freebsd-dev/sys/dev/qlxgbe/ql_os.c

1706 lines
40 KiB
C
Raw Normal View History

/*
* Copyright (c) 2013-2014 Qlogic Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* and ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* File: ql_os.c
* Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "ql_os.h"
#include "ql_hw.h"
#include "ql_def.h"
#include "ql_inline.h"
#include "ql_ver.h"
#include "ql_glbl.h"
#include "ql_dbg.h"
#include <sys/smp.h>
/*
* Some PCI Configuration Space Related Defines
*/
#ifndef PCI_VENDOR_QLOGIC
#define PCI_VENDOR_QLOGIC 0x1077
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP8030
#define PCI_PRODUCT_QLOGIC_ISP8030 0x8030
#endif
#define PCI_QLOGIC_ISP8030 \
((PCI_PRODUCT_QLOGIC_ISP8030 << 16) | PCI_VENDOR_QLOGIC)
/*
* static functions
*/
static int qla_alloc_parent_dma_tag(qla_host_t *ha);
static void qla_free_parent_dma_tag(qla_host_t *ha);
static int qla_alloc_xmt_bufs(qla_host_t *ha);
static void qla_free_xmt_bufs(qla_host_t *ha);
static int qla_alloc_rcv_bufs(qla_host_t *ha);
static void qla_free_rcv_bufs(qla_host_t *ha);
static void qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb);
static void qla_init_ifnet(device_t dev, qla_host_t *ha);
static int qla_sysctl_get_stats(SYSCTL_HANDLER_ARGS);
static int qla_sysctl_get_link_status(SYSCTL_HANDLER_ARGS);
static void qla_release(qla_host_t *ha);
static void qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs,
int error);
static void qla_stop(qla_host_t *ha);
static int qla_send(qla_host_t *ha, struct mbuf **m_headp);
static void qla_tx_done(void *context, int pending);
static void qla_get_peer(qla_host_t *ha);
static void qla_error_recovery(void *context, int pending);
/*
* Hooks to the Operating Systems
*/
static int qla_pci_probe (device_t);
static int qla_pci_attach (device_t);
static int qla_pci_detach (device_t);
static void qla_init(void *arg);
static int qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
static int qla_media_change(struct ifnet *ifp);
static void qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
static void qla_start(struct ifnet *ifp);
static device_method_t qla_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, qla_pci_probe),
DEVMETHOD(device_attach, qla_pci_attach),
DEVMETHOD(device_detach, qla_pci_detach),
{ 0, 0 }
};
static driver_t qla_pci_driver = {
"ql", qla_pci_methods, sizeof (qla_host_t),
};
static devclass_t qla83xx_devclass;
DRIVER_MODULE(qla83xx, pci, qla_pci_driver, qla83xx_devclass, 0, 0);
MODULE_DEPEND(qla83xx, pci, 1, 1, 1);
MODULE_DEPEND(qla83xx, ether, 1, 1, 1);
MALLOC_DEFINE(M_QLA83XXBUF, "qla83xxbuf", "Buffers for qla83xx driver");
#define QL_STD_REPLENISH_THRES 0
#define QL_JUMBO_REPLENISH_THRES 32
static char dev_str[64];
/*
* Name: qla_pci_probe
* Function: Validate the PCI device to be a QLA80XX device
*/
static int
qla_pci_probe(device_t dev)
{
switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
case PCI_QLOGIC_ISP8030:
snprintf(dev_str, sizeof(dev_str), "%s v%d.%d.%d",
"Qlogic ISP 83xx PCI CNA Adapter-Ethernet Function",
QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
QLA_VERSION_BUILD);
device_set_desc(dev, dev_str);
break;
default:
return (ENXIO);
}
if (bootverbose)
printf("%s: %s\n ", __func__, dev_str);
return (BUS_PROBE_DEFAULT);
}
static void
qla_add_sysctls(qla_host_t *ha)
{
device_t dev = ha->pci_dev;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW,
(void *)ha, 0,
qla_sysctl_get_stats, "I", "Statistics");
SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "fw_version", CTLFLAG_RD,
&ha->fw_ver_str, 0, "firmware version");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "link_status", CTLTYPE_INT | CTLFLAG_RW,
(void *)ha, 0,
qla_sysctl_get_link_status, "I", "Link Status");
ha->dbg_level = 0;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "debug", CTLFLAG_RW,
&ha->dbg_level, ha->dbg_level, "Debug Level");
ha->std_replenish = QL_STD_REPLENISH_THRES;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "std_replenish", CTLFLAG_RW,
&ha->std_replenish, ha->std_replenish,
"Threshold for Replenishing Standard Frames");
SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "ipv4_lro",
CTLFLAG_RD, &ha->ipv4_lro,
"number of ipv4 lro completions");
SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "ipv6_lro",
CTLFLAG_RD, &ha->ipv6_lro,
"number of ipv6 lro completions");
SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "tx_tso_frames",
CTLFLAG_RD, &ha->tx_tso_frames,
"number of Tx TSO Frames");
SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "hw_vlan_tx_frames",
CTLFLAG_RD, &ha->hw_vlan_tx_frames,
"number of Tx VLAN Frames");
return;
}
static void
qla_watchdog(void *arg)
{
qla_host_t *ha = arg;
qla_hw_t *hw;
struct ifnet *ifp;
uint32_t i;
qla_hw_tx_cntxt_t *hw_tx_cntxt;
hw = &ha->hw;
ifp = ha->ifp;
if (ha->flags.qla_watchdog_exit) {
ha->qla_watchdog_exited = 1;
return;
}
ha->qla_watchdog_exited = 0;
if (!ha->flags.qla_watchdog_pause) {
if (ql_hw_check_health(ha) || ha->qla_initiate_recovery ||
(ha->msg_from_peer == QL_PEER_MSG_RESET)) {
ha->qla_watchdog_paused = 1;
ha->flags.qla_watchdog_pause = 1;
ha->qla_initiate_recovery = 0;
ha->err_inject = 0;
taskqueue_enqueue(ha->err_tq, &ha->err_task);
} else {
for (i = 0; i < ha->hw.num_tx_rings; i++) {
hw_tx_cntxt = &hw->tx_cntxt[i];
if (qla_le32_to_host(*(hw_tx_cntxt->tx_cons)) !=
hw_tx_cntxt->txr_comp) {
taskqueue_enqueue(ha->tx_tq,
&ha->tx_task);
break;
}
}
if ((ifp->if_snd.ifq_head != NULL) && QL_RUNNING(ifp)) {
taskqueue_enqueue(ha->tx_tq, &ha->tx_task);
}
ha->qla_watchdog_paused = 0;
}
} else {
ha->qla_watchdog_paused = 1;
}
ha->watchdog_ticks = ha->watchdog_ticks++ % 1000;
callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
qla_watchdog, ha);
}
/*
* Name: qla_pci_attach
* Function: attaches the device to the operating system
*/
static int
qla_pci_attach(device_t dev)
{
qla_host_t *ha = NULL;
uint32_t rsrc_len;
int i;
QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "cannot get softc\n");
return (ENOMEM);
}
memset(ha, 0, sizeof (qla_host_t));
if (pci_get_device(dev) != PCI_PRODUCT_QLOGIC_ISP8030) {
device_printf(dev, "device is not ISP8030\n");
return (ENXIO);
}
ha->pci_func = pci_get_function(dev);
ha->pci_dev = dev;
pci_enable_busmaster(dev);
ha->reg_rid = PCIR_BAR(0);
ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid,
RF_ACTIVE);
if (ha->pci_reg == NULL) {
device_printf(dev, "unable to map any ports\n");
goto qla_pci_attach_err;
}
rsrc_len = (uint32_t) bus_get_resource_count(dev, SYS_RES_MEMORY,
ha->reg_rid);
mtx_init(&ha->hw_lock, "qla83xx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF);
mtx_init(&ha->tx_lock, "qla83xx_tx_lock", MTX_NETWORK_LOCK, MTX_DEF);
qla_add_sysctls(ha);
ql_hw_add_sysctls(ha);
ha->flags.lock_init = 1;
ha->reg_rid1 = PCIR_BAR(2);
ha->pci_reg1 = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&ha->reg_rid1, RF_ACTIVE);
ha->msix_count = pci_msix_count(dev);
if (ha->msix_count < (ha->hw.num_sds_rings + 1)) {
device_printf(dev, "%s: msix_count[%d] not enough\n", __func__,
ha->msix_count);
goto qla_pci_attach_err;
}
QL_DPRINT2(ha, (dev, "%s: ha %p pci_func 0x%x rsrc_count 0x%08x"
" msix_count 0x%x pci_reg %p\n", __func__, ha,
ha->pci_func, rsrc_len, ha->msix_count, ha->pci_reg));
ha->msix_count = ha->hw.num_sds_rings + 1;
if (pci_alloc_msix(dev, &ha->msix_count)) {
device_printf(dev, "%s: pci_alloc_msi[%d] failed\n", __func__,
ha->msix_count);
ha->msix_count = 0;
goto qla_pci_attach_err;
}
ha->mbx_irq_rid = 1;
ha->mbx_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&ha->mbx_irq_rid,
(RF_ACTIVE | RF_SHAREABLE));
if (ha->mbx_irq == NULL) {
device_printf(dev, "could not allocate mbx interrupt\n");
goto qla_pci_attach_err;
}
if (bus_setup_intr(dev, ha->mbx_irq, (INTR_TYPE_NET | INTR_MPSAFE),
NULL, ql_mbx_isr, ha, &ha->mbx_handle)) {
device_printf(dev, "could not setup mbx interrupt\n");
goto qla_pci_attach_err;
}
for (i = 0; i < ha->hw.num_sds_rings; i++) {
ha->irq_vec[i].sds_idx = i;
ha->irq_vec[i].ha = ha;
ha->irq_vec[i].irq_rid = 2 + i;
ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&ha->irq_vec[i].irq_rid,
(RF_ACTIVE | RF_SHAREABLE));
if (ha->irq_vec[i].irq == NULL) {
device_printf(dev, "could not allocate interrupt\n");
goto qla_pci_attach_err;
}
if (bus_setup_intr(dev, ha->irq_vec[i].irq,
(INTR_TYPE_NET | INTR_MPSAFE),
NULL, ql_isr, &ha->irq_vec[i],
&ha->irq_vec[i].handle)) {
device_printf(dev, "could not setup interrupt\n");
goto qla_pci_attach_err;
}
}
printf("%s: mp__ncpus %d sds %d rds %d msi-x %d\n", __func__, mp_ncpus,
ha->hw.num_sds_rings, ha->hw.num_rds_rings, ha->msix_count);
/* initialize hardware */
if (ql_init_hw(ha)) {
device_printf(dev, "%s: ql_init_hw failed\n", __func__);
goto qla_pci_attach_err;
}
device_printf(dev, "%s: firmware[%d.%d.%d.%d]\n", __func__,
ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
ha->fw_ver_build);
snprintf(ha->fw_ver_str, sizeof(ha->fw_ver_str), "%d.%d.%d.%d",
ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
ha->fw_ver_build);
ql_read_mac_addr(ha);
/* allocate parent dma tag */
if (qla_alloc_parent_dma_tag(ha)) {
device_printf(dev, "%s: qla_alloc_parent_dma_tag failed\n",
__func__);
goto qla_pci_attach_err;
}
/* alloc all dma buffers */
if (ql_alloc_dma(ha)) {
device_printf(dev, "%s: ql_alloc_dma failed\n", __func__);
goto qla_pci_attach_err;
}
qla_get_peer(ha);
/* create the o.s ethernet interface */
qla_init_ifnet(dev, ha);
ha->flags.qla_watchdog_active = 1;
ha->flags.qla_watchdog_pause = 1;
TASK_INIT(&ha->tx_task, 0, qla_tx_done, ha);
ha->tx_tq = taskqueue_create_fast("qla_txq", M_NOWAIT,
taskqueue_thread_enqueue, &ha->tx_tq);
taskqueue_start_threads(&ha->tx_tq, 1, PI_NET, "%s txq",
device_get_nameunit(ha->pci_dev));
callout_init(&ha->tx_callout, TRUE);
ha->flags.qla_callout_init = 1;
/* create ioctl device interface */
if (ql_make_cdev(ha)) {
device_printf(dev, "%s: ql_make_cdev failed\n", __func__);
goto qla_pci_attach_err;
}
callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
qla_watchdog, ha);
TASK_INIT(&ha->err_task, 0, qla_error_recovery, ha);
ha->err_tq = taskqueue_create_fast("qla_errq", M_NOWAIT,
taskqueue_thread_enqueue, &ha->err_tq);
taskqueue_start_threads(&ha->err_tq, 1, PI_NET, "%s errq",
device_get_nameunit(ha->pci_dev));
QL_DPRINT2(ha, (dev, "%s: exit 0\n", __func__));
return (0);
qla_pci_attach_err:
qla_release(ha);
QL_DPRINT2(ha, (dev, "%s: exit ENXIO\n", __func__));
return (ENXIO);
}
/*
* Name: qla_pci_detach
* Function: Unhooks the device from the operating system
*/
static int
qla_pci_detach(device_t dev)
{
qla_host_t *ha = NULL;
struct ifnet *ifp;
QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "cannot get softc\n");
return (ENOMEM);
}
ifp = ha->ifp;
(void)QLA_LOCK(ha, __func__, 0);
qla_stop(ha);
QLA_UNLOCK(ha, __func__);
qla_release(ha);
QL_DPRINT2(ha, (dev, "%s: exit\n", __func__));
return (0);
}
/*
* SYSCTL Related Callbacks
*/
static int
qla_sysctl_get_stats(SYSCTL_HANDLER_ARGS)
{
int err, ret = 0;
qla_host_t *ha;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
if (ret == 1) {
ha = (qla_host_t *)arg1;
ql_get_stats(ha);
}
return (err);
}
static int
qla_sysctl_get_link_status(SYSCTL_HANDLER_ARGS)
{
int err, ret = 0;
qla_host_t *ha;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
if (ret == 1) {
ha = (qla_host_t *)arg1;
ql_hw_link_status(ha);
}
return (err);
}
/*
* Name: qla_release
* Function: Releases the resources allocated for the device
*/
static void
qla_release(qla_host_t *ha)
{
device_t dev;
int i;
dev = ha->pci_dev;
if (ha->err_tq) {
taskqueue_drain(ha->err_tq, &ha->err_task);
taskqueue_free(ha->err_tq);
}
if (ha->tx_tq) {
taskqueue_drain(ha->tx_tq, &ha->tx_task);
taskqueue_free(ha->tx_tq);
}
ql_del_cdev(ha);
if (ha->flags.qla_watchdog_active) {
ha->flags.qla_watchdog_exit = 1;
while (ha->qla_watchdog_exited == 0)
qla_mdelay(__func__, 1);
}
if (ha->flags.qla_callout_init)
callout_stop(&ha->tx_callout);
if (ha->ifp != NULL)
ether_ifdetach(ha->ifp);
ql_free_dma(ha);
qla_free_parent_dma_tag(ha);
if (ha->mbx_handle)
(void)bus_teardown_intr(dev, ha->mbx_irq, ha->mbx_handle);
if (ha->mbx_irq)
(void) bus_release_resource(dev, SYS_RES_IRQ, ha->mbx_irq_rid,
ha->mbx_irq);
for (i = 0; i < ha->hw.num_sds_rings; i++) {
if (ha->irq_vec[i].handle) {
(void)bus_teardown_intr(dev, ha->irq_vec[i].irq,
ha->irq_vec[i].handle);
}
if (ha->irq_vec[i].irq) {
(void)bus_release_resource(dev, SYS_RES_IRQ,
ha->irq_vec[i].irq_rid,
ha->irq_vec[i].irq);
}
}
if (ha->msix_count)
pci_release_msi(dev);
if (ha->flags.lock_init) {
mtx_destroy(&ha->tx_lock);
mtx_destroy(&ha->hw_lock);
}
if (ha->pci_reg)
(void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid,
ha->pci_reg);
if (ha->pci_reg1)
(void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid1,
ha->pci_reg1);
}
/*
* DMA Related Functions
*/
static void
qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
*((bus_addr_t *)arg) = 0;
if (error) {
printf("%s: bus_dmamap_load failed (%d)\n", __func__, error);
return;
}
*((bus_addr_t *)arg) = segs[0].ds_addr;
return;
}
int
ql_alloc_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
{
int ret = 0;
device_t dev;
bus_addr_t b_addr;
dev = ha->pci_dev;
QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
ret = bus_dma_tag_create(
ha->parent_tag,/* parent */
dma_buf->alignment,
((bus_size_t)(1ULL << 32)),/* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
dma_buf->size, /* maxsize */
1, /* nsegments */
dma_buf->size, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&dma_buf->dma_tag);
if (ret) {
device_printf(dev, "%s: could not create dma tag\n", __func__);
goto ql_alloc_dmabuf_exit;
}
ret = bus_dmamem_alloc(dma_buf->dma_tag,
(void **)&dma_buf->dma_b,
(BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT),
&dma_buf->dma_map);
if (ret) {
bus_dma_tag_destroy(dma_buf->dma_tag);
device_printf(dev, "%s: bus_dmamem_alloc failed\n", __func__);
goto ql_alloc_dmabuf_exit;
}
ret = bus_dmamap_load(dma_buf->dma_tag,
dma_buf->dma_map,
dma_buf->dma_b,
dma_buf->size,
qla_dmamap_callback,
&b_addr, BUS_DMA_NOWAIT);
if (ret || !b_addr) {
bus_dma_tag_destroy(dma_buf->dma_tag);
bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b,
dma_buf->dma_map);
ret = -1;
goto ql_alloc_dmabuf_exit;
}
dma_buf->dma_addr = b_addr;
ql_alloc_dmabuf_exit:
QL_DPRINT2(ha, (dev, "%s: exit ret 0x%08x tag %p map %p b %p sz 0x%x\n",
__func__, ret, (void *)dma_buf->dma_tag,
(void *)dma_buf->dma_map, (void *)dma_buf->dma_b,
dma_buf->size));
return ret;
}
void
ql_free_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
{
bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map);
bus_dma_tag_destroy(dma_buf->dma_tag);
}
static int
qla_alloc_parent_dma_tag(qla_host_t *ha)
{
int ret;
device_t dev;
dev = ha->pci_dev;
/*
* Allocate parent DMA Tag
*/
ret = bus_dma_tag_create(
bus_get_dma_tag(dev), /* parent */
1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ha->parent_tag);
if (ret) {
device_printf(dev, "%s: could not create parent dma tag\n",
__func__);
return (-1);
}
ha->flags.parent_tag = 1;
return (0);
}
static void
qla_free_parent_dma_tag(qla_host_t *ha)
{
if (ha->flags.parent_tag) {
bus_dma_tag_destroy(ha->parent_tag);
ha->flags.parent_tag = 0;
}
}
/*
* Name: qla_init_ifnet
* Function: Creates the Network Device Interface and Registers it with the O.S
*/
static void
qla_init_ifnet(device_t dev, qla_host_t *ha)
{
struct ifnet *ifp;
QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
ifp = ha->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL)
panic("%s: cannot if_alloc()\n", device_get_nameunit(dev));
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
#if __FreeBSD_version >= 1000000
if_initbaudrate(ifp, IF_Gbps(10));
ifp->if_capabilities = IFCAP_LINKSTATE;
#else
ifp->if_mtu = ETHERMTU;
ifp->if_baudrate = (1 * 1000 * 1000 *1000);
#endif /* #if __FreeBSD_version >= 1000000 */
ifp->if_init = qla_init;
ifp->if_softc = ha;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = qla_ioctl;
ifp->if_start = qla_start;
IFQ_SET_MAXLEN(&ifp->if_snd, qla_get_ifq_snd_maxlen(ha));
ifp->if_snd.ifq_drv_maxlen = qla_get_ifq_snd_maxlen(ha);
IFQ_SET_READY(&ifp->if_snd);
ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
ether_ifattach(ifp, qla_get_mac_addr(ha));
ifp->if_capabilities = IFCAP_HWCSUM |
IFCAP_TSO4 |
IFCAP_JUMBO_MTU;
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
ifp->if_capenable = ifp->if_capabilities;
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifmedia_init(&ha->media, IFM_IMASK, qla_media_change, qla_media_status);
ifmedia_add(&ha->media, (IFM_ETHER | qla_get_optics(ha) | IFM_FDX), 0,
NULL);
ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL);
ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO));
QL_DPRINT2(ha, (dev, "%s: exit\n", __func__));
return;
}
static void
qla_init_locked(qla_host_t *ha)
{
struct ifnet *ifp = ha->ifp;
qla_stop(ha);
if (qla_alloc_xmt_bufs(ha) != 0)
return;
if (qla_alloc_rcv_bufs(ha) != 0)
return;
bcopy(IF_LLADDR(ha->ifp), ha->hw.mac_addr, ETHER_ADDR_LEN);
ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_TSO;
ha->flags.stop_rcv = 0;
if (ql_init_hw_if(ha) == 0) {
ifp = ha->ifp;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ha->flags.qla_watchdog_pause = 0;
ha->hw_vlan_tx_frames = 0;
ha->tx_tso_frames = 0;
}
return;
}
static void
qla_init(void *arg)
{
qla_host_t *ha;
ha = (qla_host_t *)arg;
QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
(void)QLA_LOCK(ha, __func__, 0);
qla_init_locked(ha);
QLA_UNLOCK(ha, __func__);
QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
}
static int
qla_set_multi(qla_host_t *ha, uint32_t add_multi)
{
uint8_t mta[Q8_MAX_NUM_MULTICAST_ADDRS * Q8_MAC_ADDR_LEN];
struct ifmultiaddr *ifma;
int mcnt = 0;
struct ifnet *ifp = ha->ifp;
int ret = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (mcnt == Q8_MAX_NUM_MULTICAST_ADDRS)
break;
bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
&mta[mcnt * Q8_MAC_ADDR_LEN], Q8_MAC_ADDR_LEN);
mcnt++;
}
if_maddr_runlock(ifp);
if (QLA_LOCK(ha, __func__, 1) == 0) {
ret = ql_hw_set_multi(ha, mta, mcnt, add_multi);
QLA_UNLOCK(ha, __func__);
}
return (ret);
}
static int
qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
int ret = 0;
struct ifreq *ifr = (struct ifreq *)data;
struct ifaddr *ifa = (struct ifaddr *)data;
qla_host_t *ha;
ha = (qla_host_t *)ifp->if_softc;
switch (cmd) {
case SIOCSIFADDR:
QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFADDR (0x%lx)\n",
__func__, cmd));
if (ifa->ifa_addr->sa_family == AF_INET) {
ifp->if_flags |= IFF_UP;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
(void)QLA_LOCK(ha, __func__, 0);
qla_init_locked(ha);
QLA_UNLOCK(ha, __func__);
}
QL_DPRINT4(ha, (ha->pci_dev,
"%s: SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n",
__func__, cmd,
ntohl(IA_SIN(ifa)->sin_addr.s_addr)));
arp_ifinit(ifp, ifa);
} else {
ether_ioctl(ifp, cmd, data);
}
break;
case SIOCSIFMTU:
QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFMTU (0x%lx)\n",
__func__, cmd));
if (ifr->ifr_mtu > QLA_MAX_MTU) {
ret = EINVAL;
} else {
(void) QLA_LOCK(ha, __func__, 0);
ifp->if_mtu = ifr->ifr_mtu;
ha->max_frame_size =
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
ret = ql_set_max_mtu(ha, ha->max_frame_size,
ha->hw.rcv_cntxt_id);
}
if (ifp->if_mtu > ETHERMTU)
ha->std_replenish = QL_JUMBO_REPLENISH_THRES;
else
ha->std_replenish = QL_STD_REPLENISH_THRES;
QLA_UNLOCK(ha, __func__);
if (ret)
ret = EINVAL;
}
break;
case SIOCSIFFLAGS:
QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFFLAGS (0x%lx)\n",
__func__, cmd));
(void)QLA_LOCK(ha, __func__, 0);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
if ((ifp->if_flags ^ ha->if_flags) &
IFF_PROMISC) {
ret = ql_set_promisc(ha);
} else if ((ifp->if_flags ^ ha->if_flags) &
IFF_ALLMULTI) {
ret = ql_set_allmulti(ha);
}
} else {
qla_init_locked(ha);
ha->max_frame_size = ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN;
ret = ql_set_max_mtu(ha, ha->max_frame_size,
ha->hw.rcv_cntxt_id);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
qla_stop(ha);
ha->if_flags = ifp->if_flags;
}
QLA_UNLOCK(ha, __func__);
break;
case SIOCADDMULTI:
QL_DPRINT4(ha, (ha->pci_dev,
"%s: %s (0x%lx)\n", __func__, "SIOCADDMULTI", cmd));
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if (qla_set_multi(ha, 1))
ret = EINVAL;
}
break;
case SIOCDELMULTI:
QL_DPRINT4(ha, (ha->pci_dev,
"%s: %s (0x%lx)\n", __func__, "SIOCDELMULTI", cmd));
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if (qla_set_multi(ha, 0))
ret = EINVAL;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
QL_DPRINT4(ha, (ha->pci_dev,
"%s: SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n",
__func__, cmd));
ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd);
break;
case SIOCSIFCAP:
{
int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFCAP (0x%lx)\n",
__func__, cmd));
if (mask & IFCAP_HWCSUM)
ifp->if_capenable ^= IFCAP_HWCSUM;
if (mask & IFCAP_TSO4)
ifp->if_capenable ^= IFCAP_TSO4;
if (mask & IFCAP_VLAN_HWTAGGING)
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (mask & IFCAP_VLAN_HWTSO)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
qla_init(ha);
VLAN_CAPABILITIES(ifp);
break;
}
default:
QL_DPRINT4(ha, (ha->pci_dev, "%s: default (0x%lx)\n",
__func__, cmd));
ret = ether_ioctl(ifp, cmd, data);
break;
}
return (ret);
}
static int
qla_media_change(struct ifnet *ifp)
{
qla_host_t *ha;
struct ifmedia *ifm;
int ret = 0;
ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
ifm = &ha->media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
ret = EINVAL;
QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
return (ret);
}
static void
qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
qla_host_t *ha;
ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
ql_update_link_state(ha);
if (ha->hw.link_up) {
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= (IFM_FDX | qla_get_optics(ha));
}
QL_DPRINT2(ha, (ha->pci_dev, "%s: exit (%s)\n", __func__,\
(ha->hw.link_up ? "link_up" : "link_down")));
return;
}
static void
qla_start(struct ifnet *ifp)
{
struct mbuf *m_head;
qla_host_t *ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT8(ha, (ha->pci_dev, "%s: enter\n", __func__));
if (!mtx_trylock(&ha->tx_lock)) {
QL_DPRINT8(ha, (ha->pci_dev,
"%s: mtx_trylock(&ha->tx_lock) failed\n", __func__));
return;
}
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING) {
QL_DPRINT8(ha,
(ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__));
QLA_TX_UNLOCK(ha);
return;
}
if (!ha->watchdog_ticks)
ql_update_link_state(ha);
if (!ha->hw.link_up) {
QL_DPRINT8(ha, (ha->pci_dev, "%s: link down\n", __func__));
QLA_TX_UNLOCK(ha);
return;
}
while (ifp->if_snd.ifq_head != NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL) {
QL_DPRINT8(ha, (ha->pci_dev, "%s: m_head == NULL\n",
__func__));
break;
}
if (qla_send(ha, &m_head)) {
if (m_head == NULL)
break;
QL_DPRINT8(ha, (ha->pci_dev, "%s: PREPEND\n", __func__));
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IF_PREPEND(&ifp->if_snd, m_head);
break;
}
/* Send a copy of the frame to the BPF listener */
ETHER_BPF_MTAP(ifp, m_head);
}
QLA_TX_UNLOCK(ha);
QL_DPRINT8(ha, (ha->pci_dev, "%s: exit\n", __func__));
return;
}
static int
qla_send(qla_host_t *ha, struct mbuf **m_headp)
{
bus_dma_segment_t segs[QLA_MAX_SEGMENTS];
bus_dmamap_t map;
int nsegs;
int ret = -1;
uint32_t tx_idx;
struct mbuf *m_head = *m_headp;
uint32_t txr_idx = ha->txr_idx;
QL_DPRINT8(ha, (ha->pci_dev, "%s: enter\n", __func__));
if (m_head->m_flags & M_FLOWID)
txr_idx = m_head->m_pkthdr.flowid & (ha->hw.num_tx_rings - 1);
tx_idx = ha->hw.tx_cntxt[txr_idx].txr_next;
map = ha->tx_ring[txr_idx].tx_buf[tx_idx].map;
ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs,
BUS_DMA_NOWAIT);
if (ret == EFBIG) {
struct mbuf *m;
QL_DPRINT8(ha, (ha->pci_dev, "%s: EFBIG [%d]\n", __func__,
m_head->m_pkthdr.len));
m = m_defrag(m_head, M_NOWAIT);
if (m == NULL) {
ha->err_tx_defrag++;
m_freem(m_head);
*m_headp = NULL;
device_printf(ha->pci_dev,
"%s: m_defrag() = NULL [%d]\n",
__func__, ret);
return (ENOBUFS);
}
m_head = m;
*m_headp = m_head;
if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head,
segs, &nsegs, BUS_DMA_NOWAIT))) {
ha->err_tx_dmamap_load++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load_mbuf_sg failed0[%d, %d]\n",
__func__, ret, m_head->m_pkthdr.len);
if (ret != ENOMEM) {
m_freem(m_head);
*m_headp = NULL;
}
return (ret);
}
} else if (ret) {
ha->err_tx_dmamap_load++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load_mbuf_sg failed1[%d, %d]\n",
__func__, ret, m_head->m_pkthdr.len);
if (ret != ENOMEM) {
m_freem(m_head);
*m_headp = NULL;
}
return (ret);
}
QL_ASSERT(ha, (nsegs != 0), ("qla_send: empty packet"));
bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE);
if (!(ret = ql_hw_send(ha, segs, nsegs, tx_idx, m_head, txr_idx))) {
ha->tx_ring[txr_idx].count++;
ha->tx_ring[txr_idx].tx_buf[tx_idx].m_head = m_head;
} else {
if (ret == EINVAL) {
if (m_head)
m_freem(m_head);
*m_headp = NULL;
}
}
QL_DPRINT8(ha, (ha->pci_dev, "%s: exit\n", __func__));
return (ret);
}
static void
qla_stop(qla_host_t *ha)
{
struct ifnet *ifp = ha->ifp;
device_t dev;
dev = ha->pci_dev;
ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
ha->flags.qla_watchdog_pause = 1;
while (!ha->qla_watchdog_paused)
qla_mdelay(__func__, 1);
ha->flags.stop_rcv = 1;
ql_hw_stop_rcv(ha);
ql_del_hw_if(ha);
qla_free_xmt_bufs(ha);
qla_free_rcv_bufs(ha);
return;
}
/*
* Buffer Management Functions for Transmit and Receive Rings
*/
static int
qla_alloc_xmt_bufs(qla_host_t *ha)
{
int ret = 0;
uint32_t i, j;
qla_tx_buf_t *txb;
if (bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
QLA_MAX_TSO_FRAME_SIZE, /* maxsize */
QLA_MAX_SEGMENTS, /* nsegments */
PAGE_SIZE, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&ha->tx_tag)) {
device_printf(ha->pci_dev, "%s: tx_tag alloc failed\n",
__func__);
return (ENOMEM);
}
for (i = 0; i < ha->hw.num_tx_rings; i++) {
bzero((void *)ha->tx_ring[i].tx_buf,
(sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
}
for (j = 0; j < ha->hw.num_tx_rings; j++) {
for (i = 0; i < NUM_TX_DESCRIPTORS; i++) {
txb = &ha->tx_ring[j].tx_buf[i];
if ((ret = bus_dmamap_create(ha->tx_tag,
BUS_DMA_NOWAIT, &txb->map))) {
ha->err_tx_dmamap_create++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_create failed[%d]\n",
__func__, ret);
qla_free_xmt_bufs(ha);
return (ret);
}
}
}
return 0;
}
/*
* Release mbuf after it sent on the wire
*/
static void
qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb)
{
QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
if (txb->m_head && txb->map) {
bus_dmamap_unload(ha->tx_tag, txb->map);
m_freem(txb->m_head);
txb->m_head = NULL;
}
if (txb->map)
bus_dmamap_destroy(ha->tx_tag, txb->map);
QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
}
static void
qla_free_xmt_bufs(qla_host_t *ha)
{
int i, j;
for (j = 0; j < ha->hw.num_tx_rings; j++) {
for (i = 0; i < NUM_TX_DESCRIPTORS; i++)
qla_clear_tx_buf(ha, &ha->tx_ring[j].tx_buf[i]);
}
if (ha->tx_tag != NULL) {
bus_dma_tag_destroy(ha->tx_tag);
ha->tx_tag = NULL;
}
for (i = 0; i < ha->hw.num_tx_rings; i++) {
bzero((void *)ha->tx_ring[i].tx_buf,
(sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
}
return;
}
static int
qla_alloc_rcv_std(qla_host_t *ha)
{
int i, j, k, r, ret = 0;
qla_rx_buf_t *rxb;
qla_rx_ring_t *rx_ring;
for (r = 0; r < ha->hw.num_rds_rings; r++) {
rx_ring = &ha->rx_ring[r];
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
rxb = &rx_ring->rx_buf[i];
ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT,
&rxb->map);
if (ret) {
device_printf(ha->pci_dev,
"%s: dmamap[%d, %d] failed\n",
__func__, r, i);
for (k = 0; k < r; k++) {
for (j = 0; j < NUM_RX_DESCRIPTORS;
j++) {
rxb = &ha->rx_ring[k].rx_buf[j];
bus_dmamap_destroy(ha->rx_tag,
rxb->map);
}
}
for (j = 0; j < i; j++) {
bus_dmamap_destroy(ha->rx_tag,
rx_ring->rx_buf[j].map);
}
goto qla_alloc_rcv_std_err;
}
}
}
qla_init_hw_rcv_descriptors(ha);
for (r = 0; r < ha->hw.num_rds_rings; r++) {
rx_ring = &ha->rx_ring[r];
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
rxb = &rx_ring->rx_buf[i];
rxb->handle = i;
if (!(ret = ql_get_mbuf(ha, rxb, NULL))) {
/*
* set the physical address in the
* corresponding descriptor entry in the
* receive ring/queue for the hba
*/
qla_set_hw_rcv_desc(ha, r, i, rxb->handle,
rxb->paddr,
(rxb->m_head)->m_pkthdr.len);
} else {
device_printf(ha->pci_dev,
"%s: ql_get_mbuf [%d, %d] failed\n",
__func__, r, i);
bus_dmamap_destroy(ha->rx_tag, rxb->map);
goto qla_alloc_rcv_std_err;
}
}
}
return 0;
qla_alloc_rcv_std_err:
return (-1);
}
static void
qla_free_rcv_std(qla_host_t *ha)
{
int i, r;
qla_rx_buf_t *rxb;
for (r = 0; r < ha->hw.num_rds_rings; r++) {
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
rxb = &ha->rx_ring[r].rx_buf[i];
if (rxb->m_head != NULL) {
bus_dmamap_unload(ha->rx_tag, rxb->map);
bus_dmamap_destroy(ha->rx_tag, rxb->map);
m_freem(rxb->m_head);
rxb->m_head = NULL;
}
}
}
return;
}
static int
qla_alloc_rcv_bufs(qla_host_t *ha)
{
int i, ret = 0;
if (bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MJUM9BYTES, /* maxsize */
1, /* nsegments */
MJUM9BYTES, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&ha->rx_tag)) {
device_printf(ha->pci_dev, "%s: rx_tag alloc failed\n",
__func__);
return (ENOMEM);
}
bzero((void *)ha->rx_ring, (sizeof(qla_rx_ring_t) * MAX_RDS_RINGS));
for (i = 0; i < ha->hw.num_sds_rings; i++) {
ha->hw.sds[i].sdsr_next = 0;
ha->hw.sds[i].rxb_free = NULL;
ha->hw.sds[i].rx_free = 0;
}
ret = qla_alloc_rcv_std(ha);
return (ret);
}
static void
qla_free_rcv_bufs(qla_host_t *ha)
{
int i;
qla_free_rcv_std(ha);
if (ha->rx_tag != NULL) {
bus_dma_tag_destroy(ha->rx_tag);
ha->rx_tag = NULL;
}
bzero((void *)ha->rx_ring, (sizeof(qla_rx_ring_t) * MAX_RDS_RINGS));
for (i = 0; i < ha->hw.num_sds_rings; i++) {
ha->hw.sds[i].sdsr_next = 0;
ha->hw.sds[i].rxb_free = NULL;
ha->hw.sds[i].rx_free = 0;
}
return;
}
int
ql_get_mbuf(qla_host_t *ha, qla_rx_buf_t *rxb, struct mbuf *nmp)
{
register struct mbuf *mp = nmp;
struct ifnet *ifp;
int ret = 0;
uint32_t offset;
bus_dma_segment_t segs[1];
int nsegs;
QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
ifp = ha->ifp;
if (mp == NULL) {
mp = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (mp == NULL) {
ha->err_m_getcl++;
ret = ENOBUFS;
device_printf(ha->pci_dev,
"%s: m_getcl failed\n", __func__);
goto exit_ql_get_mbuf;
}
mp->m_len = mp->m_pkthdr.len = MCLBYTES;
} else {
mp->m_len = mp->m_pkthdr.len = MCLBYTES;
mp->m_data = mp->m_ext.ext_buf;
mp->m_next = NULL;
}
offset = (uint32_t)((unsigned long long)mp->m_data & 0x7ULL);
if (offset) {
offset = 8 - offset;
m_adj(mp, offset);
}
/*
* Using memory from the mbuf cluster pool, invoke the bus_dma
* machinery to arrange the memory mapping.
*/
ret = bus_dmamap_load_mbuf_sg(ha->rx_tag, rxb->map,
mp, segs, &nsegs, BUS_DMA_NOWAIT);
rxb->paddr = segs[0].ds_addr;
if (ret || !rxb->paddr || (nsegs != 1)) {
m_free(mp);
rxb->m_head = NULL;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load failed[%d, 0x%016llx, %d]\n",
__func__, ret, (long long unsigned int)rxb->paddr,
nsegs);
ret = -1;
goto exit_ql_get_mbuf;
}
rxb->m_head = mp;
bus_dmamap_sync(ha->rx_tag, rxb->map, BUS_DMASYNC_PREREAD);
exit_ql_get_mbuf:
QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = 0x%08x\n", __func__, ret));
return (ret);
}
static void
qla_tx_done(void *context, int pending)
{
qla_host_t *ha = context;
struct ifnet *ifp;
ifp = ha->ifp;
if (!ifp)
return;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
QL_DPRINT8(ha, (ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__));
return;
}
ql_hw_tx_done(ha);
qla_start(ha->ifp);
}
static void
qla_get_peer(qla_host_t *ha)
{
device_t *peers;
int count, i, slot;
int my_slot = pci_get_slot(ha->pci_dev);
if (device_get_children(device_get_parent(ha->pci_dev), &peers, &count))
return;
for (i = 0; i < count; i++) {
slot = pci_get_slot(peers[i]);
if ((slot >= 0) && (slot == my_slot) &&
(pci_get_device(peers[i]) ==
pci_get_device(ha->pci_dev))) {
if (ha->pci_dev != peers[i])
ha->peer_dev = peers[i];
}
}
}
static void
qla_send_msg_to_peer(qla_host_t *ha, uint32_t msg_to_peer)
{
qla_host_t *ha_peer;
if (ha->peer_dev) {
if ((ha_peer = device_get_softc(ha->peer_dev)) != NULL) {
ha_peer->msg_from_peer = msg_to_peer;
}
}
}
static void
qla_error_recovery(void *context, int pending)
{
qla_host_t *ha = context;
uint32_t msecs_100 = 100;
struct ifnet *ifp = ha->ifp;
(void)QLA_LOCK(ha, __func__, 0);
ha->flags.stop_rcv = 1;
ql_hw_stop_rcv(ha);
ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
QLA_UNLOCK(ha, __func__);
ql_minidump(ha);
if ((ha->pci_func & 0x1) == 0) {
if (!ha->msg_from_peer) {
qla_send_msg_to_peer(ha, QL_PEER_MSG_RESET);
while ((ha->msg_from_peer != QL_PEER_MSG_ACK) &&
msecs_100--)
qla_mdelay(__func__, 100);
}
ha->msg_from_peer = 0;
(void) ql_init_hw(ha);
qla_free_xmt_bufs(ha);
qla_free_rcv_bufs(ha);
qla_send_msg_to_peer(ha, QL_PEER_MSG_ACK);
} else {
if (ha->msg_from_peer == QL_PEER_MSG_RESET) {
ha->msg_from_peer = 0;
qla_send_msg_to_peer(ha, QL_PEER_MSG_ACK);
} else {
qla_send_msg_to_peer(ha, QL_PEER_MSG_RESET);
}
while ((ha->msg_from_peer != QL_PEER_MSG_ACK) && msecs_100--)
qla_mdelay(__func__, 100);
ha->msg_from_peer = 0;
(void) ql_init_hw(ha);
qla_free_xmt_bufs(ha);
qla_free_rcv_bufs(ha);
}
(void)QLA_LOCK(ha, __func__, 0);
if (qla_alloc_xmt_bufs(ha) != 0) {
QLA_UNLOCK(ha, __func__);
return;
}
if (qla_alloc_rcv_bufs(ha) != 0) {
QLA_UNLOCK(ha, __func__);
return;
}
ha->flags.stop_rcv = 0;
if (ql_init_hw_if(ha) == 0) {
ifp = ha->ifp;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ha->flags.qla_watchdog_pause = 0;
}
QLA_UNLOCK(ha, __func__);
}