2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
/*
|
2010-05-28 20:45:14 +00:00
|
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
2012-12-15 00:13:40 +00:00
|
|
|
* Portions Copyright 2011 Martin Matuska
|
2013-01-30 16:54:17 +00:00
|
|
|
* Copyright (c) 2013 by Delphix. All rights reserved.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/zfs_context.h>
|
|
|
|
#include <sys/txg_impl.h>
|
|
|
|
#include <sys/dmu_impl.h>
|
2010-05-28 20:45:14 +00:00
|
|
|
#include <sys/dmu_tx.h>
|
2008-11-20 20:01:55 +00:00
|
|
|
#include <sys/dsl_pool.h>
|
2010-05-28 20:45:14 +00:00
|
|
|
#include <sys/dsl_scan.h>
|
2008-11-20 20:01:55 +00:00
|
|
|
#include <sys/callb.h>
|
|
|
|
|
|
|
|
/*
|
2013-01-30 16:54:17 +00:00
|
|
|
* ZFS Transaction Groups
|
|
|
|
* ----------------------
|
|
|
|
*
|
|
|
|
* ZFS transaction groups are, as the name implies, groups of transactions
|
|
|
|
* that act on persistent state. ZFS asserts consistency at the granularity of
|
|
|
|
* these transaction groups. Each successive transaction group (txg) is
|
|
|
|
* assigned a 64-bit consecutive identifier. There are three active
|
|
|
|
* transaction group states: open, quiescing, or syncing. At any given time,
|
|
|
|
* there may be an active txg associated with each state; each active txg may
|
|
|
|
* either be processing, or blocked waiting to enter the next state. There may
|
|
|
|
* be up to three active txgs, and there is always a txg in the open state
|
|
|
|
* (though it may be blocked waiting to enter the quiescing state). In broad
|
|
|
|
* strokes, transactions — operations that change in-memory structures — are
|
|
|
|
* accepted into the txg in the open state, and are completed while the txg is
|
|
|
|
* in the open or quiescing states. The accumulated changes are written to
|
|
|
|
* disk in the syncing state.
|
|
|
|
*
|
|
|
|
* Open
|
|
|
|
*
|
|
|
|
* When a new txg becomes active, it first enters the open state. New
|
|
|
|
* transactions — updates to in-memory structures — are assigned to the
|
|
|
|
* currently open txg. There is always a txg in the open state so that ZFS can
|
|
|
|
* accept new changes (though the txg may refuse new changes if it has hit
|
|
|
|
* some limit). ZFS advances the open txg to the next state for a variety of
|
|
|
|
* reasons such as it hitting a time or size threshold, or the execution of an
|
|
|
|
* administrative action that must be completed in the syncing state.
|
|
|
|
*
|
|
|
|
* Quiescing
|
|
|
|
*
|
|
|
|
* After a txg exits the open state, it enters the quiescing state. The
|
|
|
|
* quiescing state is intended to provide a buffer between accepting new
|
|
|
|
* transactions in the open state and writing them out to stable storage in
|
|
|
|
* the syncing state. While quiescing, transactions can continue their
|
|
|
|
* operation without delaying either of the other states. Typically, a txg is
|
|
|
|
* in the quiescing state very briefly since the operations are bounded by
|
|
|
|
* software latencies rather than, say, slower I/O latencies. After all
|
|
|
|
* transactions complete, the txg is ready to enter the next state.
|
|
|
|
*
|
|
|
|
* Syncing
|
|
|
|
*
|
|
|
|
* In the syncing state, the in-memory state built up during the open and (to
|
|
|
|
* a lesser degree) the quiescing states is written to stable storage. The
|
|
|
|
* process of writing out modified data can, in turn modify more data. For
|
|
|
|
* example when we write new blocks, we need to allocate space for them; those
|
|
|
|
* allocations modify metadata (space maps)... which themselves must be
|
|
|
|
* written to stable storage. During the sync state, ZFS iterates, writing out
|
|
|
|
* data until it converges and all in-memory changes have been written out.
|
|
|
|
* The first such pass is the largest as it encompasses all the modified user
|
|
|
|
* data (as opposed to filesystem metadata). Subsequent passes typically have
|
|
|
|
* far less data to write as they consist exclusively of filesystem metadata.
|
|
|
|
*
|
|
|
|
* To ensure convergence, after a certain number of passes ZFS begins
|
|
|
|
* overwriting locations on stable storage that had been allocated earlier in
|
|
|
|
* the syncing state (and subsequently freed). ZFS usually allocates new
|
|
|
|
* blocks to optimize for large, continuous, writes. For the syncing state to
|
|
|
|
* converge however it must complete a pass where no new blocks are allocated
|
|
|
|
* since each allocation requires a modification of persistent metadata.
|
|
|
|
* Further, to hasten convergence, after a prescribed number of passes, ZFS
|
|
|
|
* also defers frees, and stops compressing.
|
|
|
|
*
|
|
|
|
* In addition to writing out user data, we must also execute synctasks during
|
|
|
|
* the syncing context. A synctask is the mechanism by which some
|
|
|
|
* administrative activities work such as creating and destroying snapshots or
|
|
|
|
* datasets. Note that when a synctask is initiated it enters the open txg,
|
|
|
|
* and ZFS then pushes that txg as quickly as possible to completion of the
|
|
|
|
* syncing state in order to reduce the latency of the administrative
|
|
|
|
* activity. To complete the syncing state, ZFS writes out a new uberblock,
|
|
|
|
* the root of the tree of blocks that comprise all state stored on the ZFS
|
|
|
|
* pool. Finally, if there is a quiesced txg waiting, we signal that it can
|
|
|
|
* now transition to the syncing state.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
static void txg_sync_thread(dsl_pool_t *dp);
|
|
|
|
static void txg_quiesce_thread(dsl_pool_t *dp);
|
|
|
|
|
2010-08-26 21:24:34 +00:00
|
|
|
int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Prepare the txg subsystem.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
txg_init(dsl_pool_t *dp, uint64_t txg)
|
|
|
|
{
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
int c;
|
|
|
|
bzero(tx, sizeof (tx_state_t));
|
|
|
|
|
2010-08-26 18:46:09 +00:00
|
|
|
tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
for (c = 0; c < max_ncpus; c++) {
|
|
|
|
int i;
|
|
|
|
|
|
|
|
mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
|
|
cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
|
|
|
|
NULL);
|
2010-05-28 20:45:14 +00:00
|
|
|
list_create(&tx->tx_cpu[c].tc_callbacks[i],
|
|
|
|
sizeof (dmu_tx_callback_t),
|
|
|
|
offsetof(dmu_tx_callback_t, dcb_node));
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
|
2009-01-15 21:59:39 +00:00
|
|
|
cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
tx->tx_open_txg = txg;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Close down the txg subsystem.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
txg_fini(dsl_pool_t *dp)
|
|
|
|
{
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
int c;
|
|
|
|
|
|
|
|
ASSERT(tx->tx_threads == 0);
|
|
|
|
|
|
|
|
mutex_destroy(&tx->tx_sync_lock);
|
|
|
|
|
2009-01-15 21:59:39 +00:00
|
|
|
cv_destroy(&tx->tx_sync_more_cv);
|
|
|
|
cv_destroy(&tx->tx_sync_done_cv);
|
|
|
|
cv_destroy(&tx->tx_quiesce_more_cv);
|
|
|
|
cv_destroy(&tx->tx_quiesce_done_cv);
|
|
|
|
cv_destroy(&tx->tx_exit_cv);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
for (c = 0; c < max_ncpus; c++) {
|
|
|
|
int i;
|
|
|
|
|
|
|
|
mutex_destroy(&tx->tx_cpu[c].tc_lock);
|
2010-05-28 20:45:14 +00:00
|
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
2008-11-20 20:01:55 +00:00
|
|
|
cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
|
2010-05-28 20:45:14 +00:00
|
|
|
list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
|
|
|
|
}
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
if (tx->tx_commit_cb_taskq != NULL)
|
|
|
|
taskq_destroy(tx->tx_commit_cb_taskq);
|
|
|
|
|
2010-08-26 18:46:09 +00:00
|
|
|
vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
bzero(tx, sizeof (tx_state_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start syncing transaction groups.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
txg_sync_start(dsl_pool_t *dp)
|
|
|
|
{
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
|
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
|
|
|
|
|
|
dprintf("pool %p\n", dp);
|
|
|
|
|
|
|
|
ASSERT(tx->tx_threads == 0);
|
|
|
|
|
|
|
|
tx->tx_threads = 2;
|
|
|
|
|
|
|
|
tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
|
|
|
|
dp, 0, &p0, TS_RUN, minclsyspri);
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
/*
|
|
|
|
* The sync thread can need a larger-than-default stack size on
|
|
|
|
* 32-bit x86. This is due in part to nested pools and
|
|
|
|
* scrub_visitbp() recursion.
|
|
|
|
*/
|
2010-05-28 20:45:14 +00:00
|
|
|
tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
|
2008-11-20 20:01:55 +00:00
|
|
|
dp, 0, &p0, TS_RUN, minclsyspri);
|
|
|
|
|
|
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
|
|
|
|
{
|
|
|
|
CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
|
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
|
|
|
|
{
|
|
|
|
ASSERT(*tpp != NULL);
|
|
|
|
*tpp = NULL;
|
|
|
|
tx->tx_threads--;
|
|
|
|
cv_broadcast(&tx->tx_exit_cv);
|
|
|
|
CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
|
|
|
|
thread_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, uint64_t time)
|
|
|
|
{
|
|
|
|
CALLB_CPR_SAFE_BEGIN(cpr);
|
|
|
|
|
|
|
|
if (time)
|
2011-04-01 00:07:12 +00:00
|
|
|
(void) cv_timedwait_interruptible(cv, &tx->tx_sync_lock,
|
2010-05-28 20:45:14 +00:00
|
|
|
ddi_get_lbolt() + time);
|
2008-11-20 20:01:55 +00:00
|
|
|
else
|
2011-04-01 00:07:12 +00:00
|
|
|
cv_wait_interruptible(cv, &tx->tx_sync_lock);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Stop syncing transaction groups.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
txg_sync_stop(dsl_pool_t *dp)
|
|
|
|
{
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
|
|
|
|
dprintf("pool %p\n", dp);
|
|
|
|
/*
|
|
|
|
* Finish off any work in progress.
|
|
|
|
*/
|
|
|
|
ASSERT(tx->tx_threads == 2);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We need to ensure that we've vacated the deferred space_maps.
|
|
|
|
*/
|
|
|
|
txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Wake all sync threads and wait for them to die.
|
|
|
|
*/
|
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
|
|
|
|
|
|
ASSERT(tx->tx_threads == 2);
|
|
|
|
|
|
|
|
tx->tx_exiting = 1;
|
|
|
|
|
|
|
|
cv_broadcast(&tx->tx_quiesce_more_cv);
|
|
|
|
cv_broadcast(&tx->tx_quiesce_done_cv);
|
|
|
|
cv_broadcast(&tx->tx_sync_more_cv);
|
|
|
|
|
|
|
|
while (tx->tx_threads != 0)
|
|
|
|
cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
|
|
|
|
|
|
|
|
tx->tx_exiting = 0;
|
|
|
|
|
|
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t
|
|
|
|
txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
|
|
|
|
{
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
2012-08-24 00:45:31 +00:00
|
|
|
tx_cpu_t *tc;
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t txg;
|
|
|
|
|
2012-08-24 00:45:31 +00:00
|
|
|
/*
|
|
|
|
* It appears the processor id is simply used as a "random"
|
|
|
|
* number to index into the array, and there isn't any other
|
|
|
|
* significance to the chosen tx_cpu. Because.. Why not use
|
|
|
|
* the current cpu to index into the array?
|
|
|
|
*/
|
|
|
|
kpreempt_disable();
|
|
|
|
tc = &tx->tx_cpu[CPU_SEQID];
|
|
|
|
kpreempt_enable();
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_enter(&tc->tc_lock);
|
|
|
|
|
|
|
|
txg = tx->tx_open_txg;
|
|
|
|
tc->tc_count[txg & TXG_MASK]++;
|
|
|
|
|
|
|
|
th->th_cpu = tc;
|
|
|
|
th->th_txg = txg;
|
|
|
|
|
|
|
|
return (txg);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
txg_rele_to_quiesce(txg_handle_t *th)
|
|
|
|
{
|
|
|
|
tx_cpu_t *tc = th->th_cpu;
|
|
|
|
|
|
|
|
mutex_exit(&tc->tc_lock);
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
void
|
|
|
|
txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
|
|
|
|
{
|
|
|
|
tx_cpu_t *tc = th->th_cpu;
|
|
|
|
int g = th->th_txg & TXG_MASK;
|
|
|
|
|
|
|
|
mutex_enter(&tc->tc_lock);
|
|
|
|
list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
|
|
|
|
mutex_exit(&tc->tc_lock);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
void
|
|
|
|
txg_rele_to_sync(txg_handle_t *th)
|
|
|
|
{
|
|
|
|
tx_cpu_t *tc = th->th_cpu;
|
|
|
|
int g = th->th_txg & TXG_MASK;
|
|
|
|
|
|
|
|
mutex_enter(&tc->tc_lock);
|
|
|
|
ASSERT(tc->tc_count[g] != 0);
|
|
|
|
if (--tc->tc_count[g] == 0)
|
|
|
|
cv_broadcast(&tc->tc_cv[g]);
|
|
|
|
mutex_exit(&tc->tc_lock);
|
|
|
|
|
|
|
|
th->th_cpu = NULL; /* defensive */
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
txg_quiesce(dsl_pool_t *dp, uint64_t txg)
|
|
|
|
{
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
int g = txg & TXG_MASK;
|
|
|
|
int c;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Grab all tx_cpu locks so nobody else can get into this txg.
|
|
|
|
*/
|
|
|
|
for (c = 0; c < max_ncpus; c++)
|
|
|
|
mutex_enter(&tx->tx_cpu[c].tc_lock);
|
|
|
|
|
|
|
|
ASSERT(txg == tx->tx_open_txg);
|
|
|
|
tx->tx_open_txg++;
|
|
|
|
|
2013-04-25 23:29:22 +00:00
|
|
|
/*
|
|
|
|
* Now that we've incremented tx_open_txg, we can let threads
|
|
|
|
* enter the next transaction group.
|
|
|
|
*/
|
|
|
|
for (c = 0; c < max_ncpus; c++)
|
|
|
|
mutex_exit(&tx->tx_cpu[c].tc_lock);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* Quiesce the transaction group by waiting for everyone to txg_exit().
|
|
|
|
*/
|
|
|
|
for (c = 0; c < max_ncpus; c++) {
|
|
|
|
tx_cpu_t *tc = &tx->tx_cpu[c];
|
|
|
|
mutex_enter(&tc->tc_lock);
|
|
|
|
while (tc->tc_count[g] != 0)
|
|
|
|
cv_wait(&tc->tc_cv[g], &tc->tc_lock);
|
|
|
|
mutex_exit(&tc->tc_lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
static void
|
|
|
|
txg_do_callbacks(list_t *cb_list)
|
|
|
|
{
|
|
|
|
dmu_tx_do_callbacks(cb_list, 0);
|
|
|
|
|
|
|
|
list_destroy(cb_list);
|
|
|
|
|
|
|
|
kmem_free(cb_list, sizeof (list_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Dispatch the commit callbacks registered on this txg to worker threads.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
|
|
|
|
{
|
|
|
|
int c;
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
list_t *cb_list;
|
|
|
|
|
|
|
|
for (c = 0; c < max_ncpus; c++) {
|
|
|
|
tx_cpu_t *tc = &tx->tx_cpu[c];
|
|
|
|
/* No need to lock tx_cpu_t at this point */
|
|
|
|
|
|
|
|
int g = txg & TXG_MASK;
|
|
|
|
|
|
|
|
if (list_is_empty(&tc->tc_callbacks[g]))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (tx->tx_commit_cb_taskq == NULL) {
|
|
|
|
/*
|
|
|
|
* Commit callback taskq hasn't been created yet.
|
|
|
|
*/
|
|
|
|
tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
|
2010-08-26 17:17:18 +00:00
|
|
|
100, minclsyspri, max_ncpus, INT_MAX,
|
|
|
|
TASKQ_THREADS_CPU_PCT | TASKQ_PREPOPULATE);
|
2010-05-28 20:45:14 +00:00
|
|
|
}
|
|
|
|
|
2012-05-07 17:49:51 +00:00
|
|
|
cb_list = kmem_alloc(sizeof (list_t), KM_PUSHPAGE);
|
2010-05-28 20:45:14 +00:00
|
|
|
list_create(cb_list, sizeof (dmu_tx_callback_t),
|
|
|
|
offsetof(dmu_tx_callback_t, dcb_node));
|
|
|
|
|
2010-08-26 17:17:18 +00:00
|
|
|
list_move_tail(cb_list, &tc->tc_callbacks[g]);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
(void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
|
|
|
|
txg_do_callbacks, cb_list, TQ_SLEEP);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-01-21 22:35:41 +00:00
|
|
|
/*
|
|
|
|
* Wait for pending commit callbacks of already-synced transactions to finish
|
|
|
|
* processing.
|
|
|
|
* Calling this function from within a commit callback will deadlock.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
txg_wait_callbacks(dsl_pool_t *dp)
|
|
|
|
{
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
|
|
|
|
if (tx->tx_commit_cb_taskq != NULL)
|
|
|
|
taskq_wait(tx->tx_commit_cb_taskq);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
static void
|
|
|
|
txg_sync_thread(dsl_pool_t *dp)
|
|
|
|
{
|
2010-05-28 20:45:14 +00:00
|
|
|
spa_t *spa = dp->dp_spa;
|
2008-11-20 20:01:55 +00:00
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
callb_cpr_t cpr;
|
2008-12-03 20:09:06 +00:00
|
|
|
uint64_t start, delta;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2012-08-18 18:17:23 +00:00
|
|
|
#ifdef _KERNEL
|
|
|
|
/*
|
|
|
|
* Annotate this process with a flag that indicates that it is
|
|
|
|
* unsafe to use KM_SLEEP during memory allocations due to the
|
|
|
|
* potential for a deadlock. KM_PUSHPAGE should be used instead.
|
|
|
|
*/
|
|
|
|
current->flags |= PF_NOFS;
|
|
|
|
#endif /* _KERNEL */
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
txg_thread_enter(tx, &cpr);
|
|
|
|
|
|
|
|
start = delta = 0;
|
|
|
|
for (;;) {
|
2012-10-11 20:56:32 +00:00
|
|
|
uint64_t timer, timeout;
|
2008-12-03 20:09:06 +00:00
|
|
|
uint64_t txg;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2012-10-11 20:56:32 +00:00
|
|
|
timeout = zfs_txg_timeout * hz;
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
2010-05-28 20:45:14 +00:00
|
|
|
* We sync when we're scanning, there's someone waiting
|
2008-12-03 20:09:06 +00:00
|
|
|
* on us, or the quiesce thread has handed off a txg to
|
|
|
|
* us, or we have reached our timeout.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
|
|
|
timer = (delta >= timeout ? 0 : timeout - delta);
|
2010-05-28 20:45:14 +00:00
|
|
|
while (!dsl_scan_active(dp->dp_scan) &&
|
2008-12-03 20:09:06 +00:00
|
|
|
!tx->tx_exiting && timer > 0 &&
|
2008-11-20 20:01:55 +00:00
|
|
|
tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
|
|
|
|
tx->tx_quiesced_txg == 0) {
|
|
|
|
dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
|
|
|
|
tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
|
|
|
|
txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
|
2010-05-28 20:45:14 +00:00
|
|
|
delta = ddi_get_lbolt() - start;
|
2008-11-20 20:01:55 +00:00
|
|
|
timer = (delta > timeout ? 0 : timeout - delta);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Wait until the quiesce thread hands off a txg to us,
|
|
|
|
* prompting it to do so if necessary.
|
|
|
|
*/
|
|
|
|
while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
|
|
|
|
if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
|
|
|
|
tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
|
|
|
|
cv_broadcast(&tx->tx_quiesce_more_cv);
|
|
|
|
txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tx->tx_exiting)
|
|
|
|
txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Consume the quiesced txg which has been handed off to
|
|
|
|
* us. This may cause the quiescing thread to now be
|
|
|
|
* able to quiesce another txg, so we must signal it.
|
|
|
|
*/
|
|
|
|
txg = tx->tx_quiesced_txg;
|
|
|
|
tx->tx_quiesced_txg = 0;
|
|
|
|
tx->tx_syncing_txg = txg;
|
|
|
|
cv_broadcast(&tx->tx_quiesce_more_cv);
|
|
|
|
|
|
|
|
dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
|
|
|
|
txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
|
|
|
|
mutex_exit(&tx->tx_sync_lock);
|
2008-12-03 20:09:06 +00:00
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
start = ddi_get_lbolt();
|
|
|
|
spa_sync(spa, txg);
|
|
|
|
delta = ddi_get_lbolt() - start;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
|
|
tx->tx_synced_txg = txg;
|
|
|
|
tx->tx_syncing_txg = 0;
|
|
|
|
cv_broadcast(&tx->tx_sync_done_cv);
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Dispatch commit callbacks to worker threads.
|
|
|
|
*/
|
|
|
|
txg_dispatch_callbacks(dp, txg);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
txg_quiesce_thread(dsl_pool_t *dp)
|
|
|
|
{
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
callb_cpr_t cpr;
|
|
|
|
|
|
|
|
txg_thread_enter(tx, &cpr);
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
uint64_t txg;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We quiesce when there's someone waiting on us.
|
|
|
|
* However, we can only have one txg in "quiescing" or
|
|
|
|
* "quiesced, waiting to sync" state. So we wait until
|
|
|
|
* the "quiesced, waiting to sync" txg has been consumed
|
|
|
|
* by the sync thread.
|
|
|
|
*/
|
|
|
|
while (!tx->tx_exiting &&
|
|
|
|
(tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
|
|
|
|
tx->tx_quiesced_txg != 0))
|
|
|
|
txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
|
|
|
|
|
|
|
|
if (tx->tx_exiting)
|
|
|
|
txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
|
|
|
|
|
|
|
|
txg = tx->tx_open_txg;
|
|
|
|
dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
|
|
|
|
txg, tx->tx_quiesce_txg_waiting,
|
|
|
|
tx->tx_sync_txg_waiting);
|
|
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
|
|
txg_quiesce(dp, txg);
|
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hand this txg off to the sync thread.
|
|
|
|
*/
|
|
|
|
dprintf("quiesce done, handing off txg %llu\n", txg);
|
|
|
|
tx->tx_quiesced_txg = txg;
|
|
|
|
cv_broadcast(&tx->tx_sync_more_cv);
|
|
|
|
cv_broadcast(&tx->tx_quiesce_done_cv);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Delay this thread by 'ticks' if we are still in the open transaction
|
|
|
|
* group and there is already a waiting txg quiesing or quiesced. Abort
|
|
|
|
* the delay if this txg stalls or enters the quiesing state.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
txg_delay(dsl_pool_t *dp, uint64_t txg, int ticks)
|
|
|
|
{
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
2011-08-01 17:34:06 +00:00
|
|
|
clock_t timeout = ddi_get_lbolt() + ticks;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/* don't delay if this txg could transition to quiesing immediately */
|
|
|
|
if (tx->tx_open_txg > txg ||
|
|
|
|
tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
|
|
if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
|
|
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
while (ddi_get_lbolt() < timeout &&
|
2008-11-20 20:01:55 +00:00
|
|
|
tx->tx_syncing_txg < txg-1 && !txg_stalled(dp))
|
|
|
|
(void) cv_timedwait(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock,
|
|
|
|
timeout);
|
|
|
|
|
2012-01-20 18:58:57 +00:00
|
|
|
DMU_TX_STAT_BUMP(dmu_tx_delay);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
|
|
|
|
{
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT(!dsl_pool_config_held(dp));
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
|
|
ASSERT(tx->tx_threads == 2);
|
|
|
|
if (txg == 0)
|
2010-05-28 20:45:14 +00:00
|
|
|
txg = tx->tx_open_txg + TXG_DEFER_SIZE;
|
2008-11-20 20:01:55 +00:00
|
|
|
if (tx->tx_sync_txg_waiting < txg)
|
|
|
|
tx->tx_sync_txg_waiting = txg;
|
|
|
|
dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
|
|
|
|
txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
|
|
|
|
while (tx->tx_synced_txg < txg) {
|
|
|
|
dprintf("broadcasting sync more "
|
|
|
|
"tx_synced=%llu waiting=%llu dp=%p\n",
|
|
|
|
tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
|
|
|
|
cv_broadcast(&tx->tx_sync_more_cv);
|
|
|
|
cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
|
|
|
|
}
|
|
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
txg_wait_open(dsl_pool_t *dp, uint64_t txg)
|
|
|
|
{
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
ASSERT(!dsl_pool_config_held(dp));
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
|
|
ASSERT(tx->tx_threads == 2);
|
|
|
|
if (txg == 0)
|
|
|
|
txg = tx->tx_open_txg + 1;
|
|
|
|
if (tx->tx_quiesce_txg_waiting < txg)
|
|
|
|
tx->tx_quiesce_txg_waiting = txg;
|
|
|
|
dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
|
|
|
|
txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
|
|
|
|
while (tx->tx_open_txg < txg) {
|
|
|
|
cv_broadcast(&tx->tx_quiesce_more_cv);
|
|
|
|
cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
|
|
|
|
}
|
|
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
|
|
}
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
boolean_t
|
2008-11-20 20:01:55 +00:00
|
|
|
txg_stalled(dsl_pool_t *dp)
|
|
|
|
{
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
|
|
|
|
}
|
|
|
|
|
2008-12-03 20:09:06 +00:00
|
|
|
boolean_t
|
|
|
|
txg_sync_waiting(dsl_pool_t *dp)
|
|
|
|
{
|
|
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
|
|
|
|
return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
|
|
|
|
tx->tx_quiesced_txg != 0);
|
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* Per-txg object lists.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
txg_list_create(txg_list_t *tl, size_t offset)
|
|
|
|
{
|
|
|
|
int t;
|
|
|
|
|
|
|
|
mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
|
|
|
|
tl->tl_offset = offset;
|
|
|
|
|
|
|
|
for (t = 0; t < TXG_SIZE; t++)
|
|
|
|
tl->tl_head[t] = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
txg_list_destroy(txg_list_t *tl)
|
|
|
|
{
|
|
|
|
int t;
|
|
|
|
|
|
|
|
for (t = 0; t < TXG_SIZE; t++)
|
|
|
|
ASSERT(txg_list_empty(tl, t));
|
|
|
|
|
|
|
|
mutex_destroy(&tl->tl_lock);
|
|
|
|
}
|
|
|
|
|
2012-12-15 00:13:40 +00:00
|
|
|
boolean_t
|
2008-11-20 20:01:55 +00:00
|
|
|
txg_list_empty(txg_list_t *tl, uint64_t txg)
|
|
|
|
{
|
|
|
|
return (tl->tl_head[txg & TXG_MASK] == NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2013-09-04 12:00:57 +00:00
|
|
|
* Add an entry to the list (unless it's already on the list).
|
|
|
|
* Returns B_TRUE if it was actually added.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
boolean_t
|
2008-11-20 20:01:55 +00:00
|
|
|
txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
|
|
|
|
{
|
|
|
|
int t = txg & TXG_MASK;
|
|
|
|
txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
|
2013-09-04 12:00:57 +00:00
|
|
|
boolean_t add;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
mutex_enter(&tl->tl_lock);
|
2013-09-04 12:00:57 +00:00
|
|
|
add = (tn->tn_member[t] == 0);
|
|
|
|
if (add) {
|
2008-11-20 20:01:55 +00:00
|
|
|
tn->tn_member[t] = 1;
|
|
|
|
tn->tn_next[t] = tl->tl_head[t];
|
|
|
|
tl->tl_head[t] = tn;
|
|
|
|
}
|
|
|
|
mutex_exit(&tl->tl_lock);
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
return (add);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
2010-05-28 20:45:14 +00:00
|
|
|
/*
|
2013-09-04 12:00:57 +00:00
|
|
|
* Add an entry to the end of the list, unless it's already on the list.
|
|
|
|
* (walks list to find end)
|
|
|
|
* Returns B_TRUE if it was actually added.
|
2010-05-28 20:45:14 +00:00
|
|
|
*/
|
2013-09-04 12:00:57 +00:00
|
|
|
boolean_t
|
2010-05-28 20:45:14 +00:00
|
|
|
txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
|
|
|
|
{
|
|
|
|
int t = txg & TXG_MASK;
|
|
|
|
txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
|
2013-09-04 12:00:57 +00:00
|
|
|
boolean_t add;
|
2010-05-28 20:45:14 +00:00
|
|
|
|
|
|
|
mutex_enter(&tl->tl_lock);
|
2013-09-04 12:00:57 +00:00
|
|
|
add = (tn->tn_member[t] == 0);
|
|
|
|
if (add) {
|
2010-05-28 20:45:14 +00:00
|
|
|
txg_node_t **tp;
|
|
|
|
|
|
|
|
for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
|
|
|
|
continue;
|
|
|
|
|
|
|
|
tn->tn_member[t] = 1;
|
|
|
|
tn->tn_next[t] = NULL;
|
|
|
|
*tp = tn;
|
|
|
|
}
|
|
|
|
mutex_exit(&tl->tl_lock);
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
return (add);
|
2010-05-28 20:45:14 +00:00
|
|
|
}
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* Remove the head of the list and return it.
|
|
|
|
*/
|
|
|
|
void *
|
|
|
|
txg_list_remove(txg_list_t *tl, uint64_t txg)
|
|
|
|
{
|
|
|
|
int t = txg & TXG_MASK;
|
|
|
|
txg_node_t *tn;
|
|
|
|
void *p = NULL;
|
|
|
|
|
|
|
|
mutex_enter(&tl->tl_lock);
|
|
|
|
if ((tn = tl->tl_head[t]) != NULL) {
|
|
|
|
p = (char *)tn - tl->tl_offset;
|
|
|
|
tl->tl_head[t] = tn->tn_next[t];
|
|
|
|
tn->tn_next[t] = NULL;
|
|
|
|
tn->tn_member[t] = 0;
|
|
|
|
}
|
|
|
|
mutex_exit(&tl->tl_lock);
|
|
|
|
|
|
|
|
return (p);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove a specific item from the list and return it.
|
|
|
|
*/
|
|
|
|
void *
|
|
|
|
txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
|
|
|
|
{
|
|
|
|
int t = txg & TXG_MASK;
|
|
|
|
txg_node_t *tn, **tp;
|
|
|
|
|
|
|
|
mutex_enter(&tl->tl_lock);
|
|
|
|
|
|
|
|
for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
|
|
|
|
if ((char *)tn - tl->tl_offset == p) {
|
|
|
|
*tp = tn->tn_next[t];
|
|
|
|
tn->tn_next[t] = NULL;
|
|
|
|
tn->tn_member[t] = 0;
|
|
|
|
mutex_exit(&tl->tl_lock);
|
|
|
|
return (p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_exit(&tl->tl_lock);
|
|
|
|
|
|
|
|
return (NULL);
|
|
|
|
}
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
boolean_t
|
2008-11-20 20:01:55 +00:00
|
|
|
txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
|
|
|
|
{
|
|
|
|
int t = txg & TXG_MASK;
|
|
|
|
txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
|
|
|
|
|
2013-09-04 12:00:57 +00:00
|
|
|
return (tn->tn_member[t] != 0);
|
2008-11-20 20:01:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Walk a txg list -- only safe if you know it's not changing.
|
|
|
|
*/
|
|
|
|
void *
|
|
|
|
txg_list_head(txg_list_t *tl, uint64_t txg)
|
|
|
|
{
|
|
|
|
int t = txg & TXG_MASK;
|
|
|
|
txg_node_t *tn = tl->tl_head[t];
|
|
|
|
|
|
|
|
return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
void *
|
|
|
|
txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
|
|
|
|
{
|
|
|
|
int t = txg & TXG_MASK;
|
|
|
|
txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
|
|
|
|
|
|
|
|
tn = tn->tn_next[t];
|
|
|
|
|
|
|
|
return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
|
|
|
|
}
|
2010-08-26 18:49:16 +00:00
|
|
|
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
|
|
EXPORT_SYMBOL(txg_init);
|
|
|
|
EXPORT_SYMBOL(txg_fini);
|
|
|
|
EXPORT_SYMBOL(txg_sync_start);
|
|
|
|
EXPORT_SYMBOL(txg_sync_stop);
|
|
|
|
EXPORT_SYMBOL(txg_hold_open);
|
|
|
|
EXPORT_SYMBOL(txg_rele_to_quiesce);
|
|
|
|
EXPORT_SYMBOL(txg_rele_to_sync);
|
|
|
|
EXPORT_SYMBOL(txg_register_callbacks);
|
|
|
|
EXPORT_SYMBOL(txg_delay);
|
|
|
|
EXPORT_SYMBOL(txg_wait_synced);
|
|
|
|
EXPORT_SYMBOL(txg_wait_open);
|
2011-01-21 22:35:41 +00:00
|
|
|
EXPORT_SYMBOL(txg_wait_callbacks);
|
2010-08-26 18:49:16 +00:00
|
|
|
EXPORT_SYMBOL(txg_stalled);
|
|
|
|
EXPORT_SYMBOL(txg_sync_waiting);
|
2012-10-11 20:56:32 +00:00
|
|
|
|
|
|
|
module_param(zfs_txg_timeout, int, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_txg_timeout, "Max seconds worth of delta per txg");
|
2010-08-26 18:49:16 +00:00
|
|
|
#endif
|