freebsd-dev/sys/i386/isa/si.c

2825 lines
65 KiB
C
Raw Normal View History

/*
* Device driver for Specialix range (SI/XIO) of serial line multiplexors.
*
* Copyright (C) 1990, 1992, 1998 Specialix International,
* Copyright (C) 1993, Andy Rutter <andy@acronym.co.uk>
* Copyright (C) 1995, Peter Wemm <peter@netplex.com.au>
*
* Originally derived from: SunOS 4.x version
* Ported from BSDI version to FreeBSD by Peter Wemm.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notices, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notices, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Andy Rutter of
* Advanced Methods and Tools Ltd. based on original information
* from Specialix International.
* 4. Neither the name of Advanced Methods and Tools, nor Specialix
* International may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHORS BE LIABLE.
*
* $Id: si.c,v 1.72 1998/06/10 12:49:54 phk Exp $
*/
#ifndef lint
static const char si_copyright1[] = "@(#) Copyright (C) Specialix International, 1990,1992,1998",
si_copyright2[] = "@(#) Copyright (C) Andy Rutter 1993",
si_copyright3[] = "@(#) Copyright (C) Peter Wemm 1995";
#endif /* not lint */
#include "opt_compat.h"
#include "opt_debug_si.h"
#include "opt_devfs.h"
#include <sys/param.h>
#include <sys/systm.h>
#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
#include <sys/ioctl_compat.h>
#endif
#include <sys/tty.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/dkstat.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#ifdef DEVFS
#include <sys/devfsext.h>
#endif /*DEVFS*/
#include <machine/clock.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <i386/isa/icu.h>
#include <i386/isa/isa.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/sireg.h>
#include <machine/si.h>
#include <machine/stdarg.h>
#include "pci.h"
#if NPCI > 0
#include <pci/pcivar.h>
#endif
#include "eisa.h"
#if NEISA > 0
#include <i386/eisa/eisaconf.h>
#include <i386/isa/icu.h>
#endif
#include "si.h"
/*
* This device driver is designed to interface the Specialix International
* SI, XIO and SX range of serial multiplexor cards to FreeBSD on an ISA,
* EISA or PCI bus machine.
*
* The controller is interfaced to the host via dual port RAM
* and an interrupt.
*
* The code for the Host 1 (very old ISA cards) has not been tested.
*/
#define POLL /* turn on poller to scan for lost interrupts */
#define REALPOLL /* on each poll, scan for work regardless */
#define POLLHZ (hz/10) /* 10 times per second */
#define SI_I_HIGH_WATER (TTYHOG - 2 * SI_BUFFERSIZE)
#define INT_COUNT 25000 /* max of 125 ints per second */
#define JET_INT_COUNT 100 /* max of 100 ints per second */
#define RXINT_COUNT 1 /* one rxint per 10 milliseconds */
enum si_mctl { GET, SET, BIS, BIC };
static void si_command __P((struct si_port *, int, int));
static int si_modem __P((struct si_port *, enum si_mctl, int));
static void si_write_enable __P((struct si_port *, int));
static int si_Sioctl __P((dev_t, int, caddr_t, int, struct proc *));
static void si_start __P((struct tty *));
static timeout_t si_lstart;
static void si_disc_optim __P((struct tty *tp, struct termios *t,
struct si_port *pp));
static void sihardclose __P((struct si_port *pp));
static void sidtrwakeup __P((void *chan));
1995-12-10 13:40:44 +00:00
static int siparam __P((struct tty *, struct termios *));
1995-12-10 13:40:44 +00:00
static int siprobe __P((struct isa_device *id));
static int siattach __P((struct isa_device *id));
static void si_modem_state __P((struct si_port *pp, struct tty *tp, int hi_ip));
static void si_intr __P((int unit));
static char * si_modulename __P((int host_type, int uart_type));
struct isa_driver sidriver =
{ siprobe, siattach, "si" };
static u_long sipcieisacount = 0;
#if NPCI > 0
static char *sipciprobe __P((pcici_t, pcidi_t));
static void sipciattach __P((pcici_t, int));
static struct pci_device sipcidev = {
"si",
sipciprobe,
sipciattach,
&sipcieisacount,
NULL,
};
DATA_SET (pcidevice_set, sipcidev);
#endif
#if NEISA > 0
static int si_eisa_probe __P((void));
static int si_eisa_attach __P((struct eisa_device *ed));
static struct eisa_driver si_eisa_driver = {
"si",
si_eisa_probe,
si_eisa_attach,
NULL,
&sipcieisacount,
};
DATA_SET(eisadriver_set, si_eisa_driver);
#endif
static d_open_t siopen;
static d_close_t siclose;
static d_read_t siread;
static d_write_t siwrite;
static d_ioctl_t siioctl;
static d_stop_t sistop;
static d_devtotty_t sidevtotty;
#define CDEV_MAJOR 68
static struct cdevsw si_cdevsw =
{ siopen, siclose, siread, siwrite, /*68*/
siioctl, sistop, noreset, sidevtotty,/* si */
1997-09-14 03:19:42 +00:00
ttpoll, nommap, NULL, "si", NULL, -1 };
#ifdef SI_DEBUG /* use: ``options "SI_DEBUG"'' in your config file */
static void si_dprintf __P((struct si_port *pp, int flags, const char *fmt,
...));
static char *si_mctl2str __P((enum si_mctl cmd));
#define DPRINT(x) si_dprintf x
#else
#define DPRINT(x) /* void */
#endif
static int si_Nports;
static int si_Nmodules;
static int si_debug = 0; /* data, not bss, so it's patchable */
SYSCTL_INT(_machdep, OID_AUTO, si_debug, CTLFLAG_RW, &si_debug, 0, "");
static struct tty *si_tty;
/* where the firmware lives; defined in si2_z280.c and si3_t225.c */
/* old: si2_z280.c */
extern unsigned char si2_z280_download[];
extern unsigned short si2_z280_downloadaddr;
extern int si2_z280_dsize;
/* new: si3_t225.c */
extern unsigned char si3_t225_download[];
extern unsigned short si3_t225_downloadaddr;
extern int si3_t225_dsize;
extern unsigned char si3_t225_bootstrap[];
extern unsigned short si3_t225_bootloadaddr;
extern int si3_t225_bsize;
struct si_softc {
int sc_type; /* adapter type */
char *sc_typename; /* adapter type string */
struct si_port *sc_ports; /* port structures for this card */
caddr_t sc_paddr; /* physical addr of iomem */
caddr_t sc_maddr; /* kvaddr of iomem */
int sc_nport; /* # ports on this card */
int sc_irq; /* copy of attach irq */
#if NEISA > 0
int sc_eisa_iobase; /* EISA io port address */
int sc_eisa_irq; /* EISA irq number */
#endif
#ifdef DEVFS
struct {
void *ttya;
void *cuaa;
void *ttyl;
void *cual;
void *ttyi;
void *cuai;
} devfs_token[32]; /* what is the max per card? */
void *control_token;
#endif
};
1995-12-10 13:40:44 +00:00
static struct si_softc si_softc[NSI]; /* up to 4 elements */
#ifndef B2000 /* not standard, but the hardware knows it. */
# define B2000 2000
#endif
static struct speedtab bdrates[] = {
B75, CLK75, /* 0x0 */
B110, CLK110, /* 0x1 */
B150, CLK150, /* 0x3 */
B300, CLK300, /* 0x4 */
B600, CLK600, /* 0x5 */
B1200, CLK1200, /* 0x6 */
B2000, CLK2000, /* 0x7 */
B2400, CLK2400, /* 0x8 */
B4800, CLK4800, /* 0x9 */
B9600, CLK9600, /* 0xb */
B19200, CLK19200, /* 0xc */
B38400, CLK38400, /* 0x2 (out of order!) */
B57600, CLK57600, /* 0xd */
B115200, CLK110, /* 0x1 (dupe!, 110 baud on "si") */
-1, -1
};
/* populated with approx character/sec rates - translated at card
* initialisation time to chars per tick of the clock */
static int done_chartimes = 0;
static struct speedtab chartimes[] = {
B75, 8,
B110, 11,
B150, 15,
B300, 30,
B600, 60,
B1200, 120,
B2000, 200,
B2400, 240,
B4800, 480,
B9600, 960,
B19200, 1920,
B38400, 3840,
B57600, 5760,
B115200, 11520,
-1, -1
};
static volatile int in_intr = 0; /* Inside interrupt handler? */
#ifdef POLL
static int si_pollrate; /* in addition to irq */
static int si_realpoll; /* poll HW on timer */
SYSCTL_INT(_machdep, OID_AUTO, si_pollrate, CTLFLAG_RW, &si_pollrate, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, si_realpoll, CTLFLAG_RW, &si_realpoll, 0, "");
static int init_finished = 0;
static void si_poll __P((void *));
#endif
/*
* Array of adapter types and the corresponding RAM size. The order of
* entries here MUST match the ordinal of the adapter type.
*/
static char *si_type[] = {
"EMPTY",
"SIHOST",
"SIMCA", /* FreeBSD does not support Microchannel */
"SIHOST2",
"SIEISA",
"SIPCI",
"SXPCI",
"SXISA",
};
#if NPCI > 0
static char *
sipciprobe(configid, deviceid)
pcici_t configid;
pcidi_t deviceid;
{
switch (deviceid)
{
case 0x400011cb:
return("Specialix SI/XIO PCI host card");
break;
case 0x200011cb:
if (pci_conf_read(configid, SIJETSSIDREG) == 0x020011cb)
return("Specialix SX PCI host card");
else
return NULL;
break;
default:
return NULL;
}
/*NOTREACHED*/
}
void
sipciattach(configid, unit)
pcici_t configid;
int unit;
{
struct isa_device id;
vm_offset_t vaddr,paddr;
u_long mapval = 0; /* shut up gcc, should not be needed */
switch ( pci_conf_read(configid, 0) >> 16 )
{
case 0x4000:
si_softc[unit].sc_type = SIPCI;
mapval = SIPCIBADR;
break;
case 0x2000:
si_softc[unit].sc_type = SIJETPCI;
mapval = SIJETBADR;
break;
}
if (!pci_map_mem(configid, mapval, &vaddr, &paddr))
{
printf("si%d: couldn't map memory\n", unit);
}
/*
* We're cheating here a little bit. The argument to an ISA
* interrupt routine is the unit number. The argument to a
* PCI interrupt handler is a void *, but we're simply going
* to be lazy and hand it the unit number.
*/
if (!pci_map_int(configid, (pci_inthand_t *) si_intr, (void *)unit, &tty_imask)) {
printf("si%d: couldn't map interrupt\n", unit);
}
si_softc[unit].sc_typename = si_type[si_softc[unit].sc_type];
/*
* More cheating: We're going to dummy up a struct isa_device
* and call the other attach routine. We don't really have to
* fill in very much of the structure, since we filled in a
* little of the soft state already.
*/
id.id_unit = unit;
id.id_maddr = (caddr_t) vaddr;
siattach(&id);
}
#endif
#if NEISA > 0
static const char *si_eisa_match __P((eisa_id_t id));
static const char *
si_eisa_match(id)
eisa_id_t id;
{
if (id == SIEISADEVID)
return ("Specialix SI/XIO EISA host card");
return (NULL);
}
static int
si_eisa_probe(void)
{
struct eisa_device *ed = NULL;
int count, irq;
for (count=0; (ed = eisa_match_dev(ed, si_eisa_match)) != NULL; count++)
{
u_long port,maddr;
port = (ed->ioconf.slot * EISA_SLOT_SIZE) + SIEISABASE;
eisa_add_iospace(ed, port, SIEISAIOSIZE, RESVADDR_NONE);
maddr = (inb(port+1) << 24) | (inb(port) << 16);
irq = ((inb(port+2) >> 4) & 0xf);
eisa_add_mspace(ed, maddr, SIEISA_MEMSIZE, RESVADDR_NONE);
eisa_add_intr(ed, irq);
eisa_registerdev(ed, &si_eisa_driver);
count++;
}
return count;
}
static int
si_eisa_attach(ed)
struct eisa_device *ed;
{
struct isa_device id;
resvaddr_t *maddr,*iospace;
u_int irq;
struct si_softc *sc;
sc = &si_softc[ed->unit];
sc->sc_type = SIEISA;
sc->sc_typename = si_type[sc->sc_type];
if ((iospace = ed->ioconf.ioaddrs.lh_first) == NULL) {
printf("si%d: no iospace??\n", ed->unit);
return -1;
}
sc->sc_eisa_iobase = iospace->addr;
irq = ((inb(iospace->addr + 2) >> 4) & 0xf);
sc->sc_eisa_irq = irq;
if ((maddr = ed->ioconf.maddrs.lh_first) == NULL) {
printf("si%d: where am I??\n", ed->unit);
return -1;
}
eisa_reg_start(ed);
if (eisa_reg_iospace(ed, iospace)) {
printf("si%d: failed to register iospace 0x%x\n",
ed->unit, iospace);
return -1;
}
if (eisa_reg_mspace(ed, maddr)) {
printf("si%d: failed to register memspace 0x%x\n",
ed->unit, maddr);
return -1;
}
/*
* We're cheating here a little bit. The argument to an ISA
* interrupt routine is the unit number. The argument to a
* EISA interrupt handler is a void *, but we're simply going
* to be lazy and hand it the unit number.
*/
if (eisa_reg_intr(ed, irq, (void (*)(void *)) si_intr,
(void *)(ed->unit), &tty_imask, 1)) {
printf("si%d: failed to register interrupt %d\n",
ed->unit, irq);
return -1;
}
eisa_reg_end(ed);
if (eisa_enable_intr(ed, irq)) {
return -1;
}
/*
* More cheating: We're going to dummy up a struct isa_device
* and call the other attach routine. We don't really have to
* fill in very much of the structure, since we filled in a
* little of the soft state already.
*/
id.id_unit = ed->unit;
id.id_maddr = (caddr_t) pmap_mapdev(maddr->addr, SIEISA_MEMSIZE);
return (siattach(&id));
}
#endif
/* Look for a valid board at the given mem addr */
1995-12-10 13:40:44 +00:00
static int
siprobe(id)
struct isa_device *id;
{
struct si_softc *sc;
int type;
u_int i, ramsize;
volatile BYTE was, *ux;
volatile unsigned char *maddr;
unsigned char *paddr;
si_pollrate = POLLHZ; /* default 10 per second */
#ifdef REALPOLL
si_realpoll = 1; /* scan always */
#endif
maddr = id->id_maddr; /* virtual address... */
paddr = (caddr_t)vtophys(id->id_maddr); /* physical address... */
DPRINT((0, DBG_AUTOBOOT, "si%d: probe at virtual=0x%x physical=0x%x\n",
id->id_unit, id->id_maddr, paddr));
/*
* this is a lie, but it's easier than trying to handle caching
* and ram conflicts in the >1M and <16M region.
*/
if ((caddr_t)paddr < (caddr_t)IOM_BEGIN ||
(caddr_t)paddr >= (caddr_t)IOM_END) {
printf("si%d: iomem (%lx) out of range\n",
id->id_unit, (long)paddr);
return(0);
}
if (id->id_unit >= NSI) {
/* THIS IS IMPOSSIBLE */
return(0);
}
if (((u_int)paddr & 0x7fff) != 0) {
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: iomem (%x) not on 32k boundary\n",
id->id_unit, paddr));
return(0);
}
if (si_softc[id->id_unit].sc_typename) {
/* EISA or PCI has taken this unit, choose another */
for (i=0; i < NSI; i++) {
if (si_softc[i].sc_typename == NULL) {
id->id_unit = i;
break;
}
}
if (i >= NSI) {
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: cannot realloc unit\n", id->id_unit));
return (0);
}
}
for (i=0; i < NSI; i++) {
sc = &si_softc[i];
if ((caddr_t)sc->sc_paddr == (caddr_t)paddr) {
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: iomem (%x) already configured to si%d\n",
id->id_unit, sc->sc_paddr, i));
return(0);
}
}
/* Is there anything out there? (0x17 is just an arbitrary number) */
*maddr = 0x17;
if (*maddr != 0x17) {
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: 0x17 check fail at phys 0x%x\n",
id->id_unit, paddr));
fail:
return(0);
}
/*
* Let's look first for a JET ISA card, since that's pretty easy
*
* All jet hosts are supposed to have this string in the IDROM,
* but it's not worth checking on self-IDing busses like PCI.
*/
{
unsigned char *jet_chk_str = "JET HOST BY KEV#";
for (i = 0; i < strlen(jet_chk_str); i++)
if (jet_chk_str[i] != *(maddr + SIJETIDSTR + 2 * i))
goto try_mk2;
}
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: JET first check - 0x%x\n",
id->id_unit, (*(maddr+SIJETIDBASE))));
if (*(maddr+SIJETIDBASE) != (SISPLXID&0xff))
goto try_mk2;
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: JET second check - 0x%x\n",
id->id_unit, (*(maddr+SIJETIDBASE+2))));
if (*(maddr+SIJETIDBASE+2) != ((SISPLXID&0xff00)>>8))
goto try_mk2;
/* It must be a Jet ISA or RIO card */
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: JET id check - 0x%x\n",
id->id_unit, (*(maddr+SIUNIQID))));
if ((*(maddr+SIUNIQID) & 0xf0) !=0x20)
goto try_mk2;
/* It must be a Jet ISA SI/XIO card */
*(maddr + SIJETCONFIG) = 0;
type = SIJETISA;
ramsize = SIJET_RAMSIZE;
goto got_card;
/*
* OK, now to see if whatever responded is really an SI card.
* Try for a MK II next (SIHOST2)
*/
try_mk2:
for (i = SIPLSIG; i < SIPLSIG + 8; i++)
if ((*(maddr+i) & 7) != (~(BYTE)i & 7))
goto try_mk1;
/* It must be an SIHOST2 */
*(maddr + SIPLRESET) = 0;
*(maddr + SIPLIRQCLR) = 0;
*(maddr + SIPLIRQSET) = 0x10;
type = SIHOST2;
ramsize = SIHOST2_RAMSIZE;
goto got_card;
/*
* Its not a MK II, so try for a MK I (SIHOST)
*/
try_mk1:
*(maddr+SIRESET) = 0x0; /* reset the card */
*(maddr+SIINTCL) = 0x0; /* clear int */
*(maddr+SIRAM) = 0x17;
if (*(maddr+SIRAM) != (BYTE)0x17)
goto fail;
*(maddr+0x7ff8) = 0x17;
if (*(maddr+0x7ff8) != (BYTE)0x17) {
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: 0x17 check fail at phys 0x%x = 0x%x\n",
id->id_unit, paddr+0x77f8, *(maddr+0x77f8)));
goto fail;
}
/* It must be an SIHOST (maybe?) - there must be a better way XXX */
type = SIHOST;
ramsize = SIHOST_RAMSIZE;
got_card:
DPRINT((0, DBG_AUTOBOOT, "si%d: found type %d card, try memory test\n",
id->id_unit, type));
/* Try the acid test */
ux = maddr + SIRAM;
for (i = 0; i < ramsize; i++, ux++)
*ux = (BYTE)(i&0xff);
ux = maddr + SIRAM;
for (i = 0; i < ramsize; i++, ux++) {
if ((was = *ux) != (BYTE)(i&0xff)) {
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: match fail at phys 0x%x, was %x should be %x\n",
id->id_unit, paddr + i, was, i&0xff));
goto fail;
}
}
/* clear out the RAM */
ux = maddr + SIRAM;
for (i = 0; i < ramsize; i++)
*ux++ = 0;
ux = maddr + SIRAM;
for (i = 0; i < ramsize; i++) {
if ((was = *ux++) != 0) {
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: clear fail at phys 0x%x, was %x\n",
id->id_unit, paddr + i, was));
goto fail;
}
}
/*
* Success, we've found a valid board, now fill in
* the adapter structure.
*/
switch (type) {
case SIHOST2:
if ((id->id_irq & (IRQ11|IRQ12|IRQ15)) == 0) {
bad_irq:
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: bad IRQ value - %d\n",
id->id_unit, id->id_irq));
return(0);
}
id->id_msize = SIHOST2_MEMSIZE;
break;
case SIHOST:
if ((id->id_irq & (IRQ11|IRQ12|IRQ15)) == 0) {
goto bad_irq;
}
id->id_msize = SIHOST_MEMSIZE;
break;
case SIJETISA:
if ((id->id_irq & (IRQ9|IRQ10|IRQ11|IRQ12|IRQ15)) == 0) {
goto bad_irq;
}
id->id_msize = SIJETISA_MEMSIZE;
break;
case SIMCA: /* MCA */
default:
printf("si%d: %s not supported\n", id->id_unit, si_type[type]);
return(0);
}
id->id_intr = (inthand2_t *)si_intr; /* set here instead of config */
si_softc[id->id_unit].sc_type = type;
si_softc[id->id_unit].sc_typename = si_type[type];
return(-1); /* -1 == found */
}
/*
* We have to make an 8 bit version of bcopy, since some cards can't
* deal with 32 bit I/O
*/
#if 1
static void
si_bcopy(const void *src, void *dst, size_t len)
{
while (len--)
*(((u_char *)dst)++) = *(((u_char *)src)++);
}
#else
#define si_bcopy bcopy
#endif
/*
* Attach the device. Initialize the card.
*
* This routine also gets called by the EISA and PCI attach routines.
* It presumes that the softstate for the unit has had had its type field
* and the EISA specific stuff filled in, as well as the kernel virtual
* base address and the unit number of the isa_device struct.
*/
1995-12-10 13:40:44 +00:00
static int
siattach(id)
struct isa_device *id;
{
int unit = id->id_unit;
struct si_softc *sc = &si_softc[unit];
struct si_port *pp;
volatile struct si_channel *ccbp;
volatile struct si_reg *regp;
volatile caddr_t maddr;
struct si_module *modp;
struct tty *tp;
struct speedtab *spt;
int nmodule, nport, x, y;
int uart_type;
DPRINT((0, DBG_AUTOBOOT, "si%d: siattach\n", id->id_unit));
sc->sc_paddr = (caddr_t)vtophys(id->id_maddr);
sc->sc_maddr = id->id_maddr;
sc->sc_irq = id->id_irq;
DPRINT((0, DBG_AUTOBOOT, "si%d: type: %s paddr: %x maddr: %x\n", unit,
sc->sc_typename, sc->sc_paddr, sc->sc_maddr));
sc->sc_ports = NULL; /* mark as uninitialised */
maddr = sc->sc_maddr;
/* Stop the CPU first so it won't stomp around while we load */
switch (sc->sc_type) {
#if NEISA > 0
case SIEISA:
outb(sc->sc_eisa_iobase + 2, sc->sc_eisa_irq << 4);
break;
#endif
#if NPCI > 0
case SIPCI:
*(maddr+SIPCIRESET) = 0;
break;
case SIJETPCI: /* fall through to JET ISA */
#endif
case SIJETISA:
*(maddr+SIJETCONFIG) = 0;
break;
case SIHOST2:
*(maddr+SIPLRESET) = 0;
break;
case SIHOST:
*(maddr+SIRESET) = 0;
break;
default: /* this should never happen */
printf("si%d: unsupported configuration\n", unit);
return 0;
break;
}
/* OK, now lets download the download code */
if (SI_ISJET(sc->sc_type)) {
DPRINT((0, DBG_DOWNLOAD, "si%d: jet_download: nbytes %d\n",
id->id_unit, si3_t225_dsize));
si_bcopy(si3_t225_download, maddr + si3_t225_downloadaddr,
si3_t225_dsize);
DPRINT((0, DBG_DOWNLOAD,
"si%d: jet_bootstrap: nbytes %d -> %x\n",
id->id_unit, si3_t225_bsize, si3_t225_bootloadaddr));
si_bcopy(si3_t225_bootstrap, maddr + si3_t225_bootloadaddr,
si3_t225_bsize);
} else {
DPRINT((0, DBG_DOWNLOAD, "si%d: si_download: nbytes %d\n",
id->id_unit, si2_z280_dsize));
si_bcopy(si2_z280_download, maddr + si2_z280_downloadaddr,
si2_z280_dsize);
}
/* Now start the CPU */
switch (sc->sc_type) {
#if NEISA > 0
case SIEISA:
/* modify the download code to tell it that it's on an EISA */
*(maddr + 0x42) = 1;
outb(sc->sc_eisa_iobase + 2, (sc->sc_eisa_irq << 4) | 4);
(void)inb(sc->sc_eisa_iobase + 3); /* reset interrupt */
break;
#endif
case SIPCI:
/* modify the download code to tell it that it's on a PCI */
*(maddr+0x42) = 1;
*(maddr+SIPCIRESET) = 1;
*(maddr+SIPCIINTCL) = 0;
break;
case SIJETPCI:
*(maddr+SIJETRESET) = 0;
*(maddr+SIJETCONFIG) = SIJETBUSEN|SIJETIRQEN;
break;
case SIJETISA:
*(maddr+SIJETRESET) = 0;
switch (sc->sc_irq) {
case IRQ9:
*(maddr+SIJETCONFIG) = SIJETBUSEN|SIJETIRQEN|0x90;
break;
case IRQ10:
*(maddr+SIJETCONFIG) = SIJETBUSEN|SIJETIRQEN|0xa0;
break;
case IRQ11:
*(maddr+SIJETCONFIG) = SIJETBUSEN|SIJETIRQEN|0xb0;
break;
case IRQ12:
*(maddr+SIJETCONFIG) = SIJETBUSEN|SIJETIRQEN|0xc0;
break;
case IRQ15:
*(maddr+SIJETCONFIG) = SIJETBUSEN|SIJETIRQEN|0xf0;
break;
}
break;
case SIHOST:
*(maddr+SIRESET_CL) = 0;
*(maddr+SIINTCL_CL) = 0;
break;
case SIHOST2:
*(maddr+SIPLRESET) = 0x10;
switch (sc->sc_irq) {
case IRQ11:
*(maddr+SIPLIRQ11) = 0x10;
break;
case IRQ12:
*(maddr+SIPLIRQ12) = 0x10;
break;
case IRQ15:
*(maddr+SIPLIRQ15) = 0x10;
break;
}
*(maddr+SIPLIRQCLR) = 0x10;
break;
default: /* this should _REALLY_ never happen */
printf("si%d: Uh, it was supported a second ago...\n", unit);
return 0;
}
DELAY(1000000); /* wait around for a second */
regp = (struct si_reg *)maddr;
y = 0;
/* wait max of 5 sec for init OK */
while (regp->initstat == 0 && y++ < 10) {
DELAY(500000);
}
switch (regp->initstat) {
case 0:
printf("si%d: startup timeout - aborting\n", unit);
sc->sc_type = SIEMPTY;
return 0;
case 1:
if (SI_ISJET(sc->sc_type)) {
/* set throttle to 100 times per second */
regp->int_count = JET_INT_COUNT;
/* rx_intr_count is a NOP in Jet */
} else {
/* set throttle to 125 times per second */
regp->int_count = INT_COUNT;
/* rx intr max of 25 times per second */
regp->rx_int_count = RXINT_COUNT;
}
regp->int_pending = 0; /* no intr pending */
regp->int_scounter = 0; /* reset counter */
break;
case 0xff:
/*
* No modules found, so give up on this one.
*/
printf("si%d: %s - no ports found\n", unit,
si_type[sc->sc_type]);
return 0;
default:
printf("si%d: download code version error - initstat %x\n",
unit, regp->initstat);
return 0;
}
/*
* First time around the ports just count them in order
* to allocate some memory.
*/
nport = 0;
modp = (struct si_module *)(maddr + 0x80);
for (;;) {
DPRINT((0, DBG_DOWNLOAD, "si%d: ccb addr 0x%x\n", unit, modp));
switch (modp->sm_type) {
case TA4:
DPRINT((0, DBG_DOWNLOAD,
"si%d: Found old TA4 module, 4 ports\n",
unit));
x = 4;
break;
case TA8:
DPRINT((0, DBG_DOWNLOAD,
"si%d: Found old TA8 module, 8 ports\n",
unit));
x = 8;
break;
case TA4_ASIC:
DPRINT((0, DBG_DOWNLOAD,
"si%d: Found ASIC TA4 module, 4 ports\n",
unit));
x = 4;
break;
case TA8_ASIC:
DPRINT((0, DBG_DOWNLOAD,
"si%d: Found ASIC TA8 module, 8 ports\n",
unit));
x = 8;
break;
case MTA:
DPRINT((0, DBG_DOWNLOAD,
"si%d: Found CD1400 module, 8 ports\n",
unit));
x = 8;
break;
case SXDC:
DPRINT((0, DBG_DOWNLOAD,
"si%d: Found SXDC module, 8 ports\n",
unit));
x = 8;
break;
default:
printf("si%d: unknown module type %d\n",
unit, modp->sm_type);
goto try_next;
}
/* this was limited in firmware and is also a driver issue */
if ((nport + x) > SI_MAXPORTPERCARD) {
printf("si%d: extra ports ignored\n", unit);
goto try_next;
}
nport += x;
si_Nports += x;
si_Nmodules++;
try_next:
if (modp->sm_next == 0)
break;
modp = (struct si_module *)
(maddr + (unsigned)(modp->sm_next & 0x7fff));
}
sc->sc_ports = (struct si_port *)malloc(sizeof(struct si_port) * nport,
M_DEVBUF, M_NOWAIT);
if (sc->sc_ports == 0) {
mem_fail:
printf("si%d: fail to malloc memory for port structs\n",
unit);
return 0;
}
bzero(sc->sc_ports, sizeof(struct si_port) * nport);
sc->sc_nport = nport;
/*
* allocate tty structures for ports
*/
tp = (struct tty *)malloc(sizeof(*tp) * nport, M_DEVBUF, M_NOWAIT);
if (tp == 0)
goto mem_fail;
bzero(tp, sizeof(*tp) * nport);
si_tty = tp;
/*
* Scan round the ports again, this time initialising.
*/
pp = sc->sc_ports;
nmodule = 0;
modp = (struct si_module *)(maddr + 0x80);
uart_type = 1000; /* arbitary, > uchar_max */
for (;;) {
switch (modp->sm_type) {
case TA4:
nport = 4;
break;
case TA8:
nport = 8;
break;
case TA4_ASIC:
nport = 4;
break;
case TA8_ASIC:
nport = 8;
break;
case MTA:
nport = 8;
break;
case SXDC:
nport = 8;
break;
default:
goto try_next2;
}
nmodule++;
ccbp = (struct si_channel *)((char *)modp + 0x100);
if (uart_type == 1000)
uart_type = ccbp->type;
else if (uart_type != ccbp->type)
printf("si%d: Warning: module %d mismatch! (%d%s != %d%s)\n",
unit, nmodule,
ccbp->type, si_modulename(sc->sc_type, ccbp->type),
uart_type, si_modulename(sc->sc_type, uart_type));
for (x = 0; x < nport; x++, pp++, ccbp++) {
pp->sp_ccb = ccbp; /* save the address */
pp->sp_tty = tp++;
pp->sp_pend = IDLE_CLOSE;
pp->sp_state = 0; /* internal flag */
pp->sp_dtr_wait = 3 * hz;
pp->sp_iin.c_iflag = TTYDEF_IFLAG;
pp->sp_iin.c_oflag = TTYDEF_OFLAG;
pp->sp_iin.c_cflag = TTYDEF_CFLAG;
pp->sp_iin.c_lflag = TTYDEF_LFLAG;
termioschars(&pp->sp_iin);
pp->sp_iin.c_ispeed = pp->sp_iin.c_ospeed =
TTYDEF_SPEED;;
pp->sp_iout = pp->sp_iin;
}
try_next2:
if (modp->sm_next == 0) {
printf("si%d: card: %s, ports: %d, modules: %d, type: %d%s\n",
unit,
sc->sc_typename,
sc->sc_nport,
nmodule,
uart_type,
si_modulename(sc->sc_type, uart_type));
break;
}
modp = (struct si_module *)
(maddr + (unsigned)(modp->sm_next & 0x7fff));
}
if (done_chartimes == 0) {
for (spt = chartimes ; spt->sp_speed != -1; spt++) {
if ((spt->sp_code /= hz) == 0)
spt->sp_code = 1;
}
done_chartimes = 1;
}
the second set of changes in a move towards getting devices to be totally dynamic. this is only the devices in i386/isa I'll do more tomorrow. they're completely masked by #ifdef JREMOD at this stage... the eventual aim is that every driver will do a SYSINIT at startup BEFORE the probes, which will effectively link it into the devsw tables etc. If I'd thought about it more I'd have put that in in this set (damn) The ioconf lines generated by config will also end up in the device's own scope as well, so ioconf.c will eventually be gutted the SYSINIT call to the driver will include a phase where the driver links it's ioconf line into a chain of such. when this phase is done then the user can modify them with the boot: -c config menu if he wants, just like now.. config will put the config lines out in the .h file (e.g. in aha.h will be the addresses for the aha driver to look.) as I said this is a very small first step.. the aim of THIS set of edits is to not have to edit conf.c at all when adding a new device.. the tabe will be a simple skeleton.. when this is done, it will allow other changes to be made, all teh time still having a fully working kernel tree, but the logical outcome is the complete REMOVAL of the devsw tables. By the end of this, linked in drivers will be exactly the same as run-time loaded drivers, except they JUST HAPPEN to already be linked and present at startup.. the SYSINIT calls will be the equivalent of the "init" call made to a newly loaded driver in every respect. For this edit, each of the files has the following code inserted into it: obviously, tailored to suit.. ----------------------somewhere at the top: #ifdef JREMOD #include <sys/conf.h> #define CDEV_MAJOR 13 #define BDEV_MAJOR 4 static void sd_devsw_install(); #endif /*JREMOD */ ---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT #ifdef JREMOD sd_devsw_install(); #endif /*JREMOD*/ -----------------------at the bottom: #ifdef JREMOD struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, /*4*/ sddump, sdsize, 0 }; struct cdevsw sd_cdevsw = { sdopen, sdclose, rawread, rawwrite, /*13*/ sdioctl, nostop, nullreset, nodevtotty,/* sd */ seltrue, nommap, sdstrategy }; static sd_devsw_installed = 0; static void sd_devsw_install() { dev_t descript; if( ! sd_devsw_installed ) { descript = makedev(CDEV_MAJOR,0); cdevsw_add(&descript,&sd_cdevsw,NULL); #if defined(BDEV_MAJOR) descript = makedev(BDEV_MAJOR,0); bdevsw_add(&descript,&sd_bdevsw,NULL); #endif /*BDEV_MAJOR*/ sd_devsw_installed = 1; } } #endif /* JREMOD */
1995-11-28 09:42:06 +00:00
#ifdef DEVFS
/* path name devsw minor type uid gid perm*/
for ( x = 0; x < sc->sc_nport; x++ ) {
/* sync with the manuals that start at 1 */
y = x + 1 + id->id_unit * (1 << SI_CARDSHIFT);
sc->devfs_token[x].ttya = devfs_add_devswf(
&si_cdevsw, x,
DV_CHR, 0, 0, 0600, "ttyA%02d", y);
sc->devfs_token[x].cuaa = devfs_add_devswf(
&si_cdevsw, x + 0x00080,
DV_CHR, 0, 0, 0600, "cuaA%02d", y);
sc->devfs_token[x].ttyi = devfs_add_devswf(
&si_cdevsw, x + 0x10000,
DV_CHR, 0, 0, 0600, "ttyiA%02d", y);
sc->devfs_token[x].cuai = devfs_add_devswf(
&si_cdevsw, x + 0x10080,
DV_CHR, 0, 0, 0600, "cuaiA%02d", y);
sc->devfs_token[x].ttyl = devfs_add_devswf(
&si_cdevsw, x + 0x20000,
DV_CHR, 0, 0, 0600, "ttylA%02d", y);
sc->devfs_token[x].cual = devfs_add_devswf(
&si_cdevsw, x + 0x20080,
DV_CHR, 0, 0, 0600, "cualA%02d", y);
}
sc->control_token =
devfs_add_devswf(&si_cdevsw, 0x40000, DV_CHR, 0, 0, 0600,
"si_control");
#endif
return (1);
}
static int
siopen(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
int oldspl, error;
int card, port;
register struct si_softc *sc;
register struct tty *tp;
volatile struct si_channel *ccbp;
struct si_port *pp;
int mynor = minor(dev);
/* quickly let in /dev/si_control */
if (IS_CONTROLDEV(mynor)) {
if ((error = suser(p->p_ucred, &p->p_acflag)))
return(error);
return(0);
}
card = SI_CARD(mynor);
if (card >= NSI)
return (ENXIO);
sc = &si_softc[card];
if (sc->sc_type == SIEMPTY) {
DPRINT((0, DBG_OPEN|DBG_FAIL, "si%d: type %s??\n",
card, sc->sc_typename));
return(ENXIO);
}
port = SI_PORT(mynor);
if (port >= sc->sc_nport) {
DPRINT((0, DBG_OPEN|DBG_FAIL, "si%d: nports %d\n",
card, sc->sc_nport));
return(ENXIO);
}
#ifdef POLL
/*
* We've now got a device, so start the poller.
*/
if (init_finished == 0) {
timeout(si_poll, (caddr_t)0L, si_pollrate);
init_finished = 1;
}
#endif
/* initial/lock device */
if (IS_STATE(mynor)) {
return(0);
}
pp = sc->sc_ports + port;
tp = pp->sp_tty; /* the "real" tty */
ccbp = pp->sp_ccb; /* Find control block */
DPRINT((pp, DBG_ENTRY|DBG_OPEN, "siopen(%x,%x,%x,%x)\n",
dev, flag, mode, p));
oldspl = spltty(); /* Keep others out */
error = 0;
open_top:
while (pp->sp_state & SS_DTR_OFF) {
error = tsleep(&pp->sp_dtr_wait, TTIPRI|PCATCH, "sidtr", 0);
if (error != 0)
goto out;
}
if (tp->t_state & TS_ISOPEN) {
/*
* The device is open, so everything has been initialised.
* handle conflicts.
*/
if (IS_CALLOUT(mynor)) {
if (!pp->sp_active_out) {
error = EBUSY;
goto out;
}
} else {
if (pp->sp_active_out) {
if (flag & O_NONBLOCK) {
error = EBUSY;
goto out;
}
error = tsleep(&pp->sp_active_out,
TTIPRI|PCATCH, "sibi", 0);
if (error != 0)
goto out;
goto open_top;
}
}
if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
DPRINT((pp, DBG_OPEN|DBG_FAIL,
"already open and EXCLUSIVE set\n"));
error = EBUSY;
goto out;
}
} else {
/*
* The device isn't open, so there are no conflicts.
* Initialize it. Avoid sleep... :-)
*/
DPRINT((pp, DBG_OPEN, "first open\n"));
tp->t_oproc = si_start;
tp->t_param = siparam;
tp->t_dev = dev;
tp->t_termios = mynor & SI_CALLOUT_MASK
? pp->sp_iout : pp->sp_iin;
(void) si_modem(pp, SET, TIOCM_DTR|TIOCM_RTS);
++pp->sp_wopeners; /* in case of sleep in siparam */
error = siparam(tp, &tp->t_termios);
--pp->sp_wopeners;
if (error != 0)
goto out;
/* XXX: we should goto_top if siparam slept */
ttsetwater(tp);
/* set initial DCD state */
pp->sp_last_hi_ip = ccbp->hi_ip;
if ((pp->sp_last_hi_ip & IP_DCD) || IS_CALLOUT(mynor)) {
(*linesw[tp->t_line].l_modem)(tp, 1);
}
}
/* whoops! we beat the close! */
if (pp->sp_state & SS_CLOSING) {
/* try and stop it from proceeding to bash the hardware */
pp->sp_state &= ~SS_CLOSING;
}
/*
* Wait for DCD if necessary
*/
if (!(tp->t_state & TS_CARR_ON)
&& !IS_CALLOUT(mynor)
&& !(tp->t_cflag & CLOCAL)
&& !(flag & O_NONBLOCK)) {
++pp->sp_wopeners;
DPRINT((pp, DBG_OPEN, "sleeping for carrier\n"));
error = tsleep(TSA_CARR_ON(tp), TTIPRI|PCATCH, "sidcd", 0);
--pp->sp_wopeners;
if (error != 0)
goto out;
goto open_top;
}
error = (*linesw[tp->t_line].l_open)(dev, tp);
si_disc_optim(tp, &tp->t_termios, pp);
if (tp->t_state & TS_ISOPEN && IS_CALLOUT(mynor))
pp->sp_active_out = TRUE;
pp->sp_state |= SS_OPEN; /* made it! */
out:
splx(oldspl);
DPRINT((pp, DBG_OPEN, "leaving siopen\n"));
if (!(tp->t_state & TS_ISOPEN) && pp->sp_wopeners == 0)
sihardclose(pp);
return(error);
}
static int
siclose(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
register struct si_port *pp;
register struct tty *tp;
int oldspl;
int error = 0;
int mynor = minor(dev);
if (IS_SPECIAL(mynor))
return(0);
oldspl = spltty();
pp = MINOR2PP(mynor);
tp = pp->sp_tty;
DPRINT((pp, DBG_ENTRY|DBG_CLOSE, "siclose(%x,%x,%x,%x) sp_state:%x\n",
dev, flag, mode, p, pp->sp_state));
/* did we sleep and loose a race? */
if (pp->sp_state & SS_CLOSING) {
/* error = ESOMETING? */
goto out;
}
/* begin race detection.. */
pp->sp_state |= SS_CLOSING;
si_write_enable(pp, 0); /* block writes for ttywait() */
/* THIS MAY SLEEP IN TTYWAIT!!! */
(*linesw[tp->t_line].l_close)(tp, flag);
si_write_enable(pp, 1);
/* did we sleep and somebody started another open? */
if (!(pp->sp_state & SS_CLOSING)) {
/* error = ESOMETING? */
goto out;
}
/* ok. we are now still on the right track.. nuke the hardware */
if (pp->sp_state & SS_LSTART) {
untimeout(si_lstart, (caddr_t)pp, pp->lstart_ch);
pp->sp_state &= ~SS_LSTART;
}
sistop(tp, FREAD | FWRITE);
sihardclose(pp);
ttyclose(tp);
pp->sp_state &= ~SS_OPEN;
out:
DPRINT((pp, DBG_CLOSE|DBG_EXIT, "close done, returning\n"));
splx(oldspl);
return(error);
}
static void
sihardclose(pp)
struct si_port *pp;
{
int oldspl;
struct tty *tp;
volatile struct si_channel *ccbp;
oldspl = spltty();
tp = pp->sp_tty;
ccbp = pp->sp_ccb; /* Find control block */
if (tp->t_cflag & HUPCL
|| (!pp->sp_active_out
&& !(ccbp->hi_ip & IP_DCD)
&& !(pp->sp_iin.c_cflag && CLOCAL))
|| !(tp->t_state & TS_ISOPEN)) {
(void) si_modem(pp, BIC, TIOCM_DTR|TIOCM_RTS);
(void) si_command(pp, FCLOSE, SI_NOWAIT);
if (pp->sp_dtr_wait != 0) {
timeout(sidtrwakeup, pp, pp->sp_dtr_wait);
pp->sp_state |= SS_DTR_OFF;
}
}
pp->sp_active_out = FALSE;
wakeup((caddr_t)&pp->sp_active_out);
wakeup(TSA_CARR_ON(tp));
splx(oldspl);
}
/*
* called at splsoftclock()...
*/
static void
sidtrwakeup(chan)
void *chan;
{
struct si_port *pp;
int oldspl;
oldspl = spltty();
pp = (struct si_port *)chan;
pp->sp_state &= ~SS_DTR_OFF;
wakeup(&pp->sp_dtr_wait);
splx(oldspl);
}
/*
* User level stuff - read and write
*/
static int
siread(dev, uio, flag)
register dev_t dev;
struct uio *uio;
int flag;
{
register struct tty *tp;
int mynor = minor(dev);
if (IS_SPECIAL(mynor)) {
DPRINT((0, DBG_ENTRY|DBG_FAIL|DBG_READ, "siread(CONTROLDEV!!)\n"));
return(ENODEV);
}
tp = MINOR2TP(mynor);
DPRINT((TP2PP(tp), DBG_ENTRY|DBG_READ,
"siread(%x,%x,%x)\n", dev, uio, flag));
return ((*linesw[tp->t_line].l_read)(tp, uio, flag));
}
static int
siwrite(dev, uio, flag)
dev_t dev;
struct uio *uio;
int flag;
{
register struct si_port *pp;
register struct tty *tp;
int error = 0;
int mynor = minor(dev);
int oldspl;
if (IS_SPECIAL(mynor)) {
DPRINT((0, DBG_ENTRY|DBG_FAIL|DBG_WRITE, "siwrite(CONTROLDEV!!)\n"));
return(ENODEV);
}
pp = MINOR2PP(mynor);
tp = pp->sp_tty;
DPRINT((pp, DBG_WRITE, "siwrite(%x,%x,%x)\n", dev, uio, flag));
oldspl = spltty();
/*
* If writes are currently blocked, wait on the "real" tty
*/
while (pp->sp_state & SS_BLOCKWRITE) {
pp->sp_state |= SS_WAITWRITE;
DPRINT((pp, DBG_WRITE, "in siwrite, wait for SS_BLOCKWRITE to clear\n"));
if ((error = ttysleep(tp, (caddr_t)pp, TTOPRI|PCATCH,
"siwrite", tp->t_timeout))) {
if (error == EWOULDBLOCK)
error = EIO;
goto out;
}
}
error = (*linesw[tp->t_line].l_write)(tp, uio, flag);
out:
splx(oldspl);
return (error);
}
static struct tty *
sidevtotty(dev_t dev)
{
struct si_port *pp;
int mynor = minor(dev);
struct si_softc *sc = &si_softc[SI_CARD(mynor)];
if (IS_SPECIAL(mynor))
return(NULL);
if (SI_PORT(mynor) >= sc->sc_nport)
return(NULL);
pp = MINOR2PP(mynor);
return (pp->sp_tty);
}
static int
siioctl(dev, cmd, data, flag, p)
dev_t dev;
u_long cmd;
caddr_t data;
int flag;
struct proc *p;
{
struct si_port *pp;
register struct tty *tp;
int error;
int mynor = minor(dev);
int oldspl;
int blocked = 0;
#if defined(COMPAT_43)
int oldcmd;
struct termios term;
#endif
if (IS_SI_IOCTL(cmd))
return(si_Sioctl(dev, cmd, data, flag, p));
pp = MINOR2PP(mynor);
tp = pp->sp_tty;
DPRINT((pp, DBG_ENTRY|DBG_IOCTL, "siioctl(%x,%x,%x,%x)\n",
dev, cmd, data, flag));
if (IS_STATE(mynor)) {
struct termios *ct;
switch (mynor & SI_STATE_MASK) {
case SI_INIT_STATE_MASK:
ct = IS_CALLOUT(mynor) ? &pp->sp_iout : &pp->sp_iin;
break;
case SI_LOCK_STATE_MASK:
ct = IS_CALLOUT(mynor) ? &pp->sp_lout : &pp->sp_lin;
break;
default:
return (ENODEV);
}
switch (cmd) {
case TIOCSETA:
error = suser(p->p_ucred, &p->p_acflag);
if (error != 0)
return (error);
*ct = *(struct termios *)data;
return (0);
case TIOCGETA:
*(struct termios *)data = *ct;
return (0);
case TIOCGETD:
*(int *)data = TTYDISC;
return (0);
case TIOCGWINSZ:
bzero(data, sizeof(struct winsize));
return (0);
default:
return (ENOTTY);
}
}
/*
* Do the old-style ioctl compat routines...
*/
#if defined(COMPAT_43)
term = tp->t_termios;
oldcmd = cmd;
error = ttsetcompat(tp, &cmd, data, &term);
if (error != 0)
return (error);
if (cmd != oldcmd)
data = (caddr_t)&term;
#endif
/*
* Do the initial / lock state business
*/
if (cmd == TIOCSETA || cmd == TIOCSETAW || cmd == TIOCSETAF) {
int cc;
struct termios *dt = (struct termios *)data;
struct termios *lt = mynor & SI_CALLOUT_MASK
? &pp->sp_lout : &pp->sp_lin;
dt->c_iflag = (tp->t_iflag & lt->c_iflag)
| (dt->c_iflag & ~lt->c_iflag);
dt->c_oflag = (tp->t_oflag & lt->c_oflag)
| (dt->c_oflag & ~lt->c_oflag);
dt->c_cflag = (tp->t_cflag & lt->c_cflag)
| (dt->c_cflag & ~lt->c_cflag);
dt->c_lflag = (tp->t_lflag & lt->c_lflag)
| (dt->c_lflag & ~lt->c_lflag);
for (cc = 0; cc < NCCS; ++cc)
if (lt->c_cc[cc] != 0)
dt->c_cc[cc] = tp->t_cc[cc];
if (lt->c_ispeed != 0)
dt->c_ispeed = tp->t_ispeed;
if (lt->c_ospeed != 0)
dt->c_ospeed = tp->t_ospeed;
}
/*
* Block user-level writes to give the ttywait()
* a chance to completely drain for commands
* that require the port to be in a quiescent state.
*/
switch (cmd) {
case TIOCSETAW:
case TIOCSETAF:
case TIOCDRAIN:
#ifdef COMPAT_43
case TIOCSETP:
#endif
blocked++; /* block writes for ttywait() and siparam() */
si_write_enable(pp, 0);
}
error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
if (error != ENOIOCTL)
goto out;
oldspl = spltty();
error = ttioctl(tp, cmd, data, flag);
si_disc_optim(tp, &tp->t_termios, pp);
if (error != ENOIOCTL)
goto outspl;
switch (cmd) {
case TIOCSBRK:
si_command(pp, SBREAK, SI_WAIT);
break;
case TIOCCBRK:
si_command(pp, EBREAK, SI_WAIT);
break;
case TIOCSDTR:
(void) si_modem(pp, SET, TIOCM_DTR|TIOCM_RTS);
break;
case TIOCCDTR:
(void) si_modem(pp, SET, 0);
break;
case TIOCMSET:
(void) si_modem(pp, SET, *(int *)data);
break;
case TIOCMBIS:
(void) si_modem(pp, BIS, *(int *)data);
break;
case TIOCMBIC:
(void) si_modem(pp, BIC, *(int *)data);
break;
case TIOCMGET:
*(int *)data = si_modem(pp, GET, 0);
break;
case TIOCMSDTRWAIT:
/* must be root since the wait applies to following logins */
error = suser(p->p_ucred, &p->p_acflag);
if (error != 0) {
goto outspl;
}
pp->sp_dtr_wait = *(int *)data * hz / 100;
break;
case TIOCMGDTRWAIT:
*(int *)data = pp->sp_dtr_wait * 100 / hz;
break;
default:
error = ENOTTY;
}
error = 0;
outspl:
splx(oldspl);
out:
DPRINT((pp, DBG_IOCTL|DBG_EXIT, "siioctl ret %d\n", error));
if (blocked)
si_write_enable(pp, 1);
return(error);
}
/*
* Handle the Specialix ioctls. All MUST be called via the CONTROL device
*/
static int
si_Sioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
{
struct si_softc *xsc;
register struct si_port *xpp;
volatile struct si_reg *regp;
struct si_tcsi *dp;
struct si_pstat *sps;
int *ip, error = 0;
int oldspl;
int card, port;
int mynor = minor(dev);
DPRINT((0, DBG_ENTRY|DBG_IOCTL, "si_Sioctl(%x,%x,%x,%x)\n",
dev, cmd, data, flag));
#if 1
DPRINT((0, DBG_IOCTL, "TCSI_PORT=%x\n", TCSI_PORT));
DPRINT((0, DBG_IOCTL, "TCSI_CCB=%x\n", TCSI_CCB));
DPRINT((0, DBG_IOCTL, "TCSI_TTY=%x\n", TCSI_TTY));
#endif
if (!IS_CONTROLDEV(mynor)) {
DPRINT((0, DBG_IOCTL|DBG_FAIL, "not called from control device!\n"));
return(ENODEV);
}
oldspl = spltty(); /* better safe than sorry */
ip = (int *)data;
#define SUCHECK if ((error = suser(p->p_ucred, &p->p_acflag))) goto out
switch (cmd) {
case TCSIPORTS:
*ip = si_Nports;
goto out;
case TCSIMODULES:
*ip = si_Nmodules;
goto out;
case TCSISDBG_ALL:
SUCHECK;
si_debug = *ip;
goto out;
case TCSIGDBG_ALL:
*ip = si_debug;
goto out;
default:
/*
* Check that a controller for this port exists
*/
/* may also be a struct si_pstat, a superset of si_tcsi */
dp = (struct si_tcsi *)data;
sps = (struct si_pstat *)data;
card = dp->tc_card;
xsc = &si_softc[card]; /* check.. */
if (card < 0 || card >= NSI || xsc->sc_type == SIEMPTY) {
error = ENOENT;
goto out;
}
/*
* And check that a port exists
*/
port = dp->tc_port;
if (port < 0 || port >= xsc->sc_nport) {
error = ENOENT;
goto out;
}
xpp = xsc->sc_ports + port;
regp = (struct si_reg *)xsc->sc_maddr;
}
switch (cmd) {
case TCSIDEBUG:
#ifdef SI_DEBUG
SUCHECK;
if (xpp->sp_debug)
xpp->sp_debug = 0;
else {
xpp->sp_debug = DBG_ALL;
DPRINT((xpp, DBG_IOCTL, "debug toggled %s\n",
(xpp->sp_debug&DBG_ALL)?"ON":"OFF"));
}
break;
#else
error = ENODEV;
goto out;
#endif
case TCSISDBG_LEVEL:
case TCSIGDBG_LEVEL:
#ifdef SI_DEBUG
if (cmd == TCSIGDBG_LEVEL) {
dp->tc_dbglvl = xpp->sp_debug;
} else {
SUCHECK;
xpp->sp_debug = dp->tc_dbglvl;
}
break;
#else
error = ENODEV;
goto out;
#endif
case TCSIGRXIT:
dp->tc_int = regp->rx_int_count;
break;
case TCSIRXIT:
SUCHECK;
regp->rx_int_count = dp->tc_int;
break;
case TCSIGIT:
dp->tc_int = regp->int_count;
break;
case TCSIIT:
SUCHECK;
regp->int_count = dp->tc_int;
break;
case TCSISTATE:
dp->tc_int = xpp->sp_ccb->hi_ip;
break;
/* these next three use a different structure */
case TCSI_PORT:
SUCHECK;
si_bcopy(xpp, &sps->tc_siport, sizeof(sps->tc_siport));
break;
case TCSI_CCB:
SUCHECK;
si_bcopy((char *)xpp->sp_ccb, &sps->tc_ccb, sizeof(sps->tc_ccb));
break;
case TCSI_TTY:
SUCHECK;
si_bcopy(xpp->sp_tty, &sps->tc_tty, sizeof(sps->tc_tty));
break;
default:
error = EINVAL;
goto out;
}
out:
splx(oldspl);
return(error); /* success */
}
/*
* siparam() : Configure line params
* called at spltty();
* this may sleep, does not flush, nor wait for drain, nor block writes
* caller must arrange this if it's important..
*/
1995-12-10 13:40:44 +00:00
static int
siparam(tp, t)
register struct tty *tp;
register struct termios *t;
{
register struct si_port *pp = TP2PP(tp);
volatile struct si_channel *ccbp;
int oldspl, cflag, iflag, oflag, lflag;
int error = 0; /* shutup gcc */
int ispeed = 0; /* shutup gcc */
int ospeed = 0; /* shutup gcc */
BYTE val;
DPRINT((pp, DBG_ENTRY|DBG_PARAM, "siparam(%x,%x)\n", tp, t));
cflag = t->c_cflag;
iflag = t->c_iflag;
oflag = t->c_oflag;
lflag = t->c_lflag;
DPRINT((pp, DBG_PARAM, "OFLAG 0x%x CFLAG 0x%x IFLAG 0x%x LFLAG 0x%x\n",
oflag, cflag, iflag, lflag));
/* XXX - if Jet host and SXDC module, use extended baud rates */
/* if not hung up.. */
if (t->c_ospeed != 0) {
/* translate baud rate to firmware values */
ospeed = ttspeedtab(t->c_ospeed, bdrates);
ispeed = t->c_ispeed ?
ttspeedtab(t->c_ispeed, bdrates) : ospeed;
/* enforce legit baud rate */
if (ospeed < 0 || ispeed < 0)
return (EINVAL);
}
oldspl = spltty();
ccbp = pp->sp_ccb;
/* ========== set hi_break ========== */
val = 0;
if (iflag & IGNBRK) /* Breaks */
val |= BR_IGN;
if (iflag & BRKINT) /* Interrupt on break? */
val |= BR_INT;
if (iflag & PARMRK) /* Parity mark? */
val |= BR_PARMRK;
if (iflag & IGNPAR) /* Ignore chars with parity errors? */
val |= BR_PARIGN;
ccbp->hi_break = val;
/* ========== set hi_csr ========== */
/* if not hung up.. */
if (t->c_ospeed != 0) {
/* Set I/O speeds */
val = (ispeed << 4) | ospeed;
}
ccbp->hi_csr = val;
/* ========== set hi_mr2 ========== */
val = 0;
if (cflag & CSTOPB) /* Stop bits */
val |= MR2_2_STOP;
else
val |= MR2_1_STOP;
/*
* Enable H/W RTS/CTS handshaking. The default TA/MTA is
* a DCE, hence the reverse sense of RTS and CTS
*/
/* Output Flow - RTS must be raised before data can be sent */
if (cflag & CCTS_OFLOW)
val |= MR2_RTSCONT;
ccbp->hi_mr2 = val;
/* ========== set hi_mr1 ========== */
val = 0;
if (!(cflag & PARENB)) /* Parity */
val |= MR1_NONE;
else
val |= MR1_WITH;
if (cflag & PARODD)
val |= MR1_ODD;
if ((cflag & CS8) == CS8) { /* 8 data bits? */
val |= MR1_8_BITS;
} else if ((cflag & CS7) == CS7) { /* 7 data bits? */
val |= MR1_7_BITS;
} else if ((cflag & CS6) == CS6) { /* 6 data bits? */
val |= MR1_6_BITS;
} else { /* Must be 5 */
val |= MR1_5_BITS;
}
/*
* Enable H/W RTS/CTS handshaking. The default TA/MTA is
* a DCE, hence the reverse sense of RTS and CTS
*/
/* Input Flow - CTS is raised when port is ready to receive data */
if (cflag & CRTS_IFLOW)
val |= MR1_CTSCONT;
ccbp->hi_mr1 = val;
/* ========== set hi_mask ========== */
val = 0xff;
if ((cflag & CS8) == CS8) { /* 8 data bits? */
val &= 0xFF;
} else if ((cflag & CS7) == CS7) { /* 7 data bits? */
val &= 0x7F;
} else if ((cflag & CS6) == CS6) { /* 6 data bits? */
val &= 0x3F;
} else { /* Must be 5 */
val &= 0x1F;
}
if (iflag & ISTRIP)
val &= 0x7F;
ccbp->hi_mask = val;
/* ========== set hi_prtcl ========== */
val = 0;
/* Monitor DCD etc. if a modem */
if (!(cflag & CLOCAL))
val |= SP_DCEN;
if (iflag & IXANY)
val |= SP_TANY;
if (iflag & IXON)
val |= SP_TXEN;
if (iflag & IXOFF)
val |= SP_RXEN;
if (iflag & INPCK)
val |= SP_PAEN;
ccbp->hi_prtcl = val;
/* ========== set hi_{rx|tx}{on|off} ========== */
/* XXX: the card TOTALLY shields us from the flow control... */
ccbp->hi_txon = t->c_cc[VSTART];
ccbp->hi_txoff = t->c_cc[VSTOP];
ccbp->hi_rxon = t->c_cc[VSTART];
ccbp->hi_rxoff = t->c_cc[VSTOP];
/* ========== send settings to the card ========== */
/* potential sleep here */
if (ccbp->hi_stat == IDLE_CLOSE) /* Not yet open */
si_command(pp, LOPEN, SI_WAIT); /* open it */
else
si_command(pp, CONFIG, SI_WAIT); /* change params */
/* ========== set DTR etc ========== */
/* Hangup if ospeed == 0 */
if (t->c_ospeed == 0) {
(void) si_modem(pp, BIC, TIOCM_DTR|TIOCM_RTS);
} else {
/*
* If the previous speed was 0, may need to re-enable
* the modem signals
*/
(void) si_modem(pp, SET, TIOCM_DTR|TIOCM_RTS);
}
DPRINT((pp, DBG_PARAM, "siparam, complete: MR1 %x MR2 %x HI_MASK %x PRTCL %x HI_BREAK %x\n",
ccbp->hi_mr1, ccbp->hi_mr2, ccbp->hi_mask, ccbp->hi_prtcl, ccbp->hi_break));
splx(oldspl);
return(error);
}
/*
* Enable or Disable the writes to this channel...
* "state" -> enabled = 1; disabled = 0;
*/
static void
si_write_enable(pp, state)
register struct si_port *pp;
int state;
{
int oldspl;
oldspl = spltty();
if (state) {
pp->sp_state &= ~SS_BLOCKWRITE;
if (pp->sp_state & SS_WAITWRITE) {
pp->sp_state &= ~SS_WAITWRITE;
/* thunder away! */
wakeup((caddr_t)pp);
}
} else {
pp->sp_state |= SS_BLOCKWRITE;
}
splx(oldspl);
}
/*
* Set/Get state of modem control lines.
* Due to DCE-like behaviour of the adapter, some signals need translation:
* TIOCM_DTR DSR
* TIOCM_RTS CTS
*/
static int
si_modem(pp, cmd, bits)
struct si_port *pp;
enum si_mctl cmd;
int bits;
{
volatile struct si_channel *ccbp;
int x;
DPRINT((pp, DBG_ENTRY|DBG_MODEM, "si_modem(%x,%s,%x)\n", pp, si_mctl2str(cmd), bits));
ccbp = pp->sp_ccb; /* Find channel address */
switch (cmd) {
case GET:
x = ccbp->hi_ip;
bits = TIOCM_LE;
if (x & IP_DCD) bits |= TIOCM_CAR;
if (x & IP_DTR) bits |= TIOCM_DTR;
if (x & IP_RTS) bits |= TIOCM_RTS;
if (x & IP_RI) bits |= TIOCM_RI;
return(bits);
case SET:
ccbp->hi_op &= ~(OP_DSR|OP_CTS);
/* fall through */
case BIS:
x = 0;
if (bits & TIOCM_DTR)
x |= OP_DSR;
if (bits & TIOCM_RTS)
x |= OP_CTS;
ccbp->hi_op |= x;
break;
case BIC:
if (bits & TIOCM_DTR)
ccbp->hi_op &= ~OP_DSR;
if (bits & TIOCM_RTS)
ccbp->hi_op &= ~OP_CTS;
}
return 0;
}
/*
* Handle change of modem state
*/
static void
si_modem_state(pp, tp, hi_ip)
register struct si_port *pp;
register struct tty *tp;
register int hi_ip;
{
/* if a modem dev */
if (hi_ip & IP_DCD) {
if ( !(pp->sp_last_hi_ip & IP_DCD)) {
DPRINT((pp, DBG_INTR, "modem carr on t_line %d\n",
tp->t_line));
(void)(*linesw[tp->t_line].l_modem)(tp, 1);
}
} else {
if (pp->sp_last_hi_ip & IP_DCD) {
DPRINT((pp, DBG_INTR, "modem carr off\n"));
if ((*linesw[tp->t_line].l_modem)(tp, 0))
(void) si_modem(pp, SET, 0);
}
}
pp->sp_last_hi_ip = hi_ip;
}
/*
* Poller to catch missed interrupts.
*
* Note that the SYSV Specialix drivers poll at 100 times per second to get
* better response. We could really use a "periodic" version timeout(). :-)
*/
#ifdef POLL
static void
si_poll(void *nothing)
{
register struct si_softc *sc;
register int i;
volatile struct si_reg *regp;
register struct si_port *pp;
int lost, oldspl, port;
DPRINT((0, DBG_POLL, "si_poll()\n"));
oldspl = spltty();
if (in_intr)
goto out;
lost = 0;
for (i=0; i<NSI; i++) {
sc = &si_softc[i];
if (sc->sc_type == SIEMPTY)
continue;
regp = (struct si_reg *)sc->sc_maddr;
/*
* See if there has been a pending interrupt for 2 seconds
* or so. The test (int_scounter >= 200) won't correspond
* to 2 seconds if int_count gets changed.
*/
if (regp->int_pending != 0) {
if (regp->int_scounter >= 200 &&
regp->initstat == 1) {
printf("si%d: lost intr\n", i);
lost++;
}
} else {
regp->int_scounter = 0;
}
/*
* gripe about no input flow control..
*/
pp = sc->sc_ports;
for (port = 0; port < sc->sc_nport; pp++, port++) {
if (pp->sp_delta_overflows > 0) {
printf("si%d: %d tty level buffer overflows\n",
i, pp->sp_delta_overflows);
pp->sp_delta_overflows = 0;
}
}
}
if (lost || si_realpoll)
si_intr(-1); /* call intr with fake vector */
out:
splx(oldspl);
timeout(si_poll, (caddr_t)0L, si_pollrate);
}
#endif /* ifdef POLL */
/*
* The interrupt handler polls ALL ports on ALL adapters each time
* it is called.
*/
static BYTE si_rxbuf[SI_BUFFERSIZE]; /* input staging area */
static BYTE si_txbuf[SI_BUFFERSIZE]; /* output staging area */
static void
si_intr(int unit)
{
register struct si_softc *sc;
register struct si_port *pp;
volatile struct si_channel *ccbp;
register struct tty *tp;
volatile caddr_t maddr;
BYTE op, ip;
int x, card, port, n, i, isopen;
volatile BYTE *z;
BYTE c;
DPRINT((0, (unit < 0) ? DBG_POLL:DBG_INTR, "si_intr(%d)\n", unit));
if (in_intr) {
if (unit < 0) /* should never happen */
printf("si%d: Warning poll entered during interrupt\n",
unit);
else
printf("si%d: Warning interrupt handler re-entered\n",
unit);
return;
}
in_intr = 1;
/*
* When we get an int we poll all the channels and do ALL pending
* work, not just the first one we find. This allows all cards to
* share the same vector.
*
* XXX - But if we're sharing the vector with something that's NOT
* a SI/XIO/SX card, we may be making more work for ourselves.
*/
for (card = 0; card < NSI; card++) {
sc = &si_softc[card];
if (sc->sc_type == SIEMPTY)
continue;
/*
* First, clear the interrupt
*/
switch(sc->sc_type) {
case SIHOST:
maddr = sc->sc_maddr;
((volatile struct si_reg *)maddr)->int_pending = 0;
/* flag nothing pending */
*(maddr+SIINTCL) = 0x00; /* Set IRQ clear */
*(maddr+SIINTCL_CL) = 0x00; /* Clear IRQ clear */
break;
case SIHOST2:
maddr = sc->sc_maddr;
((volatile struct si_reg *)maddr)->int_pending = 0;
*(maddr+SIPLIRQCLR) = 0x00;
*(maddr+SIPLIRQCLR) = 0x10;
break;
#if NPCI > 0
case SIPCI:
maddr = sc->sc_maddr;
((volatile struct si_reg *)maddr)->int_pending = 0;
*(maddr+SIPCIINTCL) = 0x0;
break;
case SIJETPCI: /* fall through to JETISA case */
#endif
case SIJETISA:
maddr = sc->sc_maddr;
((volatile struct si_reg *)maddr)->int_pending = 0;
*(maddr+SIJETINTCL) = 0x0;
break;
#if NEISA > 0
case SIEISA:
maddr = sc->sc_maddr;
((volatile struct si_reg *)maddr)->int_pending = 0;
(void)inb(sc->sc_eisa_iobase + 3);
break;
#endif
case SIEMPTY:
default:
continue;
}
((volatile struct si_reg *)maddr)->int_scounter = 0;
/*
* check each port
*/
for (pp = sc->sc_ports, port=0; port < sc->sc_nport;
pp++, port++) {
ccbp = pp->sp_ccb;
tp = pp->sp_tty;
/*
* See if a command has completed ?
*/
if (ccbp->hi_stat != pp->sp_pend) {
DPRINT((pp, DBG_INTR,
"si_intr hi_stat = 0x%x, pend = %d\n",
ccbp->hi_stat, pp->sp_pend));
switch(pp->sp_pend) {
case LOPEN:
case MPEND:
case MOPEN:
case CONFIG:
case SBREAK:
case EBREAK:
pp->sp_pend = ccbp->hi_stat;
/* sleeping in si_command */
wakeup(&pp->sp_state);
break;
default:
pp->sp_pend = ccbp->hi_stat;
}
}
/*
* Continue on if it's closed
*/
if (ccbp->hi_stat == IDLE_CLOSE) {
continue;
}
/*
* Do modem state change if not a local device
*/
si_modem_state(pp, tp, ccbp->hi_ip);
/*
* Check to see if we should 'receive' characters.
*/
if (tp->t_state & TS_CONNECTED &&
tp->t_state & TS_ISOPEN)
isopen = 1;
else
isopen = 0;
/*
* Do input break processing
*/
if (ccbp->hi_state & ST_BREAK) {
if (isopen) {
(*linesw[tp->t_line].l_rint)(TTY_BI, tp);
}
ccbp->hi_state &= ~ST_BREAK; /* A Bit iffy this */
DPRINT((pp, DBG_INTR, "si_intr break\n"));
}
/*
* Do RX stuff - if not open then dump any characters.
* XXX: This is VERY messy and needs to be cleaned up.
*
* XXX: can we leave data in the host adapter buffer
* when the clists are full? That may be dangerous
* if the user cannot get an interrupt signal through.
*/
more_rx: /* XXX Sorry. the nesting was driving me bats! :-( */
if (!isopen) {
ccbp->hi_rxopos = ccbp->hi_rxipos;
goto end_rx;
}
/*
* If the tty input buffers are blocked, stop emptying
* the incoming buffers and let the auto flow control
* assert..
*/
if (tp->t_state & TS_TBLOCK) {
goto end_rx;
}
/*
* Process read characters if not skipped above
*/
op = ccbp->hi_rxopos;
ip = ccbp->hi_rxipos;
c = ip - op;
if (c == 0) {
goto end_rx;
}
n = c & 0xff;
if (n > 250)
n = 250;
DPRINT((pp, DBG_INTR, "n = %d, op = %d, ip = %d\n",
n, op, ip));
/*
* Suck characters out of host card buffer into the
* "input staging buffer" - so that we dont leave the
* host card in limbo while we're possibly echoing
* characters and possibly flushing input inside the
* ldisc l_rint() routine.
*/
if (n <= SI_BUFFERSIZE - op) {
DPRINT((pp, DBG_INTR, "\tsingle copy\n"));
z = ccbp->hi_rxbuf + op;
si_bcopy((caddr_t)z, si_rxbuf, n);
op += n;
} else {
x = SI_BUFFERSIZE - op;
DPRINT((pp, DBG_INTR, "\tdouble part 1 %d\n", x));
z = ccbp->hi_rxbuf + op;
si_bcopy((caddr_t)z, si_rxbuf, x);
DPRINT((pp, DBG_INTR, "\tdouble part 2 %d\n",
n - x));
z = ccbp->hi_rxbuf;
si_bcopy((caddr_t)z, si_rxbuf + x, n - x);
op += n;
}
/* clear collected characters from buffer */
ccbp->hi_rxopos = op;
DPRINT((pp, DBG_INTR, "n = %d, op = %d, ip = %d\n",
n, op, ip));
/*
* at this point...
* n = number of chars placed in si_rxbuf
*/
/*
* Avoid the grotesquely inefficient lineswitch
* routine (ttyinput) in "raw" mode. It usually
* takes about 450 instructions (that's without
* canonical processing or echo!). slinput is
* reasonably fast (usually 40 instructions
* plus call overhead).
*/
if (tp->t_state & TS_CAN_BYPASS_L_RINT) {
/* block if the driver supports it */
if (tp->t_rawq.c_cc + n >= SI_I_HIGH_WATER
&& (tp->t_cflag & CRTS_IFLOW
|| tp->t_iflag & IXOFF)
&& !(tp->t_state & TS_TBLOCK))
ttyblock(tp);
tk_nin += n;
tk_rawcc += n;
tp->t_rawcc += n;
pp->sp_delta_overflows +=
b_to_q((char *)si_rxbuf, n, &tp->t_rawq);
ttwakeup(tp);
if (tp->t_state & TS_TTSTOP
&& (tp->t_iflag & IXANY
|| tp->t_cc[VSTART] == tp->t_cc[VSTOP])) {
tp->t_state &= ~TS_TTSTOP;
tp->t_lflag &= ~FLUSHO;
si_start(tp);
}
} else {
/*
* It'd be nice to not have to go through the
* function call overhead for each char here.
* It'd be nice to block input it, saving a
* loop here and the call/return overhead.
*/
for(x = 0; x < n; x++) {
i = si_rxbuf[x];
if ((*linesw[tp->t_line].l_rint)(i, tp)
== -1) {
pp->sp_delta_overflows++;
}
/*
* doesn't seem to be much point doing
* this here.. this driver has no
* softtty processing! ??
*/
if (pp->sp_hotchar && i == pp->sp_hotchar) {
setsofttty();
}
}
}
goto more_rx; /* try for more until RXbuf is empty */
end_rx: /* XXX: Again, sorry about the gotos.. :-) */
/*
* Do TX stuff
*/
(*linesw[tp->t_line].l_start)(tp);
} /* end of for (all ports on this controller) */
} /* end of for (all controllers) */
in_intr = 0;
DPRINT((0, (unit < 0) ? DBG_POLL:DBG_INTR, "end si_intr(%d)\n", unit));
}
/*
* Nudge the transmitter...
*
* XXX: I inherited some funny code here. It implies the host card only
* interrupts when the transmit buffer reaches the low-water-mark, and does
* not interrupt when it's actually hits empty. In some cases, we have
* processes waiting for complete drain, and we need to simulate an interrupt
* about when we think the buffer is going to be empty (and retry if not).
* I really am not certain about this... I *need* the hardware manuals.
*/
static void
si_start(tp)
register struct tty *tp;
{
struct si_port *pp;
volatile struct si_channel *ccbp;
register struct clist *qp;
BYTE ipos;
int nchar;
int oldspl, count, n, amount, buffer_full;
oldspl = spltty();
qp = &tp->t_outq;
pp = TP2PP(tp);
DPRINT((pp, DBG_ENTRY|DBG_START,
"si_start(%x) t_state %x sp_state %x t_outq.c_cc %d\n",
tp, tp->t_state, pp->sp_state, qp->c_cc));
if (tp->t_state & (TS_TIMEOUT|TS_TTSTOP))
goto out;
buffer_full = 0;
ccbp = pp->sp_ccb;
count = (int)ccbp->hi_txipos - (int)ccbp->hi_txopos;
DPRINT((pp, DBG_START, "count %d\n", (BYTE)count));
while ((nchar = qp->c_cc) > 0) {
if ((BYTE)count >= 255) {
buffer_full++;
break;
}
amount = min(nchar, (255 - (BYTE)count));
ipos = (unsigned int)ccbp->hi_txipos;
n = q_to_b(&tp->t_outq, si_txbuf, amount);
/* will it fit in one lump? */
if ((SI_BUFFERSIZE - ipos) >= n) {
si_bcopy(si_txbuf, (char *)&ccbp->hi_txbuf[ipos], n);
} else {
si_bcopy(si_txbuf, (char *)&ccbp->hi_txbuf[ipos],
SI_BUFFERSIZE - ipos);
si_bcopy(si_txbuf + (SI_BUFFERSIZE - ipos),
(char *)&ccbp->hi_txbuf[0],
n - (SI_BUFFERSIZE - ipos));
}
ccbp->hi_txipos += n;
count = (int)ccbp->hi_txipos - (int)ccbp->hi_txopos;
}
if (count != 0 && nchar == 0) {
tp->t_state |= TS_BUSY;
} else {
tp->t_state &= ~TS_BUSY;
}
/* wakeup time? */
ttwwakeup(tp);
DPRINT((pp, DBG_START, "count %d, nchar %d, tp->t_state 0x%x\n",
(BYTE)count, nchar, tp->t_state));
if (tp->t_state & TS_BUSY)
{
int time;
time = ttspeedtab(tp->t_ospeed, chartimes);
if (time > 0) {
if (time < nchar)
time = nchar / time;
else
time = 2;
} else {
DPRINT((pp, DBG_START,
"bad char time value! %d\n", time));
time = hz/10;
}
if ((pp->sp_state & (SS_LSTART|SS_INLSTART)) == SS_LSTART) {
untimeout(si_lstart, (caddr_t)pp, pp->lstart_ch);
} else {
pp->sp_state |= SS_LSTART;
}
DPRINT((pp, DBG_START, "arming lstart, time=%d\n", time));
pp->lstart_ch = timeout(si_lstart, (caddr_t)pp, time);
}
out:
splx(oldspl);
DPRINT((pp, DBG_EXIT|DBG_START, "leave si_start()\n"));
}
/*
* Note: called at splsoftclock from the timeout code
* This has to deal with two things... cause wakeups while waiting for
* tty drains on last process exit, and call l_start at about the right
* time for protocols like ppp.
*/
static void
si_lstart(void *arg)
{
register struct si_port *pp = arg;
register struct tty *tp;
int oldspl;
DPRINT((pp, DBG_ENTRY|DBG_LSTART, "si_lstart(%x) sp_state %x\n",
pp, pp->sp_state));
oldspl = spltty();
if ((pp->sp_state & SS_OPEN) == 0 || (pp->sp_state & SS_LSTART) == 0) {
splx(oldspl);
return;
}
pp->sp_state &= ~SS_LSTART;
pp->sp_state |= SS_INLSTART;
tp = pp->sp_tty;
/* deal with the process exit case */
ttwwakeup(tp);
/* nudge protocols - eg: ppp */
(*linesw[tp->t_line].l_start)(tp);
pp->sp_state &= ~SS_INLSTART;
splx(oldspl);
}
/*
* Stop output on a line. called at spltty();
*/
void
sistop(tp, rw)
register struct tty *tp;
int rw;
{
volatile struct si_channel *ccbp;
struct si_port *pp;
pp = TP2PP(tp);
ccbp = pp->sp_ccb;
DPRINT((TP2PP(tp), DBG_ENTRY|DBG_STOP, "sistop(%x,%x)\n", tp, rw));
/* XXX: must check (rw & FWRITE | FREAD) etc flushing... */
if (rw & FWRITE) {
/* what level are we meant to be flushing anyway? */
if (tp->t_state & TS_BUSY) {
si_command(TP2PP(tp), WFLUSH, SI_NOWAIT);
tp->t_state &= ~TS_BUSY;
ttwwakeup(tp); /* Bruce???? */
}
}
#if 1 /* XXX: this doesn't work right yet.. */
/* XXX: this may have been failing because we used to call l_rint()
* while we were looping based on these two counters. Now, we collect
* the data and then loop stuffing it into l_rint(), making this
* useless. Should we cause this to blow away the staging buffer?
*/
if (rw & FREAD) {
ccbp->hi_rxopos = ccbp->hi_rxipos;
}
#endif
}
/*
* Issue a command to the host card CPU.
*/
static void
si_command(pp, cmd, waitflag)
struct si_port *pp; /* port control block (local) */
int cmd;
int waitflag;
{
int oldspl;
volatile struct si_channel *ccbp = pp->sp_ccb;
int x;
DPRINT((pp, DBG_ENTRY|DBG_PARAM, "si_command(%x,%x,%d): hi_stat 0x%x\n",
pp, cmd, waitflag, ccbp->hi_stat));
oldspl = spltty(); /* Keep others out */
/* wait until it's finished what it was doing.. */
/* XXX: sits in IDLE_BREAK until something disturbs it or break
* is turned off. */
while((x = ccbp->hi_stat) != IDLE_OPEN &&
x != IDLE_CLOSE &&
x != IDLE_BREAK &&
x != cmd) {
if (in_intr) { /* Prevent sleep in intr */
DPRINT((pp, DBG_PARAM,
"cmd intr collision - completing %d\trequested %d\n",
x, cmd));
splx(oldspl);
return;
} else if (ttysleep(pp->sp_tty, (caddr_t)&pp->sp_state, TTIPRI|PCATCH,
"sicmd1", 1)) {
splx(oldspl);
return;
}
}
/* it should now be in IDLE_{OPEN|CLOSE|BREAK}, or "cmd" */
/* if there was a pending command, cause a state-change wakeup */
switch(pp->sp_pend) {
case LOPEN:
case MPEND:
case MOPEN:
case CONFIG:
case SBREAK:
case EBREAK:
wakeup(&pp->sp_state);
break;
default:
break;
}
pp->sp_pend = cmd; /* New command pending */
ccbp->hi_stat = cmd; /* Post it */
if (waitflag) {
if (in_intr) { /* If in interrupt handler */
DPRINT((pp, DBG_PARAM,
"attempt to sleep in si_intr - cmd req %d\n",
cmd));
splx(oldspl);
return;
} else while(ccbp->hi_stat != IDLE_OPEN &&
ccbp->hi_stat != IDLE_BREAK) {
if (ttysleep(pp->sp_tty, (caddr_t)&pp->sp_state, TTIPRI|PCATCH,
"sicmd2", 0))
break;
}
}
splx(oldspl);
}
static void
si_disc_optim(tp, t, pp)
struct tty *tp;
struct termios *t;
struct si_port *pp;
{
/*
* XXX can skip a lot more cases if Smarts. Maybe
* (IGNCR | ISTRIP | IXON) in c_iflag. But perhaps we
* shouldn't skip if (TS_CNTTB | TS_LNCH) is set in t_state.
*/
if (!(t->c_iflag & (ICRNL | IGNCR | IMAXBEL | INLCR | ISTRIP | IXON))
&& (!(t->c_iflag & BRKINT) || (t->c_iflag & IGNBRK))
&& (!(t->c_iflag & PARMRK)
|| (t->c_iflag & (IGNPAR | IGNBRK)) == (IGNPAR | IGNBRK))
&& !(t->c_lflag & (ECHO | ICANON | IEXTEN | ISIG | PENDIN))
&& linesw[tp->t_line].l_rint == ttyinput)
tp->t_state |= TS_CAN_BYPASS_L_RINT;
else
tp->t_state &= ~TS_CAN_BYPASS_L_RINT;
pp->sp_hotchar = linesw[tp->t_line].l_hotchar;
DPRINT((pp, DBG_OPTIM, "bypass: %s, hotchar: %x\n",
(tp->t_state & TS_CAN_BYPASS_L_RINT) ? "on" : "off",
pp->sp_hotchar));
}
#ifdef SI_DEBUG
static void
#ifdef __STDC__
si_dprintf(struct si_port *pp, int flags, const char *fmt, ...)
#else
si_dprintf(pp, flags, fmt, va_alist)
struct si_port *pp;
int flags;
char *fmt;
#endif
{
va_list ap;
if ((pp == NULL && (si_debug&flags)) ||
(pp != NULL && ((pp->sp_debug&flags) || (si_debug&flags)))) {
if (pp != NULL)
printf("%ci%d(%d): ", 's',
(int)SI_CARD(pp->sp_tty->t_dev),
(int)SI_PORT(pp->sp_tty->t_dev));
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
}
}
static char *
si_mctl2str(cmd)
enum si_mctl cmd;
{
switch (cmd) {
case GET:
return("GET");
case SET:
return("SET");
case BIS:
return("BIS");
case BIC:
return("BIC");
}
return("BAD");
}
the second set of changes in a move towards getting devices to be totally dynamic. this is only the devices in i386/isa I'll do more tomorrow. they're completely masked by #ifdef JREMOD at this stage... the eventual aim is that every driver will do a SYSINIT at startup BEFORE the probes, which will effectively link it into the devsw tables etc. If I'd thought about it more I'd have put that in in this set (damn) The ioconf lines generated by config will also end up in the device's own scope as well, so ioconf.c will eventually be gutted the SYSINIT call to the driver will include a phase where the driver links it's ioconf line into a chain of such. when this phase is done then the user can modify them with the boot: -c config menu if he wants, just like now.. config will put the config lines out in the .h file (e.g. in aha.h will be the addresses for the aha driver to look.) as I said this is a very small first step.. the aim of THIS set of edits is to not have to edit conf.c at all when adding a new device.. the tabe will be a simple skeleton.. when this is done, it will allow other changes to be made, all teh time still having a fully working kernel tree, but the logical outcome is the complete REMOVAL of the devsw tables. By the end of this, linked in drivers will be exactly the same as run-time loaded drivers, except they JUST HAPPEN to already be linked and present at startup.. the SYSINIT calls will be the equivalent of the "init" call made to a newly loaded driver in every respect. For this edit, each of the files has the following code inserted into it: obviously, tailored to suit.. ----------------------somewhere at the top: #ifdef JREMOD #include <sys/conf.h> #define CDEV_MAJOR 13 #define BDEV_MAJOR 4 static void sd_devsw_install(); #endif /*JREMOD */ ---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT #ifdef JREMOD sd_devsw_install(); #endif /*JREMOD*/ -----------------------at the bottom: #ifdef JREMOD struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, /*4*/ sddump, sdsize, 0 }; struct cdevsw sd_cdevsw = { sdopen, sdclose, rawread, rawwrite, /*13*/ sdioctl, nostop, nullreset, nodevtotty,/* sd */ seltrue, nommap, sdstrategy }; static sd_devsw_installed = 0; static void sd_devsw_install() { dev_t descript; if( ! sd_devsw_installed ) { descript = makedev(CDEV_MAJOR,0); cdevsw_add(&descript,&sd_cdevsw,NULL); #if defined(BDEV_MAJOR) descript = makedev(BDEV_MAJOR,0); bdevsw_add(&descript,&sd_bdevsw,NULL); #endif /*BDEV_MAJOR*/ sd_devsw_installed = 1; } } #endif /* JREMOD */
1995-11-28 09:42:06 +00:00
#endif /* DEBUG */
static char *
si_modulename(host_type, uart_type)
int host_type, uart_type;
{
switch (host_type) {
/* Z280 based cards */
#if NEISA > 0
case SIEISA:
#endif
case SIHOST2:
case SIHOST:
#if NPCI > 0
case SIPCI:
#endif
switch (uart_type) {
case 0:
return(" (XIO)");
case 1:
return(" (SI)");
}
break;
/* T225 based hosts */
#if NPCI > 0
case SIJETPCI:
#endif
case SIJETISA:
switch (uart_type) {
case 0:
return(" (SI)");
case 40:
return(" (XIO)");
case 72:
return(" (SXDC)");
}
break;
}
return("");
}
the second set of changes in a move towards getting devices to be totally dynamic. this is only the devices in i386/isa I'll do more tomorrow. they're completely masked by #ifdef JREMOD at this stage... the eventual aim is that every driver will do a SYSINIT at startup BEFORE the probes, which will effectively link it into the devsw tables etc. If I'd thought about it more I'd have put that in in this set (damn) The ioconf lines generated by config will also end up in the device's own scope as well, so ioconf.c will eventually be gutted the SYSINIT call to the driver will include a phase where the driver links it's ioconf line into a chain of such. when this phase is done then the user can modify them with the boot: -c config menu if he wants, just like now.. config will put the config lines out in the .h file (e.g. in aha.h will be the addresses for the aha driver to look.) as I said this is a very small first step.. the aim of THIS set of edits is to not have to edit conf.c at all when adding a new device.. the tabe will be a simple skeleton.. when this is done, it will allow other changes to be made, all teh time still having a fully working kernel tree, but the logical outcome is the complete REMOVAL of the devsw tables. By the end of this, linked in drivers will be exactly the same as run-time loaded drivers, except they JUST HAPPEN to already be linked and present at startup.. the SYSINIT calls will be the equivalent of the "init" call made to a newly loaded driver in every respect. For this edit, each of the files has the following code inserted into it: obviously, tailored to suit.. ----------------------somewhere at the top: #ifdef JREMOD #include <sys/conf.h> #define CDEV_MAJOR 13 #define BDEV_MAJOR 4 static void sd_devsw_install(); #endif /*JREMOD */ ---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT #ifdef JREMOD sd_devsw_install(); #endif /*JREMOD*/ -----------------------at the bottom: #ifdef JREMOD struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, /*4*/ sddump, sdsize, 0 }; struct cdevsw sd_cdevsw = { sdopen, sdclose, rawread, rawwrite, /*13*/ sdioctl, nostop, nullreset, nodevtotty,/* sd */ seltrue, nommap, sdstrategy }; static sd_devsw_installed = 0; static void sd_devsw_install() { dev_t descript; if( ! sd_devsw_installed ) { descript = makedev(CDEV_MAJOR,0); cdevsw_add(&descript,&sd_cdevsw,NULL); #if defined(BDEV_MAJOR) descript = makedev(BDEV_MAJOR,0); bdevsw_add(&descript,&sd_bdevsw,NULL); #endif /*BDEV_MAJOR*/ sd_devsw_installed = 1; } } #endif /* JREMOD */
1995-11-28 09:42:06 +00:00
static si_devsw_installed = 0;
static void
si_drvinit(void *unused)
the second set of changes in a move towards getting devices to be totally dynamic. this is only the devices in i386/isa I'll do more tomorrow. they're completely masked by #ifdef JREMOD at this stage... the eventual aim is that every driver will do a SYSINIT at startup BEFORE the probes, which will effectively link it into the devsw tables etc. If I'd thought about it more I'd have put that in in this set (damn) The ioconf lines generated by config will also end up in the device's own scope as well, so ioconf.c will eventually be gutted the SYSINIT call to the driver will include a phase where the driver links it's ioconf line into a chain of such. when this phase is done then the user can modify them with the boot: -c config menu if he wants, just like now.. config will put the config lines out in the .h file (e.g. in aha.h will be the addresses for the aha driver to look.) as I said this is a very small first step.. the aim of THIS set of edits is to not have to edit conf.c at all when adding a new device.. the tabe will be a simple skeleton.. when this is done, it will allow other changes to be made, all teh time still having a fully working kernel tree, but the logical outcome is the complete REMOVAL of the devsw tables. By the end of this, linked in drivers will be exactly the same as run-time loaded drivers, except they JUST HAPPEN to already be linked and present at startup.. the SYSINIT calls will be the equivalent of the "init" call made to a newly loaded driver in every respect. For this edit, each of the files has the following code inserted into it: obviously, tailored to suit.. ----------------------somewhere at the top: #ifdef JREMOD #include <sys/conf.h> #define CDEV_MAJOR 13 #define BDEV_MAJOR 4 static void sd_devsw_install(); #endif /*JREMOD */ ---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT #ifdef JREMOD sd_devsw_install(); #endif /*JREMOD*/ -----------------------at the bottom: #ifdef JREMOD struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, /*4*/ sddump, sdsize, 0 }; struct cdevsw sd_cdevsw = { sdopen, sdclose, rawread, rawwrite, /*13*/ sdioctl, nostop, nullreset, nodevtotty,/* sd */ seltrue, nommap, sdstrategy }; static sd_devsw_installed = 0; static void sd_devsw_install() { dev_t descript; if( ! sd_devsw_installed ) { descript = makedev(CDEV_MAJOR,0); cdevsw_add(&descript,&sd_cdevsw,NULL); #if defined(BDEV_MAJOR) descript = makedev(BDEV_MAJOR,0); bdevsw_add(&descript,&sd_bdevsw,NULL); #endif /*BDEV_MAJOR*/ sd_devsw_installed = 1; } } #endif /* JREMOD */
1995-11-28 09:42:06 +00:00
{
dev_t dev;
if (!si_devsw_installed) {
dev = makedev(CDEV_MAJOR, 0);
cdevsw_add(&dev,&si_cdevsw, NULL);
the second set of changes in a move towards getting devices to be totally dynamic. this is only the devices in i386/isa I'll do more tomorrow. they're completely masked by #ifdef JREMOD at this stage... the eventual aim is that every driver will do a SYSINIT at startup BEFORE the probes, which will effectively link it into the devsw tables etc. If I'd thought about it more I'd have put that in in this set (damn) The ioconf lines generated by config will also end up in the device's own scope as well, so ioconf.c will eventually be gutted the SYSINIT call to the driver will include a phase where the driver links it's ioconf line into a chain of such. when this phase is done then the user can modify them with the boot: -c config menu if he wants, just like now.. config will put the config lines out in the .h file (e.g. in aha.h will be the addresses for the aha driver to look.) as I said this is a very small first step.. the aim of THIS set of edits is to not have to edit conf.c at all when adding a new device.. the tabe will be a simple skeleton.. when this is done, it will allow other changes to be made, all teh time still having a fully working kernel tree, but the logical outcome is the complete REMOVAL of the devsw tables. By the end of this, linked in drivers will be exactly the same as run-time loaded drivers, except they JUST HAPPEN to already be linked and present at startup.. the SYSINIT calls will be the equivalent of the "init" call made to a newly loaded driver in every respect. For this edit, each of the files has the following code inserted into it: obviously, tailored to suit.. ----------------------somewhere at the top: #ifdef JREMOD #include <sys/conf.h> #define CDEV_MAJOR 13 #define BDEV_MAJOR 4 static void sd_devsw_install(); #endif /*JREMOD */ ---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT #ifdef JREMOD sd_devsw_install(); #endif /*JREMOD*/ -----------------------at the bottom: #ifdef JREMOD struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, /*4*/ sddump, sdsize, 0 }; struct cdevsw sd_cdevsw = { sdopen, sdclose, rawread, rawwrite, /*13*/ sdioctl, nostop, nullreset, nodevtotty,/* sd */ seltrue, nommap, sdstrategy }; static sd_devsw_installed = 0; static void sd_devsw_install() { dev_t descript; if( ! sd_devsw_installed ) { descript = makedev(CDEV_MAJOR,0); cdevsw_add(&descript,&sd_cdevsw,NULL); #if defined(BDEV_MAJOR) descript = makedev(BDEV_MAJOR,0); bdevsw_add(&descript,&sd_bdevsw,NULL); #endif /*BDEV_MAJOR*/ sd_devsw_installed = 1; } } #endif /* JREMOD */
1995-11-28 09:42:06 +00:00
si_devsw_installed = 1;
}
the second set of changes in a move towards getting devices to be totally dynamic. this is only the devices in i386/isa I'll do more tomorrow. they're completely masked by #ifdef JREMOD at this stage... the eventual aim is that every driver will do a SYSINIT at startup BEFORE the probes, which will effectively link it into the devsw tables etc. If I'd thought about it more I'd have put that in in this set (damn) The ioconf lines generated by config will also end up in the device's own scope as well, so ioconf.c will eventually be gutted the SYSINIT call to the driver will include a phase where the driver links it's ioconf line into a chain of such. when this phase is done then the user can modify them with the boot: -c config menu if he wants, just like now.. config will put the config lines out in the .h file (e.g. in aha.h will be the addresses for the aha driver to look.) as I said this is a very small first step.. the aim of THIS set of edits is to not have to edit conf.c at all when adding a new device.. the tabe will be a simple skeleton.. when this is done, it will allow other changes to be made, all teh time still having a fully working kernel tree, but the logical outcome is the complete REMOVAL of the devsw tables. By the end of this, linked in drivers will be exactly the same as run-time loaded drivers, except they JUST HAPPEN to already be linked and present at startup.. the SYSINIT calls will be the equivalent of the "init" call made to a newly loaded driver in every respect. For this edit, each of the files has the following code inserted into it: obviously, tailored to suit.. ----------------------somewhere at the top: #ifdef JREMOD #include <sys/conf.h> #define CDEV_MAJOR 13 #define BDEV_MAJOR 4 static void sd_devsw_install(); #endif /*JREMOD */ ---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT #ifdef JREMOD sd_devsw_install(); #endif /*JREMOD*/ -----------------------at the bottom: #ifdef JREMOD struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, /*4*/ sddump, sdsize, 0 }; struct cdevsw sd_cdevsw = { sdopen, sdclose, rawread, rawwrite, /*13*/ sdioctl, nostop, nullreset, nodevtotty,/* sd */ seltrue, nommap, sdstrategy }; static sd_devsw_installed = 0; static void sd_devsw_install() { dev_t descript; if( ! sd_devsw_installed ) { descript = makedev(CDEV_MAJOR,0); cdevsw_add(&descript,&sd_cdevsw,NULL); #if defined(BDEV_MAJOR) descript = makedev(BDEV_MAJOR,0); bdevsw_add(&descript,&sd_bdevsw,NULL); #endif /*BDEV_MAJOR*/ sd_devsw_installed = 1; } } #endif /* JREMOD */
1995-11-28 09:42:06 +00:00
}
SYSINIT(sidev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,si_drvinit,NULL)