freebsd-dev/sys/ufs/ffs/ffs_inode.c

549 lines
16 KiB
C
Raw Normal View History

1994-05-24 10:09:53 +00:00
/*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95
Some VM improvements, including elimination of alot of Sig-11 problems. Tor Egge and others have helped with various VM bugs lately, but don't blame him -- blame me!!! pmap.c: 1) Create an object for kernel page table allocations. This fixes a bogus allocation method previously used for such, by grabbing pages from the kernel object, using bogus pindexes. (This was a code cleanup, and perhaps a minor system stability issue.) pmap.c: 2) Pre-set the modify and accessed bits when prudent. This will decrease bus traffic under certain circumstances. vfs_bio.c, vfs_cluster.c: 3) Rather than calculating the beginning virtual byte offset multiple times, stick the offset into the buffer header, so that the calculated offset can be reused. (Long long multiplies are often expensive, and this is a probably unmeasurable performance improvement, and code cleanup.) vfs_bio.c: 4) Handle write recursion more intelligently (but not perfectly) so that it is less likely to cause a system panic, and is also much more robust. vfs_bio.c: 5) getblk incorrectly wrote out blocks that are incorrectly sized. The problem is fixed, and writes blocks out ONLY when B_DELWRI is true. vfs_bio.c: 6) Check that already constituted buffers have fully valid pages. If not, then make sure that the B_CACHE bit is not set. (This was a major source of Sig-11 type problems.) vfs_bio.c: 7) Fix a potential system deadlock due to an incorrectly specified sleep priority while waiting for a buffer write operation. The change that I made opens the system up to serious problems, and we need to examine the issue of process sleep priorities. vfs_cluster.c, vfs_bio.c: 8) Make clustered reads work more correctly (and more completely) when buffers are already constituted, but not fully valid. (This was another system reliability issue.) vfs_subr.c, ffs_inode.c: 9) Create a vtruncbuf function, which is used by filesystems that can truncate files. The vinvalbuf forced a file sync type operation, while vtruncbuf only invalidates the buffers past the new end of file, and also invalidates the appropriate pages. (This was a system reliabiliy and performance issue.) 10) Modify FFS to use vtruncbuf. vm_object.c: 11) Make the object rundown mechanism for OBJT_VNODE type objects work more correctly. Included in that fix, create pager entries for the OBJT_DEAD pager type, so that paging requests that might slip in during race conditions are properly handled. (This was a system reliability issue.) vm_page.c: 12) Make some of the page validation routines be a little less picky about arguments passed to them. Also, support page invalidation change the object generation count so that we handle generation counts a little more robustly. vm_pageout.c: 13) Further reduce pageout daemon activity when the system doesn't need help from it. There should be no additional performance decrease even when the pageout daemon is running. (This was a significant performance issue.) vnode_pager.c: 14) Teach the vnode pager to handle race conditions during vnode deallocations.
1998-03-16 01:56:03 +00:00
* $Id: ffs_inode.c,v 1.36 1998/03/08 09:58:55 julian Exp $
1994-05-24 10:09:53 +00:00
*/
1996-01-05 18:31:58 +00:00
#include "opt_quota.h"
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/resourcevar.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
1994-05-24 10:09:53 +00:00
#include <ufs/ufs/quota.h>
#include <ufs/ufs/ufsmount.h>
1994-05-24 10:09:53 +00:00
#include <ufs/ufs/inode.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
static int ffs_indirtrunc __P((struct inode *, ufs_daddr_t, ufs_daddr_t,
ufs_daddr_t, int, long *));
1994-05-24 10:09:53 +00:00
/*
* Update the access, modified, and inode change times as specified by the
* IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. The IN_MODIFIED
* flag is used to specify that the inode needs to be updated even if none
* of the times needs to be updated. The access and modified times are taken
* from the second and third parameters; the inode change time is always
* taken from the current time. If waitfor is set, then wait for the disk
* write of the inode to complete.
1994-05-24 10:09:53 +00:00
*/
int
ffs_update(vp, access, modify, waitfor)
struct vnode *vp;
struct timeval *access;
struct timeval *modify;
int waitfor;
1994-05-24 10:09:53 +00:00
{
register struct fs *fs;
struct buf *bp;
struct inode *ip;
int error;
time_t tv_sec;
1994-05-24 10:09:53 +00:00
ip = VTOI(vp);
if (vp->v_mount->mnt_flag & MNT_RDONLY) {
1994-05-24 10:09:53 +00:00
ip->i_flag &=
~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
return (0);
}
if (((ip->i_flag &
(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0) &&
(waitfor != MNT_WAIT))
1994-05-24 10:09:53 +00:00
return (0);
/*
* Use a copy of the current time to get consistent timestamps
* (a_access and a_modify are sometimes aliases for &time).
*
* XXX in 2.0, a_access and a_modify are often pointers to the
* same copy of `time'. This is not as good. Some callers forget
* to make a copy; others make a copy too early (before the i/o
* has completed)...
*
* XXX there should be a function or macro for reading the time
* (e.g., some machines may require splclock()).
*/
tv_sec = time.tv_sec;
1994-05-24 10:09:53 +00:00
if (ip->i_flag & IN_ACCESS)
ip->i_atime =
(access == &time ? tv_sec : access->tv_sec);
1994-05-24 10:09:53 +00:00
if (ip->i_flag & IN_UPDATE) {
ip->i_mtime =
(modify == &time ? tv_sec : modify->tv_sec);
1994-05-24 10:09:53 +00:00
ip->i_modrev++;
}
if (ip->i_flag & IN_CHANGE)
ip->i_ctime = tv_sec;
1994-05-24 10:09:53 +00:00
ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
fs = ip->i_fs;
/*
* Ensure that uid and gid are correct. This is a temporary
* fix until fsck has been changed to do the update.
*/
if (fs->fs_inodefmt < FS_44INODEFMT) { /* XXX */
ip->i_din.di_ouid = ip->i_uid; /* XXX */
ip->i_din.di_ogid = ip->i_gid; /* XXX */
} /* XXX */
error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, NOCRED, &bp);
if (error) {
1994-05-24 10:09:53 +00:00
brelse(bp);
return (error);
}
if (DOINGSOFTDEP(vp))
softdep_update_inodeblock(ip, bp, waitfor);
else if (ip->i_effnlink != ip->i_nlink)
panic("ffs_update: bad link cnt");
1994-05-24 10:09:53 +00:00
*((struct dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number)) = ip->i_din;
if (waitfor && (vp->v_mount->mnt_flag & MNT_ASYNC) == 0) {
1994-05-24 10:09:53 +00:00
return (bwrite(bp));
} else {
if (bp->b_bufsize == fs->fs_bsize)
bp->b_flags |= B_CLUSTEROK;
1994-05-24 10:09:53 +00:00
bdwrite(bp);
return (0);
}
}
#define SINGLE 0 /* index of single indirect block */
#define DOUBLE 1 /* index of double indirect block */
#define TRIPLE 2 /* index of triple indirect block */
/*
* Truncate the inode oip to at most length size, freeing the
* disk blocks.
*/
int
ffs_truncate(vp, length, flags, cred, p)
struct vnode *vp;
off_t length;
int flags;
struct ucred *cred;
struct proc *p;
1994-05-24 10:09:53 +00:00
{
register struct vnode *ovp = vp;
ufs_daddr_t lastblock;
1994-05-24 10:09:53 +00:00
register struct inode *oip;
ufs_daddr_t bn, lbn, lastiblock[NIADDR], indir_lbn[NIADDR];
ufs_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
1994-05-24 10:09:53 +00:00
register struct fs *fs;
struct buf *bp;
int offset, size, level;
long count, nblocks, vflags, blocksreleased = 0;
struct timeval tv;
register int i;
int aflags, error, allerror;
off_t osize;
oip = VTOI(ovp);
if (oip->i_size == length)
return (0);
fs = oip->i_fs;
if (length < 0)
return (EINVAL);
if (length > fs->fs_maxfilesize)
return (EFBIG);
gettime(&tv);
1994-05-24 10:09:53 +00:00
if (ovp->v_type == VLNK &&
(oip->i_size < ovp->v_mount->mnt_maxsymlinklen || oip->i_din.di_blocks == 0)) {
1994-05-24 10:09:53 +00:00
#ifdef DIAGNOSTIC
if (length != 0)
panic("ffs_truncate: partial truncate of symlink");
#endif
bzero((char *)&oip->i_shortlink, (u_int)oip->i_size);
oip->i_size = 0;
oip->i_flag |= IN_CHANGE | IN_UPDATE;
return (UFS_UPDATE(ovp, &tv, &tv, 1));
1994-05-24 10:09:53 +00:00
}
if (oip->i_size == length) {
oip->i_flag |= IN_CHANGE | IN_UPDATE;
return (UFS_UPDATE(ovp, &tv, &tv, 0));
1994-05-24 10:09:53 +00:00
}
#ifdef QUOTA
error = getinoquota(oip);
if (error)
1994-05-24 10:09:53 +00:00
return (error);
#endif
ovp->v_lasta = ovp->v_clen = ovp->v_cstart = ovp->v_lastw = 0;
if (DOINGSOFTDEP(ovp)) {
if (length > 0) {
/*
* If a file is only partially truncated, then
* we have to clean up the data structures
* describing the allocation past the truncation
* point. Finding and deallocating those structures
* is a lot of work. Since partial truncation occurs
* rarely, we solve the problem by syncing the file
* so that it will have no data structures left.
*/
if ((error = VOP_FSYNC(ovp, cred, MNT_WAIT,
p)) != 0)
return (error);
} else {
#ifdef QUOTA
(void) chkdq(oip, -oip->i_blocks, NOCRED, 0);
#endif
softdep_setup_freeblocks(oip, length);
Some VM improvements, including elimination of alot of Sig-11 problems. Tor Egge and others have helped with various VM bugs lately, but don't blame him -- blame me!!! pmap.c: 1) Create an object for kernel page table allocations. This fixes a bogus allocation method previously used for such, by grabbing pages from the kernel object, using bogus pindexes. (This was a code cleanup, and perhaps a minor system stability issue.) pmap.c: 2) Pre-set the modify and accessed bits when prudent. This will decrease bus traffic under certain circumstances. vfs_bio.c, vfs_cluster.c: 3) Rather than calculating the beginning virtual byte offset multiple times, stick the offset into the buffer header, so that the calculated offset can be reused. (Long long multiplies are often expensive, and this is a probably unmeasurable performance improvement, and code cleanup.) vfs_bio.c: 4) Handle write recursion more intelligently (but not perfectly) so that it is less likely to cause a system panic, and is also much more robust. vfs_bio.c: 5) getblk incorrectly wrote out blocks that are incorrectly sized. The problem is fixed, and writes blocks out ONLY when B_DELWRI is true. vfs_bio.c: 6) Check that already constituted buffers have fully valid pages. If not, then make sure that the B_CACHE bit is not set. (This was a major source of Sig-11 type problems.) vfs_bio.c: 7) Fix a potential system deadlock due to an incorrectly specified sleep priority while waiting for a buffer write operation. The change that I made opens the system up to serious problems, and we need to examine the issue of process sleep priorities. vfs_cluster.c, vfs_bio.c: 8) Make clustered reads work more correctly (and more completely) when buffers are already constituted, but not fully valid. (This was another system reliability issue.) vfs_subr.c, ffs_inode.c: 9) Create a vtruncbuf function, which is used by filesystems that can truncate files. The vinvalbuf forced a file sync type operation, while vtruncbuf only invalidates the buffers past the new end of file, and also invalidates the appropriate pages. (This was a system reliabiliy and performance issue.) 10) Modify FFS to use vtruncbuf. vm_object.c: 11) Make the object rundown mechanism for OBJT_VNODE type objects work more correctly. Included in that fix, create pager entries for the OBJT_DEAD pager type, so that paging requests that might slip in during race conditions are properly handled. (This was a system reliability issue.) vm_page.c: 12) Make some of the page validation routines be a little less picky about arguments passed to them. Also, support page invalidation change the object generation count so that we handle generation counts a little more robustly. vm_pageout.c: 13) Further reduce pageout daemon activity when the system doesn't need help from it. There should be no additional performance decrease even when the pageout daemon is running. (This was a significant performance issue.) vnode_pager.c: 14) Teach the vnode pager to handle race conditions during vnode deallocations.
1998-03-16 01:56:03 +00:00
(void) vtruncbuf(ovp, cred, p, length, fs->fs_bsize);
oip->i_flag |= IN_CHANGE | IN_UPDATE;
return (ffs_update(ovp, &tv, &tv, 0));
}
}
1994-05-24 10:09:53 +00:00
osize = oip->i_size;
/*
* Lengthen the size of the file. We must ensure that the
* last byte of the file is allocated. Since the smallest
* value of osize is 0, length will be at least 1.
1994-05-24 10:09:53 +00:00
*/
if (osize < length) {
This mega-commit is meant to fix numerous interrelated problems. There has been some bitrot and incorrect assumptions in the vfs_bio code. These problems have manifest themselves worse on NFS type filesystems, but can still affect local filesystems under certain circumstances. Most of the problems have involved mmap consistancy, and as a side-effect broke the vfs.ioopt code. This code might have been committed seperately, but almost everything is interrelated. 1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that are fully valid. 2) Rather than deactivating erroneously read initial (header) pages in kern_exec, we now free them. 3) Fix the rundown of non-VMIO buffers that are in an inconsistent (missing vp) state. 4) Fix the disassociation of pages from buffers in brelse. The previous code had rotted and was faulty in a couple of important circumstances. 5) Remove a gratuitious buffer wakeup in vfs_vmio_release. 6) Remove a crufty and currently unused cluster mechanism for VBLK files in vfs_bio_awrite. When the code is functional, I'll add back a cleaner version. 7) The page busy count wakeups assocated with the buffer cache usage were incorrectly cleaned up in a previous commit by me. Revert to the original, correct version, but with a cleaner implementation. 8) The cluster read code now tries to keep data associated with buffers more aggressively (without breaking the heuristics) when it is presumed that the read data (buffers) will be soon needed. 9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The delay loop waiting is not useful for filesystem locks, due to the length of the time intervals. 10) Correct and clean-up spec_getpages. 11) Implement a fully functional nfs_getpages, nfs_putpages. 12) Fix nfs_write so that modifications are coherent with the NFS data on the server disk (at least as well as NFS seems to allow.) 13) Properly support MS_INVALIDATE on NFS. 14) Properly pass down MS_INVALIDATE to lower levels of the VM code from vm_map_clean. 15) Better support the notion of pages being busy but valid, so that fewer in-transit waits occur. (use p->busy more for pageouts instead of PG_BUSY.) Since the page is fully valid, it is still usable for reads. 16) It is possible (in error) for cached pages to be busy. Make the page allocation code handle that case correctly. (It should probably be a printf or panic, but I want the system to handle coding errors robustly. I'll probably add a printf.) 17) Correct the design and usage of vm_page_sleep. It didn't handle consistancy problems very well, so make the design a little less lofty. After vm_page_sleep, if it ever blocked, it is still important to relookup the page (if the object generation count changed), and verify it's status (always.) 18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up. 19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush. 20) Fix vm_pager_put_pages and it's descendents to support an int flag instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
vnode_pager_setsize(ovp, length);
1994-05-24 10:09:53 +00:00
aflags = B_CLRBUF;
if (flags & IO_SYNC)
1994-05-24 10:09:53 +00:00
aflags |= B_SYNC;
error = VOP_BALLOC(ovp, length - 1, 1,
cred, aflags, &bp);
if (error)
1994-05-24 10:09:53 +00:00
return (error);
oip->i_size = length;
if (bp->b_bufsize == fs->fs_bsize)
bp->b_flags |= B_CLUSTEROK;
if (aflags & B_SYNC)
1994-05-24 10:09:53 +00:00
bwrite(bp);
else if (ovp->v_mount->mnt_flag & MNT_ASYNC)
bdwrite(bp);
1994-05-24 10:09:53 +00:00
else
bawrite(bp);
oip->i_flag |= IN_CHANGE | IN_UPDATE;
return (UFS_UPDATE(ovp, &tv, &tv, 1));
1994-05-24 10:09:53 +00:00
}
/*
* Shorten the size of the file. If the file is not being
* truncated to a block boundry, the contents of the
* partial block following the end of the file must be
* zero'ed in case it ever become accessable again because
* of subsequent file growth.
*/
offset = blkoff(fs, length);
if (offset == 0) {
oip->i_size = length;
} else {
lbn = lblkno(fs, length);
aflags = B_CLRBUF;
if (flags & IO_SYNC)
1994-05-24 10:09:53 +00:00
aflags |= B_SYNC;
error = VOP_BALLOC(ovp, length - 1, 1, cred, aflags, &bp);
if (error) {
1994-05-24 10:09:53 +00:00
return (error);
}
1994-05-24 10:09:53 +00:00
oip->i_size = length;
size = blksize(fs, oip, lbn);
bzero((char *)bp->b_data + offset, (u_int)(size - offset));
allocbuf(bp, size);
if (bp->b_bufsize == fs->fs_bsize)
bp->b_flags |= B_CLUSTEROK;
if (aflags & B_SYNC)
1994-05-24 10:09:53 +00:00
bwrite(bp);
else if (ovp->v_mount->mnt_flag & MNT_ASYNC)
bdwrite(bp);
1994-05-24 10:09:53 +00:00
else
bawrite(bp);
}
/*
* Calculate index into inode's block list of
* last direct and indirect blocks (if any)
* which we want to keep. Lastblock is -1 when
* the file is truncated to 0.
*/
lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
lastiblock[SINGLE] = lastblock - NDADDR;
lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
nblocks = btodb(fs->fs_bsize);
/*
* Update file and block pointers on disk before we start freeing
* blocks. If we crash before free'ing blocks below, the blocks
* will be returned to the free list. lastiblock values are also
* normalized to -1 for calls to ffs_indirtrunc below.
*/
bcopy((caddr_t)&oip->i_db[0], (caddr_t)oldblks, sizeof oldblks);
for (level = TRIPLE; level >= SINGLE; level--)
if (lastiblock[level] < 0) {
oip->i_ib[level] = 0;
lastiblock[level] = -1;
}
for (i = NDADDR - 1; i > lastblock; i--)
oip->i_db[i] = 0;
oip->i_flag |= IN_CHANGE | IN_UPDATE;
error = UFS_UPDATE(ovp, &tv, &tv, ((length > 0) ? 0 : 1));
if (error)
1994-05-24 10:09:53 +00:00
allerror = error;
/*
* Having written the new inode to disk, save its new configuration
* and put back the old block pointers long enough to process them.
* Note that we save the new block configuration so we can check it
* when we are done.
*/
bcopy((caddr_t)&oip->i_db[0], (caddr_t)newblks, sizeof newblks);
bcopy((caddr_t)oldblks, (caddr_t)&oip->i_db[0], sizeof oldblks);
oip->i_size = osize;
Some VM improvements, including elimination of alot of Sig-11 problems. Tor Egge and others have helped with various VM bugs lately, but don't blame him -- blame me!!! pmap.c: 1) Create an object for kernel page table allocations. This fixes a bogus allocation method previously used for such, by grabbing pages from the kernel object, using bogus pindexes. (This was a code cleanup, and perhaps a minor system stability issue.) pmap.c: 2) Pre-set the modify and accessed bits when prudent. This will decrease bus traffic under certain circumstances. vfs_bio.c, vfs_cluster.c: 3) Rather than calculating the beginning virtual byte offset multiple times, stick the offset into the buffer header, so that the calculated offset can be reused. (Long long multiplies are often expensive, and this is a probably unmeasurable performance improvement, and code cleanup.) vfs_bio.c: 4) Handle write recursion more intelligently (but not perfectly) so that it is less likely to cause a system panic, and is also much more robust. vfs_bio.c: 5) getblk incorrectly wrote out blocks that are incorrectly sized. The problem is fixed, and writes blocks out ONLY when B_DELWRI is true. vfs_bio.c: 6) Check that already constituted buffers have fully valid pages. If not, then make sure that the B_CACHE bit is not set. (This was a major source of Sig-11 type problems.) vfs_bio.c: 7) Fix a potential system deadlock due to an incorrectly specified sleep priority while waiting for a buffer write operation. The change that I made opens the system up to serious problems, and we need to examine the issue of process sleep priorities. vfs_cluster.c, vfs_bio.c: 8) Make clustered reads work more correctly (and more completely) when buffers are already constituted, but not fully valid. (This was another system reliability issue.) vfs_subr.c, ffs_inode.c: 9) Create a vtruncbuf function, which is used by filesystems that can truncate files. The vinvalbuf forced a file sync type operation, while vtruncbuf only invalidates the buffers past the new end of file, and also invalidates the appropriate pages. (This was a system reliabiliy and performance issue.) 10) Modify FFS to use vtruncbuf. vm_object.c: 11) Make the object rundown mechanism for OBJT_VNODE type objects work more correctly. Included in that fix, create pager entries for the OBJT_DEAD pager type, so that paging requests that might slip in during race conditions are properly handled. (This was a system reliability issue.) vm_page.c: 12) Make some of the page validation routines be a little less picky about arguments passed to them. Also, support page invalidation change the object generation count so that we handle generation counts a little more robustly. vm_pageout.c: 13) Further reduce pageout daemon activity when the system doesn't need help from it. There should be no additional performance decrease even when the pageout daemon is running. (This was a significant performance issue.) vnode_pager.c: 14) Teach the vnode pager to handle race conditions during vnode deallocations.
1998-03-16 01:56:03 +00:00
allerror = vtruncbuf(ovp, cred, p, length, fs->fs_bsize);
1994-05-24 10:09:53 +00:00
/*
* Indirect blocks first.
*/
indir_lbn[SINGLE] = -NDADDR;
indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
for (level = TRIPLE; level >= SINGLE; level--) {
bn = oip->i_ib[level];
if (bn != 0) {
error = ffs_indirtrunc(oip, indir_lbn[level],
fsbtodb(fs, bn), lastiblock[level], level, &count);
if (error)
allerror = error;
blocksreleased += count;
if (lastiblock[level] < 0) {
oip->i_ib[level] = 0;
ffs_blkfree(oip, bn, fs->fs_bsize);
blocksreleased += nblocks;
}
}
if (lastiblock[level] >= 0)
goto done;
}
/*
* All whole direct blocks or frags.
*/
for (i = NDADDR - 1; i > lastblock; i--) {
register long bsize;
bn = oip->i_db[i];
if (bn == 0)
continue;
oip->i_db[i] = 0;
bsize = blksize(fs, oip, i);
ffs_blkfree(oip, bn, bsize);
blocksreleased += btodb(bsize);
}
if (lastblock < 0)
goto done;
/*
* Finally, look for a change in size of the
* last direct block; release any frags.
*/
bn = oip->i_db[lastblock];
if (bn != 0) {
long oldspace, newspace;
/*
* Calculate amount of space we're giving
* back as old block size minus new block size.
*/
oldspace = blksize(fs, oip, lastblock);
oip->i_size = length;
newspace = blksize(fs, oip, lastblock);
if (newspace == 0)
panic("ffs_truncate: newspace");
1994-05-24 10:09:53 +00:00
if (oldspace - newspace > 0) {
/*
* Block number of space to be free'd is
* the old block # plus the number of frags
* required for the storage we're keeping.
*/
bn += numfrags(fs, newspace);
ffs_blkfree(oip, bn, oldspace - newspace);
blocksreleased += btodb(oldspace - newspace);
}
}
done:
#ifdef DIAGNOSTIC
for (level = SINGLE; level <= TRIPLE; level++)
if (newblks[NDADDR + level] != oip->i_ib[level])
panic("ffs_truncate1");
1994-05-24 10:09:53 +00:00
for (i = 0; i < NDADDR; i++)
if (newblks[i] != oip->i_db[i])
panic("ffs_truncate2");
1994-05-24 10:09:53 +00:00
if (length == 0 &&
(ovp->v_dirtyblkhd.lh_first || ovp->v_cleanblkhd.lh_first))
panic("ffs_truncate3");
1994-05-24 10:09:53 +00:00
#endif /* DIAGNOSTIC */
/*
* Put back the real size.
*/
oip->i_size = length;
oip->i_blocks -= blocksreleased;
if (oip->i_blocks < 0) /* sanity */
oip->i_blocks = 0;
oip->i_flag |= IN_CHANGE;
#ifdef QUOTA
(void) chkdq(oip, -blocksreleased, NOCRED, 0);
#endif
return (allerror);
}
/*
* Release blocks associated with the inode ip and stored in the indirect
* block bn. Blocks are free'd in LIFO order up to (but not including)
* lastbn. If level is greater than SINGLE, the block is an indirect block
* and recursive calls to indirtrunc must be used to cleanse other indirect
* blocks.
*
* NB: triple indirect blocks are untested.
*/
static int
ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp)
register struct inode *ip;
ufs_daddr_t lbn, lastbn;
ufs_daddr_t dbn;
1994-05-24 10:09:53 +00:00
int level;
long *countp;
{
register int i;
struct buf *bp;
register struct fs *fs = ip->i_fs;
register ufs_daddr_t *bap;
1994-05-24 10:09:53 +00:00
struct vnode *vp;
ufs_daddr_t *copy = NULL, nb, nlbn, last;
1994-05-24 10:09:53 +00:00
long blkcount, factor;
int nblocks, blocksreleased = 0;
int error = 0, allerror = 0;
/*
* Calculate index in current block of last
* block to be kept. -1 indicates the entire
* block so we need not calculate the index.
*/
factor = 1;
for (i = SINGLE; i < level; i++)
factor *= NINDIR(fs);
last = lastbn;
if (lastbn > 0)
last /= factor;
nblocks = btodb(fs->fs_bsize);
/*
* Get buffer of block pointers, zero those entries corresponding
* to blocks to be free'd, and update on disk copy first. Since
* double(triple) indirect before single(double) indirect, calls
* to bmap on these blocks will fail. However, we already have
* the on disk address, so we have to set the b_blkno field
* explicitly instead of letting bread do everything for us.
*/
vp = ITOV(ip);
bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0);
1995-03-04 03:24:45 +00:00
if ((bp->b_flags & B_CACHE) == 0) {
1994-05-24 10:09:53 +00:00
curproc->p_stats->p_ru.ru_inblock++; /* pay for read */
bp->b_flags |= B_READ;
if (bp->b_bcount > bp->b_bufsize)
panic("ffs_indirtrunc: bad buffer size");
bp->b_blkno = dbn;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
vfs_busy_pages(bp, 0);
1994-05-24 10:09:53 +00:00
VOP_STRATEGY(bp);
error = biowait(bp);
}
if (error) {
brelse(bp);
*countp = 0;
return (error);
}
bap = (ufs_daddr_t *)bp->b_data;
if (lastbn != -1) {
MALLOC(copy, ufs_daddr_t *, fs->fs_bsize, M_TEMP, M_WAITOK);
bcopy((caddr_t)bap, (caddr_t)copy, (u_int)fs->fs_bsize);
bzero((caddr_t)&bap[last + 1],
(u_int)(NINDIR(fs) - (last + 1)) * sizeof (ufs_daddr_t));
if ((vp->v_mount->mnt_flag & MNT_ASYNC) == 0) {
error = bwrite(bp);
if (error)
allerror = error;
} else {
bawrite(bp);
}
bap = copy;
}
1994-05-24 10:09:53 +00:00
/*
* Recursively free totally unused blocks.
*/
for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
i--, nlbn += factor) {
nb = bap[i];
if (nb == 0)
continue;
if (level > SINGLE) {
if (error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
(ufs_daddr_t)-1, level - 1, &blkcount))
1994-05-24 10:09:53 +00:00
allerror = error;
blocksreleased += blkcount;
}
ffs_blkfree(ip, nb, fs->fs_bsize);
blocksreleased += nblocks;
}
/*
* Recursively free last partial block.
*/
if (level > SINGLE && lastbn >= 0) {
last = lastbn % factor;
nb = bap[i];
if (nb != 0) {
error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
last, level - 1, &blkcount);
if (error)
1994-05-24 10:09:53 +00:00
allerror = error;
blocksreleased += blkcount;
}
}
if (copy != NULL) {
FREE(copy, M_TEMP);
} else {
bp->b_flags |= B_INVAL | B_NOCACHE;
brelse(bp);
}
1994-05-24 10:09:53 +00:00
*countp = blocksreleased;
return (allerror);
}