freebsd-dev/sys/rpc/svc_auth_unix.c

145 lines
4.3 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2009, Sun Microsystems, Inc.
* All rights reserved.
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of Sun Microsystems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
*/
#if defined(LIBC_SCCS) && !defined(lint)
static char *sccsid2 = "@(#)svc_auth_unix.c 1.28 88/02/08 Copyr 1984 Sun Micro";
static char *sccsid = "@(#)svc_auth_unix.c 2.3 88/08/01 4.0 RPCSRC";
#endif
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* svc_auth_unix.c
* Handles UNIX flavor authentication parameters on the service side of rpc.
* There are two svc auth implementations here: AUTH_UNIX and AUTH_SHORT.
* _svcauth_unix does full blown unix style uid,gid+gids auth,
* _svcauth_short uses a shorthand auth to index into a cache of longhand auths.
* Note: the shorthand has been gutted for efficiency.
*
* Copyright (C) 1984, Sun Microsystems, Inc.
*/
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/systm.h>
#include <sys/ucred.h>
#include <rpc/rpc.h>
#include <rpc/rpc_com.h>
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
#define MAX_MACHINE_NAME 255
#define NGRPS 16
/*
* Unix longhand authenticator
*/
enum auth_stat
_svcauth_unix(struct svc_req *rqst, struct rpc_msg *msg)
{
enum auth_stat stat;
XDR xdrs;
int32_t *buf;
uint32_t time;
struct xucred *xcr;
u_int auth_len;
size_t str_len, gid_len;
u_int i;
xcr = rqst->rq_clntcred;
auth_len = (u_int)msg->rm_call.cb_cred.oa_length;
xdrmem_create(&xdrs, msg->rm_call.cb_cred.oa_base, auth_len,
XDR_DECODE);
buf = XDR_INLINE(&xdrs, auth_len);
if (buf != NULL) {
time = IXDR_GET_UINT32(buf);
str_len = (size_t)IXDR_GET_UINT32(buf);
if (str_len > MAX_MACHINE_NAME) {
stat = AUTH_BADCRED;
goto done;
}
str_len = RNDUP(str_len);
buf += str_len / sizeof (int32_t);
xcr->cr_uid = IXDR_GET_UINT32(buf);
xcr->cr_groups[0] = IXDR_GET_UINT32(buf);
gid_len = (size_t)IXDR_GET_UINT32(buf);
if (gid_len > NGRPS) {
stat = AUTH_BADCRED;
goto done;
}
for (i = 0; i < gid_len; i++) {
Rework the credential code to support larger values of NGROUPS and NGROUPS_MAX, eliminate ABI dependencies on them, and raise the to 1024 and 1023 respectively. (Previously they were equal, but under a close reading of POSIX, NGROUPS_MAX was defined to be too large by 1 since it is the number of supplemental groups, not total number of groups.) The bulk of the change consists of converting the struct ucred member cr_groups from a static array to a pointer. Do the equivalent in kinfo_proc. Introduce new interfaces crcopysafe() and crsetgroups() for duplicating a process credential before modifying it and for setting group lists respectively. Both interfaces take care for the details of allocating groups array. crsetgroups() takes care of truncating the group list to the current maximum (NGROUPS) if necessary. In the future, crsetgroups() may be responsible for insuring invariants such as sorting the supplemental groups to allow groupmember() to be implemented as a binary search. Because we can not change struct xucred without breaking application ABIs, we leave it alone and introduce a new XU_NGROUPS value which is always 16 and is to be used or NGRPS as appropriate for things such as NFS which need to use no more than 16 groups. When feasible, truncate the group list rather than generating an error. Minor changes: - Reduce the number of hand rolled versions of groupmember(). - Do not assign to both cr_gid and cr_groups[0]. - Modify ipfw to cache ucreds instead of part of their contents since they are immutable once referenced by more than one entity. Submitted by: Isilon Systems (initial implementation) X-MFC after: never PR: bin/113398 kern/133867
2009-06-19 17:10:35 +00:00
if (i + 1 < XU_NGROUPS)
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
xcr->cr_groups[i + 1] = IXDR_GET_INT32(buf);
else
buf++;
}
Rework the credential code to support larger values of NGROUPS and NGROUPS_MAX, eliminate ABI dependencies on them, and raise the to 1024 and 1023 respectively. (Previously they were equal, but under a close reading of POSIX, NGROUPS_MAX was defined to be too large by 1 since it is the number of supplemental groups, not total number of groups.) The bulk of the change consists of converting the struct ucred member cr_groups from a static array to a pointer. Do the equivalent in kinfo_proc. Introduce new interfaces crcopysafe() and crsetgroups() for duplicating a process credential before modifying it and for setting group lists respectively. Both interfaces take care for the details of allocating groups array. crsetgroups() takes care of truncating the group list to the current maximum (NGROUPS) if necessary. In the future, crsetgroups() may be responsible for insuring invariants such as sorting the supplemental groups to allow groupmember() to be implemented as a binary search. Because we can not change struct xucred without breaking application ABIs, we leave it alone and introduce a new XU_NGROUPS value which is always 16 and is to be used or NGRPS as appropriate for things such as NFS which need to use no more than 16 groups. When feasible, truncate the group list rather than generating an error. Minor changes: - Reduce the number of hand rolled versions of groupmember(). - Do not assign to both cr_gid and cr_groups[0]. - Modify ipfw to cache ucreds instead of part of their contents since they are immutable once referenced by more than one entity. Submitted by: Isilon Systems (initial implementation) X-MFC after: never PR: bin/113398 kern/133867
2009-06-19 17:10:35 +00:00
if (gid_len + 1 > XU_NGROUPS)
xcr->cr_ngroups = XU_NGROUPS;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
else
xcr->cr_ngroups = gid_len + 1;
/*
* five is the smallest unix credentials structure -
* timestamp, hostname len (0), uid, gid, and gids len (0).
*/
if ((5 + gid_len) * BYTES_PER_XDR_UNIT + str_len > auth_len) {
(void) printf("bad auth_len gid %ld str %ld auth %u\n",
(long)gid_len, (long)str_len, auth_len);
stat = AUTH_BADCRED;
goto done;
}
} else if (! xdr_authunix_parms(&xdrs, &time, xcr)) {
stat = AUTH_BADCRED;
goto done;
}
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
rqst->rq_verf = _null_auth;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
stat = AUTH_OK;
done:
XDR_DESTROY(&xdrs);
return (stat);
}
/*
* Shorthand unix authenticator
* Looks up longhand in a cache.
*/
/*ARGSUSED*/
enum auth_stat
_svcauth_short(rqst, msg)
struct svc_req *rqst;
struct rpc_msg *msg;
{
return (AUTH_REJECTEDCRED);
}