freebsd-dev/sys/rpc/svc_dg.c

311 lines
7.4 KiB
C
Raw Normal View History

Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/* $NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $ */
/*
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
* unrestricted use provided that this legend is included on all tape
* media and as a part of the software program in whole or part. Users
* may copy or modify Sun RPC without charge, but are not authorized
* to license or distribute it to anyone else except as part of a product or
* program developed by the user.
*
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun RPC is provided with no support and without any obligation on the
* part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* Copyright (c) 1986-1991 by Sun Microsystems Inc.
*/
#if defined(LIBC_SCCS) && !defined(lint)
#ident "@(#)svc_dg.c 1.17 94/04/24 SMI"
#endif
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* svc_dg.c, Server side for connectionless RPC.
*/
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/protosw.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
#include <sys/sx.h>
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
#include <sys/systm.h>
#include <sys/uio.h>
#include <net/vnet.h>
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
#include <rpc/rpc.h>
#include <rpc/rpc_com.h>
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
static enum xprt_stat svc_dg_stat(SVCXPRT *);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *,
struct sockaddr **, struct mbuf **);
static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *,
struct sockaddr *, struct mbuf *);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
static void svc_dg_destroy(SVCXPRT *);
static bool_t svc_dg_control(SVCXPRT *, const u_int, void *);
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
static int svc_dg_soupcall(struct socket *so, void *arg, int waitflag);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
static struct xp_ops svc_dg_ops = {
.xp_recv = svc_dg_recv,
.xp_stat = svc_dg_stat,
.xp_reply = svc_dg_reply,
.xp_destroy = svc_dg_destroy,
.xp_control = svc_dg_control,
};
/*
* Usage:
* xprt = svc_dg_create(sock, sendsize, recvsize);
* Does other connectionless specific initializations.
* Once *xprt is initialized, it is registered.
* see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
* system defaults are chosen.
* The routines returns NULL if a problem occurred.
*/
static const char svc_dg_str[] = "svc_dg_create: %s";
static const char svc_dg_err1[] = "could not get transport information";
static const char svc_dg_err2[] = "transport does not support data transfer";
static const char __no_mem_str[] = "out of memory";
SVCXPRT *
svc_dg_create(SVCPOOL *pool, struct socket *so, size_t sendsize,
size_t recvsize)
{
SVCXPRT *xprt;
struct __rpc_sockinfo si;
struct sockaddr* sa;
int error;
CURVNET_SET(so->so_vnet);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
if (!__rpc_socket2sockinfo(so, &si)) {
printf(svc_dg_str, svc_dg_err1);
CURVNET_RESTORE();
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
return (NULL);
}
/*
* Find the receive and the send size
*/
sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize);
recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize);
if ((sendsize == 0) || (recvsize == 0)) {
printf(svc_dg_str, svc_dg_err2);
CURVNET_RESTORE();
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
return (NULL);
}
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
xprt = svc_xprt_alloc();
sx_init(&xprt->xp_lock, "xprt->xp_lock");
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
xprt->xp_pool = pool;
xprt->xp_socket = so;
xprt->xp_p1 = NULL;
xprt->xp_p2 = NULL;
xprt->xp_ops = &svc_dg_ops;
error = so->so_proto->pr_usrreqs->pru_sockaddr(so, &sa);
CURVNET_RESTORE();
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
if (error)
goto freedata;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
memcpy(&xprt->xp_ltaddr, sa, sa->sa_len);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
free(sa, M_SONAME);
xprt_register(xprt);
SOCKBUF_LOCK(&so->so_rcv);
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
soupcall_set(so, SO_RCV, svc_dg_soupcall, xprt);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
SOCKBUF_UNLOCK(&so->so_rcv);
return (xprt);
freedata:
(void) printf(svc_dg_str, __no_mem_str);
if (xprt) {
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
svc_xprt_free(xprt);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
}
return (NULL);
}
/*ARGSUSED*/
static enum xprt_stat
svc_dg_stat(SVCXPRT *xprt)
{
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
if (soreadable(xprt->xp_socket))
return (XPRT_MOREREQS);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
return (XPRT_IDLE);
}
static bool_t
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg,
struct sockaddr **addrp, struct mbuf **mp)
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
{
struct uio uio;
struct sockaddr *raddr;
struct mbuf *mreq;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
XDR xdrs;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
int error, rcvflag;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
/*
* Serialise access to the socket.
*/
sx_xlock(&xprt->xp_lock);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/*
* The socket upcall calls xprt_active() which will eventually
* cause the server to call us here. We attempt to read a
* packet from the socket and process it. If the read fails,
* we have drained all pending requests so we call
* xprt_inactive().
*/
uio.uio_resid = 1000000000;
uio.uio_td = curthread;
mreq = NULL;
rcvflag = MSG_DONTWAIT;
error = soreceive(xprt->xp_socket, &raddr, &uio, &mreq, NULL, &rcvflag);
if (error == EWOULDBLOCK) {
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
/*
* We must re-test for readability after taking the
* lock to protect us in the case where a new packet
* arrives on the socket after our call to soreceive
* fails with EWOULDBLOCK. The pool lock protects us
* from racing the upcall after our soreadable() call
* returns false.
*/
mtx_lock(&xprt->xp_pool->sp_lock);
if (!soreadable(xprt->xp_socket))
xprt_inactive_locked(xprt);
mtx_unlock(&xprt->xp_pool->sp_lock);
sx_xunlock(&xprt->xp_lock);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
return (FALSE);
}
if (error) {
SOCKBUF_LOCK(&xprt->xp_socket->so_rcv);
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
soupcall_clear(xprt->xp_socket, SO_RCV);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
SOCKBUF_UNLOCK(&xprt->xp_socket->so_rcv);
xprt_inactive(xprt);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
sx_xunlock(&xprt->xp_lock);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
return (FALSE);
}
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
sx_xunlock(&xprt->xp_lock);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
xdrmbuf_create(&xdrs, mreq, XDR_DECODE);
if (! xdr_callmsg(&xdrs, msg)) {
XDR_DESTROY(&xdrs);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
return (FALSE);
}
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
*addrp = raddr;
*mp = xdrmbuf_getall(&xdrs);
XDR_DESTROY(&xdrs);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
return (TRUE);
}
static bool_t
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg,
struct sockaddr *addr, struct mbuf *m)
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
{
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
XDR xdrs;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
struct mbuf *mrep;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
bool_t stat = TRUE;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
int error;
MGETHDR(mrep, M_WAIT, MT_DATA);
mrep->m_len = 0;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
xdrmbuf_create(&xdrs, mrep, XDR_ENCODE);
if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
if (!xdr_replymsg(&xdrs, msg))
stat = FALSE;
else
xdrmbuf_append(&xdrs, m);
} else {
stat = xdr_replymsg(&xdrs, msg);
}
if (stat) {
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
m_fixhdr(mrep);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
error = sosend(xprt->xp_socket, addr, NULL, mrep, NULL,
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
0, curthread);
if (!error) {
stat = TRUE;
}
} else {
m_freem(mrep);
}
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
XDR_DESTROY(&xdrs);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
xprt->xp_p2 = NULL;
return (stat);
}
static void
svc_dg_destroy(SVCXPRT *xprt)
{
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
SOCKBUF_LOCK(&xprt->xp_socket->so_rcv);
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
soupcall_clear(xprt->xp_socket, SO_RCV);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
SOCKBUF_UNLOCK(&xprt->xp_socket->so_rcv);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
sx_destroy(&xprt->xp_lock);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
if (xprt->xp_socket)
(void)soclose(xprt->xp_socket);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
if (xprt->xp_netid)
(void) mem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
svc_xprt_free(xprt);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
}
static bool_t
/*ARGSUSED*/
svc_dg_control(xprt, rq, in)
SVCXPRT *xprt;
const u_int rq;
void *in;
{
return (FALSE);
}
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
static int
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
svc_dg_soupcall(struct socket *so, void *arg, int waitflag)
{
SVCXPRT *xprt = (SVCXPRT *) arg;
xprt_active(xprt);
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
return (SU_OK);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
}