2008-04-20 20:35:46 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
#ifdef __FreeBSD__
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* IEEE 802.11 HOSTAP mode support.
|
|
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
|
|
#include "opt_wlan.h"
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/mbuf.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/sockio.h>
|
|
|
|
#include <sys/endian.h>
|
|
|
|
#include <sys/errno.h>
|
|
|
|
#include <sys/proc.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
|
|
|
|
#include <net/if.h>
|
2013-10-26 17:58:36 +00:00
|
|
|
#include <net/if_var.h>
|
2008-04-20 20:35:46 +00:00
|
|
|
#include <net/if_media.h>
|
|
|
|
#include <net/if_llc.h>
|
|
|
|
#include <net/ethernet.h>
|
|
|
|
|
|
|
|
#include <net/bpf.h>
|
|
|
|
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
|
|
#include <net80211/ieee80211_hostap.h>
|
|
|
|
#include <net80211/ieee80211_input.h>
|
2009-03-24 20:39:08 +00:00
|
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
|
|
#include <net80211/ieee80211_superg.h>
|
|
|
|
#endif
|
2008-04-20 20:35:46 +00:00
|
|
|
#include <net80211/ieee80211_wds.h>
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
#include <net80211/ieee80211_vht.h>
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
#define IEEE80211_RATE2MBS(r) (((r) & IEEE80211_RATE_VAL) / 2)
|
|
|
|
|
|
|
|
static void hostap_vattach(struct ieee80211vap *);
|
|
|
|
static int hostap_newstate(struct ieee80211vap *, enum ieee80211_state, int);
|
|
|
|
static int hostap_input(struct ieee80211_node *ni, struct mbuf *m,
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
const struct ieee80211_rx_stats *,
|
2009-05-20 20:00:40 +00:00
|
|
|
int rssi, int nf);
|
2008-04-20 20:35:46 +00:00
|
|
|
static void hostap_deliver_data(struct ieee80211vap *,
|
|
|
|
struct ieee80211_node *, struct mbuf *);
|
|
|
|
static void hostap_recv_mgmt(struct ieee80211_node *, struct mbuf *,
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf);
|
2009-04-26 21:46:04 +00:00
|
|
|
static void hostap_recv_ctl(struct ieee80211_node *, struct mbuf *, int);
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
void
|
|
|
|
ieee80211_hostap_attach(struct ieee80211com *ic)
|
|
|
|
{
|
|
|
|
ic->ic_vattach[IEEE80211_M_HOSTAP] = hostap_vattach;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
ieee80211_hostap_detach(struct ieee80211com *ic)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
hostap_vdetach(struct ieee80211vap *vap)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
hostap_vattach(struct ieee80211vap *vap)
|
|
|
|
{
|
|
|
|
vap->iv_newstate = hostap_newstate;
|
|
|
|
vap->iv_input = hostap_input;
|
|
|
|
vap->iv_recv_mgmt = hostap_recv_mgmt;
|
2009-04-26 21:46:04 +00:00
|
|
|
vap->iv_recv_ctl = hostap_recv_ctl;
|
2008-04-20 20:35:46 +00:00
|
|
|
vap->iv_opdetach = hostap_vdetach;
|
|
|
|
vap->iv_deliver_data = hostap_deliver_data;
|
2012-10-02 17:45:19 +00:00
|
|
|
vap->iv_recv_pspoll = ieee80211_recv_pspoll;
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
sta_disassoc(void *arg, struct ieee80211_node *ni)
|
|
|
|
{
|
|
|
|
|
2016-11-14 23:51:28 +00:00
|
|
|
if (ni->ni_associd != 0) {
|
2008-04-20 20:35:46 +00:00
|
|
|
IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DISASSOC,
|
|
|
|
IEEE80211_REASON_ASSOC_LEAVE);
|
|
|
|
ieee80211_node_leave(ni);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-06-03 23:30:25 +00:00
|
|
|
static void
|
|
|
|
sta_csa(void *arg, struct ieee80211_node *ni)
|
|
|
|
{
|
2016-11-14 23:51:28 +00:00
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
2009-06-03 23:30:25 +00:00
|
|
|
|
2016-11-14 23:51:28 +00:00
|
|
|
if (ni->ni_associd != 0)
|
2009-06-03 23:30:25 +00:00
|
|
|
if (ni->ni_inact > vap->iv_inact_init) {
|
|
|
|
ni->ni_inact = vap->iv_inact_init;
|
|
|
|
IEEE80211_NOTE(vap, IEEE80211_MSG_INACT, ni,
|
|
|
|
"%s: inact %u", __func__, ni->ni_inact);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-06-03 23:33:09 +00:00
|
|
|
static void
|
|
|
|
sta_drop(void *arg, struct ieee80211_node *ni)
|
|
|
|
{
|
|
|
|
|
2016-11-14 23:51:28 +00:00
|
|
|
if (ni->ni_associd != 0)
|
2009-06-03 23:33:09 +00:00
|
|
|
ieee80211_node_leave(ni);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Does a channel change require associated stations to re-associate
|
|
|
|
* so protocol state is correct. This is used when doing CSA across
|
|
|
|
* bands or similar (e.g. HT -> legacy).
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
isbandchange(struct ieee80211com *ic)
|
|
|
|
{
|
|
|
|
return ((ic->ic_bsschan->ic_flags ^ ic->ic_csa_newchan->ic_flags) &
|
|
|
|
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_HALF |
|
|
|
|
IEEE80211_CHAN_QUARTER | IEEE80211_CHAN_HT)) != 0;
|
|
|
|
}
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* IEEE80211_M_HOSTAP vap state machine handler.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
hostap_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
|
|
|
|
{
|
|
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
|
|
enum ieee80211_state ostate;
|
|
|
|
|
|
|
|
IEEE80211_LOCK_ASSERT(ic);
|
|
|
|
|
|
|
|
ostate = vap->iv_state;
|
|
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s (%d)\n",
|
|
|
|
__func__, ieee80211_state_name[ostate],
|
|
|
|
ieee80211_state_name[nstate], arg);
|
|
|
|
vap->iv_state = nstate; /* state transition */
|
|
|
|
if (ostate != IEEE80211_S_SCAN)
|
|
|
|
ieee80211_cancel_scan(vap); /* background scan */
|
|
|
|
switch (nstate) {
|
|
|
|
case IEEE80211_S_INIT:
|
|
|
|
switch (ostate) {
|
|
|
|
case IEEE80211_S_SCAN:
|
|
|
|
ieee80211_cancel_scan(vap);
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_CAC:
|
|
|
|
ieee80211_dfs_cac_stop(vap);
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_RUN:
|
2016-11-14 23:51:28 +00:00
|
|
|
ieee80211_iterate_nodes_vap(&ic->ic_sta, vap,
|
|
|
|
sta_disassoc, NULL);
|
2008-04-20 20:35:46 +00:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (ostate != IEEE80211_S_INIT) {
|
|
|
|
/* NB: optimize INIT -> INIT case */
|
|
|
|
ieee80211_reset_bss(vap);
|
|
|
|
}
|
|
|
|
if (vap->iv_auth->ia_detach != NULL)
|
|
|
|
vap->iv_auth->ia_detach(vap);
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_SCAN:
|
|
|
|
switch (ostate) {
|
|
|
|
case IEEE80211_S_CSA:
|
|
|
|
case IEEE80211_S_RUN:
|
2016-11-14 23:51:28 +00:00
|
|
|
ieee80211_iterate_nodes_vap(&ic->ic_sta, vap,
|
|
|
|
sta_disassoc, NULL);
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* Clear overlapping BSS state; the beacon frame
|
|
|
|
* will be reconstructed on transition to the RUN
|
|
|
|
* state and the timeout routines check if the flag
|
|
|
|
* is set before doing anything so this is sufficient.
|
|
|
|
*/
|
|
|
|
ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR;
|
2009-06-07 22:00:22 +00:00
|
|
|
ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
|
2008-04-20 20:35:46 +00:00
|
|
|
/* fall thru... */
|
|
|
|
case IEEE80211_S_CAC:
|
|
|
|
/*
|
|
|
|
* NB: We may get here because of a manual channel
|
|
|
|
* change in which case we need to stop CAC
|
|
|
|
* XXX no need to stop if ostate RUN but it's ok
|
|
|
|
*/
|
|
|
|
ieee80211_dfs_cac_stop(vap);
|
|
|
|
/* fall thru... */
|
|
|
|
case IEEE80211_S_INIT:
|
|
|
|
if (vap->iv_des_chan != IEEE80211_CHAN_ANYC &&
|
|
|
|
!IEEE80211_IS_CHAN_RADAR(vap->iv_des_chan)) {
|
|
|
|
/*
|
|
|
|
* Already have a channel; bypass the
|
|
|
|
* scan and startup immediately.
|
|
|
|
* ieee80211_create_ibss will call back to
|
|
|
|
* move us to RUN state.
|
|
|
|
*/
|
|
|
|
ieee80211_create_ibss(vap, vap->iv_des_chan);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Initiate a scan. We can come here as a result
|
|
|
|
* of an IEEE80211_IOC_SCAN_REQ too in which case
|
|
|
|
* the vap will be marked with IEEE80211_FEXT_SCANREQ
|
|
|
|
* and the scan request parameters will be present
|
|
|
|
* in iv_scanreq. Otherwise we do the default.
|
|
|
|
*/
|
|
|
|
if (vap->iv_flags_ext & IEEE80211_FEXT_SCANREQ) {
|
|
|
|
ieee80211_check_scan(vap,
|
|
|
|
vap->iv_scanreq_flags,
|
|
|
|
vap->iv_scanreq_duration,
|
|
|
|
vap->iv_scanreq_mindwell,
|
|
|
|
vap->iv_scanreq_maxdwell,
|
|
|
|
vap->iv_scanreq_nssid, vap->iv_scanreq_ssid);
|
|
|
|
vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANREQ;
|
|
|
|
} else
|
|
|
|
ieee80211_check_scan_current(vap);
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_SCAN:
|
|
|
|
/*
|
|
|
|
* A state change requires a reset; scan.
|
|
|
|
*/
|
|
|
|
ieee80211_check_scan_current(vap);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_CAC:
|
|
|
|
/*
|
|
|
|
* Start CAC on a DFS channel. We come here when starting
|
|
|
|
* a bss on a DFS channel (see ieee80211_create_ibss).
|
|
|
|
*/
|
|
|
|
ieee80211_dfs_cac_start(vap);
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_RUN:
|
|
|
|
if (vap->iv_flags & IEEE80211_F_WPA) {
|
|
|
|
/* XXX validate prerequisites */
|
|
|
|
}
|
|
|
|
switch (ostate) {
|
|
|
|
case IEEE80211_S_INIT:
|
|
|
|
/*
|
|
|
|
* Already have a channel; bypass the
|
|
|
|
* scan and startup immediately.
|
|
|
|
* Note that ieee80211_create_ibss will call
|
|
|
|
* back to do a RUN->RUN state change.
|
|
|
|
*/
|
|
|
|
ieee80211_create_ibss(vap,
|
|
|
|
ieee80211_ht_adjust_channel(ic,
|
2009-06-07 22:00:22 +00:00
|
|
|
ic->ic_curchan, vap->iv_flags_ht));
|
2008-04-20 20:35:46 +00:00
|
|
|
/* NB: iv_bss is changed on return */
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_CAC:
|
|
|
|
/*
|
|
|
|
* NB: This is the normal state change when CAC
|
|
|
|
* expires and no radar was detected; no need to
|
|
|
|
* clear the CAC timer as it's already expired.
|
|
|
|
*/
|
|
|
|
/* fall thru... */
|
|
|
|
case IEEE80211_S_CSA:
|
2009-06-03 23:30:25 +00:00
|
|
|
/*
|
|
|
|
* Shorten inactivity timer of associated stations
|
|
|
|
* to weed out sta's that don't follow a CSA.
|
|
|
|
*/
|
2016-11-14 23:51:28 +00:00
|
|
|
ieee80211_iterate_nodes_vap(&ic->ic_sta, vap,
|
|
|
|
sta_csa, NULL);
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* Update bss node channel to reflect where
|
|
|
|
* we landed after CSA.
|
|
|
|
*/
|
|
|
|
ieee80211_node_set_chan(vap->iv_bss,
|
|
|
|
ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
|
|
|
|
ieee80211_htchanflags(vap->iv_bss->ni_chan)));
|
|
|
|
/* XXX bypass debug msgs */
|
|
|
|
break;
|
|
|
|
case IEEE80211_S_SCAN:
|
|
|
|
case IEEE80211_S_RUN:
|
|
|
|
#ifdef IEEE80211_DEBUG
|
|
|
|
if (ieee80211_msg_debug(vap)) {
|
|
|
|
struct ieee80211_node *ni = vap->iv_bss;
|
|
|
|
ieee80211_note(vap,
|
|
|
|
"synchronized with %s ssid ",
|
|
|
|
ether_sprintf(ni->ni_bssid));
|
|
|
|
ieee80211_print_essid(ni->ni_essid,
|
|
|
|
ni->ni_esslen);
|
|
|
|
/* XXX MCS/HT */
|
|
|
|
printf(" channel %d start %uMb\n",
|
|
|
|
ieee80211_chan2ieee(ic, ic->ic_curchan),
|
|
|
|
IEEE80211_RATE2MBS(ni->ni_txrate));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Start/stop the authenticator. We delay until here
|
|
|
|
* to allow configuration to happen out of order.
|
|
|
|
*/
|
|
|
|
if (vap->iv_auth->ia_attach != NULL) {
|
|
|
|
/* XXX check failure */
|
|
|
|
vap->iv_auth->ia_attach(vap);
|
|
|
|
} else if (vap->iv_auth->ia_detach != NULL) {
|
|
|
|
vap->iv_auth->ia_detach(vap);
|
|
|
|
}
|
|
|
|
ieee80211_node_authorize(vap->iv_bss);
|
|
|
|
break;
|
2009-06-03 23:33:09 +00:00
|
|
|
case IEEE80211_S_CSA:
|
|
|
|
if (ostate == IEEE80211_S_RUN && isbandchange(ic)) {
|
|
|
|
/*
|
|
|
|
* On a ``band change'' silently drop associated
|
|
|
|
* stations as they must re-associate before they
|
|
|
|
* can pass traffic (as otherwise protocol state
|
|
|
|
* such as capabilities and the negotiated rate
|
|
|
|
* set may/will be wrong).
|
|
|
|
*/
|
2016-11-14 23:51:28 +00:00
|
|
|
ieee80211_iterate_nodes_vap(&ic->ic_sta, vap,
|
|
|
|
sta_drop, NULL);
|
2009-06-03 23:33:09 +00:00
|
|
|
}
|
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
hostap_deliver_data(struct ieee80211vap *vap,
|
|
|
|
struct ieee80211_node *ni, struct mbuf *m)
|
|
|
|
{
|
|
|
|
struct ether_header *eh = mtod(m, struct ether_header *);
|
|
|
|
struct ifnet *ifp = vap->iv_ifp;
|
|
|
|
|
2009-06-02 00:33:28 +00:00
|
|
|
/* clear driver/net80211 flags before passing up */
|
2013-08-19 13:27:32 +00:00
|
|
|
m->m_flags &= ~(M_MCAST | M_BCAST);
|
|
|
|
m_clrprotoflags(m);
|
2009-06-02 00:33:28 +00:00
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
KASSERT(vap->iv_opmode == IEEE80211_M_HOSTAP,
|
|
|
|
("gack, opmode %d", vap->iv_opmode));
|
|
|
|
/*
|
|
|
|
* Do accounting.
|
|
|
|
*/
|
2014-09-19 09:20:55 +00:00
|
|
|
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
|
2008-04-20 20:35:46 +00:00
|
|
|
IEEE80211_NODE_STAT(ni, rx_data);
|
|
|
|
IEEE80211_NODE_STAT_ADD(ni, rx_bytes, m->m_pkthdr.len);
|
|
|
|
if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
|
|
|
|
m->m_flags |= M_MCAST; /* XXX M_BCAST? */
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_mcast);
|
|
|
|
} else
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_ucast);
|
|
|
|
|
|
|
|
/* perform as a bridge within the AP */
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_NOBRIDGE) == 0) {
|
|
|
|
struct mbuf *mcopy = NULL;
|
|
|
|
|
|
|
|
if (m->m_flags & M_MCAST) {
|
2012-12-05 08:04:20 +00:00
|
|
|
mcopy = m_dup(m, M_NOWAIT);
|
2008-04-20 20:35:46 +00:00
|
|
|
if (mcopy == NULL)
|
2014-09-19 09:20:55 +00:00
|
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
2008-04-20 20:35:46 +00:00
|
|
|
else
|
|
|
|
mcopy->m_flags |= M_MCAST;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Check if the destination is associated with the
|
|
|
|
* same vap and authorized to receive traffic.
|
|
|
|
* Beware of traffic destined for the vap itself;
|
|
|
|
* sending it will not work; just let it be delivered
|
|
|
|
* normally.
|
|
|
|
*/
|
|
|
|
struct ieee80211_node *sta = ieee80211_find_vap_node(
|
|
|
|
&vap->iv_ic->ic_sta, vap, eh->ether_dhost);
|
|
|
|
if (sta != NULL) {
|
|
|
|
if (ieee80211_node_is_authorized(sta)) {
|
|
|
|
/*
|
|
|
|
* Beware of sending to ourself; this
|
|
|
|
* needs to happen via the normal
|
|
|
|
* input path.
|
|
|
|
*/
|
|
|
|
if (sta != vap->iv_bss) {
|
|
|
|
mcopy = m;
|
|
|
|
m = NULL;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
vap->iv_stats.is_rx_unauth++;
|
|
|
|
IEEE80211_NODE_STAT(sta, rx_unauth);
|
|
|
|
}
|
|
|
|
ieee80211_free_node(sta);
|
|
|
|
}
|
|
|
|
}
|
2016-06-09 08:19:42 +00:00
|
|
|
if (mcopy != NULL)
|
|
|
|
(void) ieee80211_vap_xmitpkt(vap, mcopy);
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
|
|
|
if (m != NULL) {
|
|
|
|
/*
|
|
|
|
* Mark frame as coming from vap's interface.
|
|
|
|
*/
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
if (m->m_flags & M_MCAST) {
|
|
|
|
/*
|
|
|
|
* Spam DWDS vap's w/ multicast traffic.
|
|
|
|
*/
|
|
|
|
/* XXX only if dwds in use? */
|
|
|
|
ieee80211_dwds_mcast(vap, m);
|
|
|
|
}
|
|
|
|
if (ni->ni_vlan != 0) {
|
|
|
|
/* attach vlan tag */
|
|
|
|
m->m_pkthdr.ether_vtag = ni->ni_vlan;
|
|
|
|
m->m_flags |= M_VLANTAG;
|
|
|
|
}
|
|
|
|
ifp->if_input(ifp, m);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Decide if a received management frame should be
|
|
|
|
* printed when debugging is enabled. This filters some
|
|
|
|
* of the less interesting frames that come frequently
|
|
|
|
* (e.g. beacons).
|
|
|
|
*/
|
|
|
|
static __inline int
|
|
|
|
doprint(struct ieee80211vap *vap, int subtype)
|
|
|
|
{
|
|
|
|
switch (subtype) {
|
|
|
|
case IEEE80211_FC0_SUBTYPE_BEACON:
|
|
|
|
return (vap->iv_ic->ic_flags & IEEE80211_F_SCAN);
|
|
|
|
case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process a received frame. The node associated with the sender
|
|
|
|
* should be supplied. If nothing was found in the node table then
|
|
|
|
* the caller is assumed to supply a reference to iv_bss instead.
|
|
|
|
* The RSSI and a timestamp are also supplied. The RSSI data is used
|
|
|
|
* during AP scanning to select a AP to associate with; it can have
|
|
|
|
* any units so long as values have consistent units and higher values
|
|
|
|
* mean ``better signal''. The receive timestamp is currently not used
|
|
|
|
* by the 802.11 layer.
|
|
|
|
*/
|
|
|
|
static int
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
hostap_input(struct ieee80211_node *ni, struct mbuf *m,
|
|
|
|
const struct ieee80211_rx_stats *rxs, int rssi, int nf)
|
2008-04-20 20:35:46 +00:00
|
|
|
{
|
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
|
|
struct ifnet *ifp = vap->iv_ifp;
|
|
|
|
struct ieee80211_frame *wh;
|
|
|
|
struct ieee80211_key *key;
|
|
|
|
struct ether_header *eh;
|
2010-02-03 10:07:43 +00:00
|
|
|
int hdrspace, need_tap = 1; /* mbuf need to be tapped. */
|
2008-04-20 20:35:46 +00:00
|
|
|
uint8_t dir, type, subtype, qos;
|
|
|
|
uint8_t *bssid;
|
2016-11-19 02:00:24 +00:00
|
|
|
int is_hw_decrypted = 0;
|
|
|
|
int has_decrypted = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some devices do hardware decryption all the way through
|
|
|
|
* to pretending the frame wasn't encrypted in the first place.
|
|
|
|
* So, tag it appropriately so it isn't discarded inappropriately.
|
|
|
|
*/
|
|
|
|
if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED))
|
|
|
|
is_hw_decrypted = 1;
|
2008-04-20 20:35:46 +00:00
|
|
|
|
2008-09-21 23:00:19 +00:00
|
|
|
if (m->m_flags & M_AMPDU_MPDU) {
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* Fastpath for A-MPDU reorder q resubmission. Frames
|
2008-09-21 23:00:19 +00:00
|
|
|
* w/ M_AMPDU_MPDU marked have already passed through
|
|
|
|
* here but were received out of order and been held on
|
|
|
|
* the reorder queue. When resubmitted they are marked
|
|
|
|
* with the M_AMPDU_MPDU flag and we can bypass most of
|
|
|
|
* the normal processing.
|
2008-04-20 20:35:46 +00:00
|
|
|
*/
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
|
|
type = IEEE80211_FC0_TYPE_DATA;
|
|
|
|
dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
|
|
|
|
subtype = IEEE80211_FC0_SUBTYPE_QOS;
|
|
|
|
hdrspace = ieee80211_hdrspace(ic, wh); /* XXX optimize? */
|
|
|
|
goto resubmit_ampdu;
|
|
|
|
}
|
|
|
|
|
|
|
|
KASSERT(ni != NULL, ("null node"));
|
|
|
|
ni->ni_inact = ni->ni_inact_reload;
|
|
|
|
|
|
|
|
type = -1; /* undefined */
|
|
|
|
|
|
|
|
if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_min)) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
|
|
|
|
ni->ni_macaddr, NULL,
|
|
|
|
"too short (1): len %u", m->m_pkthdr.len);
|
|
|
|
vap->iv_stats.is_rx_tooshort++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Bit of a cheat here, we use a pointer for a 3-address
|
|
|
|
* frame format but don't reference fields past outside
|
|
|
|
* ieee80211_frame_min w/o first validating the data is
|
|
|
|
* present.
|
|
|
|
*/
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
|
|
|
|
|
|
if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
|
|
|
|
IEEE80211_FC0_VERSION_0) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
|
2009-04-26 21:50:21 +00:00
|
|
|
ni->ni_macaddr, NULL, "wrong version, fc %02x:%02x",
|
|
|
|
wh->i_fc[0], wh->i_fc[1]);
|
2008-04-20 20:35:46 +00:00
|
|
|
vap->iv_stats.is_rx_badversion++;
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
|
|
|
|
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
|
|
if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
|
|
|
|
if (dir != IEEE80211_FC1_DIR_NODS)
|
|
|
|
bssid = wh->i_addr1;
|
|
|
|
else if (type == IEEE80211_FC0_TYPE_CTL)
|
|
|
|
bssid = wh->i_addr1;
|
|
|
|
else {
|
|
|
|
if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap,
|
|
|
|
IEEE80211_MSG_ANY, ni->ni_macaddr,
|
|
|
|
NULL, "too short (2): len %u",
|
|
|
|
m->m_pkthdr.len);
|
|
|
|
vap->iv_stats.is_rx_tooshort++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
bssid = wh->i_addr3;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Validate the bssid.
|
|
|
|
*/
|
|
|
|
if (!(type == IEEE80211_FC0_TYPE_MGT &&
|
|
|
|
subtype == IEEE80211_FC0_SUBTYPE_BEACON) &&
|
|
|
|
!IEEE80211_ADDR_EQ(bssid, vap->iv_bss->ni_bssid) &&
|
|
|
|
!IEEE80211_ADDR_EQ(bssid, ifp->if_broadcastaddr)) {
|
|
|
|
/* not interested in */
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
|
|
|
|
bssid, NULL, "%s", "not to bss");
|
|
|
|
vap->iv_stats.is_rx_wrongbss++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
IEEE80211_RSSI_LPF(ni->ni_avgrssi, rssi);
|
2009-05-20 20:00:40 +00:00
|
|
|
ni->ni_noise = nf;
|
2015-05-12 16:55:50 +00:00
|
|
|
if (IEEE80211_HAS_SEQ(type, subtype)) {
|
2008-04-20 20:35:46 +00:00
|
|
|
uint8_t tid = ieee80211_gettid(wh);
|
|
|
|
if (IEEE80211_QOS_HAS_SEQ(wh) &&
|
|
|
|
TID_TO_WME_AC(tid) >= WME_AC_VI)
|
|
|
|
ic->ic_wme.wme_hipri_traffic++;
|
2016-03-01 06:47:21 +00:00
|
|
|
if (! ieee80211_check_rxseq(ni, wh, bssid))
|
2008-04-20 20:35:46 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case IEEE80211_FC0_TYPE_DATA:
|
|
|
|
hdrspace = ieee80211_hdrspace(ic, wh);
|
|
|
|
if (m->m_len < hdrspace &&
|
|
|
|
(m = m_pullup(m, hdrspace)) == NULL) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
|
|
|
|
ni->ni_macaddr, NULL,
|
|
|
|
"data too short: expecting %u", hdrspace);
|
|
|
|
vap->iv_stats.is_rx_tooshort++;
|
|
|
|
goto out; /* XXX */
|
|
|
|
}
|
|
|
|
if (!(dir == IEEE80211_FC1_DIR_TODS ||
|
|
|
|
(dir == IEEE80211_FC1_DIR_DSTODS &&
|
|
|
|
(vap->iv_flags & IEEE80211_F_DWDS)))) {
|
|
|
|
if (dir != IEEE80211_FC1_DIR_DSTODS) {
|
|
|
|
IEEE80211_DISCARD(vap,
|
|
|
|
IEEE80211_MSG_INPUT, wh, "data",
|
|
|
|
"incorrect dir 0x%x", dir);
|
|
|
|
} else {
|
|
|
|
IEEE80211_DISCARD(vap,
|
|
|
|
IEEE80211_MSG_INPUT |
|
|
|
|
IEEE80211_MSG_WDS, wh,
|
|
|
|
"4-address data",
|
|
|
|
"%s", "DWDS not enabled");
|
|
|
|
}
|
|
|
|
vap->iv_stats.is_rx_wrongdir++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
/* check if source STA is associated */
|
|
|
|
if (ni == vap->iv_bss) {
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, "data", "%s", "unknown src");
|
|
|
|
ieee80211_send_error(ni, wh->i_addr2,
|
|
|
|
IEEE80211_FC0_SUBTYPE_DEAUTH,
|
|
|
|
IEEE80211_REASON_NOT_AUTHED);
|
|
|
|
vap->iv_stats.is_rx_notassoc++;
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (ni->ni_associd == 0) {
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, "data", "%s", "unassoc src");
|
|
|
|
IEEE80211_SEND_MGMT(ni,
|
|
|
|
IEEE80211_FC0_SUBTYPE_DISASSOC,
|
|
|
|
IEEE80211_REASON_NOT_ASSOCED);
|
|
|
|
vap->iv_stats.is_rx_notassoc++;
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check for power save state change.
|
|
|
|
* XXX out-of-order A-MPDU frames?
|
|
|
|
*/
|
|
|
|
if (((wh->i_fc[1] & IEEE80211_FC1_PWR_MGT) ^
|
|
|
|
(ni->ni_flags & IEEE80211_NODE_PWR_MGT)))
|
2012-10-02 17:45:19 +00:00
|
|
|
vap->iv_node_ps(ni,
|
2008-04-20 20:35:46 +00:00
|
|
|
wh->i_fc[1] & IEEE80211_FC1_PWR_MGT);
|
|
|
|
/*
|
|
|
|
* For 4-address packets handle WDS discovery
|
|
|
|
* notifications. Once a WDS link is setup frames
|
|
|
|
* are just delivered to the WDS vap (see below).
|
|
|
|
*/
|
|
|
|
if (dir == IEEE80211_FC1_DIR_DSTODS && ni->ni_wdsvap == NULL) {
|
|
|
|
if (!ieee80211_node_is_authorized(ni)) {
|
|
|
|
IEEE80211_DISCARD(vap,
|
|
|
|
IEEE80211_MSG_INPUT |
|
|
|
|
IEEE80211_MSG_WDS, wh,
|
|
|
|
"4-address data",
|
|
|
|
"%s", "unauthorized port");
|
|
|
|
vap->iv_stats.is_rx_unauth++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_unauth);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
ieee80211_dwds_discover(ni, m);
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2008-09-21 23:00:19 +00:00
|
|
|
* Handle A-MPDU re-ordering. If the frame is to be
|
|
|
|
* processed directly then ieee80211_ampdu_reorder
|
2008-04-20 20:35:46 +00:00
|
|
|
* will return 0; otherwise it has consumed the mbuf
|
|
|
|
* and we should do nothing more with it.
|
|
|
|
*/
|
2008-09-21 23:00:19 +00:00
|
|
|
if ((m->m_flags & M_AMPDU) &&
|
2008-04-20 20:35:46 +00:00
|
|
|
ieee80211_ampdu_reorder(ni, m) != 0) {
|
|
|
|
m = NULL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
resubmit_ampdu:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle privacy requirements. Note that we
|
|
|
|
* must not be preempted from here until after
|
|
|
|
* we (potentially) call ieee80211_crypto_demic;
|
|
|
|
* otherwise we may violate assumptions in the
|
|
|
|
* crypto cipher modules used to do delayed update
|
|
|
|
* of replay sequence numbers.
|
|
|
|
*/
|
2016-11-19 02:00:24 +00:00
|
|
|
if (is_hw_decrypted || wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
|
2008-04-20 20:35:46 +00:00
|
|
|
if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) {
|
|
|
|
/*
|
|
|
|
* Discard encrypted frames when privacy is off.
|
|
|
|
*/
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, "WEP", "%s", "PRIVACY off");
|
|
|
|
vap->iv_stats.is_rx_noprivacy++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_noprivacy);
|
|
|
|
goto out;
|
|
|
|
}
|
2016-11-19 02:00:24 +00:00
|
|
|
if (ieee80211_crypto_decap(ni, m, hdrspace, &key) == 0) {
|
2008-04-20 20:35:46 +00:00
|
|
|
/* NB: stats+msgs handled in crypto_decap */
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_wepfail);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
2014-01-08 08:06:56 +00:00
|
|
|
wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
|
2016-11-19 02:00:24 +00:00
|
|
|
has_decrypted = 1;
|
2008-04-20 20:35:46 +00:00
|
|
|
} else {
|
|
|
|
/* XXX M_WEP and IEEE80211_F_PRIVACY */
|
|
|
|
key = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Save QoS bits for use below--before we strip the header.
|
|
|
|
*/
|
|
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_QOS) {
|
|
|
|
qos = (dir == IEEE80211_FC1_DIR_DSTODS) ?
|
|
|
|
((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0] :
|
|
|
|
((struct ieee80211_qosframe *)wh)->i_qos[0];
|
|
|
|
} else
|
|
|
|
qos = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Next up, any fragmentation.
|
|
|
|
*/
|
|
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
|
|
m = ieee80211_defrag(ni, m, hdrspace);
|
|
|
|
if (m == NULL) {
|
|
|
|
/* Fragment dropped or frame not complete yet */
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
wh = NULL; /* no longer valid, catch any uses */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Next strip any MSDU crypto bits.
|
|
|
|
*/
|
|
|
|
if (key != NULL && !ieee80211_crypto_demic(vap, key, m, 0)) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
|
|
|
|
ni->ni_macaddr, "data", "%s", "demic error");
|
|
|
|
vap->iv_stats.is_rx_demicfail++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_demicfail);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
/* copy to listener after decrypt */
|
2009-05-20 20:00:40 +00:00
|
|
|
if (ieee80211_radiotap_active_vap(vap))
|
|
|
|
ieee80211_radiotap_rx(vap, m);
|
2008-04-20 20:35:46 +00:00
|
|
|
need_tap = 0;
|
|
|
|
/*
|
|
|
|
* Finally, strip the 802.11 header.
|
|
|
|
*/
|
|
|
|
m = ieee80211_decap(vap, m, hdrspace);
|
|
|
|
if (m == NULL) {
|
|
|
|
/* XXX mask bit to check for both */
|
|
|
|
/* don't count Null data frames as errors */
|
|
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_NODATA ||
|
|
|
|
subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL)
|
|
|
|
goto out;
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
|
|
|
|
ni->ni_macaddr, "data", "%s", "decap error");
|
|
|
|
vap->iv_stats.is_rx_decap++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_decap);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
|
|
if (!ieee80211_node_is_authorized(ni)) {
|
|
|
|
/*
|
|
|
|
* Deny any non-PAE frames received prior to
|
|
|
|
* authorization. For open/shared-key
|
|
|
|
* authentication the port is mark authorized
|
|
|
|
* after authentication completes. For 802.1x
|
|
|
|
* the port is not marked authorized by the
|
|
|
|
* authenticator until the handshake has completed.
|
|
|
|
*/
|
|
|
|
if (eh->ether_type != htons(ETHERTYPE_PAE)) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
|
|
|
|
eh->ether_shost, "data",
|
|
|
|
"unauthorized port: ether type 0x%x len %u",
|
|
|
|
eh->ether_type, m->m_pkthdr.len);
|
|
|
|
vap->iv_stats.is_rx_unauth++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_unauth);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* When denying unencrypted frames, discard
|
|
|
|
* any non-PAE frames received without encryption.
|
|
|
|
*/
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_DROPUNENC) &&
|
2016-11-19 02:00:24 +00:00
|
|
|
((has_decrypted == 0) && (m->m_flags & M_WEP) == 0) &&
|
|
|
|
(is_hw_decrypted == 0) &&
|
2008-04-20 20:35:46 +00:00
|
|
|
eh->ether_type != htons(ETHERTYPE_PAE)) {
|
|
|
|
/*
|
|
|
|
* Drop unencrypted frames.
|
|
|
|
*/
|
|
|
|
vap->iv_stats.is_rx_unencrypted++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_unencrypted);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* XXX require HT? */
|
|
|
|
if (qos & IEEE80211_QOS_AMSDU) {
|
|
|
|
m = ieee80211_decap_amsdu(ni, m);
|
|
|
|
if (m == NULL)
|
|
|
|
return IEEE80211_FC0_TYPE_DATA;
|
2009-03-24 20:39:08 +00:00
|
|
|
} else {
|
|
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
|
|
m = ieee80211_decap_fastframe(vap, ni, m);
|
|
|
|
if (m == NULL)
|
2008-04-20 20:35:46 +00:00
|
|
|
return IEEE80211_FC0_TYPE_DATA;
|
2009-03-24 20:39:08 +00:00
|
|
|
#endif
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
|
|
|
if (dir == IEEE80211_FC1_DIR_DSTODS && ni->ni_wdsvap != NULL)
|
|
|
|
ieee80211_deliver_data(ni->ni_wdsvap, ni, m);
|
|
|
|
else
|
|
|
|
hostap_deliver_data(vap, ni, m);
|
|
|
|
return IEEE80211_FC0_TYPE_DATA;
|
|
|
|
|
|
|
|
case IEEE80211_FC0_TYPE_MGT:
|
|
|
|
vap->iv_stats.is_rx_mgmt++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_mgmt);
|
|
|
|
if (dir != IEEE80211_FC1_DIR_NODS) {
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, "mgt", "incorrect dir 0x%x", dir);
|
|
|
|
vap->iv_stats.is_rx_wrongdir++;
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
|
|
|
|
ni->ni_macaddr, "mgt", "too short: len %u",
|
|
|
|
m->m_pkthdr.len);
|
|
|
|
vap->iv_stats.is_rx_tooshort++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr2)) {
|
|
|
|
/* ensure return frames are unicast */
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
|
|
|
|
wh, NULL, "source is multicast: %s",
|
|
|
|
ether_sprintf(wh->i_addr2));
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++; /* XXX stat */
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
#ifdef IEEE80211_DEBUG
|
|
|
|
if ((ieee80211_msg_debug(vap) && doprint(vap, subtype)) ||
|
|
|
|
ieee80211_msg_dumppkts(vap)) {
|
|
|
|
if_printf(ifp, "received %s from %s rssi %d\n",
|
2016-04-20 21:15:55 +00:00
|
|
|
ieee80211_mgt_subtype_name(subtype),
|
2008-04-20 20:35:46 +00:00
|
|
|
ether_sprintf(wh->i_addr2), rssi);
|
|
|
|
}
|
|
|
|
#endif
|
2014-01-08 08:06:56 +00:00
|
|
|
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
|
2008-04-20 20:35:46 +00:00
|
|
|
if (subtype != IEEE80211_FC0_SUBTYPE_AUTH) {
|
|
|
|
/*
|
|
|
|
* Only shared key auth frames with a challenge
|
|
|
|
* should be encrypted, discard all others.
|
|
|
|
*/
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, NULL,
|
|
|
|
"%s", "WEP set but not permitted");
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++; /* XXX */
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) {
|
|
|
|
/*
|
|
|
|
* Discard encrypted frames when privacy is off.
|
|
|
|
*/
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, NULL, "%s", "WEP set but PRIVACY off");
|
|
|
|
vap->iv_stats.is_rx_noprivacy++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
hdrspace = ieee80211_hdrspace(ic, wh);
|
2016-11-19 02:00:24 +00:00
|
|
|
if (ieee80211_crypto_decap(ni, m, hdrspace, &key) == 0) {
|
2008-04-20 20:35:46 +00:00
|
|
|
/* NB: stats+msgs handled in crypto_decap */
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
2014-01-08 08:06:56 +00:00
|
|
|
wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
|
2016-11-19 02:00:24 +00:00
|
|
|
has_decrypted = 1;
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
2010-03-28 12:55:31 +00:00
|
|
|
/*
|
|
|
|
* Pass the packet to radiotap before calling iv_recv_mgmt().
|
|
|
|
* Otherwise iv_recv_mgmt() might pass another packet to
|
|
|
|
* radiotap, resulting in out of order packet captures.
|
|
|
|
*/
|
2010-03-23 14:31:31 +00:00
|
|
|
if (ieee80211_radiotap_active_vap(vap))
|
|
|
|
ieee80211_radiotap_rx(vap, m);
|
|
|
|
need_tap = 0;
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
vap->iv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
|
2009-04-26 21:03:29 +00:00
|
|
|
goto out;
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
case IEEE80211_FC0_TYPE_CTL:
|
|
|
|
vap->iv_stats.is_rx_ctl++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_ctrl);
|
2009-04-26 21:46:04 +00:00
|
|
|
vap->iv_recv_ctl(ni, m, subtype);
|
2008-04-20 20:35:46 +00:00
|
|
|
goto out;
|
|
|
|
default:
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
|
|
|
|
wh, "bad", "frame type 0x%x", type);
|
|
|
|
/* should not come here */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
err:
|
2014-09-19 09:20:55 +00:00
|
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
2008-04-20 20:35:46 +00:00
|
|
|
out:
|
|
|
|
if (m != NULL) {
|
2009-05-25 16:38:47 +00:00
|
|
|
if (need_tap && ieee80211_radiotap_active_vap(vap))
|
2009-05-20 20:00:40 +00:00
|
|
|
ieee80211_radiotap_rx(vap, m);
|
2008-04-20 20:35:46 +00:00
|
|
|
m_freem(m);
|
|
|
|
}
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
hostap_auth_open(struct ieee80211_node *ni, struct ieee80211_frame *wh,
|
2009-05-20 20:00:40 +00:00
|
|
|
int rssi, int nf, uint16_t seq, uint16_t status)
|
2008-04-20 20:35:46 +00:00
|
|
|
{
|
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
|
|
|
|
|
|
KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
|
|
|
|
|
|
|
|
if (ni->ni_authmode == IEEE80211_AUTH_SHARED) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "open auth",
|
|
|
|
"bad sta auth mode %u", ni->ni_authmode);
|
|
|
|
vap->iv_stats.is_rx_bad_auth++; /* XXX */
|
|
|
|
/*
|
|
|
|
* Clear any challenge text that may be there if
|
|
|
|
* a previous shared key auth failed and then an
|
|
|
|
* open auth is attempted.
|
|
|
|
*/
|
|
|
|
if (ni->ni_challenge != NULL) {
|
2015-05-25 19:18:16 +00:00
|
|
|
IEEE80211_FREE(ni->ni_challenge, M_80211_NODE);
|
2008-04-20 20:35:46 +00:00
|
|
|
ni->ni_challenge = NULL;
|
|
|
|
}
|
|
|
|
/* XXX hack to workaround calling convention */
|
|
|
|
ieee80211_send_error(ni, wh->i_addr2,
|
|
|
|
IEEE80211_FC0_SUBTYPE_AUTH,
|
|
|
|
(seq + 1) | (IEEE80211_STATUS_ALG<<16));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (seq != IEEE80211_AUTH_OPEN_REQUEST) {
|
|
|
|
vap->iv_stats.is_rx_bad_auth++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/* always accept open authentication requests */
|
|
|
|
if (ni == vap->iv_bss) {
|
|
|
|
ni = ieee80211_dup_bss(vap, wh->i_addr2);
|
|
|
|
if (ni == NULL)
|
|
|
|
return;
|
|
|
|
} else if ((ni->ni_flags & IEEE80211_NODE_AREF) == 0)
|
|
|
|
(void) ieee80211_ref_node(ni);
|
|
|
|
/*
|
|
|
|
* Mark the node as referenced to reflect that it's
|
|
|
|
* reference count has been bumped to insure it remains
|
|
|
|
* after the transaction completes.
|
|
|
|
*/
|
|
|
|
ni->ni_flags |= IEEE80211_NODE_AREF;
|
2008-12-15 00:47:24 +00:00
|
|
|
/*
|
2008-12-16 01:17:36 +00:00
|
|
|
* Mark the node as requiring a valid association id
|
2008-12-15 00:47:24 +00:00
|
|
|
* before outbound traffic is permitted.
|
|
|
|
*/
|
|
|
|
ni->ni_flags |= IEEE80211_NODE_ASSOCID;
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
if (vap->iv_acl != NULL &&
|
|
|
|
vap->iv_acl->iac_getpolicy(vap) == IEEE80211_MACCMD_POLICY_RADIUS) {
|
|
|
|
/*
|
|
|
|
* When the ACL policy is set to RADIUS we defer the
|
|
|
|
* authorization to a user agent. Dispatch an event,
|
|
|
|
* a subsequent MLME call will decide the fate of the
|
|
|
|
* station. If the user agent is not present then the
|
|
|
|
* node will be reclaimed due to inactivity.
|
|
|
|
*/
|
|
|
|
IEEE80211_NOTE_MAC(vap,
|
|
|
|
IEEE80211_MSG_AUTH | IEEE80211_MSG_ACL, ni->ni_macaddr,
|
|
|
|
"%s", "station authentication defered (radius acl)");
|
|
|
|
ieee80211_notify_node_auth(ni);
|
|
|
|
} else {
|
|
|
|
IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, seq + 1);
|
|
|
|
IEEE80211_NOTE_MAC(vap,
|
|
|
|
IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH, ni->ni_macaddr,
|
|
|
|
"%s", "station authenticated (open)");
|
|
|
|
/*
|
|
|
|
* When 802.1x is not in use mark the port
|
|
|
|
* authorized at this point so traffic can flow.
|
|
|
|
*/
|
|
|
|
if (ni->ni_authmode != IEEE80211_AUTH_8021X)
|
|
|
|
ieee80211_node_authorize(ni);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
hostap_auth_shared(struct ieee80211_node *ni, struct ieee80211_frame *wh,
|
2009-05-20 20:00:40 +00:00
|
|
|
uint8_t *frm, uint8_t *efrm, int rssi, int nf,
|
2008-04-20 20:35:46 +00:00
|
|
|
uint16_t seq, uint16_t status)
|
|
|
|
{
|
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
|
|
uint8_t *challenge;
|
|
|
|
int allocbs, estatus;
|
|
|
|
|
|
|
|
KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* NB: this can happen as we allow pre-shared key
|
|
|
|
* authentication to be enabled w/o wep being turned
|
|
|
|
* on so that configuration of these can be done
|
|
|
|
* in any order. It may be better to enforce the
|
|
|
|
* ordering in which case this check would just be
|
|
|
|
* for sanity/consistency.
|
|
|
|
*/
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key auth",
|
|
|
|
"%s", " PRIVACY is disabled");
|
|
|
|
estatus = IEEE80211_STATUS_ALG;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Pre-shared key authentication is evil; accept
|
|
|
|
* it only if explicitly configured (it is supported
|
|
|
|
* mainly for compatibility with clients like Mac OS X).
|
|
|
|
*/
|
|
|
|
if (ni->ni_authmode != IEEE80211_AUTH_AUTO &&
|
|
|
|
ni->ni_authmode != IEEE80211_AUTH_SHARED) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key auth",
|
|
|
|
"bad sta auth mode %u", ni->ni_authmode);
|
|
|
|
vap->iv_stats.is_rx_bad_auth++; /* XXX maybe a unique error? */
|
|
|
|
estatus = IEEE80211_STATUS_ALG;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
|
|
|
|
challenge = NULL;
|
|
|
|
if (frm + 1 < efrm) {
|
|
|
|
if ((frm[1] + 2) > (efrm - frm)) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key auth",
|
|
|
|
"ie %d/%d too long",
|
|
|
|
frm[0], (frm[1] + 2) - (efrm - frm));
|
|
|
|
vap->iv_stats.is_rx_bad_auth++;
|
|
|
|
estatus = IEEE80211_STATUS_CHALLENGE;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
if (*frm == IEEE80211_ELEMID_CHALLENGE)
|
|
|
|
challenge = frm;
|
|
|
|
frm += frm[1] + 2;
|
|
|
|
}
|
|
|
|
switch (seq) {
|
|
|
|
case IEEE80211_AUTH_SHARED_CHALLENGE:
|
|
|
|
case IEEE80211_AUTH_SHARED_RESPONSE:
|
|
|
|
if (challenge == NULL) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key auth",
|
|
|
|
"%s", "no challenge");
|
|
|
|
vap->iv_stats.is_rx_bad_auth++;
|
|
|
|
estatus = IEEE80211_STATUS_CHALLENGE;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
if (challenge[1] != IEEE80211_CHALLENGE_LEN) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key auth",
|
|
|
|
"bad challenge len %d", challenge[1]);
|
|
|
|
vap->iv_stats.is_rx_bad_auth++;
|
|
|
|
estatus = IEEE80211_STATUS_CHALLENGE;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
switch (seq) {
|
|
|
|
case IEEE80211_AUTH_SHARED_REQUEST:
|
|
|
|
if (ni == vap->iv_bss) {
|
|
|
|
ni = ieee80211_dup_bss(vap, wh->i_addr2);
|
|
|
|
if (ni == NULL) {
|
|
|
|
/* NB: no way to return an error */
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
allocbs = 1;
|
|
|
|
} else {
|
|
|
|
if ((ni->ni_flags & IEEE80211_NODE_AREF) == 0)
|
|
|
|
(void) ieee80211_ref_node(ni);
|
|
|
|
allocbs = 0;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Mark the node as referenced to reflect that it's
|
|
|
|
* reference count has been bumped to insure it remains
|
|
|
|
* after the transaction completes.
|
|
|
|
*/
|
|
|
|
ni->ni_flags |= IEEE80211_NODE_AREF;
|
2008-12-15 00:47:24 +00:00
|
|
|
/*
|
2016-05-19 21:08:33 +00:00
|
|
|
* Mark the node as requiring a valid association id
|
2008-12-15 00:47:24 +00:00
|
|
|
* before outbound traffic is permitted.
|
|
|
|
*/
|
|
|
|
ni->ni_flags |= IEEE80211_NODE_ASSOCID;
|
2008-04-20 20:35:46 +00:00
|
|
|
IEEE80211_RSSI_LPF(ni->ni_avgrssi, rssi);
|
2009-05-20 20:00:40 +00:00
|
|
|
ni->ni_noise = nf;
|
2008-04-20 20:35:46 +00:00
|
|
|
if (!ieee80211_alloc_challenge(ni)) {
|
|
|
|
/* NB: don't return error so they rexmit */
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
get_random_bytes(ni->ni_challenge,
|
|
|
|
IEEE80211_CHALLENGE_LEN);
|
|
|
|
IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH,
|
|
|
|
ni, "shared key %sauth request", allocbs ? "" : "re");
|
|
|
|
/*
|
|
|
|
* When the ACL policy is set to RADIUS we defer the
|
|
|
|
* authorization to a user agent. Dispatch an event,
|
|
|
|
* a subsequent MLME call will decide the fate of the
|
|
|
|
* station. If the user agent is not present then the
|
|
|
|
* node will be reclaimed due to inactivity.
|
|
|
|
*/
|
|
|
|
if (vap->iv_acl != NULL &&
|
|
|
|
vap->iv_acl->iac_getpolicy(vap) == IEEE80211_MACCMD_POLICY_RADIUS) {
|
|
|
|
IEEE80211_NOTE_MAC(vap,
|
|
|
|
IEEE80211_MSG_AUTH | IEEE80211_MSG_ACL,
|
|
|
|
ni->ni_macaddr,
|
|
|
|
"%s", "station authentication defered (radius acl)");
|
|
|
|
ieee80211_notify_node_auth(ni);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case IEEE80211_AUTH_SHARED_RESPONSE:
|
|
|
|
if (ni == vap->iv_bss) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key response",
|
|
|
|
"%s", "unknown station");
|
|
|
|
/* NB: don't send a response */
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (ni->ni_challenge == NULL) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key response",
|
|
|
|
"%s", "no challenge recorded");
|
|
|
|
vap->iv_stats.is_rx_bad_auth++;
|
|
|
|
estatus = IEEE80211_STATUS_CHALLENGE;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
if (memcmp(ni->ni_challenge, &challenge[2],
|
|
|
|
challenge[1]) != 0) {
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key response",
|
|
|
|
"%s", "challenge mismatch");
|
|
|
|
vap->iv_stats.is_rx_auth_fail++;
|
|
|
|
estatus = IEEE80211_STATUS_CHALLENGE;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH,
|
|
|
|
ni, "%s", "station authenticated (shared key)");
|
|
|
|
ieee80211_node_authorize(ni);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH,
|
|
|
|
ni->ni_macaddr, "shared key auth",
|
|
|
|
"bad seq %d", seq);
|
|
|
|
vap->iv_stats.is_rx_bad_auth++;
|
|
|
|
estatus = IEEE80211_STATUS_SEQUENCE;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, seq + 1);
|
|
|
|
return;
|
|
|
|
bad:
|
|
|
|
/*
|
|
|
|
* Send an error response; but only when operating as an AP.
|
|
|
|
*/
|
|
|
|
/* XXX hack to workaround calling convention */
|
|
|
|
ieee80211_send_error(ni, wh->i_addr2,
|
|
|
|
IEEE80211_FC0_SUBTYPE_AUTH,
|
|
|
|
(seq + 1) | (estatus<<16));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert a WPA cipher selector OUI to an internal
|
|
|
|
* cipher algorithm. Where appropriate we also
|
|
|
|
* record any key length.
|
|
|
|
*/
|
|
|
|
static int
|
2016-09-13 22:59:38 +00:00
|
|
|
wpa_cipher(const uint8_t *sel, uint8_t *keylen, uint8_t *cipher)
|
2008-04-20 20:35:46 +00:00
|
|
|
{
|
|
|
|
#define WPA_SEL(x) (((x)<<24)|WPA_OUI)
|
2016-04-20 18:29:30 +00:00
|
|
|
uint32_t w = le32dec(sel);
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
switch (w) {
|
|
|
|
case WPA_SEL(WPA_CSE_NULL):
|
2016-09-13 22:59:38 +00:00
|
|
|
*cipher = IEEE80211_CIPHER_NONE;
|
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
case WPA_SEL(WPA_CSE_WEP40):
|
|
|
|
if (keylen)
|
|
|
|
*keylen = 40 / NBBY;
|
2016-09-13 22:59:38 +00:00
|
|
|
*cipher = IEEE80211_CIPHER_WEP;
|
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
case WPA_SEL(WPA_CSE_WEP104):
|
|
|
|
if (keylen)
|
|
|
|
*keylen = 104 / NBBY;
|
2016-09-13 22:59:38 +00:00
|
|
|
*cipher = IEEE80211_CIPHER_WEP;
|
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
case WPA_SEL(WPA_CSE_TKIP):
|
2016-09-13 22:59:38 +00:00
|
|
|
*cipher = IEEE80211_CIPHER_TKIP;
|
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
case WPA_SEL(WPA_CSE_CCMP):
|
2016-09-13 22:59:38 +00:00
|
|
|
*cipher = IEEE80211_CIPHER_AES_CCM;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
2016-09-13 22:59:38 +00:00
|
|
|
|
|
|
|
return (0);
|
2008-04-20 20:35:46 +00:00
|
|
|
#undef WPA_SEL
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert a WPA key management/authentication algorithm
|
|
|
|
* to an internal code.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
wpa_keymgmt(const uint8_t *sel)
|
|
|
|
{
|
|
|
|
#define WPA_SEL(x) (((x)<<24)|WPA_OUI)
|
2016-04-20 18:29:30 +00:00
|
|
|
uint32_t w = le32dec(sel);
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
switch (w) {
|
|
|
|
case WPA_SEL(WPA_ASE_8021X_UNSPEC):
|
|
|
|
return WPA_ASE_8021X_UNSPEC;
|
|
|
|
case WPA_SEL(WPA_ASE_8021X_PSK):
|
|
|
|
return WPA_ASE_8021X_PSK;
|
|
|
|
case WPA_SEL(WPA_ASE_NONE):
|
|
|
|
return WPA_ASE_NONE;
|
|
|
|
}
|
|
|
|
return 0; /* NB: so is discarded */
|
|
|
|
#undef WPA_SEL
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Parse a WPA information element to collect parameters.
|
|
|
|
* Note that we do not validate security parameters; that
|
|
|
|
* is handled by the authenticator; the parsing done here
|
|
|
|
* is just for internal use in making operational decisions.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ieee80211_parse_wpa(struct ieee80211vap *vap, const uint8_t *frm,
|
|
|
|
struct ieee80211_rsnparms *rsn, const struct ieee80211_frame *wh)
|
|
|
|
{
|
|
|
|
uint8_t len = frm[1];
|
|
|
|
uint32_t w;
|
2016-09-13 22:59:38 +00:00
|
|
|
int error, n;
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Check the length once for fixed parts: OUI, type,
|
|
|
|
* version, mcast cipher, and 2 selector counts.
|
|
|
|
* Other, variable-length data, must be checked separately.
|
|
|
|
*/
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_WPA1) == 0) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "WPA", "not WPA, flags 0x%x", vap->iv_flags);
|
|
|
|
return IEEE80211_REASON_IE_INVALID;
|
|
|
|
}
|
|
|
|
if (len < 14) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "WPA", "too short, len %u", len);
|
|
|
|
return IEEE80211_REASON_IE_INVALID;
|
|
|
|
}
|
|
|
|
frm += 6, len -= 4; /* NB: len is payload only */
|
2009-12-08 00:54:08 +00:00
|
|
|
/* NB: iswpaoui already validated the OUI and type */
|
2016-04-20 18:29:30 +00:00
|
|
|
w = le16dec(frm);
|
2008-04-20 20:35:46 +00:00
|
|
|
if (w != WPA_VERSION) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "WPA", "bad version %u", w);
|
|
|
|
return IEEE80211_REASON_IE_INVALID;
|
|
|
|
}
|
|
|
|
frm += 2, len -= 2;
|
|
|
|
|
|
|
|
memset(rsn, 0, sizeof(*rsn));
|
|
|
|
|
|
|
|
/* multicast/group cipher */
|
2016-09-13 22:59:38 +00:00
|
|
|
error = wpa_cipher(frm, &rsn->rsn_mcastkeylen, &rsn->rsn_mcastcipher);
|
|
|
|
if (error != 0) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "WPA", "unknown mcast cipher suite %08X",
|
|
|
|
le32dec(frm));
|
|
|
|
return IEEE80211_REASON_GROUP_CIPHER_INVALID;
|
|
|
|
}
|
2008-04-20 20:35:46 +00:00
|
|
|
frm += 4, len -= 4;
|
|
|
|
|
|
|
|
/* unicast ciphers */
|
2016-04-20 18:29:30 +00:00
|
|
|
n = le16dec(frm);
|
2008-04-20 20:35:46 +00:00
|
|
|
frm += 2, len -= 2;
|
|
|
|
if (len < n*4+2) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "WPA", "ucast cipher data too short; len %u, n %u",
|
|
|
|
len, n);
|
|
|
|
return IEEE80211_REASON_IE_INVALID;
|
|
|
|
}
|
|
|
|
w = 0;
|
|
|
|
for (; n > 0; n--) {
|
2016-09-13 22:59:38 +00:00
|
|
|
uint8_t cipher;
|
|
|
|
|
|
|
|
error = wpa_cipher(frm, &rsn->rsn_ucastkeylen, &cipher);
|
|
|
|
if (error == 0)
|
|
|
|
w |= 1 << cipher;
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
frm += 4, len -= 4;
|
|
|
|
}
|
2016-09-13 22:59:38 +00:00
|
|
|
if (w == 0) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "WPA", "no usable pairwise cipher suite found (w=%d)",
|
|
|
|
w);
|
|
|
|
return IEEE80211_REASON_PAIRWISE_CIPHER_INVALID;
|
|
|
|
}
|
|
|
|
/* XXX other? */
|
|
|
|
if (w & (1 << IEEE80211_CIPHER_AES_CCM))
|
2008-04-20 20:35:46 +00:00
|
|
|
rsn->rsn_ucastcipher = IEEE80211_CIPHER_AES_CCM;
|
2016-09-13 22:59:38 +00:00
|
|
|
else
|
|
|
|
rsn->rsn_ucastcipher = IEEE80211_CIPHER_TKIP;
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
/* key management algorithms */
|
2016-04-20 18:29:30 +00:00
|
|
|
n = le16dec(frm);
|
2008-04-20 20:35:46 +00:00
|
|
|
frm += 2, len -= 2;
|
|
|
|
if (len < n*4) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "WPA", "key mgmt alg data too short; len %u, n %u",
|
|
|
|
len, n);
|
|
|
|
return IEEE80211_REASON_IE_INVALID;
|
|
|
|
}
|
|
|
|
w = 0;
|
|
|
|
for (; n > 0; n--) {
|
|
|
|
w |= wpa_keymgmt(frm);
|
|
|
|
frm += 4, len -= 4;
|
|
|
|
}
|
|
|
|
if (w & WPA_ASE_8021X_UNSPEC)
|
|
|
|
rsn->rsn_keymgmt = WPA_ASE_8021X_UNSPEC;
|
|
|
|
else
|
|
|
|
rsn->rsn_keymgmt = WPA_ASE_8021X_PSK;
|
|
|
|
|
|
|
|
if (len > 2) /* optional capabilities */
|
2016-04-20 18:29:30 +00:00
|
|
|
rsn->rsn_caps = le16dec(frm);
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert an RSN cipher selector OUI to an internal
|
|
|
|
* cipher algorithm. Where appropriate we also
|
|
|
|
* record any key length.
|
|
|
|
*/
|
|
|
|
static int
|
2016-09-13 22:59:38 +00:00
|
|
|
rsn_cipher(const uint8_t *sel, uint8_t *keylen, uint8_t *cipher)
|
2008-04-20 20:35:46 +00:00
|
|
|
{
|
|
|
|
#define RSN_SEL(x) (((x)<<24)|RSN_OUI)
|
2016-04-20 18:29:30 +00:00
|
|
|
uint32_t w = le32dec(sel);
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
switch (w) {
|
|
|
|
case RSN_SEL(RSN_CSE_NULL):
|
2016-09-13 22:59:38 +00:00
|
|
|
*cipher = IEEE80211_CIPHER_NONE;
|
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
case RSN_SEL(RSN_CSE_WEP40):
|
|
|
|
if (keylen)
|
|
|
|
*keylen = 40 / NBBY;
|
2016-09-13 22:59:38 +00:00
|
|
|
*cipher = IEEE80211_CIPHER_WEP;
|
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
case RSN_SEL(RSN_CSE_WEP104):
|
|
|
|
if (keylen)
|
|
|
|
*keylen = 104 / NBBY;
|
2016-09-13 22:59:38 +00:00
|
|
|
*cipher = IEEE80211_CIPHER_WEP;
|
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
case RSN_SEL(RSN_CSE_TKIP):
|
2016-09-13 22:59:38 +00:00
|
|
|
*cipher = IEEE80211_CIPHER_TKIP;
|
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
case RSN_SEL(RSN_CSE_CCMP):
|
2016-09-13 22:59:38 +00:00
|
|
|
*cipher = IEEE80211_CIPHER_AES_CCM;
|
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
case RSN_SEL(RSN_CSE_WRAP):
|
2016-09-13 22:59:38 +00:00
|
|
|
*cipher = IEEE80211_CIPHER_AES_OCB;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
2016-09-13 22:59:38 +00:00
|
|
|
|
|
|
|
return (0);
|
2008-04-20 20:35:46 +00:00
|
|
|
#undef WPA_SEL
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert an RSN key management/authentication algorithm
|
|
|
|
* to an internal code.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
rsn_keymgmt(const uint8_t *sel)
|
|
|
|
{
|
|
|
|
#define RSN_SEL(x) (((x)<<24)|RSN_OUI)
|
2016-04-20 18:29:30 +00:00
|
|
|
uint32_t w = le32dec(sel);
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
switch (w) {
|
|
|
|
case RSN_SEL(RSN_ASE_8021X_UNSPEC):
|
|
|
|
return RSN_ASE_8021X_UNSPEC;
|
|
|
|
case RSN_SEL(RSN_ASE_8021X_PSK):
|
|
|
|
return RSN_ASE_8021X_PSK;
|
|
|
|
case RSN_SEL(RSN_ASE_NONE):
|
|
|
|
return RSN_ASE_NONE;
|
|
|
|
}
|
|
|
|
return 0; /* NB: so is discarded */
|
|
|
|
#undef RSN_SEL
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Parse a WPA/RSN information element to collect parameters
|
|
|
|
* and validate the parameters against what has been
|
|
|
|
* configured for the system.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ieee80211_parse_rsn(struct ieee80211vap *vap, const uint8_t *frm,
|
|
|
|
struct ieee80211_rsnparms *rsn, const struct ieee80211_frame *wh)
|
|
|
|
{
|
|
|
|
uint8_t len = frm[1];
|
|
|
|
uint32_t w;
|
2016-09-13 22:59:38 +00:00
|
|
|
int error, n;
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Check the length once for fixed parts:
|
|
|
|
* version, mcast cipher, and 2 selector counts.
|
|
|
|
* Other, variable-length data, must be checked separately.
|
|
|
|
*/
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_WPA2) == 0) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "WPA", "not RSN, flags 0x%x", vap->iv_flags);
|
|
|
|
return IEEE80211_REASON_IE_INVALID;
|
|
|
|
}
|
2016-09-13 22:59:38 +00:00
|
|
|
/* XXX may be shorter */
|
2008-04-20 20:35:46 +00:00
|
|
|
if (len < 10) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "RSN", "too short, len %u", len);
|
|
|
|
return IEEE80211_REASON_IE_INVALID;
|
|
|
|
}
|
|
|
|
frm += 2;
|
2016-04-20 18:29:30 +00:00
|
|
|
w = le16dec(frm);
|
2008-04-20 20:35:46 +00:00
|
|
|
if (w != RSN_VERSION) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "RSN", "bad version %u", w);
|
2016-09-13 22:59:38 +00:00
|
|
|
return IEEE80211_REASON_UNSUPP_RSN_IE_VERSION;
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|
|
|
|
frm += 2, len -= 2;
|
|
|
|
|
|
|
|
memset(rsn, 0, sizeof(*rsn));
|
|
|
|
|
|
|
|
/* multicast/group cipher */
|
2016-09-13 22:59:38 +00:00
|
|
|
error = rsn_cipher(frm, &rsn->rsn_mcastkeylen, &rsn->rsn_mcastcipher);
|
|
|
|
if (error != 0) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "RSN", "unknown mcast cipher suite %08X",
|
|
|
|
le32dec(frm));
|
|
|
|
return IEEE80211_REASON_GROUP_CIPHER_INVALID;
|
|
|
|
}
|
|
|
|
if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_NONE) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "RSN", "invalid mcast cipher suite %d",
|
|
|
|
rsn->rsn_mcastcipher);
|
|
|
|
return IEEE80211_REASON_GROUP_CIPHER_INVALID;
|
|
|
|
}
|
2008-04-20 20:35:46 +00:00
|
|
|
frm += 4, len -= 4;
|
|
|
|
|
|
|
|
/* unicast ciphers */
|
2016-04-20 18:29:30 +00:00
|
|
|
n = le16dec(frm);
|
2008-04-20 20:35:46 +00:00
|
|
|
frm += 2, len -= 2;
|
|
|
|
if (len < n*4+2) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "RSN", "ucast cipher data too short; len %u, n %u",
|
|
|
|
len, n);
|
|
|
|
return IEEE80211_REASON_IE_INVALID;
|
|
|
|
}
|
|
|
|
w = 0;
|
2016-09-13 22:59:38 +00:00
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
for (; n > 0; n--) {
|
2016-09-13 22:59:38 +00:00
|
|
|
uint8_t cipher;
|
|
|
|
|
|
|
|
error = rsn_cipher(frm, &rsn->rsn_ucastkeylen, &cipher);
|
|
|
|
if (error == 0)
|
|
|
|
w |= 1 << cipher;
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
frm += 4, len -= 4;
|
|
|
|
}
|
2016-09-13 22:59:38 +00:00
|
|
|
if (w & (1 << IEEE80211_CIPHER_AES_CCM))
|
|
|
|
rsn->rsn_ucastcipher = IEEE80211_CIPHER_AES_CCM;
|
|
|
|
else if (w & (1 << IEEE80211_CIPHER_AES_OCB))
|
|
|
|
rsn->rsn_ucastcipher = IEEE80211_CIPHER_AES_OCB;
|
|
|
|
else if (w & (1 << IEEE80211_CIPHER_TKIP))
|
2008-04-20 20:35:46 +00:00
|
|
|
rsn->rsn_ucastcipher = IEEE80211_CIPHER_TKIP;
|
2016-09-13 22:59:38 +00:00
|
|
|
else if ((w & (1 << IEEE80211_CIPHER_NONE)) &&
|
|
|
|
(rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP ||
|
|
|
|
rsn->rsn_mcastcipher == IEEE80211_CIPHER_TKIP))
|
|
|
|
rsn->rsn_ucastcipher = IEEE80211_CIPHER_NONE;
|
|
|
|
else {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "RSN", "no usable pairwise cipher suite found (w=%d)",
|
|
|
|
w);
|
|
|
|
return IEEE80211_REASON_PAIRWISE_CIPHER_INVALID;
|
|
|
|
}
|
2008-04-20 20:35:46 +00:00
|
|
|
|
|
|
|
/* key management algorithms */
|
2016-04-20 18:29:30 +00:00
|
|
|
n = le16dec(frm);
|
2008-04-20 20:35:46 +00:00
|
|
|
frm += 2, len -= 2;
|
|
|
|
if (len < n*4) {
|
|
|
|
IEEE80211_DISCARD_IE(vap,
|
|
|
|
IEEE80211_MSG_ELEMID | IEEE80211_MSG_WPA,
|
|
|
|
wh, "RSN", "key mgmt alg data too short; len %u, n %u",
|
|
|
|
len, n);
|
|
|
|
return IEEE80211_REASON_IE_INVALID;
|
|
|
|
}
|
|
|
|
w = 0;
|
|
|
|
for (; n > 0; n--) {
|
|
|
|
w |= rsn_keymgmt(frm);
|
|
|
|
frm += 4, len -= 4;
|
|
|
|
}
|
|
|
|
if (w & RSN_ASE_8021X_UNSPEC)
|
|
|
|
rsn->rsn_keymgmt = RSN_ASE_8021X_UNSPEC;
|
|
|
|
else
|
|
|
|
rsn->rsn_keymgmt = RSN_ASE_8021X_PSK;
|
|
|
|
|
|
|
|
/* optional RSN capabilities */
|
|
|
|
if (len > 2)
|
2016-04-20 18:29:30 +00:00
|
|
|
rsn->rsn_caps = le16dec(frm);
|
2008-04-20 20:35:46 +00:00
|
|
|
/* XXXPMKID */
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2016-05-03 18:05:43 +00:00
|
|
|
* WPA/802.11i association request processing.
|
2008-04-20 20:35:46 +00:00
|
|
|
*/
|
|
|
|
static int
|
|
|
|
wpa_assocreq(struct ieee80211_node *ni, struct ieee80211_rsnparms *rsnparms,
|
|
|
|
const struct ieee80211_frame *wh, const uint8_t *wpa,
|
|
|
|
const uint8_t *rsn, uint16_t capinfo)
|
|
|
|
{
|
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
|
|
uint8_t reason;
|
|
|
|
int badwparsn;
|
|
|
|
|
|
|
|
ni->ni_flags &= ~(IEEE80211_NODE_WPS|IEEE80211_NODE_TSN);
|
|
|
|
if (wpa == NULL && rsn == NULL) {
|
|
|
|
if (vap->iv_flags_ext & IEEE80211_FEXT_WPS) {
|
|
|
|
/*
|
|
|
|
* W-Fi Protected Setup (WPS) permits
|
|
|
|
* clients to associate and pass EAPOL frames
|
|
|
|
* to establish initial credentials.
|
|
|
|
*/
|
|
|
|
ni->ni_flags |= IEEE80211_NODE_WPS;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if ((vap->iv_flags_ext & IEEE80211_FEXT_TSN) &&
|
|
|
|
(capinfo & IEEE80211_CAPINFO_PRIVACY)) {
|
|
|
|
/*
|
|
|
|
* Transitional Security Network. Permits clients
|
|
|
|
* to associate and use WEP while WPA is configured.
|
|
|
|
*/
|
|
|
|
ni->ni_flags |= IEEE80211_NODE_TSN;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_WPA,
|
|
|
|
wh, NULL, "%s", "no WPA/RSN IE in association request");
|
|
|
|
vap->iv_stats.is_rx_assoc_badwpaie++;
|
|
|
|
reason = IEEE80211_REASON_IE_INVALID;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
/* assert right association security credentials */
|
|
|
|
badwparsn = 0; /* NB: to silence compiler */
|
|
|
|
switch (vap->iv_flags & IEEE80211_F_WPA) {
|
|
|
|
case IEEE80211_F_WPA1:
|
|
|
|
badwparsn = (wpa == NULL);
|
|
|
|
break;
|
|
|
|
case IEEE80211_F_WPA2:
|
|
|
|
badwparsn = (rsn == NULL);
|
|
|
|
break;
|
|
|
|
case IEEE80211_F_WPA1|IEEE80211_F_WPA2:
|
|
|
|
badwparsn = (wpa == NULL && rsn == NULL);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (badwparsn) {
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_WPA,
|
|
|
|
wh, NULL,
|
|
|
|
"%s", "missing WPA/RSN IE in association request");
|
|
|
|
vap->iv_stats.is_rx_assoc_badwpaie++;
|
|
|
|
reason = IEEE80211_REASON_IE_INVALID;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Parse WPA/RSN information element.
|
|
|
|
*/
|
|
|
|
if (wpa != NULL)
|
|
|
|
reason = ieee80211_parse_wpa(vap, wpa, rsnparms, wh);
|
|
|
|
else
|
|
|
|
reason = ieee80211_parse_rsn(vap, rsn, rsnparms, wh);
|
|
|
|
if (reason != 0) {
|
2016-09-13 22:59:38 +00:00
|
|
|
/* XXX wpa->rsn fallback? */
|
2008-04-20 20:35:46 +00:00
|
|
|
/* XXX distinguish WPA/RSN? */
|
|
|
|
vap->iv_stats.is_rx_assoc_badwpaie++;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_WPA, ni,
|
|
|
|
"%s ie: mc %u/%u uc %u/%u key %u caps 0x%x",
|
|
|
|
wpa != NULL ? "WPA" : "RSN",
|
|
|
|
rsnparms->rsn_mcastcipher, rsnparms->rsn_mcastkeylen,
|
|
|
|
rsnparms->rsn_ucastcipher, rsnparms->rsn_ucastkeylen,
|
|
|
|
rsnparms->rsn_keymgmt, rsnparms->rsn_caps);
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
bad:
|
|
|
|
ieee80211_node_deauth(ni, reason);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* XXX find a better place for definition */
|
|
|
|
struct l2_update_frame {
|
|
|
|
struct ether_header eh;
|
|
|
|
uint8_t dsap;
|
|
|
|
uint8_t ssap;
|
|
|
|
uint8_t control;
|
|
|
|
uint8_t xid[3];
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Deliver a TGf L2UF frame on behalf of a station.
|
|
|
|
* This primes any bridge when the station is roaming
|
|
|
|
* between ap's on the same wired network.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ieee80211_deliver_l2uf(struct ieee80211_node *ni)
|
|
|
|
{
|
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
|
|
struct ifnet *ifp = vap->iv_ifp;
|
|
|
|
struct mbuf *m;
|
|
|
|
struct l2_update_frame *l2uf;
|
|
|
|
struct ether_header *eh;
|
|
|
|
|
|
|
|
m = m_gethdr(M_NOWAIT, MT_DATA);
|
|
|
|
if (m == NULL) {
|
|
|
|
IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
|
|
|
|
"%s", "no mbuf for l2uf frame");
|
|
|
|
vap->iv_stats.is_rx_nobuf++; /* XXX not right */
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
l2uf = mtod(m, struct l2_update_frame *);
|
|
|
|
eh = &l2uf->eh;
|
|
|
|
/* dst: Broadcast address */
|
|
|
|
IEEE80211_ADDR_COPY(eh->ether_dhost, ifp->if_broadcastaddr);
|
|
|
|
/* src: associated STA */
|
|
|
|
IEEE80211_ADDR_COPY(eh->ether_shost, ni->ni_macaddr);
|
|
|
|
eh->ether_type = htons(sizeof(*l2uf) - sizeof(*eh));
|
|
|
|
|
|
|
|
l2uf->dsap = 0;
|
|
|
|
l2uf->ssap = 0;
|
|
|
|
l2uf->control = 0xf5;
|
|
|
|
l2uf->xid[0] = 0x81;
|
|
|
|
l2uf->xid[1] = 0x80;
|
|
|
|
l2uf->xid[2] = 0x00;
|
|
|
|
|
|
|
|
m->m_pkthdr.len = m->m_len = sizeof(*l2uf);
|
|
|
|
hostap_deliver_data(vap, ni, m);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ratesetmismatch(struct ieee80211_node *ni, const struct ieee80211_frame *wh,
|
|
|
|
int reassoc, int resp, const char *tag, int rate)
|
|
|
|
{
|
|
|
|
IEEE80211_NOTE_MAC(ni->ni_vap, IEEE80211_MSG_ANY, wh->i_addr2,
|
|
|
|
"deny %s request, %s rate set mismatch, rate/MCS %d",
|
|
|
|
reassoc ? "reassoc" : "assoc", tag, rate & IEEE80211_RATE_VAL);
|
|
|
|
IEEE80211_SEND_MGMT(ni, resp, IEEE80211_STATUS_BASIC_RATE);
|
|
|
|
ieee80211_node_leave(ni);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
capinfomismatch(struct ieee80211_node *ni, const struct ieee80211_frame *wh,
|
|
|
|
int reassoc, int resp, const char *tag, int capinfo)
|
|
|
|
{
|
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
|
|
|
|
|
|
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ANY, wh->i_addr2,
|
|
|
|
"deny %s request, %s mismatch 0x%x",
|
|
|
|
reassoc ? "reassoc" : "assoc", tag, capinfo);
|
|
|
|
IEEE80211_SEND_MGMT(ni, resp, IEEE80211_STATUS_CAPINFO);
|
|
|
|
ieee80211_node_leave(ni);
|
|
|
|
vap->iv_stats.is_rx_assoc_capmismatch++;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
htcapmismatch(struct ieee80211_node *ni, const struct ieee80211_frame *wh,
|
|
|
|
int reassoc, int resp)
|
|
|
|
{
|
|
|
|
IEEE80211_NOTE_MAC(ni->ni_vap, IEEE80211_MSG_ANY, wh->i_addr2,
|
|
|
|
"deny %s request, %s missing HT ie", reassoc ? "reassoc" : "assoc");
|
|
|
|
/* XXX no better code */
|
2009-06-05 23:21:29 +00:00
|
|
|
IEEE80211_SEND_MGMT(ni, resp, IEEE80211_STATUS_MISSING_HT_CAPS);
|
2008-04-20 20:35:46 +00:00
|
|
|
ieee80211_node_leave(ni);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
authalgreject(struct ieee80211_node *ni, const struct ieee80211_frame *wh,
|
|
|
|
int algo, int seq, int status)
|
|
|
|
{
|
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
|
|
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
|
|
|
|
wh, NULL, "unsupported alg %d", algo);
|
|
|
|
vap->iv_stats.is_rx_auth_unsupported++;
|
|
|
|
ieee80211_send_error(ni, wh->i_addr2, IEEE80211_FC0_SUBTYPE_AUTH,
|
|
|
|
seq | (status << 16));
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline int
|
|
|
|
ishtmixed(const uint8_t *ie)
|
|
|
|
{
|
|
|
|
const struct ieee80211_ie_htinfo *ht =
|
|
|
|
(const struct ieee80211_ie_htinfo *) ie;
|
|
|
|
return (ht->hi_byte2 & IEEE80211_HTINFO_OPMODE) ==
|
|
|
|
IEEE80211_HTINFO_OPMODE_MIXED;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
is11bclient(const uint8_t *rates, const uint8_t *xrates)
|
|
|
|
{
|
|
|
|
static const uint32_t brates = (1<<2*1)|(1<<2*2)|(1<<11)|(1<<2*11);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* NB: the 11b clients we care about will not have xrates */
|
|
|
|
if (xrates != NULL || rates == NULL)
|
|
|
|
return 0;
|
|
|
|
for (i = 0; i < rates[1]; i++) {
|
|
|
|
int r = rates[2+i] & IEEE80211_RATE_VAL;
|
|
|
|
if (r > 2*11 || ((1<<r) & brates) == 0)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
hostap_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m0,
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf)
|
2008-04-20 20:35:46 +00:00
|
|
|
{
|
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
|
|
struct ieee80211_frame *wh;
|
|
|
|
uint8_t *frm, *efrm, *sfrm;
|
|
|
|
uint8_t *ssid, *rates, *xrates, *wpa, *rsn, *wme, *ath, *htcap;
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
uint8_t *vhtcap, *vhtinfo;
|
2008-04-20 20:35:46 +00:00
|
|
|
int reassoc, resp;
|
|
|
|
uint8_t rate;
|
|
|
|
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
frm = (uint8_t *)&wh[1];
|
|
|
|
efrm = mtod(m0, uint8_t *) + m0->m_len;
|
|
|
|
switch (subtype) {
|
|
|
|
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
|
|
|
|
/*
|
|
|
|
* We process beacon/probe response frames when scanning;
|
|
|
|
* otherwise we check beacon frames for overlapping non-ERP
|
|
|
|
* BSS in 11g and/or overlapping legacy BSS when in HT.
|
2016-04-20 18:48:39 +00:00
|
|
|
*/
|
|
|
|
if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
|
2008-04-20 20:35:46 +00:00
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
return;
|
|
|
|
}
|
2016-04-20 18:48:39 +00:00
|
|
|
/* FALLTHROUGH */
|
|
|
|
case IEEE80211_FC0_SUBTYPE_BEACON: {
|
|
|
|
struct ieee80211_scanparams scan;
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
/* NB: accept off-channel frames */
|
Begin plumbing ieee80211_rx_stats through the receive path.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
2015-05-25 16:37:41 +00:00
|
|
|
/* XXX TODO: use rxstatus to determine off-channel details */
|
|
|
|
if (ieee80211_parse_beacon(ni, m0, ic->ic_curchan, &scan) &~ IEEE80211_BPARSE_OFFCHAN)
|
2008-04-20 20:35:46 +00:00
|
|
|
return;
|
|
|
|
/*
|
|
|
|
* Count frame now that we know it's to be processed.
|
|
|
|
*/
|
|
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
|
|
|
|
vap->iv_stats.is_rx_beacon++; /* XXX remove */
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_beacons);
|
|
|
|
} else
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_proberesp);
|
|
|
|
/*
|
|
|
|
* If scanning, just pass information to the scan module.
|
|
|
|
*/
|
|
|
|
if (ic->ic_flags & IEEE80211_F_SCAN) {
|
|
|
|
if (scan.status == 0 && /* NB: on channel */
|
|
|
|
(ic->ic_flags_ext & IEEE80211_FEXT_PROBECHAN)) {
|
|
|
|
/*
|
|
|
|
* Actively scanning a channel marked passive;
|
|
|
|
* send a probe request now that we know there
|
|
|
|
* is 802.11 traffic present.
|
|
|
|
*
|
|
|
|
* XXX check if the beacon we recv'd gives
|
|
|
|
* us what we need and suppress the probe req
|
|
|
|
*/
|
|
|
|
ieee80211_probe_curchan(vap, 1);
|
|
|
|
ic->ic_flags_ext &= ~IEEE80211_FEXT_PROBECHAN;
|
|
|
|
}
|
Prepare for supporting driver-overridden curchan when submitting scan
results.
Right now the scan infrastructure assumes the channel is under net80211
control, and that when receiving beacon frames for scanning, the
current channel is indeed what ic_curchan is set to.
But firmware NICs with firmware scan support need more than this -
they can do background scans whilst hiding the off-channel behaviour
from net80211. Ie, net80211 still thinks everything is associated
and on the main channel, but it's getting scan results from all the
background traffic.
However sta_add() pays attention to ic_curchan and discards scan
results that aren't on the right channel. CCK beacon frames can be
decoded from adjacent channels so the receive path and sta_add
discard these as appropriate. This is fine for software scanning
like for ath(4), but not for firmware NICs. So with those, the
whole concept of background firmware scanning won't work without
major hacks (eg, overriding ic_curchan before calling the beacon
input / scan add.)
As part of my scan overhaul, modify sta_add() and the scan_add()
APIs to take an explicit current channel. The normal RX path
will set it to ic_curchan so it's a no-op. However, drivers may
decide to (eventually!) override the scan method to set the
"right" current channel based on what the firmware reports the
scan state is.
So for example, iwn, rsu and other NICs will eventually do this:
* driver issues scan start firmware command;
* firmware sends a "scan start on channel X" notify;
* firmware sends a bunch of beacon RX's as part of
the scan results;
* .. and the driver will replace scan_add() curchan with channel X,
so scan results are correct.
* firmware sends a "scan start on channel Y" notify;
* firmware sends more beacons...
* .. the driver replaces scan_add() curchan with channel Y.
Note:
* Eventually, net80211 should eventually grow the idea of a per-packet
current channel. It's possible in various modes (eg WAVE, P2P, etc)
that individual frames can come in from different channels and that
is under firmware control rather than driver/net80211 control, so
we should support that.
2015-05-10 22:07:53 +00:00
|
|
|
ieee80211_add_scan(vap, ic->ic_curchan, &scan, wh,
|
|
|
|
subtype, rssi, nf);
|
2008-04-20 20:35:46 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Check beacon for overlapping bss w/ non ERP stations.
|
|
|
|
* If we detect one and protection is configured but not
|
|
|
|
* enabled, enable it and start a timer that'll bring us
|
|
|
|
* out if we stop seeing the bss.
|
|
|
|
*/
|
|
|
|
if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
|
|
|
|
scan.status == 0 && /* NB: on-channel */
|
|
|
|
((scan.erp & 0x100) == 0 || /* NB: no ERP, 11b sta*/
|
|
|
|
(scan.erp & IEEE80211_ERP_NON_ERP_PRESENT))) {
|
|
|
|
ic->ic_lastnonerp = ticks;
|
|
|
|
ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR;
|
|
|
|
if (ic->ic_protmode != IEEE80211_PROT_NONE &&
|
|
|
|
(ic->ic_flags & IEEE80211_F_USEPROT) == 0) {
|
|
|
|
IEEE80211_NOTE_FRAME(vap,
|
|
|
|
IEEE80211_MSG_ASSOC, wh,
|
|
|
|
"non-ERP present on channel %d "
|
|
|
|
"(saw erp 0x%x from channel %d), "
|
|
|
|
"enable use of protection",
|
|
|
|
ic->ic_curchan->ic_ieee,
|
|
|
|
scan.erp, scan.chan);
|
|
|
|
ic->ic_flags |= IEEE80211_F_USEPROT;
|
|
|
|
ieee80211_notify_erp(ic);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Check beacon for non-HT station on HT channel
|
|
|
|
* and update HT BSS occupancy as appropriate.
|
|
|
|
*/
|
|
|
|
if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) {
|
|
|
|
if (scan.status & IEEE80211_BPARSE_OFFCHAN) {
|
|
|
|
/*
|
|
|
|
* Off control channel; only check frames
|
|
|
|
* that come in the extension channel when
|
|
|
|
* operating w/ HT40.
|
|
|
|
*/
|
|
|
|
if (!IEEE80211_IS_CHAN_HT40(ic->ic_curchan))
|
|
|
|
break;
|
|
|
|
if (scan.chan != ic->ic_curchan->ic_extieee)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (scan.htinfo == NULL) {
|
|
|
|
ieee80211_htprot_update(ic,
|
|
|
|
IEEE80211_HTINFO_OPMODE_PROTOPT |
|
|
|
|
IEEE80211_HTINFO_NONHT_PRESENT);
|
|
|
|
} else if (ishtmixed(scan.htinfo)) {
|
|
|
|
/* XXX? take NONHT_PRESENT from beacon? */
|
|
|
|
ieee80211_htprot_update(ic,
|
|
|
|
IEEE80211_HTINFO_OPMODE_MIXED |
|
|
|
|
IEEE80211_HTINFO_NONHT_PRESENT);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
|
|
|
|
if (vap->iv_state != IEEE80211_S_RUN) {
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
return;
|
|
|
|
}
|
2011-12-15 00:52:30 +00:00
|
|
|
/*
|
|
|
|
* Consult the ACL policy module if setup.
|
|
|
|
*/
|
2011-12-17 10:32:31 +00:00
|
|
|
if (vap->iv_acl != NULL && !vap->iv_acl->iac_check(vap, wh)) {
|
2011-12-15 00:52:30 +00:00
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_ACL,
|
|
|
|
wh, NULL, "%s", "disallowed by ACL");
|
|
|
|
vap->iv_stats.is_rx_acl++;
|
|
|
|
return;
|
|
|
|
}
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* prreq frame format
|
|
|
|
* [tlv] ssid
|
|
|
|
* [tlv] supported rates
|
|
|
|
* [tlv] extended supported rates
|
|
|
|
*/
|
|
|
|
ssid = rates = xrates = NULL;
|
|
|
|
while (efrm - frm > 1) {
|
|
|
|
IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
|
|
|
|
switch (*frm) {
|
|
|
|
case IEEE80211_ELEMID_SSID:
|
|
|
|
ssid = frm;
|
|
|
|
break;
|
|
|
|
case IEEE80211_ELEMID_RATES:
|
|
|
|
rates = frm;
|
|
|
|
break;
|
|
|
|
case IEEE80211_ELEMID_XRATES:
|
|
|
|
xrates = frm;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
frm += frm[1] + 2;
|
|
|
|
}
|
|
|
|
IEEE80211_VERIFY_ELEMENT(rates, IEEE80211_RATE_MAXSIZE, return);
|
|
|
|
if (xrates != NULL)
|
|
|
|
IEEE80211_VERIFY_ELEMENT(xrates,
|
|
|
|
IEEE80211_RATE_MAXSIZE - rates[1], return);
|
|
|
|
IEEE80211_VERIFY_ELEMENT(ssid, IEEE80211_NWID_LEN, return);
|
|
|
|
IEEE80211_VERIFY_SSID(vap->iv_bss, ssid, return);
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_HIDESSID) && ssid[1] == 0) {
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, NULL,
|
|
|
|
"%s", "no ssid with ssid suppression enabled");
|
|
|
|
vap->iv_stats.is_rx_ssidmismatch++; /*XXX*/
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* XXX find a better class or define it's own */
|
|
|
|
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_INPUT, wh->i_addr2,
|
|
|
|
"%s", "recv probe req");
|
|
|
|
/*
|
|
|
|
* Some legacy 11b clients cannot hack a complete
|
|
|
|
* probe response frame. When the request includes
|
|
|
|
* only a bare-bones rate set, communicate this to
|
|
|
|
* the transmit side.
|
|
|
|
*/
|
|
|
|
ieee80211_send_proberesp(vap, wh->i_addr2,
|
|
|
|
is11bclient(rates, xrates) ? IEEE80211_SEND_LEGACY_11B : 0);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case IEEE80211_FC0_SUBTYPE_AUTH: {
|
|
|
|
uint16_t algo, seq, status;
|
|
|
|
|
|
|
|
if (vap->iv_state != IEEE80211_S_RUN) {
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (!IEEE80211_ADDR_EQ(wh->i_addr3, vap->iv_bss->ni_bssid)) {
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
|
|
|
|
wh, NULL, "%s", "wrong bssid");
|
|
|
|
vap->iv_stats.is_rx_wrongbss++; /*XXX unique stat?*/
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* auth frame format
|
|
|
|
* [2] algorithm
|
|
|
|
* [2] sequence
|
|
|
|
* [2] status
|
|
|
|
* [tlv*] challenge
|
|
|
|
*/
|
|
|
|
IEEE80211_VERIFY_LENGTH(efrm - frm, 6, return);
|
|
|
|
algo = le16toh(*(uint16_t *)frm);
|
|
|
|
seq = le16toh(*(uint16_t *)(frm + 2));
|
|
|
|
status = le16toh(*(uint16_t *)(frm + 4));
|
|
|
|
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr2,
|
|
|
|
"recv auth frame with algorithm %d seq %d", algo, seq);
|
|
|
|
/*
|
|
|
|
* Consult the ACL policy module if setup.
|
|
|
|
*/
|
2011-12-17 10:32:31 +00:00
|
|
|
if (vap->iv_acl != NULL && !vap->iv_acl->iac_check(vap, wh)) {
|
2008-04-20 20:35:46 +00:00
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_ACL,
|
|
|
|
wh, NULL, "%s", "disallowed by ACL");
|
|
|
|
vap->iv_stats.is_rx_acl++;
|
|
|
|
ieee80211_send_error(ni, wh->i_addr2,
|
|
|
|
IEEE80211_FC0_SUBTYPE_AUTH,
|
|
|
|
(seq+1) | (IEEE80211_STATUS_UNSPECIFIED<<16));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (vap->iv_flags & IEEE80211_F_COUNTERM) {
|
|
|
|
IEEE80211_DISCARD(vap,
|
|
|
|
IEEE80211_MSG_AUTH | IEEE80211_MSG_CRYPTO,
|
|
|
|
wh, NULL, "%s", "TKIP countermeasures enabled");
|
|
|
|
vap->iv_stats.is_rx_auth_countermeasures++;
|
|
|
|
ieee80211_send_error(ni, wh->i_addr2,
|
|
|
|
IEEE80211_FC0_SUBTYPE_AUTH,
|
|
|
|
IEEE80211_REASON_MIC_FAILURE);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (algo == IEEE80211_AUTH_ALG_SHARED)
|
2009-05-20 20:00:40 +00:00
|
|
|
hostap_auth_shared(ni, wh, frm + 6, efrm, rssi, nf,
|
2008-04-20 20:35:46 +00:00
|
|
|
seq, status);
|
2009-05-20 20:00:40 +00:00
|
|
|
else if (algo == IEEE80211_AUTH_ALG_OPEN)
|
|
|
|
hostap_auth_open(ni, wh, rssi, nf, seq, status);
|
2008-04-20 20:35:46 +00:00
|
|
|
else if (algo == IEEE80211_AUTH_ALG_LEAP) {
|
|
|
|
authalgreject(ni, wh, algo,
|
|
|
|
seq+1, IEEE80211_STATUS_ALG);
|
|
|
|
return;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* We assume that an unknown algorithm is the result
|
|
|
|
* of a decryption failure on a shared key auth frame;
|
|
|
|
* return a status code appropriate for that instead
|
|
|
|
* of IEEE80211_STATUS_ALG.
|
|
|
|
*
|
|
|
|
* NB: a seq# of 4 is intentional; the decrypted
|
|
|
|
* frame likely has a bogus seq value.
|
|
|
|
*/
|
|
|
|
authalgreject(ni, wh, algo,
|
|
|
|
4, IEEE80211_STATUS_CHALLENGE);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
|
|
|
|
case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: {
|
|
|
|
uint16_t capinfo, lintval;
|
|
|
|
struct ieee80211_rsnparms rsnparms;
|
|
|
|
|
|
|
|
if (vap->iv_state != IEEE80211_S_RUN) {
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (!IEEE80211_ADDR_EQ(wh->i_addr3, vap->iv_bss->ni_bssid)) {
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
|
|
|
|
wh, NULL, "%s", "wrong bssid");
|
|
|
|
vap->iv_stats.is_rx_assoc_bss++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
|
|
|
|
reassoc = 1;
|
|
|
|
resp = IEEE80211_FC0_SUBTYPE_REASSOC_RESP;
|
|
|
|
} else {
|
|
|
|
reassoc = 0;
|
|
|
|
resp = IEEE80211_FC0_SUBTYPE_ASSOC_RESP;
|
|
|
|
}
|
|
|
|
if (ni == vap->iv_bss) {
|
|
|
|
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ANY, wh->i_addr2,
|
|
|
|
"deny %s request, sta not authenticated",
|
|
|
|
reassoc ? "reassoc" : "assoc");
|
|
|
|
ieee80211_send_error(ni, wh->i_addr2,
|
|
|
|
IEEE80211_FC0_SUBTYPE_DEAUTH,
|
|
|
|
IEEE80211_REASON_ASSOC_NOT_AUTHED);
|
|
|
|
vap->iv_stats.is_rx_assoc_notauth++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* asreq frame format
|
|
|
|
* [2] capability information
|
|
|
|
* [2] listen interval
|
|
|
|
* [6*] current AP address (reassoc only)
|
|
|
|
* [tlv] ssid
|
|
|
|
* [tlv] supported rates
|
|
|
|
* [tlv] extended supported rates
|
|
|
|
* [tlv] WPA or RSN
|
|
|
|
* [tlv] HT capabilities
|
|
|
|
* [tlv] Atheros capabilities
|
|
|
|
*/
|
|
|
|
IEEE80211_VERIFY_LENGTH(efrm - frm, (reassoc ? 10 : 4), return);
|
|
|
|
capinfo = le16toh(*(uint16_t *)frm); frm += 2;
|
|
|
|
lintval = le16toh(*(uint16_t *)frm); frm += 2;
|
|
|
|
if (reassoc)
|
|
|
|
frm += 6; /* ignore current AP info */
|
|
|
|
ssid = rates = xrates = wpa = rsn = wme = ath = htcap = NULL;
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
vhtcap = vhtinfo = NULL;
|
2008-04-20 20:35:46 +00:00
|
|
|
sfrm = frm;
|
|
|
|
while (efrm - frm > 1) {
|
|
|
|
IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
|
|
|
|
switch (*frm) {
|
|
|
|
case IEEE80211_ELEMID_SSID:
|
|
|
|
ssid = frm;
|
|
|
|
break;
|
|
|
|
case IEEE80211_ELEMID_RATES:
|
|
|
|
rates = frm;
|
|
|
|
break;
|
|
|
|
case IEEE80211_ELEMID_XRATES:
|
|
|
|
xrates = frm;
|
|
|
|
break;
|
|
|
|
case IEEE80211_ELEMID_RSN:
|
|
|
|
rsn = frm;
|
|
|
|
break;
|
|
|
|
case IEEE80211_ELEMID_HTCAP:
|
|
|
|
htcap = frm;
|
|
|
|
break;
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
case IEEE80211_ELEMID_VHT_CAP:
|
|
|
|
vhtcap = frm;
|
|
|
|
break;
|
|
|
|
case IEEE80211_ELEMID_VHT_OPMODE:
|
|
|
|
vhtinfo = frm;
|
|
|
|
break;
|
2008-04-20 20:35:46 +00:00
|
|
|
case IEEE80211_ELEMID_VENDOR:
|
|
|
|
if (iswpaoui(frm))
|
|
|
|
wpa = frm;
|
|
|
|
else if (iswmeinfo(frm))
|
|
|
|
wme = frm;
|
2009-03-24 20:39:08 +00:00
|
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
2008-04-20 20:35:46 +00:00
|
|
|
else if (isatherosoui(frm))
|
|
|
|
ath = frm;
|
2009-03-24 20:39:08 +00:00
|
|
|
#endif
|
2009-06-07 22:00:22 +00:00
|
|
|
else if (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) {
|
2008-04-20 20:35:46 +00:00
|
|
|
if (ishtcapoui(frm) && htcap == NULL)
|
|
|
|
htcap = frm;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
frm += frm[1] + 2;
|
|
|
|
}
|
|
|
|
IEEE80211_VERIFY_ELEMENT(rates, IEEE80211_RATE_MAXSIZE, return);
|
|
|
|
if (xrates != NULL)
|
|
|
|
IEEE80211_VERIFY_ELEMENT(xrates,
|
|
|
|
IEEE80211_RATE_MAXSIZE - rates[1], return);
|
|
|
|
IEEE80211_VERIFY_ELEMENT(ssid, IEEE80211_NWID_LEN, return);
|
|
|
|
IEEE80211_VERIFY_SSID(vap->iv_bss, ssid, return);
|
|
|
|
if (htcap != NULL) {
|
|
|
|
IEEE80211_VERIFY_LENGTH(htcap[1],
|
|
|
|
htcap[0] == IEEE80211_ELEMID_VENDOR ?
|
|
|
|
4 + sizeof(struct ieee80211_ie_htcap)-2 :
|
|
|
|
sizeof(struct ieee80211_ie_htcap)-2,
|
|
|
|
return); /* XXX just NULL out? */
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_WPA) &&
|
|
|
|
!wpa_assocreq(ni, &rsnparms, wh, wpa, rsn, capinfo))
|
|
|
|
return;
|
|
|
|
/* discard challenge after association */
|
|
|
|
if (ni->ni_challenge != NULL) {
|
2015-05-25 19:18:16 +00:00
|
|
|
IEEE80211_FREE(ni->ni_challenge, M_80211_NODE);
|
2008-04-20 20:35:46 +00:00
|
|
|
ni->ni_challenge = NULL;
|
|
|
|
}
|
|
|
|
/* NB: 802.11 spec says to ignore station's privacy bit */
|
|
|
|
if ((capinfo & IEEE80211_CAPINFO_ESS) == 0) {
|
|
|
|
capinfomismatch(ni, wh, reassoc, resp,
|
|
|
|
"capability", capinfo);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Disallow re-associate w/ invalid slot time setting.
|
|
|
|
*/
|
|
|
|
if (ni->ni_associd != 0 &&
|
|
|
|
IEEE80211_IS_CHAN_ANYG(ic->ic_bsschan) &&
|
|
|
|
((ni->ni_capinfo ^ capinfo) & IEEE80211_CAPINFO_SHORT_SLOTTIME)) {
|
|
|
|
capinfomismatch(ni, wh, reassoc, resp,
|
|
|
|
"slot time", capinfo);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
rate = ieee80211_setup_rates(ni, rates, xrates,
|
|
|
|
IEEE80211_F_DOSORT | IEEE80211_F_DOFRATE |
|
|
|
|
IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
|
|
|
|
if (rate & IEEE80211_RATE_BASIC) {
|
|
|
|
ratesetmismatch(ni, wh, reassoc, resp, "legacy", rate);
|
|
|
|
vap->iv_stats.is_rx_assoc_norate++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* If constrained to 11g-only stations reject an
|
|
|
|
* 11b-only station. We cheat a bit here by looking
|
|
|
|
* at the max negotiated xmit rate and assuming anyone
|
|
|
|
* with a best rate <24Mb/s is an 11b station.
|
|
|
|
*/
|
|
|
|
if ((vap->iv_flags & IEEE80211_F_PUREG) && rate < 48) {
|
|
|
|
ratesetmismatch(ni, wh, reassoc, resp, "11g", rate);
|
|
|
|
vap->iv_stats.is_rx_assoc_norate++;
|
|
|
|
return;
|
|
|
|
}
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* Do HT rate set handling and setup HT node state.
|
|
|
|
*/
|
|
|
|
ni->ni_chan = vap->iv_bss->ni_chan;
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
|
|
|
|
/* VHT */
|
|
|
|
if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
|
|
|
|
/* XXX TODO; see below */
|
|
|
|
printf("%s: VHT TODO!\n", __func__);
|
|
|
|
ieee80211_vht_node_init(ni);
|
|
|
|
ieee80211_vht_update_cap(ni, vhtcap, vhtinfo);
|
|
|
|
} else if (ni->ni_flags & IEEE80211_NODE_VHT)
|
|
|
|
ieee80211_vht_node_cleanup(ni);
|
|
|
|
|
|
|
|
/* HT */
|
2008-04-20 20:35:46 +00:00
|
|
|
if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && htcap != NULL) {
|
|
|
|
rate = ieee80211_setup_htrates(ni, htcap,
|
|
|
|
IEEE80211_F_DOFMCS | IEEE80211_F_DONEGO |
|
|
|
|
IEEE80211_F_DOBRS);
|
|
|
|
if (rate & IEEE80211_RATE_BASIC) {
|
|
|
|
ratesetmismatch(ni, wh, reassoc, resp,
|
|
|
|
"HT", rate);
|
|
|
|
vap->iv_stats.is_ht_assoc_norate++;
|
|
|
|
return;
|
|
|
|
}
|
2008-09-21 23:44:15 +00:00
|
|
|
ieee80211_ht_node_init(ni);
|
|
|
|
ieee80211_ht_updatehtcap(ni, htcap);
|
2008-04-20 20:35:46 +00:00
|
|
|
} else if (ni->ni_flags & IEEE80211_NODE_HT)
|
|
|
|
ieee80211_ht_node_cleanup(ni);
|
[net80211] Initial VHT node upgrade/downgrade support and initial IE parsing.
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
2017-01-13 07:02:04 +00:00
|
|
|
|
|
|
|
/* Finally - this will use HT/VHT info to change node channel */
|
|
|
|
if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && htcap != NULL) {
|
|
|
|
ieee80211_ht_updatehtcap_final(ni);
|
|
|
|
}
|
|
|
|
|
2009-03-30 21:53:27 +00:00
|
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
2016-04-06 01:22:20 +00:00
|
|
|
/* Always do ff node cleanup; for A-MSDU */
|
|
|
|
ieee80211_ff_node_cleanup(ni);
|
2009-03-30 21:53:27 +00:00
|
|
|
#endif
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* Allow AMPDU operation only with unencrypted traffic
|
|
|
|
* or AES-CCM; the 11n spec only specifies these ciphers
|
|
|
|
* so permitting any others is undefined and can lead
|
|
|
|
* to interoperability problems.
|
|
|
|
*/
|
|
|
|
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
|
|
|
|
(((vap->iv_flags & IEEE80211_F_WPA) &&
|
|
|
|
rsnparms.rsn_ucastcipher != IEEE80211_CIPHER_AES_CCM) ||
|
|
|
|
(vap->iv_flags & (IEEE80211_F_WPA|IEEE80211_F_PRIVACY)) == IEEE80211_F_PRIVACY)) {
|
|
|
|
IEEE80211_NOTE(vap,
|
|
|
|
IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
|
|
|
|
"disallow HT use because WEP or TKIP requested, "
|
|
|
|
"capinfo 0x%x ucastcipher %d", capinfo,
|
|
|
|
rsnparms.rsn_ucastcipher);
|
|
|
|
ieee80211_ht_node_cleanup(ni);
|
2016-04-06 01:22:20 +00:00
|
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
|
|
/* Always do ff node cleanup; for A-MSDU */
|
|
|
|
ieee80211_ff_node_cleanup(ni);
|
|
|
|
#endif
|
2008-04-20 20:35:46 +00:00
|
|
|
vap->iv_stats.is_ht_assoc_downgrade++;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* If constrained to 11n-only stations reject legacy stations.
|
|
|
|
*/
|
2009-06-07 22:00:22 +00:00
|
|
|
if ((vap->iv_flags_ht & IEEE80211_FHT_PUREN) &&
|
2008-04-20 20:35:46 +00:00
|
|
|
(ni->ni_flags & IEEE80211_NODE_HT) == 0) {
|
|
|
|
htcapmismatch(ni, wh, reassoc, resp);
|
|
|
|
vap->iv_stats.is_ht_assoc_nohtcap++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
IEEE80211_RSSI_LPF(ni->ni_avgrssi, rssi);
|
2009-05-20 20:00:40 +00:00
|
|
|
ni->ni_noise = nf;
|
2008-04-20 20:35:46 +00:00
|
|
|
ni->ni_intval = lintval;
|
|
|
|
ni->ni_capinfo = capinfo;
|
|
|
|
ni->ni_fhdwell = vap->iv_bss->ni_fhdwell;
|
|
|
|
ni->ni_fhindex = vap->iv_bss->ni_fhindex;
|
|
|
|
/*
|
|
|
|
* Store the IEs.
|
|
|
|
* XXX maybe better to just expand
|
|
|
|
*/
|
|
|
|
if (ieee80211_ies_init(&ni->ni_ies, sfrm, efrm - sfrm)) {
|
|
|
|
#define setie(_ie, _off) ieee80211_ies_setie(ni->ni_ies, _ie, _off)
|
|
|
|
if (wpa != NULL)
|
|
|
|
setie(wpa_ie, wpa - sfrm);
|
|
|
|
if (rsn != NULL)
|
|
|
|
setie(rsn_ie, rsn - sfrm);
|
|
|
|
if (htcap != NULL)
|
|
|
|
setie(htcap_ie, htcap - sfrm);
|
|
|
|
if (wme != NULL) {
|
|
|
|
setie(wme_ie, wme - sfrm);
|
|
|
|
/*
|
|
|
|
* Mark node as capable of QoS.
|
|
|
|
*/
|
|
|
|
ni->ni_flags |= IEEE80211_NODE_QOS;
|
|
|
|
} else
|
|
|
|
ni->ni_flags &= ~IEEE80211_NODE_QOS;
|
2009-03-24 20:39:08 +00:00
|
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
2008-04-20 20:35:46 +00:00
|
|
|
if (ath != NULL) {
|
|
|
|
setie(ath_ie, ath - sfrm);
|
|
|
|
/*
|
|
|
|
* Parse ATH station parameters.
|
|
|
|
*/
|
|
|
|
ieee80211_parse_ath(ni, ni->ni_ies.ath_ie);
|
|
|
|
} else
|
2009-03-24 20:39:08 +00:00
|
|
|
#endif
|
2008-04-20 20:35:46 +00:00
|
|
|
ni->ni_ath_flags = 0;
|
|
|
|
#undef setie
|
|
|
|
} else {
|
|
|
|
ni->ni_flags &= ~IEEE80211_NODE_QOS;
|
|
|
|
ni->ni_ath_flags = 0;
|
|
|
|
}
|
|
|
|
ieee80211_node_join(ni, resp);
|
|
|
|
ieee80211_deliver_l2uf(ni);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case IEEE80211_FC0_SUBTYPE_DEAUTH:
|
|
|
|
case IEEE80211_FC0_SUBTYPE_DISASSOC: {
|
|
|
|
uint16_t reason;
|
|
|
|
|
|
|
|
if (vap->iv_state != IEEE80211_S_RUN ||
|
|
|
|
/* NB: can happen when in promiscuous mode */
|
|
|
|
!IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr)) {
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* deauth/disassoc frame format
|
|
|
|
* [2] reason
|
|
|
|
*/
|
|
|
|
IEEE80211_VERIFY_LENGTH(efrm - frm, 2, return);
|
|
|
|
reason = le16toh(*(uint16_t *)frm);
|
|
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_DEAUTH) {
|
|
|
|
vap->iv_stats.is_rx_deauth++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_deauth);
|
|
|
|
} else {
|
|
|
|
vap->iv_stats.is_rx_disassoc++;
|
|
|
|
IEEE80211_NODE_STAT(ni, rx_disassoc);
|
|
|
|
}
|
|
|
|
IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
|
2016-04-20 20:30:18 +00:00
|
|
|
"recv %s (reason: %d (%s))",
|
2016-04-20 21:15:55 +00:00
|
|
|
ieee80211_mgt_subtype_name(subtype),
|
2016-04-20 20:30:18 +00:00
|
|
|
reason, ieee80211_reason_to_string(reason));
|
2008-04-20 20:35:46 +00:00
|
|
|
if (ni != vap->iv_bss)
|
|
|
|
ieee80211_node_leave(ni);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case IEEE80211_FC0_SUBTYPE_ACTION:
|
2011-02-21 19:59:43 +00:00
|
|
|
case IEEE80211_FC0_SUBTYPE_ACTION_NOACK:
|
2011-02-22 19:05:42 +00:00
|
|
|
if (ni == vap->iv_bss) {
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, NULL, "%s", "unknown node");
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
} else if (!IEEE80211_ADDR_EQ(vap->iv_myaddr, wh->i_addr1) &&
|
|
|
|
!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, NULL, "%s", "not for us");
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
} else if (vap->iv_state != IEEE80211_S_RUN) {
|
2011-02-21 19:59:43 +00:00
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, NULL, "wrong state %s",
|
|
|
|
ieee80211_state_name[vap->iv_state]);
|
2008-04-20 20:35:46 +00:00
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
2011-02-22 19:05:42 +00:00
|
|
|
} else {
|
|
|
|
if (ieee80211_parse_action(ni, m0) == 0)
|
|
|
|
(void)ic->ic_recv_action(ni, wh, frm, efrm);
|
2011-02-21 19:59:43 +00:00
|
|
|
}
|
2008-04-20 20:35:46 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
|
|
|
|
case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
|
2016-02-19 05:59:38 +00:00
|
|
|
case IEEE80211_FC0_SUBTYPE_TIMING_ADV:
|
2011-02-21 19:59:43 +00:00
|
|
|
case IEEE80211_FC0_SUBTYPE_ATIM:
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
|
|
|
|
wh, NULL, "%s", "not handled");
|
|
|
|
vap->iv_stats.is_rx_mgtdiscard++;
|
|
|
|
break;
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
default:
|
|
|
|
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
|
2011-02-21 19:59:43 +00:00
|
|
|
wh, "mgt", "subtype 0x%x not handled", subtype);
|
2008-04-20 20:35:46 +00:00
|
|
|
vap->iv_stats.is_rx_badsubtype++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-04-26 21:46:04 +00:00
|
|
|
static void
|
|
|
|
hostap_recv_ctl(struct ieee80211_node *ni, struct mbuf *m, int subtype)
|
|
|
|
{
|
|
|
|
switch (subtype) {
|
|
|
|
case IEEE80211_FC0_SUBTYPE_PS_POLL:
|
2012-10-02 17:45:19 +00:00
|
|
|
ni->ni_vap->iv_recv_pspoll(ni, m);
|
2009-04-26 21:46:04 +00:00
|
|
|
break;
|
|
|
|
case IEEE80211_FC0_SUBTYPE_BAR:
|
|
|
|
ieee80211_recv_bar(ni, m);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-04-20 20:35:46 +00:00
|
|
|
/*
|
|
|
|
* Process a received ps-poll frame.
|
|
|
|
*/
|
2012-10-02 17:45:19 +00:00
|
|
|
void
|
|
|
|
ieee80211_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m0)
|
2008-04-20 20:35:46 +00:00
|
|
|
{
|
|
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
Bring over my initial work from the net80211 TX locking branch.
This patchset implements a new TX lock, covering both the per-VAP (and
thus per-node) TX locking and the serialisation through to the underlying
physical device.
This implements the hard requirement that frames to the underlying physical
device are scheduled to the underlying device in the same order that they
are processed at the VAP layer. This includes adding extra encapsulation
state (such as sequence numbers and CCMP IV numbers.) Any order mismatch
here will result in dropped packets at the receiver.
There are multiple transmit contexts from the upper protocol layers as well
as the "raw" interface via the management and BPF transmit paths.
All of these need to be correctly serialised or bad behaviour will result
under load.
The specifics:
* add a new TX IC lock - it will eventually just be used for serialisation
to the underlying physical device but for now it's used for both the
VAP encapsulation/serialisation and the physical device dispatch.
This lock is specifically non-recursive.
* Methodize the parent transmit, vap transmit and ic_raw_xmit function
pointers; use lock assertions in the parent/vap transmit routines.
* Add a lock assertion in ieee80211_encap() - the TX lock must be held
here to guarantee sensible behaviour.
* Refactor out the packet sending code from ieee80211_start() - now
ieee80211_start() is just a loop over the ifnet queue and it dispatches
each VAP packet send through ieee80211_start_pkt().
Yes, I will likely rename ieee80211_start_pkt() to something that
better reflects its status as a VAP packet transmit path. More on
that later.
* Add locking around the management and BAR TX sending - to ensure that
encapsulation and TX are done hand-in-hand.
* Add locking in the mesh code - again, to ensure that encapsulation
and mesh transmit are done hand-in-hand.
* Add locking around the power save queue and ageq handling, when
dispatching to the parent interface.
* Add locking around the WDS handoff.
* Add a note in the mesh dispatch code that the TX path needs to be
re-thought-out - right now it's doing a direct parent device transmit
rather than going via the vap layer. It may "work", but it's likely
incorrect (as it bypasses any possible per-node power save and
aggregation handling.)
Why not a per-VAP or per-node lock?
Because in order to ensure per-VAP ordering, we'd have to hold the
VAP lock across parent->if_transmit(). There are a few problems
with this:
* There's some state being setup during each driver transmit - specifically,
the encryption encap / CCMP IV setup. That should eventually be dragged
back into the encapsulation phase but for now it lives in the driver TX path.
This should be locked.
* Two drivers (ath, iwn) re-use the node->ni_txseqs array in order to
allocate sequence numbers when doing transmit aggregation. This should
also be locked.
* Drivers may have multiple frames queued already - so when one calls
if_transmit(), it may end up dispatching multiple frames for different
VAPs/nodes, each needing a different lock when handling that particular
end destination.
So to be "correct" locking-wise, we'd end up needing to grab a VAP or
node lock inside the driver TX path when setting up crypto / AMPDU sequence
numbers, and we may already _have_ a TX lock held - mostly for the same
destination vap/node, but sometimes it'll be for others. That could lead
to LORs and thus deadlocks.
So for now, I'm sticking with an IC TX lock. It has the advantage of
papering over the above and it also has the added advantage that I can
assert that it's being held when doing a parent device transmit.
I'll look at splitting the locks out a bit more later on.
General outstanding net80211 TX path issues / TODO:
* Look into separating out the VAP serialisation and the IC handoff.
It's going to be tricky as parent->if_transmit() doesn't give me the
opportunity to split queuing from driver dispatch. See above.
* Work with monthadar to fix up the mesh transmit path so it doesn't go via
the parent interface when retransmitting frames.
* Push the encryption handling back into the driver, if it's at all
architectually sane to do so. I know it's possible - it's what mac80211
in Linux does.
* Make ieee80211_raw_xmit() queue a frame into VAP or parent queue rather
than doing a short-cut direct into the driver. There are QoS issues
here - you do want your management frames to be encapsulated and pushed
onto the stack sooner than the (large, bursty) amount of data frames
that are queued. But there has to be a saner way to do this.
* Fragments are still broken - drivers need to be upgraded to an if_transmit()
implementation and then fragmentation handling needs to be properly fixed.
Tested:
* STA - AR5416, AR9280, Intel 5300 abgn wifi
* Hostap - AR5416, AR9160, AR9280
* Mesh - some testing by monthadar@, more to come.
2013-03-08 20:23:55 +00:00
|
|
|
struct ieee80211com *ic = vap->iv_ic;
|
2008-04-20 20:35:46 +00:00
|
|
|
struct ieee80211_frame_min *wh;
|
|
|
|
struct mbuf *m;
|
|
|
|
uint16_t aid;
|
|
|
|
int qlen;
|
|
|
|
|
|
|
|
wh = mtod(m0, struct ieee80211_frame_min *);
|
|
|
|
if (ni->ni_associd == 0) {
|
|
|
|
IEEE80211_DISCARD(vap,
|
|
|
|
IEEE80211_MSG_POWER | IEEE80211_MSG_DEBUG,
|
|
|
|
(struct ieee80211_frame *) wh, NULL,
|
|
|
|
"%s", "unassociated station");
|
|
|
|
vap->iv_stats.is_ps_unassoc++;
|
|
|
|
IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH,
|
|
|
|
IEEE80211_REASON_NOT_ASSOCED);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
aid = le16toh(*(uint16_t *)wh->i_dur);
|
|
|
|
if (aid != ni->ni_associd) {
|
|
|
|
IEEE80211_DISCARD(vap,
|
|
|
|
IEEE80211_MSG_POWER | IEEE80211_MSG_DEBUG,
|
|
|
|
(struct ieee80211_frame *) wh, NULL,
|
|
|
|
"aid mismatch: sta aid 0x%x poll aid 0x%x",
|
|
|
|
ni->ni_associd, aid);
|
|
|
|
vap->iv_stats.is_ps_badaid++;
|
2008-07-26 23:50:27 +00:00
|
|
|
/*
|
|
|
|
* NB: We used to deauth the station but it turns out
|
|
|
|
* the Blackberry Curve 8230 (and perhaps other devices)
|
|
|
|
* sometimes send the wrong AID when WME is negotiated.
|
|
|
|
* Being more lenient here seems ok as we already check
|
|
|
|
* the station is associated and we only return frames
|
|
|
|
* queued for the station (i.e. we don't use the AID).
|
|
|
|
*/
|
2008-04-20 20:35:46 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Okay, take the first queued packet and put it out... */
|
2008-10-26 01:04:46 +00:00
|
|
|
m = ieee80211_node_psq_dequeue(ni, &qlen);
|
2008-04-20 20:35:46 +00:00
|
|
|
if (m == NULL) {
|
|
|
|
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_POWER, wh->i_addr2,
|
|
|
|
"%s", "recv ps-poll, but queue empty");
|
|
|
|
ieee80211_send_nulldata(ieee80211_ref_node(ni));
|
|
|
|
vap->iv_stats.is_ps_qempty++; /* XXX node stat */
|
|
|
|
if (vap->iv_set_tim != NULL)
|
|
|
|
vap->iv_set_tim(ni, 0); /* just in case */
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* If there are more packets, set the more packets bit
|
|
|
|
* in the packet dispatched to the station; otherwise
|
|
|
|
* turn off the TIM bit.
|
|
|
|
*/
|
|
|
|
if (qlen != 0) {
|
|
|
|
IEEE80211_NOTE(vap, IEEE80211_MSG_POWER, ni,
|
|
|
|
"recv ps-poll, send packet, %u still queued", qlen);
|
|
|
|
m->m_flags |= M_MORE_DATA;
|
|
|
|
} else {
|
|
|
|
IEEE80211_NOTE(vap, IEEE80211_MSG_POWER, ni,
|
|
|
|
"%s", "recv ps-poll, send packet, queue empty");
|
|
|
|
if (vap->iv_set_tim != NULL)
|
|
|
|
vap->iv_set_tim(ni, 0);
|
|
|
|
}
|
|
|
|
m->m_flags |= M_PWR_SAV; /* bypass PS handling */
|
2008-10-26 01:04:46 +00:00
|
|
|
|
2013-01-06 04:40:07 +00:00
|
|
|
/*
|
Bring over my initial work from the net80211 TX locking branch.
This patchset implements a new TX lock, covering both the per-VAP (and
thus per-node) TX locking and the serialisation through to the underlying
physical device.
This implements the hard requirement that frames to the underlying physical
device are scheduled to the underlying device in the same order that they
are processed at the VAP layer. This includes adding extra encapsulation
state (such as sequence numbers and CCMP IV numbers.) Any order mismatch
here will result in dropped packets at the receiver.
There are multiple transmit contexts from the upper protocol layers as well
as the "raw" interface via the management and BPF transmit paths.
All of these need to be correctly serialised or bad behaviour will result
under load.
The specifics:
* add a new TX IC lock - it will eventually just be used for serialisation
to the underlying physical device but for now it's used for both the
VAP encapsulation/serialisation and the physical device dispatch.
This lock is specifically non-recursive.
* Methodize the parent transmit, vap transmit and ic_raw_xmit function
pointers; use lock assertions in the parent/vap transmit routines.
* Add a lock assertion in ieee80211_encap() - the TX lock must be held
here to guarantee sensible behaviour.
* Refactor out the packet sending code from ieee80211_start() - now
ieee80211_start() is just a loop over the ifnet queue and it dispatches
each VAP packet send through ieee80211_start_pkt().
Yes, I will likely rename ieee80211_start_pkt() to something that
better reflects its status as a VAP packet transmit path. More on
that later.
* Add locking around the management and BAR TX sending - to ensure that
encapsulation and TX are done hand-in-hand.
* Add locking in the mesh code - again, to ensure that encapsulation
and mesh transmit are done hand-in-hand.
* Add locking around the power save queue and ageq handling, when
dispatching to the parent interface.
* Add locking around the WDS handoff.
* Add a note in the mesh dispatch code that the TX path needs to be
re-thought-out - right now it's doing a direct parent device transmit
rather than going via the vap layer. It may "work", but it's likely
incorrect (as it bypasses any possible per-node power save and
aggregation handling.)
Why not a per-VAP or per-node lock?
Because in order to ensure per-VAP ordering, we'd have to hold the
VAP lock across parent->if_transmit(). There are a few problems
with this:
* There's some state being setup during each driver transmit - specifically,
the encryption encap / CCMP IV setup. That should eventually be dragged
back into the encapsulation phase but for now it lives in the driver TX path.
This should be locked.
* Two drivers (ath, iwn) re-use the node->ni_txseqs array in order to
allocate sequence numbers when doing transmit aggregation. This should
also be locked.
* Drivers may have multiple frames queued already - so when one calls
if_transmit(), it may end up dispatching multiple frames for different
VAPs/nodes, each needing a different lock when handling that particular
end destination.
So to be "correct" locking-wise, we'd end up needing to grab a VAP or
node lock inside the driver TX path when setting up crypto / AMPDU sequence
numbers, and we may already _have_ a TX lock held - mostly for the same
destination vap/node, but sometimes it'll be for others. That could lead
to LORs and thus deadlocks.
So for now, I'm sticking with an IC TX lock. It has the advantage of
papering over the above and it also has the added advantage that I can
assert that it's being held when doing a parent device transmit.
I'll look at splitting the locks out a bit more later on.
General outstanding net80211 TX path issues / TODO:
* Look into separating out the VAP serialisation and the IC handoff.
It's going to be tricky as parent->if_transmit() doesn't give me the
opportunity to split queuing from driver dispatch. See above.
* Work with monthadar to fix up the mesh transmit path so it doesn't go via
the parent interface when retransmitting frames.
* Push the encryption handling back into the driver, if it's at all
architectually sane to do so. I know it's possible - it's what mac80211
in Linux does.
* Make ieee80211_raw_xmit() queue a frame into VAP or parent queue rather
than doing a short-cut direct into the driver. There are QoS issues
here - you do want your management frames to be encapsulated and pushed
onto the stack sooner than the (large, bursty) amount of data frames
that are queued. But there has to be a saner way to do this.
* Fragments are still broken - drivers need to be upgraded to an if_transmit()
implementation and then fragmentation handling needs to be properly fixed.
Tested:
* STA - AR5416, AR9280, Intel 5300 abgn wifi
* Hostap - AR5416, AR9160, AR9280
* Mesh - some testing by monthadar@, more to come.
2013-03-08 20:23:55 +00:00
|
|
|
* Do the right thing; if it's an encap'ed frame then
|
2015-10-12 04:30:38 +00:00
|
|
|
* call ieee80211_parent_xmitpkt() else
|
2013-08-08 05:09:35 +00:00
|
|
|
* call ieee80211_vap_xmitpkt().
|
2013-01-06 04:40:07 +00:00
|
|
|
*/
|
Bring over my initial work from the net80211 TX locking branch.
This patchset implements a new TX lock, covering both the per-VAP (and
thus per-node) TX locking and the serialisation through to the underlying
physical device.
This implements the hard requirement that frames to the underlying physical
device are scheduled to the underlying device in the same order that they
are processed at the VAP layer. This includes adding extra encapsulation
state (such as sequence numbers and CCMP IV numbers.) Any order mismatch
here will result in dropped packets at the receiver.
There are multiple transmit contexts from the upper protocol layers as well
as the "raw" interface via the management and BPF transmit paths.
All of these need to be correctly serialised or bad behaviour will result
under load.
The specifics:
* add a new TX IC lock - it will eventually just be used for serialisation
to the underlying physical device but for now it's used for both the
VAP encapsulation/serialisation and the physical device dispatch.
This lock is specifically non-recursive.
* Methodize the parent transmit, vap transmit and ic_raw_xmit function
pointers; use lock assertions in the parent/vap transmit routines.
* Add a lock assertion in ieee80211_encap() - the TX lock must be held
here to guarantee sensible behaviour.
* Refactor out the packet sending code from ieee80211_start() - now
ieee80211_start() is just a loop over the ifnet queue and it dispatches
each VAP packet send through ieee80211_start_pkt().
Yes, I will likely rename ieee80211_start_pkt() to something that
better reflects its status as a VAP packet transmit path. More on
that later.
* Add locking around the management and BAR TX sending - to ensure that
encapsulation and TX are done hand-in-hand.
* Add locking in the mesh code - again, to ensure that encapsulation
and mesh transmit are done hand-in-hand.
* Add locking around the power save queue and ageq handling, when
dispatching to the parent interface.
* Add locking around the WDS handoff.
* Add a note in the mesh dispatch code that the TX path needs to be
re-thought-out - right now it's doing a direct parent device transmit
rather than going via the vap layer. It may "work", but it's likely
incorrect (as it bypasses any possible per-node power save and
aggregation handling.)
Why not a per-VAP or per-node lock?
Because in order to ensure per-VAP ordering, we'd have to hold the
VAP lock across parent->if_transmit(). There are a few problems
with this:
* There's some state being setup during each driver transmit - specifically,
the encryption encap / CCMP IV setup. That should eventually be dragged
back into the encapsulation phase but for now it lives in the driver TX path.
This should be locked.
* Two drivers (ath, iwn) re-use the node->ni_txseqs array in order to
allocate sequence numbers when doing transmit aggregation. This should
also be locked.
* Drivers may have multiple frames queued already - so when one calls
if_transmit(), it may end up dispatching multiple frames for different
VAPs/nodes, each needing a different lock when handling that particular
end destination.
So to be "correct" locking-wise, we'd end up needing to grab a VAP or
node lock inside the driver TX path when setting up crypto / AMPDU sequence
numbers, and we may already _have_ a TX lock held - mostly for the same
destination vap/node, but sometimes it'll be for others. That could lead
to LORs and thus deadlocks.
So for now, I'm sticking with an IC TX lock. It has the advantage of
papering over the above and it also has the added advantage that I can
assert that it's being held when doing a parent device transmit.
I'll look at splitting the locks out a bit more later on.
General outstanding net80211 TX path issues / TODO:
* Look into separating out the VAP serialisation and the IC handoff.
It's going to be tricky as parent->if_transmit() doesn't give me the
opportunity to split queuing from driver dispatch. See above.
* Work with monthadar to fix up the mesh transmit path so it doesn't go via
the parent interface when retransmitting frames.
* Push the encryption handling back into the driver, if it's at all
architectually sane to do so. I know it's possible - it's what mac80211
in Linux does.
* Make ieee80211_raw_xmit() queue a frame into VAP or parent queue rather
than doing a short-cut direct into the driver. There are QoS issues
here - you do want your management frames to be encapsulated and pushed
onto the stack sooner than the (large, bursty) amount of data frames
that are queued. But there has to be a saner way to do this.
* Fragments are still broken - drivers need to be upgraded to an if_transmit()
implementation and then fragmentation handling needs to be properly fixed.
Tested:
* STA - AR5416, AR9280, Intel 5300 abgn wifi
* Hostap - AR5416, AR9160, AR9280
* Mesh - some testing by monthadar@, more to come.
2013-03-08 20:23:55 +00:00
|
|
|
if (m->m_flags & M_ENCAP) {
|
2015-10-12 04:30:38 +00:00
|
|
|
(void) ieee80211_parent_xmitpkt(ic, m);
|
Bring over my initial work from the net80211 TX locking branch.
This patchset implements a new TX lock, covering both the per-VAP (and
thus per-node) TX locking and the serialisation through to the underlying
physical device.
This implements the hard requirement that frames to the underlying physical
device are scheduled to the underlying device in the same order that they
are processed at the VAP layer. This includes adding extra encapsulation
state (such as sequence numbers and CCMP IV numbers.) Any order mismatch
here will result in dropped packets at the receiver.
There are multiple transmit contexts from the upper protocol layers as well
as the "raw" interface via the management and BPF transmit paths.
All of these need to be correctly serialised or bad behaviour will result
under load.
The specifics:
* add a new TX IC lock - it will eventually just be used for serialisation
to the underlying physical device but for now it's used for both the
VAP encapsulation/serialisation and the physical device dispatch.
This lock is specifically non-recursive.
* Methodize the parent transmit, vap transmit and ic_raw_xmit function
pointers; use lock assertions in the parent/vap transmit routines.
* Add a lock assertion in ieee80211_encap() - the TX lock must be held
here to guarantee sensible behaviour.
* Refactor out the packet sending code from ieee80211_start() - now
ieee80211_start() is just a loop over the ifnet queue and it dispatches
each VAP packet send through ieee80211_start_pkt().
Yes, I will likely rename ieee80211_start_pkt() to something that
better reflects its status as a VAP packet transmit path. More on
that later.
* Add locking around the management and BAR TX sending - to ensure that
encapsulation and TX are done hand-in-hand.
* Add locking in the mesh code - again, to ensure that encapsulation
and mesh transmit are done hand-in-hand.
* Add locking around the power save queue and ageq handling, when
dispatching to the parent interface.
* Add locking around the WDS handoff.
* Add a note in the mesh dispatch code that the TX path needs to be
re-thought-out - right now it's doing a direct parent device transmit
rather than going via the vap layer. It may "work", but it's likely
incorrect (as it bypasses any possible per-node power save and
aggregation handling.)
Why not a per-VAP or per-node lock?
Because in order to ensure per-VAP ordering, we'd have to hold the
VAP lock across parent->if_transmit(). There are a few problems
with this:
* There's some state being setup during each driver transmit - specifically,
the encryption encap / CCMP IV setup. That should eventually be dragged
back into the encapsulation phase but for now it lives in the driver TX path.
This should be locked.
* Two drivers (ath, iwn) re-use the node->ni_txseqs array in order to
allocate sequence numbers when doing transmit aggregation. This should
also be locked.
* Drivers may have multiple frames queued already - so when one calls
if_transmit(), it may end up dispatching multiple frames for different
VAPs/nodes, each needing a different lock when handling that particular
end destination.
So to be "correct" locking-wise, we'd end up needing to grab a VAP or
node lock inside the driver TX path when setting up crypto / AMPDU sequence
numbers, and we may already _have_ a TX lock held - mostly for the same
destination vap/node, but sometimes it'll be for others. That could lead
to LORs and thus deadlocks.
So for now, I'm sticking with an IC TX lock. It has the advantage of
papering over the above and it also has the added advantage that I can
assert that it's being held when doing a parent device transmit.
I'll look at splitting the locks out a bit more later on.
General outstanding net80211 TX path issues / TODO:
* Look into separating out the VAP serialisation and the IC handoff.
It's going to be tricky as parent->if_transmit() doesn't give me the
opportunity to split queuing from driver dispatch. See above.
* Work with monthadar to fix up the mesh transmit path so it doesn't go via
the parent interface when retransmitting frames.
* Push the encryption handling back into the driver, if it's at all
architectually sane to do so. I know it's possible - it's what mac80211
in Linux does.
* Make ieee80211_raw_xmit() queue a frame into VAP or parent queue rather
than doing a short-cut direct into the driver. There are QoS issues
here - you do want your management frames to be encapsulated and pushed
onto the stack sooner than the (large, bursty) amount of data frames
that are queued. But there has to be a saner way to do this.
* Fragments are still broken - drivers need to be upgraded to an if_transmit()
implementation and then fragmentation handling needs to be properly fixed.
Tested:
* STA - AR5416, AR9280, Intel 5300 abgn wifi
* Hostap - AR5416, AR9160, AR9280
* Mesh - some testing by monthadar@, more to come.
2013-03-08 20:23:55 +00:00
|
|
|
} else {
|
2013-08-08 05:09:35 +00:00
|
|
|
(void) ieee80211_vap_xmitpkt(vap, m);
|
2013-01-06 04:40:07 +00:00
|
|
|
}
|
2008-04-20 20:35:46 +00:00
|
|
|
}
|