be interfaced with the code from amd64/i386 for binding interrupts to specific CPUs. - Getting rid of the wrapper hack introduced along the lines of the API changes for INTR_FILTER which as a side-effect caused interrupts associated with ithread handlers only to get the elevated priority of those associated with filters ("fast handlers") (this removes the hack also in the non-INTR_FILTER case). - Disabling (by not clearing) an interrupt in the interrupt controller until all associated handlers have been executed, which is crucial for the typical locking strategy of NIC drivers in order to work correctly in case of shared interrupts. This was a more or less theoretical problem on sparc64 though, as shared interrupts are rather uncommon there except for the on-board SCCs and UARTs. Note that due to the behavior of at least of some of the interrupt controllers used on sparc64 an enable+EOI instead of a disable+EOI approach (as implied by the INTR_FILTER MI code and implemented on other architectures) is used as the latter can cause lost interrupts or in the worst case interrupt starvation. o Correct a typo in sbus_alloc_resource() which caused (pass-through) allocations to only work down to the grandchildren of the bus, which wasn't a real problem so far as we don't support any devices which are great-grandchildren or greater of a U2S bridge, yet. o In fhc(4) use bus_{read,write}_4() instead of bus_space_{read,write}_4() in order to get rid of sc_bh and sc_bt in the fhc_softc. Also get rid of some other unneeded members in fhc_softc. Reviewed by: marcel (earlier version) Approved by: re (kensmith)
2007-09-06 19:16:30 +00:00
struct intr_controller {
void (*ic_enable)(void *);
void (*ic_disable)(void *);
void (*ic_assign)(void *);
void (*ic_clear)(void *);
o Revamp the sparc64 interrupt code in order to be able to interface with the INTR_FILTER-enabled MI code. Basically this consists of registering an interrupt controller (of which there can be multiple and optionally different ones either per host-to-foo bridge or shared amongst host-to-foo bridges in any one machine) along with an interrupt vector as specific argument for all the interrupt vectors used by a given host-to-foo bridge (roughly similar to registering interrupt sources on amd64 and i386), providing functions to enable, clear and disable the interrupts of the children beneath the bridge. This also includes: - No longer entering a critical section in tl0_intr() and tl1_intr() for executing interrupt handlers but rather let the handlers enter it themselves so in the case of intr_event_handle() we don't enter a nested critical section. - Adding infrastructure for binding delivery of interrupt vectors to specific CPUs which later on can be interfaced with the code from amd64/i386 for binding interrupts to specific CPUs. - Getting rid of the wrapper hack introduced along the lines of the API changes for INTR_FILTER which as a side-effect caused interrupts associated with ithread handlers only to get the elevated priority of those associated with filters ("fast handlers") (this removes the hack also in the non-INTR_FILTER case). - Disabling (by not clearing) an interrupt in the interrupt controller until all associated handlers have been executed, which is crucial for the typical locking strategy of NIC drivers in order to work correctly in case of shared interrupts. This was a more or less theoretical problem on sparc64 though, as shared interrupts are rather uncommon there except for the on-board SCCs and UARTs. Note that due to the behavior of at least of some of the interrupt controllers used on sparc64 an enable+EOI instead of a disable+EOI approach (as implied by the INTR_FILTER MI code and implemented on other architectures) is used as the latter can cause lost interrupts or in the worst case interrupt starvation. o Correct a typo in sbus_alloc_resource() which caused (pass-through) allocations to only work down to the grandchildren of the bus, which wasn't a real problem so far as we don't support any devices which are great-grandchildren or greater of a U2S bridge, yet. o In fhc(4) use bus_{read,write}_4() instead of bus_space_{read,write}_4() in order to get rid of sc_bh and sc_bt in the fhc_softc. Also get rid of some other unneeded members in fhc_softc. Reviewed by: marcel (earlier version) Approved by: re (kensmith)
2007-09-06 19:16:30 +00:00
};
2001-09-05 05:18:35 +00:00
struct intr_vector {
iv_func_t *iv_func;
2001-08-10 04:48:48 +00:00
void *iv_arg;
o Revamp the sparc64 interrupt code in order to be able to interface with the INTR_FILTER-enabled MI code. Basically this consists of registering an interrupt controller (of which there can be multiple and optionally different ones either per host-to-foo bridge or shared amongst host-to-foo bridges in any one machine) along with an interrupt vector as specific argument for all the interrupt vectors used by a given host-to-foo bridge (roughly similar to registering interrupt sources on amd64 and i386), providing functions to enable, clear and disable the interrupts of the children beneath the bridge. This also includes: - No longer entering a critical section in tl0_intr() and tl1_intr() for executing interrupt handlers but rather let the handlers enter it themselves so in the case of intr_event_handle() we don't enter a nested critical section. - Adding infrastructure for binding delivery of interrupt vectors to specific CPUs which later on can be interfaced with the code from amd64/i386 for binding interrupts to specific CPUs. - Getting rid of the wrapper hack introduced along the lines of the API changes for INTR_FILTER which as a side-effect caused interrupts associated with ithread handlers only to get the elevated priority of those associated with filters ("fast handlers") (this removes the hack also in the non-INTR_FILTER case). - Disabling (by not clearing) an interrupt in the interrupt controller until all associated handlers have been executed, which is crucial for the typical locking strategy of NIC drivers in order to work correctly in case of shared interrupts. This was a more or less theoretical problem on sparc64 though, as shared interrupts are rather uncommon there except for the on-board SCCs and UARTs. Note that due to the behavior of at least of some of the interrupt controllers used on sparc64 an enable+EOI instead of a disable+EOI approach (as implied by the INTR_FILTER MI code and implemented on other architectures) is used as the latter can cause lost interrupts or in the worst case interrupt starvation. o Correct a typo in sbus_alloc_resource() which caused (pass-through) allocations to only work down to the grandchildren of the bus, which wasn't a real problem so far as we don't support any devices which are great-grandchildren or greater of a U2S bridge, yet. o In fhc(4) use bus_{read,write}_4() instead of bus_space_{read,write}_4() in order to get rid of sc_bh and sc_bt in the fhc_softc. Also get rid of some other unneeded members in fhc_softc. Reviewed by: marcel (earlier version) Approved by: re (kensmith)
2007-09-06 19:16:30 +00:00
const struct intr_controller *iv_ic;
void *iv_icarg;
Reorganize the interrupt handling code a bit to make a few things cleaner and increase flexibility to allow various different approaches to be tried in the future. - Split struct ithd up into two pieces. struct intr_event holds the list of interrupt handlers associated with interrupt sources. struct intr_thread contains the data relative to an interrupt thread. Currently we still provide a 1:1 relationship of events to threads with the exception that events only have an associated thread if there is at least one threaded interrupt handler attached to the event. This means that on x86 we no longer have 4 bazillion interrupt threads with no handlers. It also means that interrupt events with only INTR_FAST handlers no longer have an associated thread either. - Renamed struct intrhand to struct intr_handler to follow the struct intr_foo naming convention. This did require renaming the powerpc MD struct intr_handler to struct ppc_intr_handler. - INTR_FAST no longer implies INTR_EXCL on all architectures except for powerpc. This means that multiple INTR_FAST handlers can attach to the same interrupt and that INTR_FAST and non-INTR_FAST handlers can attach to the same interrupt. Sharing INTR_FAST handlers may not always be desirable, but having sio(4) and uhci(4) fight over an IRQ isn't fun either. Drivers can always still use INTR_EXCL to ask for an interrupt exclusively. The way this sharing works is that when an interrupt comes in, all the INTR_FAST handlers are executed first, and if any threaded handlers exist, the interrupt thread is scheduled afterwards. This type of layout also makes it possible to investigate using interrupt filters ala OS X where the filter determines whether or not its companion threaded handler should run. - Aside from the INTR_FAST changes above, the impact on MD interrupt code is mostly just 's/ithread/intr_event/'. - A new MI ddb command 'show intrs' walks the list of interrupt events dumping their state. It also has a '/v' verbose switch which dumps info about all of the handlers attached to each event. - We currently don't destroy an interrupt thread when the last threaded handler is removed because it would suck for things like ppbus(8)'s braindead behavior. The code is present, though, it is just under #if 0 for now. - Move the code to actually execute the threaded handlers for an interrrupt event into a separate function so that ithread_loop() becomes more readable. Previously this code was all in the middle of ithread_loop() and indented halfway across the screen. - Made struct intr_thread private to kern_intr.c and replaced td_ithd with a thread private flag TDP_ITHREAD. - In statclock, check curthread against idlethread directly rather than curthread's proc against idlethread's proc. (Not really related to intr changes) Tested on: alpha, amd64, i386, sparc64 Tested on: arm, ia64 (older version of patch by cognet and marcel)
2005-10-25 19:48:48 +00:00
struct intr_event *iv_event;
2001-08-10 04:48:48 +00:00
u_int iv_pri;
u_int iv_vec;
o Revamp the sparc64 interrupt code in order to be able to interface with the INTR_FILTER-enabled MI code. Basically this consists of registering an interrupt controller (of which there can be multiple and optionally different ones either per host-to-foo bridge or shared amongst host-to-foo bridges in any one machine) along with an interrupt vector as specific argument for all the interrupt vectors used by a given host-to-foo bridge (roughly similar to registering interrupt sources on amd64 and i386), providing functions to enable, clear and disable the interrupts of the children beneath the bridge. This also includes: - No longer entering a critical section in tl0_intr() and tl1_intr() for executing interrupt handlers but rather let the handlers enter it themselves so in the case of intr_event_handle() we don't enter a nested critical section. - Adding infrastructure for binding delivery of interrupt vectors to specific CPUs which later on can be interfaced with the code from amd64/i386 for binding interrupts to specific CPUs. - Getting rid of the wrapper hack introduced along the lines of the API changes for INTR_FILTER which as a side-effect caused interrupts associated with ithread handlers only to get the elevated priority of those associated with filters ("fast handlers") (this removes the hack also in the non-INTR_FILTER case). - Disabling (by not clearing) an interrupt in the interrupt controller until all associated handlers have been executed, which is crucial for the typical locking strategy of NIC drivers in order to work correctly in case of shared interrupts. This was a more or less theoretical problem on sparc64 though, as shared interrupts are rather uncommon there except for the on-board SCCs and UARTs. Note that due to the behavior of at least of some of the interrupt controllers used on sparc64 an enable+EOI instead of a disable+EOI approach (as implied by the INTR_FILTER MI code and implemented on other architectures) is used as the latter can cause lost interrupts or in the worst case interrupt starvation. o Correct a typo in sbus_alloc_resource() which caused (pass-through) allocations to only work down to the grandchildren of the bus, which wasn't a real problem so far as we don't support any devices which are great-grandchildren or greater of a U2S bridge, yet. o In fhc(4) use bus_{read,write}_4() instead of bus_space_{read,write}_4() in order to get rid of sc_bh and sc_bt in the fhc_softc. Also get rid of some other unneeded members in fhc_softc. Reviewed by: marcel (earlier version) Approved by: re (kensmith)
2007-09-06 19:16:30 +00:00
u_int iv_mid;
u_int iv_refcnt;
u_int iv_pad[2];
2001-08-10 04:48:48 +00:00
};
extern ih_func_t *intr_handlers[];
2001-08-10 04:48:48 +00:00
extern struct intr_vector intr_vectors[];
#ifdef SMP
void intr_add_cpu(u_int cpu);
#endif
int intr_bind(int vec, u_char cpu);
2001-08-10 04:48:48 +00:00
void intr_setup(int level, ih_func_t *ihf, int pri, iv_func_t *ivf,
void *iva);
void intr_init1(void);
void intr_init2(void);
o Revamp the sparc64 interrupt code in order to be able to interface with the INTR_FILTER-enabled MI code. Basically this consists of registering an interrupt controller (of which there can be multiple and optionally different ones either per host-to-foo bridge or shared amongst host-to-foo bridges in any one machine) along with an interrupt vector as specific argument for all the interrupt vectors used by a given host-to-foo bridge (roughly similar to registering interrupt sources on amd64 and i386), providing functions to enable, clear and disable the interrupts of the children beneath the bridge. This also includes: - No longer entering a critical section in tl0_intr() and tl1_intr() for executing interrupt handlers but rather let the handlers enter it themselves so in the case of intr_event_handle() we don't enter a nested critical section. - Adding infrastructure for binding delivery of interrupt vectors to specific CPUs which later on can be interfaced with the code from amd64/i386 for binding interrupts to specific CPUs. - Getting rid of the wrapper hack introduced along the lines of the API changes for INTR_FILTER which as a side-effect caused interrupts associated with ithread handlers only to get the elevated priority of those associated with filters ("fast handlers") (this removes the hack also in the non-INTR_FILTER case). - Disabling (by not clearing) an interrupt in the interrupt controller until all associated handlers have been executed, which is crucial for the typical locking strategy of NIC drivers in order to work correctly in case of shared interrupts. This was a more or less theoretical problem on sparc64 though, as shared interrupts are rather uncommon there except for the on-board SCCs and UARTs. Note that due to the behavior of at least of some of the interrupt controllers used on sparc64 an enable+EOI instead of a disable+EOI approach (as implied by the INTR_FILTER MI code and implemented on other architectures) is used as the latter can cause lost interrupts or in the worst case interrupt starvation. o Correct a typo in sbus_alloc_resource() which caused (pass-through) allocations to only work down to the grandchildren of the bus, which wasn't a real problem so far as we don't support any devices which are great-grandchildren or greater of a U2S bridge, yet. o In fhc(4) use bus_{read,write}_4() instead of bus_space_{read,write}_4() in order to get rid of sc_bh and sc_bt in the fhc_softc. Also get rid of some other unneeded members in fhc_softc. Reviewed by: marcel (earlier version) Approved by: re (kensmith)
2007-09-06 19:16:30 +00:00
int intr_controller_register(int vec, const struct intr_controller *ic,
void *icarg);
int inthand_add(const char *name, int vec, int (*filt)(void *),
o Revamp the sparc64 interrupt code in order to be able to interface with the INTR_FILTER-enabled MI code. Basically this consists of registering an interrupt controller (of which there can be multiple and optionally different ones either per host-to-foo bridge or shared amongst host-to-foo bridges in any one machine) along with an interrupt vector as specific argument for all the interrupt vectors used by a given host-to-foo bridge (roughly similar to registering interrupt sources on amd64 and i386), providing functions to enable, clear and disable the interrupts of the children beneath the bridge. This also includes: - No longer entering a critical section in tl0_intr() and tl1_intr() for executing interrupt handlers but rather let the handlers enter it themselves so in the case of intr_event_handle() we don't enter a nested critical section. - Adding infrastructure for binding delivery of interrupt vectors to specific CPUs which later on can be interfaced with the code from amd64/i386 for binding interrupts to specific CPUs. - Getting rid of the wrapper hack introduced along the lines of the API changes for INTR_FILTER which as a side-effect caused interrupts associated with ithread handlers only to get the elevated priority of those associated with filters ("fast handlers") (this removes the hack also in the non-INTR_FILTER case). - Disabling (by not clearing) an interrupt in the interrupt controller until all associated handlers have been executed, which is crucial for the typical locking strategy of NIC drivers in order to work correctly in case of shared interrupts. This was a more or less theoretical problem on sparc64 though, as shared interrupts are rather uncommon there except for the on-board SCCs and UARTs. Note that due to the behavior of at least of some of the interrupt controllers used on sparc64 an enable+EOI instead of a disable+EOI approach (as implied by the INTR_FILTER MI code and implemented on other architectures) is used as the latter can cause lost interrupts or in the worst case interrupt starvation. o Correct a typo in sbus_alloc_resource() which caused (pass-through) allocations to only work down to the grandchildren of the bus, which wasn't a real problem so far as we don't support any devices which are great-grandchildren or greater of a U2S bridge, yet. o In fhc(4) use bus_{read,write}_4() instead of bus_space_{read,write}_4() in order to get rid of sc_bh and sc_bt in the fhc_softc. Also get rid of some other unneeded members in fhc_softc. Reviewed by: marcel (earlier version) Approved by: re (kensmith)
2007-09-06 19:16:30 +00:00
void (*handler)(void *), void *arg, int flags, void **cookiep);
int inthand_remove(int vec, void *cookie);
2001-08-10 04:48:48 +00:00
ih_func_t intr_fast;
2001-08-10 04:48:48 +00:00
#endif /* !LOCORE */
#endif /* !_MACHINE_INTR_MACHDEP_H_ */