2002-11-26 17:26:06 +00:00
|
|
|
/*-
|
2004-02-22 00:33:12 +00:00
|
|
|
* Copyright (c) 1999-2002 Robert N. M. Watson
|
|
|
|
* Copyright (c) 2001-2003 Networks Associates Technology, Inc.
|
2002-11-26 17:26:06 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This software was developed by Robert Watson for the TrustedBSD Project.
|
|
|
|
*
|
|
|
|
* This software was developed for the FreeBSD Project in part by NAI Labs,
|
|
|
|
* the Security Research Division of Network Associates, Inc. under
|
|
|
|
* DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
|
|
|
|
* CHATS research program.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* $FreeBSD$
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Developed by the TrustedBSD Project.
|
|
|
|
* Low-watermark floating label mandatory integrity policy.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/acl.h>
|
|
|
|
#include <sys/conf.h>
|
|
|
|
#include <sys/extattr.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/mac.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/mount.h>
|
|
|
|
#include <sys/proc.h>
|
2003-06-23 01:26:34 +00:00
|
|
|
#include <sys/sbuf.h>
|
2002-11-26 17:26:06 +00:00
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/sysproto.h>
|
|
|
|
#include <sys/sysent.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/vnode.h>
|
|
|
|
#include <sys/file.h>
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/socketvar.h>
|
|
|
|
#include <sys/pipe.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <sys/syslog.h>
|
|
|
|
|
|
|
|
#include <fs/devfs/devfs.h>
|
|
|
|
|
|
|
|
#include <net/bpfdesc.h>
|
|
|
|
#include <net/if.h>
|
|
|
|
#include <net/if_types.h>
|
|
|
|
#include <net/if_var.h>
|
|
|
|
|
|
|
|
#include <netinet/in.h>
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
#include <netinet/in_pcb.h>
|
2002-11-26 17:26:06 +00:00
|
|
|
#include <netinet/ip_var.h>
|
|
|
|
|
|
|
|
#include <vm/vm.h>
|
|
|
|
|
|
|
|
#include <sys/mac_policy.h>
|
|
|
|
|
|
|
|
#include <security/mac_lomac/mac_lomac.h>
|
|
|
|
|
|
|
|
struct mac_lomac_proc {
|
|
|
|
struct mac_lomac mac_lomac;
|
|
|
|
struct mtx mtx;
|
|
|
|
};
|
|
|
|
|
|
|
|
SYSCTL_DECL(_security_mac);
|
|
|
|
|
|
|
|
SYSCTL_NODE(_security_mac, OID_AUTO, lomac, CTLFLAG_RW, 0,
|
|
|
|
"TrustedBSD mac_lomac policy controls");
|
|
|
|
|
|
|
|
static int mac_lomac_label_size = sizeof(struct mac_lomac);
|
|
|
|
SYSCTL_INT(_security_mac_lomac, OID_AUTO, label_size, CTLFLAG_RD,
|
|
|
|
&mac_lomac_label_size, 0, "Size of struct mac_lomac");
|
|
|
|
|
2002-12-10 16:20:34 +00:00
|
|
|
static int mac_lomac_enabled = 1;
|
2002-11-26 17:26:06 +00:00
|
|
|
SYSCTL_INT(_security_mac_lomac, OID_AUTO, enabled, CTLFLAG_RW,
|
|
|
|
&mac_lomac_enabled, 0, "Enforce MAC/LOMAC policy");
|
|
|
|
TUNABLE_INT("security.mac.lomac.enabled", &mac_lomac_enabled);
|
|
|
|
|
|
|
|
static int destroyed_not_inited;
|
|
|
|
SYSCTL_INT(_security_mac_lomac, OID_AUTO, destroyed_not_inited, CTLFLAG_RD,
|
|
|
|
&destroyed_not_inited, 0, "Count of labels destroyed but not inited");
|
|
|
|
|
|
|
|
static int trust_all_interfaces = 0;
|
|
|
|
SYSCTL_INT(_security_mac_lomac, OID_AUTO, trust_all_interfaces, CTLFLAG_RD,
|
|
|
|
&trust_all_interfaces, 0, "Consider all interfaces 'trusted' by MAC/LOMAC");
|
|
|
|
TUNABLE_INT("security.mac.lomac.trust_all_interfaces", &trust_all_interfaces);
|
|
|
|
|
|
|
|
static char trusted_interfaces[128];
|
|
|
|
SYSCTL_STRING(_security_mac_lomac, OID_AUTO, trusted_interfaces, CTLFLAG_RD,
|
|
|
|
trusted_interfaces, 0, "Interfaces considered 'trusted' by MAC/LOMAC");
|
|
|
|
TUNABLE_STR("security.mac.lomac.trusted_interfaces", trusted_interfaces,
|
|
|
|
sizeof(trusted_interfaces));
|
|
|
|
|
|
|
|
static int ptys_equal = 0;
|
|
|
|
SYSCTL_INT(_security_mac_lomac, OID_AUTO, ptys_equal, CTLFLAG_RW,
|
|
|
|
&ptys_equal, 0, "Label pty devices as lomac/equal on create");
|
|
|
|
TUNABLE_INT("security.mac.lomac.ptys_equal", &ptys_equal);
|
|
|
|
|
|
|
|
static int revocation_enabled = 1;
|
|
|
|
SYSCTL_INT(_security_mac_lomac, OID_AUTO, revocation_enabled, CTLFLAG_RW,
|
|
|
|
&revocation_enabled, 0, "Revoke access to objects on relabel");
|
|
|
|
TUNABLE_INT("security.mac.lomac.revocation_enabled", &revocation_enabled);
|
|
|
|
|
|
|
|
static int mac_lomac_slot;
|
|
|
|
#define SLOT(l) ((struct mac_lomac *)LABEL_TO_SLOT((l), mac_lomac_slot).l_ptr)
|
2004-07-28 07:01:33 +00:00
|
|
|
#define SLOT_SET(l, val) (LABEL_TO_SLOT((l), mac_lomac_slot).l_ptr = (val))
|
2002-11-26 17:26:06 +00:00
|
|
|
#define PSLOT(l) ((struct mac_lomac_proc *) \
|
|
|
|
LABEL_TO_SLOT((l), mac_lomac_slot).l_ptr)
|
2004-07-28 07:01:33 +00:00
|
|
|
#define PSLOT_SET(l, val) (LABEL_TO_SLOT((l), mac_lomac_slot).l_ptr = (val))
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
MALLOC_DEFINE(M_MACLOMAC, "lomac label", "MAC/LOMAC labels");
|
|
|
|
|
|
|
|
static struct mac_lomac *
|
|
|
|
lomac_alloc(int flag)
|
|
|
|
{
|
|
|
|
struct mac_lomac *mac_lomac;
|
|
|
|
|
|
|
|
mac_lomac = malloc(sizeof(struct mac_lomac), M_MACLOMAC, M_ZERO | flag);
|
|
|
|
|
|
|
|
return (mac_lomac);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
lomac_free(struct mac_lomac *mac_lomac)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (mac_lomac != NULL)
|
|
|
|
free(mac_lomac, M_MACLOMAC);
|
|
|
|
else
|
|
|
|
atomic_add_int(&destroyed_not_inited, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
lomac_atmostflags(struct mac_lomac *mac_lomac, int flags)
|
|
|
|
{
|
|
|
|
|
|
|
|
if ((mac_lomac->ml_flags & flags) != mac_lomac->ml_flags)
|
|
|
|
return (EINVAL);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_dominate_element(struct mac_lomac_element *a,
|
|
|
|
struct mac_lomac_element *b)
|
|
|
|
{
|
|
|
|
|
|
|
|
switch (a->mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
switch (b->mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic("mac_lomac_dominate_element: b->mle_type invalid");
|
|
|
|
}
|
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
switch (b->mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
return (a->mle_grade >= b->mle_grade);
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic("mac_lomac_dominate_element: b->mle_type invalid");
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic("mac_lomac_dominate_element: a->mle_type invalid");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_range_in_range(struct mac_lomac *rangea, struct mac_lomac *rangeb)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (mac_lomac_dominate_element(&rangeb->ml_rangehigh,
|
|
|
|
&rangea->ml_rangehigh) &&
|
|
|
|
mac_lomac_dominate_element(&rangea->ml_rangelow,
|
|
|
|
&rangeb->ml_rangelow));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_single_in_range(struct mac_lomac *single, struct mac_lomac *range)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((single->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_single_in_range: a not single"));
|
|
|
|
KASSERT((range->ml_flags & MAC_LOMAC_FLAG_RANGE) != 0,
|
|
|
|
("mac_lomac_single_in_range: b not range"));
|
|
|
|
|
|
|
|
return (mac_lomac_dominate_element(&range->ml_rangehigh,
|
|
|
|
&single->ml_single) &&
|
|
|
|
mac_lomac_dominate_element(&single->ml_single,
|
|
|
|
&range->ml_rangelow));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_auxsingle_in_range(struct mac_lomac *single, struct mac_lomac *range)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((single->ml_flags & MAC_LOMAC_FLAG_AUX) != 0,
|
|
|
|
("mac_lomac_single_in_range: a not auxsingle"));
|
|
|
|
KASSERT((range->ml_flags & MAC_LOMAC_FLAG_RANGE) != 0,
|
|
|
|
("mac_lomac_single_in_range: b not range"));
|
|
|
|
|
|
|
|
return (mac_lomac_dominate_element(&range->ml_rangehigh,
|
|
|
|
&single->ml_auxsingle) &&
|
|
|
|
mac_lomac_dominate_element(&single->ml_auxsingle,
|
|
|
|
&range->ml_rangelow));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_dominate_single(struct mac_lomac *a, struct mac_lomac *b)
|
|
|
|
{
|
|
|
|
KASSERT((a->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_dominate_single: a not single"));
|
|
|
|
KASSERT((b->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_dominate_single: b not single"));
|
|
|
|
|
|
|
|
return (mac_lomac_dominate_element(&a->ml_single, &b->ml_single));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_subject_dominate(struct mac_lomac *a, struct mac_lomac *b)
|
|
|
|
{
|
|
|
|
KASSERT((~a->ml_flags &
|
|
|
|
(MAC_LOMAC_FLAG_SINGLE | MAC_LOMAC_FLAG_RANGE)) == 0,
|
|
|
|
("mac_lomac_dominate_single: a not subject"));
|
|
|
|
KASSERT((b->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_dominate_single: b not single"));
|
|
|
|
|
|
|
|
return (mac_lomac_dominate_element(&a->ml_rangehigh,
|
|
|
|
&b->ml_single));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_equal_element(struct mac_lomac_element *a, struct mac_lomac_element *b)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (a->mle_type == MAC_LOMAC_TYPE_EQUAL ||
|
|
|
|
b->mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
return (a->mle_type == b->mle_type && a->mle_grade == b->mle_grade);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_equal_single(struct mac_lomac *a, struct mac_lomac *b)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((a->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_equal_single: a not single"));
|
|
|
|
KASSERT((b->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_equal_single: b not single"));
|
|
|
|
|
|
|
|
return (mac_lomac_equal_element(&a->ml_single, &b->ml_single));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_contains_equal(struct mac_lomac *mac_lomac)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_SINGLE)
|
|
|
|
if (mac_lomac->ml_single.mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (1);
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_AUX)
|
|
|
|
if (mac_lomac->ml_auxsingle.mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_RANGE) {
|
|
|
|
if (mac_lomac->ml_rangelow.mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (1);
|
|
|
|
if (mac_lomac->ml_rangehigh.mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_subject_privileged(struct mac_lomac *mac_lomac)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((mac_lomac->ml_flags & MAC_LOMAC_FLAGS_BOTH) ==
|
|
|
|
MAC_LOMAC_FLAGS_BOTH,
|
|
|
|
("mac_lomac_subject_privileged: subject doesn't have both labels"));
|
|
|
|
|
|
|
|
/* If the single is EQUAL, it's ok. */
|
|
|
|
if (mac_lomac->ml_single.mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
/* If either range endpoint is EQUAL, it's ok. */
|
|
|
|
if (mac_lomac->ml_rangelow.mle_type == MAC_LOMAC_TYPE_EQUAL ||
|
|
|
|
mac_lomac->ml_rangehigh.mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
/* If the range is low-high, it's ok. */
|
|
|
|
if (mac_lomac->ml_rangelow.mle_type == MAC_LOMAC_TYPE_LOW &&
|
|
|
|
mac_lomac->ml_rangehigh.mle_type == MAC_LOMAC_TYPE_HIGH)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
/* It's not ok. */
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_high_single(struct mac_lomac *mac_lomac)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((mac_lomac->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_high_single: mac_lomac not single"));
|
2003-07-05 01:24:36 +00:00
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
return (mac_lomac->ml_single.mle_type == MAC_LOMAC_TYPE_HIGH);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_valid(struct mac_lomac *mac_lomac)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_SINGLE) {
|
|
|
|
switch (mac_lomac->ml_single.mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (mac_lomac->ml_single.mle_type != MAC_LOMAC_TYPE_UNDEF)
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_AUX) {
|
|
|
|
switch (mac_lomac->ml_auxsingle.mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (mac_lomac->ml_auxsingle.mle_type != MAC_LOMAC_TYPE_UNDEF)
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_RANGE) {
|
|
|
|
switch (mac_lomac->ml_rangelow.mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (mac_lomac->ml_rangehigh.mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
if (!mac_lomac_dominate_element(&mac_lomac->ml_rangehigh,
|
|
|
|
&mac_lomac->ml_rangelow))
|
|
|
|
return (EINVAL);
|
|
|
|
} else {
|
|
|
|
if (mac_lomac->ml_rangelow.mle_type != MAC_LOMAC_TYPE_UNDEF ||
|
|
|
|
mac_lomac->ml_rangehigh.mle_type != MAC_LOMAC_TYPE_UNDEF)
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_set_range(struct mac_lomac *mac_lomac, u_short typelow,
|
|
|
|
u_short gradelow, u_short typehigh, u_short gradehigh)
|
|
|
|
{
|
|
|
|
|
|
|
|
mac_lomac->ml_rangelow.mle_type = typelow;
|
|
|
|
mac_lomac->ml_rangelow.mle_grade = gradelow;
|
|
|
|
mac_lomac->ml_rangehigh.mle_type = typehigh;
|
|
|
|
mac_lomac->ml_rangehigh.mle_grade = gradehigh;
|
|
|
|
mac_lomac->ml_flags |= MAC_LOMAC_FLAG_RANGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_set_single(struct mac_lomac *mac_lomac, u_short type, u_short grade)
|
|
|
|
{
|
|
|
|
|
|
|
|
mac_lomac->ml_single.mle_type = type;
|
|
|
|
mac_lomac->ml_single.mle_grade = grade;
|
|
|
|
mac_lomac->ml_flags |= MAC_LOMAC_FLAG_SINGLE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_copy_range(struct mac_lomac *labelfrom, struct mac_lomac *labelto)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((labelfrom->ml_flags & MAC_LOMAC_FLAG_RANGE) != 0,
|
|
|
|
("mac_lomac_copy_range: labelfrom not range"));
|
|
|
|
|
|
|
|
labelto->ml_rangelow = labelfrom->ml_rangelow;
|
|
|
|
labelto->ml_rangehigh = labelfrom->ml_rangehigh;
|
|
|
|
labelto->ml_flags |= MAC_LOMAC_FLAG_RANGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_copy_single(struct mac_lomac *labelfrom, struct mac_lomac *labelto)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((labelfrom->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_copy_single: labelfrom not single"));
|
|
|
|
|
|
|
|
labelto->ml_single = labelfrom->ml_single;
|
|
|
|
labelto->ml_flags |= MAC_LOMAC_FLAG_SINGLE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_copy_auxsingle(struct mac_lomac *labelfrom, struct mac_lomac *labelto)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((labelfrom->ml_flags & MAC_LOMAC_FLAG_AUX) != 0,
|
|
|
|
("mac_lomac_copy_auxsingle: labelfrom not auxsingle"));
|
|
|
|
|
|
|
|
labelto->ml_auxsingle = labelfrom->ml_auxsingle;
|
|
|
|
labelto->ml_flags |= MAC_LOMAC_FLAG_AUX;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_copy(struct mac_lomac *source, struct mac_lomac *dest)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (source->ml_flags & MAC_LOMAC_FLAG_SINGLE)
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
if (source->ml_flags & MAC_LOMAC_FLAG_AUX)
|
|
|
|
mac_lomac_copy_auxsingle(source, dest);
|
|
|
|
if (source->ml_flags & MAC_LOMAC_FLAG_RANGE)
|
|
|
|
mac_lomac_copy_range(source, dest);
|
|
|
|
}
|
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
static int mac_lomac_to_string(struct sbuf *sb,
|
|
|
|
struct mac_lomac *mac_lomac);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
static int
|
|
|
|
maybe_demote(struct mac_lomac *subjlabel, struct mac_lomac *objlabel,
|
|
|
|
const char *actionname, const char *objname, struct vnode *vpq)
|
|
|
|
{
|
2003-06-23 01:26:34 +00:00
|
|
|
struct sbuf subjlabel_sb, subjtext_sb, objlabel_sb;
|
|
|
|
char *subjlabeltext, *objlabeltext, *subjtext;
|
|
|
|
struct mac_lomac cached_subjlabel;
|
|
|
|
struct mac_lomac_proc *subj;
|
2002-11-26 17:26:06 +00:00
|
|
|
struct vattr va;
|
|
|
|
struct proc *p;
|
|
|
|
pid_t pgid;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = PSLOT(curthread->td_proc->p_label);
|
2003-06-23 01:26:34 +00:00
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
p = curthread->td_proc;
|
|
|
|
mtx_lock(&subj->mtx);
|
|
|
|
if (subj->mac_lomac.ml_flags & MAC_LOMAC_FLAG_UPDATE) {
|
|
|
|
/*
|
|
|
|
* Check to see if the pending demotion would be more or
|
|
|
|
* less severe than this one, and keep the more severe.
|
|
|
|
* This can only happen for a multi-threaded application.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_dominate_single(objlabel, &subj->mac_lomac)) {
|
|
|
|
mtx_unlock(&subj->mtx);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
bzero(&subj->mac_lomac, sizeof(subj->mac_lomac));
|
|
|
|
/*
|
|
|
|
* Always demote the single label.
|
|
|
|
*/
|
|
|
|
mac_lomac_copy_single(objlabel, &subj->mac_lomac);
|
|
|
|
/*
|
|
|
|
* Start with the original range, then minimize each side of
|
|
|
|
* the range to the point of not dominating the object. The
|
|
|
|
* high side will always be demoted, of course.
|
|
|
|
*/
|
|
|
|
mac_lomac_copy_range(subjlabel, &subj->mac_lomac);
|
|
|
|
if (!mac_lomac_dominate_element(&objlabel->ml_single,
|
|
|
|
&subj->mac_lomac.ml_rangelow))
|
|
|
|
subj->mac_lomac.ml_rangelow = objlabel->ml_single;
|
|
|
|
subj->mac_lomac.ml_rangehigh = objlabel->ml_single;
|
|
|
|
subj->mac_lomac.ml_flags |= MAC_LOMAC_FLAG_UPDATE;
|
|
|
|
mtx_lock_spin(&sched_lock);
|
2003-02-17 09:55:10 +00:00
|
|
|
curthread->td_flags |= TDF_ASTPENDING;
|
2002-11-26 17:26:06 +00:00
|
|
|
curthread->td_proc->p_sflag |= PS_MACPEND;
|
|
|
|
mtx_unlock_spin(&sched_lock);
|
2003-06-23 01:26:34 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Avoid memory allocation while holding a mutex; cache the
|
|
|
|
* label.
|
|
|
|
*/
|
|
|
|
mac_lomac_copy_single(&subj->mac_lomac, &cached_subjlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
mtx_unlock(&subj->mtx);
|
2003-06-23 01:26:34 +00:00
|
|
|
|
|
|
|
sbuf_new(&subjlabel_sb, NULL, 0, SBUF_AUTOEXTEND);
|
|
|
|
mac_lomac_to_string(&subjlabel_sb, subjlabel);
|
|
|
|
sbuf_finish(&subjlabel_sb);
|
|
|
|
subjlabeltext = sbuf_data(&subjlabel_sb);
|
|
|
|
|
|
|
|
sbuf_new(&subjtext_sb, NULL, 0, SBUF_AUTOEXTEND);
|
|
|
|
mac_lomac_to_string(&subjtext_sb, &subj->mac_lomac);
|
|
|
|
sbuf_finish(&subjtext_sb);
|
|
|
|
subjtext = sbuf_data(&subjtext_sb);
|
|
|
|
|
|
|
|
sbuf_new(&objlabel_sb, NULL, 0, SBUF_AUTOEXTEND);
|
|
|
|
mac_lomac_to_string(&objlabel_sb, objlabel);
|
|
|
|
sbuf_finish(&objlabel_sb);
|
|
|
|
objlabeltext = sbuf_data(&objlabel_sb);
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
pgid = p->p_pgrp->pg_id; /* XXX could be stale? */
|
|
|
|
if (vpq != NULL && VOP_GETATTR(vpq, &va, curthread->td_ucred,
|
|
|
|
curthread) == 0) {
|
|
|
|
log(LOG_INFO, "LOMAC: level-%s subject p%dg%du%d:%s demoted to"
|
|
|
|
" level %s after %s a level-%s %s (inode=%ld, "
|
|
|
|
"mountpount=%s)\n",
|
|
|
|
subjlabeltext, p->p_pid, pgid, curthread->td_ucred->cr_uid,
|
|
|
|
p->p_comm, subjtext, actionname, objlabeltext, objname,
|
|
|
|
va.va_fileid, vpq->v_mount->mnt_stat.f_mntonname);
|
|
|
|
} else {
|
|
|
|
log(LOG_INFO, "LOMAC: level-%s subject p%dg%du%d:%s demoted to"
|
|
|
|
" level %s after %s a level-%s %s\n",
|
|
|
|
subjlabeltext, p->p_pid, pgid, curthread->td_ucred->cr_uid,
|
|
|
|
p->p_comm, subjtext, actionname, objlabeltext, objname);
|
|
|
|
}
|
2003-06-23 01:26:34 +00:00
|
|
|
|
|
|
|
sbuf_delete(&subjlabel_sb);
|
|
|
|
sbuf_delete(&subjtext_sb);
|
|
|
|
sbuf_delete(&objlabel_sb);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Relabel "to" to "from" only if "from" is a valid label (contains
|
|
|
|
* at least a single), as for a relabel operation which may or may
|
|
|
|
* not involve a relevant label.
|
|
|
|
*/
|
2002-11-26 17:38:25 +00:00
|
|
|
static void
|
2002-11-26 17:26:06 +00:00
|
|
|
try_relabel(struct mac_lomac *from, struct mac_lomac *to)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (from->ml_flags & MAC_LOMAC_FLAG_SINGLE) {
|
|
|
|
bzero(to, sizeof(*to));
|
|
|
|
mac_lomac_copy(from, to);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Policy module operations.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_lomac_init(struct mac_policy_conf *conf)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Label operations.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_lomac_init_label(struct label *label)
|
|
|
|
{
|
|
|
|
|
2004-07-28 07:01:33 +00:00
|
|
|
SLOT_SET(label, lomac_alloc(M_WAITOK));
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_init_label_waitcheck(struct label *label, int flag)
|
|
|
|
{
|
|
|
|
|
2004-07-28 07:01:33 +00:00
|
|
|
SLOT_SET(label, lomac_alloc(flag));
|
2002-11-26 17:26:06 +00:00
|
|
|
if (SLOT(label) == NULL)
|
|
|
|
return (ENOMEM);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_init_proc_label(struct label *label)
|
|
|
|
{
|
|
|
|
|
2004-07-28 07:01:33 +00:00
|
|
|
PSLOT_SET(label, malloc(sizeof(struct mac_lomac_proc), M_MACLOMAC,
|
|
|
|
M_ZERO | M_WAITOK));
|
2002-11-26 17:26:06 +00:00
|
|
|
mtx_init(&PSLOT(label)->mtx, "MAC/Lomac proc lock", NULL, MTX_DEF);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_destroy_label(struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
lomac_free(SLOT(label));
|
2004-07-28 07:01:33 +00:00
|
|
|
SLOT_SET(label, NULL);
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_destroy_proc_label(struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
mtx_destroy(&PSLOT(label)->mtx);
|
|
|
|
FREE(PSLOT(label), M_MACLOMAC);
|
2004-07-28 07:01:33 +00:00
|
|
|
PSLOT_SET(label, NULL);
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
static int
|
|
|
|
mac_lomac_element_to_string(struct sbuf *sb, struct mac_lomac_element *element)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
switch (element->mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
2003-06-23 01:26:34 +00:00
|
|
|
return (sbuf_printf(sb, "high"));
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
2003-06-23 01:26:34 +00:00
|
|
|
return (sbuf_printf(sb, "low"));
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
2003-06-23 01:26:34 +00:00
|
|
|
return (sbuf_printf(sb, "equal"));
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
2003-06-23 01:26:34 +00:00
|
|
|
return (sbuf_printf(sb, "%d", element->mle_grade));
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
default:
|
|
|
|
panic("mac_lomac_element_to_string: invalid type (%d)",
|
|
|
|
element->mle_type);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2003-06-23 01:26:34 +00:00
|
|
|
mac_lomac_to_string(struct sbuf *sb, struct mac_lomac *mac_lomac)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_SINGLE) {
|
2003-06-23 01:26:34 +00:00
|
|
|
if (mac_lomac_element_to_string(sb, &mac_lomac->ml_single)
|
|
|
|
== -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_AUX) {
|
2003-06-23 01:26:34 +00:00
|
|
|
if (sbuf_putc(sb, '[') == -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (mac_lomac_element_to_string(sb, &mac_lomac->ml_auxsingle)
|
|
|
|
== -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (sbuf_putc(sb, ']') == -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_RANGE) {
|
2003-06-23 01:26:34 +00:00
|
|
|
if (sbuf_putc(sb, '(') == -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (mac_lomac_element_to_string(sb, &mac_lomac->ml_rangelow)
|
|
|
|
== -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (sbuf_putc(sb, '-') == -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (mac_lomac_element_to_string(sb, &mac_lomac->ml_rangehigh)
|
|
|
|
== -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2003-11-08 00:21:20 +00:00
|
|
|
if (sbuf_putc(sb, ')') == -1)
|
2003-06-23 01:26:34 +00:00
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_externalize_label(struct label *label, char *element_name,
|
2003-06-23 01:26:34 +00:00
|
|
|
struct sbuf *sb, int *claimed)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *mac_lomac;
|
|
|
|
|
|
|
|
if (strcmp(MAC_LOMAC_LABEL_NAME, element_name) != 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
(*claimed)++;
|
|
|
|
|
|
|
|
mac_lomac = SLOT(label);
|
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
return (mac_lomac_to_string(sb, mac_lomac));
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_parse_element(struct mac_lomac_element *element, char *string)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (strcmp(string, "high") == 0 ||
|
|
|
|
strcmp(string, "hi") == 0) {
|
|
|
|
element->mle_type = MAC_LOMAC_TYPE_HIGH;
|
|
|
|
element->mle_grade = MAC_LOMAC_TYPE_UNDEF;
|
|
|
|
} else if (strcmp(string, "low") == 0 ||
|
|
|
|
strcmp(string, "lo") == 0) {
|
|
|
|
element->mle_type = MAC_LOMAC_TYPE_LOW;
|
|
|
|
element->mle_grade = MAC_LOMAC_TYPE_UNDEF;
|
|
|
|
} else if (strcmp(string, "equal") == 0 ||
|
|
|
|
strcmp(string, "eq") == 0) {
|
|
|
|
element->mle_type = MAC_LOMAC_TYPE_EQUAL;
|
|
|
|
element->mle_grade = MAC_LOMAC_TYPE_UNDEF;
|
|
|
|
} else {
|
|
|
|
char *p0, *p1;
|
|
|
|
int d;
|
|
|
|
|
|
|
|
p0 = string;
|
|
|
|
d = strtol(p0, &p1, 10);
|
|
|
|
|
|
|
|
if (d < 0 || d > 65535)
|
|
|
|
return (EINVAL);
|
|
|
|
element->mle_type = MAC_LOMAC_TYPE_GRADE;
|
|
|
|
element->mle_grade = d;
|
|
|
|
|
|
|
|
if (p1 == p0 || *p1 != '\0')
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note: destructively consumes the string, make a local copy before
|
|
|
|
* calling if that's a problem.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
mac_lomac_parse(struct mac_lomac *mac_lomac, char *string)
|
|
|
|
{
|
|
|
|
char *range, *rangeend, *rangehigh, *rangelow, *single, *auxsingle,
|
|
|
|
*auxsingleend;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
/* Do we have a range? */
|
|
|
|
single = string;
|
|
|
|
range = index(string, '(');
|
|
|
|
if (range == single)
|
|
|
|
single = NULL;
|
|
|
|
auxsingle = index(string, '[');
|
|
|
|
if (auxsingle == single)
|
|
|
|
single = NULL;
|
|
|
|
if (range != NULL && auxsingle != NULL)
|
|
|
|
return (EINVAL);
|
|
|
|
rangelow = rangehigh = NULL;
|
|
|
|
if (range != NULL) {
|
|
|
|
/* Nul terminate the end of the single string. */
|
|
|
|
*range = '\0';
|
|
|
|
range++;
|
|
|
|
rangelow = range;
|
|
|
|
rangehigh = index(rangelow, '-');
|
|
|
|
if (rangehigh == NULL)
|
|
|
|
return (EINVAL);
|
|
|
|
rangehigh++;
|
|
|
|
if (*rangelow == '\0' || *rangehigh == '\0')
|
|
|
|
return (EINVAL);
|
|
|
|
rangeend = index(rangehigh, ')');
|
|
|
|
if (rangeend == NULL)
|
|
|
|
return (EINVAL);
|
|
|
|
if (*(rangeend + 1) != '\0')
|
|
|
|
return (EINVAL);
|
|
|
|
/* Nul terminate the ends of the ranges. */
|
|
|
|
*(rangehigh - 1) = '\0';
|
|
|
|
*rangeend = '\0';
|
|
|
|
}
|
|
|
|
KASSERT((rangelow != NULL && rangehigh != NULL) ||
|
|
|
|
(rangelow == NULL && rangehigh == NULL),
|
|
|
|
("mac_lomac_internalize_label: range mismatch"));
|
|
|
|
if (auxsingle != NULL) {
|
|
|
|
/* Nul terminate the end of the single string. */
|
|
|
|
*auxsingle = '\0';
|
|
|
|
auxsingle++;
|
|
|
|
auxsingleend = index(auxsingle, ']');
|
|
|
|
if (auxsingleend == NULL)
|
|
|
|
return (EINVAL);
|
|
|
|
if (*(auxsingleend + 1) != '\0')
|
|
|
|
return (EINVAL);
|
|
|
|
/* Nul terminate the end of the auxsingle. */
|
|
|
|
*auxsingleend = '\0';
|
|
|
|
}
|
|
|
|
|
|
|
|
bzero(mac_lomac, sizeof(*mac_lomac));
|
|
|
|
if (single != NULL) {
|
|
|
|
error = mac_lomac_parse_element(&mac_lomac->ml_single, single);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
mac_lomac->ml_flags |= MAC_LOMAC_FLAG_SINGLE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (auxsingle != NULL) {
|
|
|
|
error = mac_lomac_parse_element(&mac_lomac->ml_auxsingle,
|
|
|
|
auxsingle);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
mac_lomac->ml_flags |= MAC_LOMAC_FLAG_AUX;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rangelow != NULL) {
|
|
|
|
error = mac_lomac_parse_element(&mac_lomac->ml_rangelow,
|
|
|
|
rangelow);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
error = mac_lomac_parse_element(&mac_lomac->ml_rangehigh,
|
|
|
|
rangehigh);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
mac_lomac->ml_flags |= MAC_LOMAC_FLAG_RANGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
error = mac_lomac_valid(mac_lomac);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_internalize_label(struct label *label, char *element_name,
|
|
|
|
char *element_data, int *claimed)
|
|
|
|
{
|
|
|
|
struct mac_lomac *mac_lomac, mac_lomac_temp;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (strcmp(MAC_LOMAC_LABEL_NAME, element_name) != 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
(*claimed)++;
|
|
|
|
|
|
|
|
error = mac_lomac_parse(&mac_lomac_temp, element_data);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
mac_lomac = SLOT(label);
|
|
|
|
*mac_lomac = mac_lomac_temp;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_copy_label(struct label *src, struct label *dest)
|
|
|
|
{
|
|
|
|
|
|
|
|
*SLOT(dest) = *SLOT(src);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Labeling event operations: file system objects, and things that look
|
|
|
|
* a lot like file system objects.
|
|
|
|
*/
|
|
|
|
static void
|
2004-06-16 09:47:26 +00:00
|
|
|
mac_lomac_create_devfs_device(struct mount *mp, struct cdev *dev,
|
2002-12-09 03:44:28 +00:00
|
|
|
struct devfs_dirent *devfs_dirent, struct label *label)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *mac_lomac;
|
|
|
|
int lomac_type;
|
|
|
|
|
|
|
|
mac_lomac = SLOT(label);
|
|
|
|
if (strcmp(dev->si_name, "null") == 0 ||
|
|
|
|
strcmp(dev->si_name, "zero") == 0 ||
|
|
|
|
strcmp(dev->si_name, "random") == 0 ||
|
|
|
|
strncmp(dev->si_name, "fd/", strlen("fd/")) == 0 ||
|
|
|
|
strncmp(dev->si_name, "ttyv", strlen("ttyv")) == 0)
|
|
|
|
lomac_type = MAC_LOMAC_TYPE_EQUAL;
|
|
|
|
else if (ptys_equal &&
|
|
|
|
(strncmp(dev->si_name, "ttyp", strlen("ttyp")) == 0 ||
|
|
|
|
strncmp(dev->si_name, "ptyp", strlen("ptyp")) == 0))
|
|
|
|
lomac_type = MAC_LOMAC_TYPE_EQUAL;
|
|
|
|
else
|
|
|
|
lomac_type = MAC_LOMAC_TYPE_HIGH;
|
|
|
|
mac_lomac_set_single(mac_lomac, lomac_type, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2002-12-09 03:44:28 +00:00
|
|
|
mac_lomac_create_devfs_directory(struct mount *mp, char *dirname,
|
|
|
|
int dirnamelen, struct devfs_dirent *devfs_dirent, struct label *label)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *mac_lomac;
|
|
|
|
|
|
|
|
mac_lomac = SLOT(label);
|
|
|
|
mac_lomac_set_single(mac_lomac, MAC_LOMAC_TYPE_HIGH, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2002-12-09 03:44:28 +00:00
|
|
|
mac_lomac_create_devfs_symlink(struct ucred *cred, struct mount *mp,
|
|
|
|
struct devfs_dirent *dd, struct label *ddlabel, struct devfs_dirent *de,
|
|
|
|
struct label *delabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
dest = SLOT(delabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_mount(struct ucred *cred, struct mount *mp,
|
|
|
|
struct label *mntlabel, struct label *fslabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
dest = SLOT(mntlabel);
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
dest = SLOT(fslabel);
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_root_mount(struct ucred *cred, struct mount *mp,
|
|
|
|
struct label *mntlabel, struct label *fslabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *mac_lomac;
|
|
|
|
|
|
|
|
/* Always mount root as high integrity. */
|
|
|
|
mac_lomac = SLOT(fslabel);
|
|
|
|
mac_lomac_set_single(mac_lomac, MAC_LOMAC_TYPE_HIGH, 0);
|
|
|
|
mac_lomac = SLOT(mntlabel);
|
|
|
|
mac_lomac_set_single(mac_lomac, MAC_LOMAC_TYPE_HIGH, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_relabel_vnode(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *vnodelabel, struct label *label)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(label);
|
|
|
|
dest = SLOT(vnodelabel);
|
|
|
|
|
|
|
|
try_relabel(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2002-12-09 03:44:28 +00:00
|
|
|
mac_lomac_update_devfsdirent(struct mount *mp,
|
|
|
|
struct devfs_dirent *devfs_dirent, struct label *direntlabel,
|
|
|
|
struct vnode *vp, struct label *vnodelabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(vnodelabel);
|
|
|
|
dest = SLOT(direntlabel);
|
|
|
|
|
|
|
|
mac_lomac_copy(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_associate_vnode_devfs(struct mount *mp, struct label *fslabel,
|
|
|
|
struct devfs_dirent *de, struct label *delabel, struct vnode *vp,
|
|
|
|
struct label *vlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(delabel);
|
|
|
|
dest = SLOT(vlabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_associate_vnode_extattr(struct mount *mp, struct label *fslabel,
|
|
|
|
struct vnode *vp, struct label *vlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac temp, *source, *dest;
|
2003-01-06 12:07:38 +00:00
|
|
|
int buflen, error;
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
source = SLOT(fslabel);
|
|
|
|
dest = SLOT(vlabel);
|
|
|
|
|
|
|
|
buflen = sizeof(temp);
|
|
|
|
bzero(&temp, buflen);
|
|
|
|
|
|
|
|
error = vn_extattr_get(vp, IO_NODELOCKED, MAC_LOMAC_EXTATTR_NAMESPACE,
|
|
|
|
MAC_LOMAC_EXTATTR_NAME, &buflen, (char *)&temp, curthread);
|
|
|
|
if (error == ENOATTR || error == EOPNOTSUPP) {
|
|
|
|
/* Fall back to the fslabel. */
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
return (0);
|
|
|
|
} else if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
if (buflen != sizeof(temp)) {
|
|
|
|
if (buflen != sizeof(temp) - sizeof(temp.ml_auxsingle)) {
|
|
|
|
printf("mac_lomac_associate_vnode_extattr: bad size %d\n",
|
|
|
|
buflen);
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
bzero(&temp.ml_auxsingle, sizeof(temp.ml_auxsingle));
|
|
|
|
buflen = sizeof(temp);
|
|
|
|
(void)vn_extattr_set(vp, IO_NODELOCKED,
|
|
|
|
MAC_LOMAC_EXTATTR_NAMESPACE, MAC_LOMAC_EXTATTR_NAME,
|
|
|
|
buflen, (char *)&temp, curthread);
|
|
|
|
}
|
|
|
|
if (mac_lomac_valid(&temp) != 0) {
|
|
|
|
printf("mac_lomac_associate_vnode_extattr: invalid\n");
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
if ((temp.ml_flags & MAC_LOMAC_FLAGS_BOTH) != MAC_LOMAC_FLAG_SINGLE) {
|
|
|
|
printf("mac_lomac_associate_vnode_extattr: not single\n");
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
|
|
|
|
mac_lomac_copy_single(&temp, dest);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_associate_vnode_singlelabel(struct mount *mp,
|
|
|
|
struct label *fslabel, struct vnode *vp, struct label *vlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(fslabel);
|
|
|
|
dest = SLOT(vlabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_create_vnode_extattr(struct ucred *cred, struct mount *mp,
|
|
|
|
struct label *fslabel, struct vnode *dvp, struct label *dlabel,
|
|
|
|
struct vnode *vp, struct label *vlabel, struct componentname *cnp)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest, *dir, temp;
|
|
|
|
size_t buflen;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
buflen = sizeof(temp);
|
|
|
|
bzero(&temp, buflen);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
dest = SLOT(vlabel);
|
|
|
|
dir = SLOT(dlabel);
|
|
|
|
if (dir->ml_flags & MAC_LOMAC_FLAG_AUX) {
|
|
|
|
mac_lomac_copy_auxsingle(dir, &temp);
|
|
|
|
mac_lomac_set_single(&temp, dir->ml_auxsingle.mle_type,
|
|
|
|
dir->ml_auxsingle.mle_grade);
|
|
|
|
} else {
|
|
|
|
mac_lomac_copy_single(source, &temp);
|
|
|
|
}
|
|
|
|
|
|
|
|
error = vn_extattr_set(vp, IO_NODELOCKED, MAC_LOMAC_EXTATTR_NAMESPACE,
|
|
|
|
MAC_LOMAC_EXTATTR_NAME, buflen, (char *)&temp, curthread);
|
|
|
|
if (error == 0)
|
|
|
|
mac_lomac_copy(&temp, dest);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_setlabel_vnode_extattr(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *vlabel, struct label *intlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, temp;
|
|
|
|
size_t buflen;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
buflen = sizeof(temp);
|
|
|
|
bzero(&temp, buflen);
|
|
|
|
|
|
|
|
source = SLOT(intlabel);
|
|
|
|
if ((source->ml_flags & MAC_LOMAC_FLAG_SINGLE) == 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, &temp);
|
|
|
|
error = vn_extattr_set(vp, IO_NODELOCKED, MAC_LOMAC_EXTATTR_NAMESPACE,
|
|
|
|
MAC_LOMAC_EXTATTR_NAME, buflen, (char *)&temp, curthread);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Labeling event operations: IPC object.
|
|
|
|
*/
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
static void
|
|
|
|
mac_lomac_create_inpcb_from_socket(struct socket *so, struct label *solabel,
|
|
|
|
struct inpcb *inp, struct label *inplabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(solabel);
|
|
|
|
dest = SLOT(inplabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
static void
|
|
|
|
mac_lomac_create_mbuf_from_socket(struct socket *so, struct label *socketlabel,
|
|
|
|
struct mbuf *m, struct label *mbuflabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(socketlabel);
|
|
|
|
dest = SLOT(mbuflabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_socket(struct ucred *cred, struct socket *socket,
|
|
|
|
struct label *socketlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
dest = SLOT(socketlabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_lomac_create_pipe(struct ucred *cred, struct pipepair *pp,
|
2002-11-26 17:26:06 +00:00
|
|
|
struct label *pipelabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
dest = SLOT(pipelabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_socket_from_socket(struct socket *oldsocket,
|
|
|
|
struct label *oldsocketlabel, struct socket *newsocket,
|
|
|
|
struct label *newsocketlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(oldsocketlabel);
|
|
|
|
dest = SLOT(newsocketlabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_relabel_socket(struct ucred *cred, struct socket *socket,
|
|
|
|
struct label *socketlabel, struct label *newlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(newlabel);
|
|
|
|
dest = SLOT(socketlabel);
|
|
|
|
|
|
|
|
try_relabel(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_lomac_relabel_pipe(struct ucred *cred, struct pipepair *pp,
|
2002-11-26 17:26:06 +00:00
|
|
|
struct label *pipelabel, struct label *newlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(newlabel);
|
|
|
|
dest = SLOT(pipelabel);
|
|
|
|
|
|
|
|
try_relabel(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_set_socket_peer_from_mbuf(struct mbuf *mbuf, struct label *mbuflabel,
|
|
|
|
struct socket *socket, struct label *socketpeerlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(mbuflabel);
|
|
|
|
dest = SLOT(socketpeerlabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Labeling event operations: network objects.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_lomac_set_socket_peer_from_socket(struct socket *oldsocket,
|
|
|
|
struct label *oldsocketlabel, struct socket *newsocket,
|
|
|
|
struct label *newsocketpeerlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(oldsocketlabel);
|
|
|
|
dest = SLOT(newsocketpeerlabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_bpfdesc(struct ucred *cred, struct bpf_d *bpf_d,
|
|
|
|
struct label *bpflabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
dest = SLOT(bpflabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_ifnet(struct ifnet *ifnet, struct label *ifnetlabel)
|
|
|
|
{
|
2003-10-31 18:32:15 +00:00
|
|
|
char tifname[IFNAMSIZ], *p, *q;
|
2002-11-26 17:26:06 +00:00
|
|
|
char tiflist[sizeof(trusted_interfaces)];
|
|
|
|
struct mac_lomac *dest;
|
|
|
|
int len, grade;
|
|
|
|
|
|
|
|
dest = SLOT(ifnetlabel);
|
|
|
|
|
|
|
|
if (ifnet->if_type == IFT_LOOP) {
|
|
|
|
grade = MAC_LOMAC_TYPE_EQUAL;
|
|
|
|
goto set;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (trust_all_interfaces) {
|
|
|
|
grade = MAC_LOMAC_TYPE_HIGH;
|
|
|
|
goto set;
|
|
|
|
}
|
|
|
|
|
|
|
|
grade = MAC_LOMAC_TYPE_LOW;
|
|
|
|
|
|
|
|
if (trusted_interfaces[0] == '\0' ||
|
|
|
|
!strvalid(trusted_interfaces, sizeof(trusted_interfaces)))
|
|
|
|
goto set;
|
|
|
|
|
|
|
|
bzero(tiflist, sizeof(tiflist));
|
|
|
|
for (p = trusted_interfaces, q = tiflist; *p != '\0'; p++, q++)
|
|
|
|
if(*p != ' ' && *p != '\t')
|
|
|
|
*q = *p;
|
|
|
|
|
|
|
|
for (p = q = tiflist;; p++) {
|
|
|
|
if (*p == ',' || *p == '\0') {
|
|
|
|
len = p - q;
|
|
|
|
if (len < IFNAMSIZ) {
|
|
|
|
bzero(tifname, sizeof(tifname));
|
|
|
|
bcopy(q, tifname, len);
|
2003-10-31 18:32:15 +00:00
|
|
|
if (strcmp(tifname, ifnet->if_xname) == 0) {
|
2002-11-26 17:26:06 +00:00
|
|
|
grade = MAC_LOMAC_TYPE_HIGH;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
*p = '\0';
|
|
|
|
printf("MAC/LOMAC warning: interface name "
|
|
|
|
"\"%s\" is too long (must be < %d)\n",
|
|
|
|
q, IFNAMSIZ);
|
|
|
|
}
|
|
|
|
if (*p == '\0')
|
|
|
|
break;
|
|
|
|
q = p + 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
set:
|
|
|
|
mac_lomac_set_single(dest, grade, 0);
|
|
|
|
mac_lomac_set_range(dest, grade, 0, grade, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_ipq(struct mbuf *fragment, struct label *fragmentlabel,
|
|
|
|
struct ipq *ipq, struct label *ipqlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(fragmentlabel);
|
|
|
|
dest = SLOT(ipqlabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_datagram_from_ipq(struct ipq *ipq, struct label *ipqlabel,
|
|
|
|
struct mbuf *datagram, struct label *datagramlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(ipqlabel);
|
|
|
|
dest = SLOT(datagramlabel);
|
|
|
|
|
|
|
|
/* Just use the head, since we require them all to match. */
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_fragment(struct mbuf *datagram, struct label *datagramlabel,
|
|
|
|
struct mbuf *fragment, struct label *fragmentlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(datagramlabel);
|
|
|
|
dest = SLOT(fragmentlabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
2003-12-17 14:55:11 +00:00
|
|
|
static void
|
|
|
|
mac_lomac_create_mbuf_from_inpcb(struct inpcb *inp, struct label *inplabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(inplabel);
|
|
|
|
dest = SLOT(mlabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
static void
|
|
|
|
mac_lomac_create_mbuf_from_mbuf(struct mbuf *oldmbuf,
|
|
|
|
struct label *oldmbuflabel, struct mbuf *newmbuf,
|
|
|
|
struct label *newmbuflabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(oldmbuflabel);
|
|
|
|
dest = SLOT(newmbuflabel);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Because the source mbuf may not yet have been "created",
|
|
|
|
* just initialized, we do a conditional copy. Since we don't
|
|
|
|
* allow mbufs to have ranges, do a KASSERT to make sure that
|
|
|
|
* doesn't happen.
|
|
|
|
*/
|
|
|
|
KASSERT((source->ml_flags & MAC_LOMAC_FLAG_RANGE) == 0,
|
|
|
|
("mac_lomac_create_mbuf_from_mbuf: source mbuf has range"));
|
|
|
|
mac_lomac_copy(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_mbuf_linklayer(struct ifnet *ifnet, struct label *ifnetlabel,
|
|
|
|
struct mbuf *mbuf, struct label *mbuflabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *dest;
|
|
|
|
|
|
|
|
dest = SLOT(mbuflabel);
|
|
|
|
|
|
|
|
mac_lomac_set_single(dest, MAC_LOMAC_TYPE_EQUAL, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_mbuf_from_bpfdesc(struct bpf_d *bpf_d, struct label *bpflabel,
|
|
|
|
struct mbuf *mbuf, struct label *mbuflabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(bpflabel);
|
|
|
|
dest = SLOT(mbuflabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_mbuf_from_ifnet(struct ifnet *ifnet, struct label *ifnetlabel,
|
|
|
|
struct mbuf *m, struct label *mbuflabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(ifnetlabel);
|
|
|
|
dest = SLOT(mbuflabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_mbuf_multicast_encap(struct mbuf *oldmbuf,
|
|
|
|
struct label *oldmbuflabel, struct ifnet *ifnet, struct label *ifnetlabel,
|
|
|
|
struct mbuf *newmbuf, struct label *newmbuflabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(oldmbuflabel);
|
|
|
|
dest = SLOT(newmbuflabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_mbuf_netlayer(struct mbuf *oldmbuf, struct label *oldmbuflabel,
|
|
|
|
struct mbuf *newmbuf, struct label *newmbuflabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(oldmbuflabel);
|
|
|
|
dest = SLOT(newmbuflabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_fragment_match(struct mbuf *fragment, struct label *fragmentlabel,
|
|
|
|
struct ipq *ipq, struct label *ipqlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *a, *b;
|
|
|
|
|
|
|
|
a = SLOT(ipqlabel);
|
|
|
|
b = SLOT(fragmentlabel);
|
|
|
|
|
|
|
|
return (mac_lomac_equal_single(a, b));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_relabel_ifnet(struct ucred *cred, struct ifnet *ifnet,
|
|
|
|
struct label *ifnetlabel, struct label *newlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(newlabel);
|
|
|
|
dest = SLOT(ifnetlabel);
|
|
|
|
|
|
|
|
try_relabel(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_update_ipq(struct mbuf *fragment, struct label *fragmentlabel,
|
|
|
|
struct ipq *ipq, struct label *ipqlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
/* NOOP: we only accept matching labels, so no need to update */
|
|
|
|
}
|
|
|
|
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
static void
|
|
|
|
mac_lomac_inpcb_sosetlabel(struct socket *so, struct label *solabel,
|
|
|
|
struct inpcb *inp, struct label *inplabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(solabel);
|
|
|
|
dest = SLOT(inplabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
/*
|
|
|
|
* Labeling event operations: processes.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_lomac_execve_transition(struct ucred *old, struct ucred *new,
|
|
|
|
struct vnode *vp, struct label *vnodelabel,
|
|
|
|
struct label *interpvnodelabel, struct image_params *imgp,
|
|
|
|
struct label *execlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest, *obj, *robj;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(old->cr_label);
|
|
|
|
dest = SLOT(new->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(vnodelabel);
|
|
|
|
robj = interpvnodelabel != NULL ? SLOT(interpvnodelabel) : obj;
|
|
|
|
|
|
|
|
mac_lomac_copy(source, dest);
|
|
|
|
/*
|
|
|
|
* If there's an auxiliary label on the real object, respect it
|
|
|
|
* and assume that this level should be assumed immediately if
|
|
|
|
* a higher level is currently in place.
|
|
|
|
*/
|
|
|
|
if (robj->ml_flags & MAC_LOMAC_FLAG_AUX &&
|
|
|
|
!mac_lomac_dominate_element(&robj->ml_auxsingle, &dest->ml_single)
|
|
|
|
&& mac_lomac_auxsingle_in_range(robj, dest))
|
|
|
|
mac_lomac_set_single(dest, robj->ml_auxsingle.mle_type,
|
|
|
|
robj->ml_auxsingle.mle_grade);
|
|
|
|
/*
|
|
|
|
* Restructuring to use the execve transitioning mechanism
|
|
|
|
* instead of the normal demotion mechanism here would be
|
|
|
|
* difficult, so just copy the label over and perform standard
|
|
|
|
* demotion. This is also non-optimal because it will result
|
|
|
|
* in the intermediate label "new" being created and immediately
|
|
|
|
* recycled.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_enabled && revocation_enabled &&
|
|
|
|
!mac_lomac_dominate_single(obj, source))
|
|
|
|
(void)maybe_demote(source, obj, "executing", "file", vp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_execve_will_transition(struct ucred *old, struct vnode *vp,
|
|
|
|
struct label *vnodelabel, struct label *interpvnodelabel,
|
|
|
|
struct image_params *imgp, struct label *execlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj, *robj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled || !revocation_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(old->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(vnodelabel);
|
|
|
|
robj = interpvnodelabel != NULL ? SLOT(interpvnodelabel) : obj;
|
|
|
|
|
|
|
|
return ((robj->ml_flags & MAC_LOMAC_FLAG_AUX &&
|
|
|
|
!mac_lomac_dominate_element(&robj->ml_auxsingle, &subj->ml_single)
|
|
|
|
&& mac_lomac_auxsingle_in_range(robj, subj)) ||
|
|
|
|
!mac_lomac_dominate_single(obj, subj));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_proc0(struct ucred *cred)
|
|
|
|
{
|
|
|
|
struct mac_lomac *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
dest = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_set_single(dest, MAC_LOMAC_TYPE_EQUAL, 0);
|
|
|
|
mac_lomac_set_range(dest, MAC_LOMAC_TYPE_LOW, 0, MAC_LOMAC_TYPE_HIGH,
|
|
|
|
0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_proc1(struct ucred *cred)
|
|
|
|
{
|
|
|
|
struct mac_lomac *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
dest = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_set_single(dest, MAC_LOMAC_TYPE_HIGH, 0);
|
|
|
|
mac_lomac_set_range(dest, MAC_LOMAC_TYPE_LOW, 0, MAC_LOMAC_TYPE_HIGH,
|
|
|
|
0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_relabel_cred(struct ucred *cred, struct label *newlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(newlabel);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
dest = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
try_relabel(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Access control checks.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
mac_lomac_check_bpfdesc_receive(struct bpf_d *bpf_d, struct label *bpflabel,
|
|
|
|
struct ifnet *ifnet, struct label *ifnetlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *a, *b;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
a = SLOT(bpflabel);
|
|
|
|
b = SLOT(ifnetlabel);
|
|
|
|
|
|
|
|
if (mac_lomac_equal_single(a, b))
|
|
|
|
return (0);
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_cred_relabel(struct ucred *cred, struct label *newlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *new;
|
|
|
|
int error;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
new = SLOT(newlabel);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If there is a LOMAC label update for the credential, it may
|
|
|
|
* be an update of the single, range, or both.
|
|
|
|
*/
|
|
|
|
error = lomac_atmostflags(new, MAC_LOMAC_FLAGS_BOTH);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the LOMAC label is to be changed, authorize as appropriate.
|
|
|
|
*/
|
|
|
|
if (new->ml_flags & MAC_LOMAC_FLAGS_BOTH) {
|
|
|
|
/*
|
2003-08-21 18:07:52 +00:00
|
|
|
* Fill in the missing parts from the previous label.
|
2002-11-26 17:26:06 +00:00
|
|
|
*/
|
2003-08-21 18:07:52 +00:00
|
|
|
if ((new->ml_flags & MAC_LOMAC_FLAG_SINGLE) == 0)
|
|
|
|
mac_lomac_copy_single(subj, new);
|
|
|
|
if ((new->ml_flags & MAC_LOMAC_FLAG_RANGE) == 0)
|
|
|
|
mac_lomac_copy_range(subj, new);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the LOMAC range on a credential, the new
|
|
|
|
* range label must be in the current range.
|
|
|
|
*/
|
2003-08-21 18:07:52 +00:00
|
|
|
if (!mac_lomac_range_in_range(new, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the LOMAC single label on a credential, the
|
|
|
|
* new single label must be in the new range. Implicitly
|
|
|
|
* from the previous check, the new single is in the old
|
|
|
|
* range.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(new, new))
|
2002-11-26 17:26:06 +00:00
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To have EQUAL in any component of the new credential
|
|
|
|
* LOMAC label, the subject must already have EQUAL in
|
|
|
|
* their label.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_contains_equal(new)) {
|
|
|
|
error = mac_lomac_subject_privileged(subj);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXXMAC: Additional consistency tests regarding the
|
|
|
|
* single and range of the new label might be performed
|
|
|
|
* here.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_cred_visible(struct ucred *u1, struct ucred *u2)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(u1->cr_label);
|
|
|
|
obj = SLOT(u2->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/* XXX: range */
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (ESRCH);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_ifnet_relabel(struct ucred *cred, struct ifnet *ifnet,
|
|
|
|
struct label *ifnetlabel, struct label *newlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *new;
|
|
|
|
int error;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
new = SLOT(newlabel);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If there is a LOMAC label update for the interface, it may
|
|
|
|
* be an update of the single, range, or both.
|
|
|
|
*/
|
|
|
|
error = lomac_atmostflags(new, MAC_LOMAC_FLAGS_BOTH);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Relabling network interfaces requires LOMAC privilege.
|
|
|
|
*/
|
|
|
|
error = mac_lomac_subject_privileged(subj);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the LOMAC label is to be changed, authorize as appropriate.
|
|
|
|
*/
|
|
|
|
if (new->ml_flags & MAC_LOMAC_FLAGS_BOTH) {
|
2003-08-21 18:07:52 +00:00
|
|
|
/*
|
|
|
|
* Fill in the missing parts from the previous label.
|
|
|
|
*/
|
|
|
|
if ((new->ml_flags & MAC_LOMAC_FLAG_SINGLE) == 0)
|
|
|
|
mac_lomac_copy_single(subj, new);
|
|
|
|
if ((new->ml_flags & MAC_LOMAC_FLAG_RANGE) == 0)
|
|
|
|
mac_lomac_copy_range(subj, new);
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
/*
|
|
|
|
* Rely on the traditional superuser status for the LOMAC
|
|
|
|
* interface relabel requirements. XXXMAC: This will go
|
|
|
|
* away.
|
|
|
|
*/
|
|
|
|
error = suser_cred(cred, 0);
|
|
|
|
if (error)
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXXMAC: Additional consistency tests regarding the single
|
|
|
|
* and the range of the new label might be performed here.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_ifnet_transmit(struct ifnet *ifnet, struct label *ifnetlabel,
|
|
|
|
struct mbuf *m, struct label *mbuflabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *p, *i;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
p = SLOT(mbuflabel);
|
|
|
|
i = SLOT(ifnetlabel);
|
|
|
|
|
|
|
|
return (mac_lomac_single_in_range(p, i) ? 0 : EACCES);
|
|
|
|
}
|
|
|
|
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
static int
|
|
|
|
mac_lomac_check_inpcb_deliver(struct inpcb *inp, struct label *inplabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *p, *i;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
p = SLOT(mlabel);
|
|
|
|
i = SLOT(inplabel);
|
|
|
|
|
|
|
|
return (mac_lomac_equal_single(p, i) ? 0 : EACCES);
|
|
|
|
}
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
static int
|
|
|
|
mac_lomac_check_kld_load(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (mac_lomac_subject_privileged(subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
if (!mac_lomac_high_single(obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_kld_unload(struct ucred *cred)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (mac_lomac_subject_privileged(subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_lomac_check_pipe_ioctl(struct ucred *cred, struct pipepair *pp,
|
2002-11-26 17:26:06 +00:00
|
|
|
struct label *pipelabel, unsigned long cmd, void /* caddr_t */ *data)
|
|
|
|
{
|
|
|
|
|
|
|
|
if(!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
/* XXX: This will be implemented soon... */
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_lomac_check_pipe_read(struct ucred *cred, struct pipepair *pp,
|
2002-11-26 17:26:06 +00:00
|
|
|
struct label *pipelabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT((pipelabel));
|
|
|
|
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (maybe_demote(subj, obj, "reading", "pipe", NULL));
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_lomac_check_pipe_relabel(struct ucred *cred, struct pipepair *pp,
|
2002-11-26 17:26:06 +00:00
|
|
|
struct label *pipelabel, struct label *newlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj, *new;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
new = SLOT(newlabel);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(pipelabel);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If there is a LOMAC label update for a pipe, it must be a
|
|
|
|
* single update.
|
|
|
|
*/
|
|
|
|
error = lomac_atmostflags(new, MAC_LOMAC_FLAG_SINGLE);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To perform a relabel of a pipe (LOMAC label or not), LOMAC must
|
|
|
|
* authorize the relabel.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(obj, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the LOMAC label is to be changed, authorize as appropriate.
|
|
|
|
*/
|
|
|
|
if (new->ml_flags & MAC_LOMAC_FLAG_SINGLE) {
|
|
|
|
/*
|
|
|
|
* To change the LOMAC label on a pipe, the new pipe label
|
|
|
|
* must be in the subject range.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(new, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the LOMAC label on a pipe to be EQUAL, the
|
|
|
|
* subject must have appropriate privilege.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_contains_equal(new)) {
|
|
|
|
error = mac_lomac_subject_privileged(subj);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_lomac_check_pipe_write(struct ucred *cred, struct pipepair *pp,
|
2002-11-26 17:26:06 +00:00
|
|
|
struct label *pipelabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT((pipelabel));
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_proc_debug(struct ucred *cred, struct proc *proc)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(proc->p_ucred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/* XXX: range checks */
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (ESRCH);
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_proc_sched(struct ucred *cred, struct proc *proc)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(proc->p_ucred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/* XXX: range checks */
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (ESRCH);
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_proc_signal(struct ucred *cred, struct proc *proc, int signum)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(proc->p_ucred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/* XXX: range checks */
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (ESRCH);
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_socket_deliver(struct socket *so, struct label *socketlabel,
|
|
|
|
struct mbuf *m, struct label *mbuflabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *p, *s;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
p = SLOT(mbuflabel);
|
|
|
|
s = SLOT(socketlabel);
|
|
|
|
|
|
|
|
return (mac_lomac_equal_single(p, s) ? 0 : EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_socket_relabel(struct ucred *cred, struct socket *socket,
|
|
|
|
struct label *socketlabel, struct label *newlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj, *new;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
new = SLOT(newlabel);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(socketlabel);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If there is a LOMAC label update for the socket, it may be
|
|
|
|
* an update of single.
|
|
|
|
*/
|
|
|
|
error = lomac_atmostflags(new, MAC_LOMAC_FLAG_SINGLE);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To relabel a socket, the old socket single must be in the subject
|
|
|
|
* range.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(obj, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the LOMAC label is to be changed, authorize as appropriate.
|
|
|
|
*/
|
|
|
|
if (new->ml_flags & MAC_LOMAC_FLAG_SINGLE) {
|
|
|
|
/*
|
|
|
|
* To relabel a socket, the new socket single must be in
|
|
|
|
* the subject range.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(new, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the LOMAC label on the socket to contain EQUAL,
|
|
|
|
* the subject must have appropriate privilege.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_contains_equal(new)) {
|
|
|
|
error = mac_lomac_subject_privileged(subj);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_socket_visible(struct ucred *cred, struct socket *socket,
|
|
|
|
struct label *socketlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(socketlabel);
|
|
|
|
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (ENOENT);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_system_swapon(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (mac_lomac_subject_privileged(subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
if (!mac_lomac_high_single(obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2004-02-22 12:31:44 +00:00
|
|
|
mac_lomac_check_system_sysctl(struct ucred *cred, struct sysctl_oid *oidp,
|
|
|
|
void *arg1, int arg2, struct sysctl_req *req)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/*
|
2004-02-22 12:31:44 +00:00
|
|
|
* Treat sysctl variables without CTLFLAG_ANYBODY flag as
|
|
|
|
* lomac/high, but also require privilege to change them.
|
2002-11-26 17:26:06 +00:00
|
|
|
*/
|
2004-02-22 12:31:44 +00:00
|
|
|
if (req->newptr != NULL && (oidp->oid_kind & CTLFLAG_ANYBODY) == 0) {
|
2002-11-26 17:26:06 +00:00
|
|
|
#ifdef notdef
|
|
|
|
if (!mac_lomac_subject_dominate_high(subj))
|
|
|
|
return (EACCES);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (mac_lomac_subject_privileged(subj))
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_create(struct ucred *cred, struct vnode *dvp,
|
|
|
|
struct label *dlabel, struct componentname *cnp, struct vattr *vap)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(dlabel);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
if (obj->ml_flags & MAC_LOMAC_FLAG_AUX &&
|
|
|
|
!mac_lomac_dominate_element(&subj->ml_single, &obj->ml_auxsingle))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_delete(struct ucred *cred, struct vnode *dvp,
|
|
|
|
struct label *dlabel, struct vnode *vp, struct label *label,
|
|
|
|
struct componentname *cnp)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(dlabel);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_deleteacl(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, acl_type_t type)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_link(struct ucred *cred, struct vnode *dvp,
|
|
|
|
struct label *dlabel, struct vnode *vp, struct label *label,
|
|
|
|
struct componentname *cnp)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(dlabel);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_mmap(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, int prot)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Rely on the use of open()-time protections to handle
|
|
|
|
* non-revocation cases.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (prot & VM_PROT_WRITE) {
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (maybe_demote(subj, obj, "mapping", "file", vp));
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_mprotect(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, int prot)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Rely on the use of open()-time protections to handle
|
|
|
|
* non-revocation cases.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_enabled || !revocation_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (prot & VM_PROT_WRITE) {
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_check_vnode_mmap_downgrade(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, /* XXX vm_prot_t */ int *prot)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Rely on the use of open()-time protections to handle
|
|
|
|
* non-revocation cases.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_enabled || !revocation_enabled)
|
|
|
|
return;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
*prot &= ~VM_PROT_WRITE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_open(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *vnodelabel, int acc_mode)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(vnodelabel);
|
|
|
|
|
|
|
|
/* XXX privilege override for admin? */
|
|
|
|
if (acc_mode & (VWRITE | VAPPEND | VADMIN)) {
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_read(struct ucred *active_cred, struct ucred *file_cred,
|
|
|
|
struct vnode *vp, struct label *label)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled || !revocation_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(active_cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (maybe_demote(subj, obj, "reading", "file", vp));
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_relabel(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *vnodelabel, struct label *newlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *old, *new, *subj;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
old = SLOT(vnodelabel);
|
|
|
|
new = SLOT(newlabel);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If there is a LOMAC label update for the vnode, it must be a
|
|
|
|
* single label, with an optional explicit auxiliary single.
|
|
|
|
*/
|
|
|
|
error = lomac_atmostflags(new,
|
|
|
|
MAC_LOMAC_FLAG_SINGLE | MAC_LOMAC_FLAG_AUX);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To perform a relabel of the vnode (LOMAC label or not), LOMAC must
|
|
|
|
* authorize the relabel.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(old, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the LOMAC label is to be changed, authorize as appropriate.
|
|
|
|
*/
|
|
|
|
if (new->ml_flags & MAC_LOMAC_FLAG_SINGLE) {
|
|
|
|
/*
|
|
|
|
* To change the LOMAC label on a vnode, the new vnode label
|
|
|
|
* must be in the subject range.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(new, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the LOMAC label on the vnode to be EQUAL,
|
|
|
|
* the subject must have appropriate privilege.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_contains_equal(new)) {
|
|
|
|
error = mac_lomac_subject_privileged(subj);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (new->ml_flags & MAC_LOMAC_FLAG_AUX) {
|
2003-08-21 18:07:52 +00:00
|
|
|
/*
|
|
|
|
* Fill in the missing parts from the previous label.
|
|
|
|
*/
|
|
|
|
if ((new->ml_flags & MAC_LOMAC_FLAG_SINGLE) == 0)
|
|
|
|
mac_lomac_copy_single(subj, new);
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
/*
|
|
|
|
* To change the auxiliary LOMAC label on a vnode, the new
|
|
|
|
* vnode label must be in the subject range.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_auxsingle_in_range(new, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the auxiliary LOMAC label on the vnode to be
|
|
|
|
* EQUAL, the subject must have appropriate privilege.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_contains_equal(new)) {
|
|
|
|
error = mac_lomac_subject_privileged(subj);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_rename_from(struct ucred *cred, struct vnode *dvp,
|
|
|
|
struct label *dlabel, struct vnode *vp, struct label *label,
|
|
|
|
struct componentname *cnp)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(dlabel);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_rename_to(struct ucred *cred, struct vnode *dvp,
|
|
|
|
struct label *dlabel, struct vnode *vp, struct label *label, int samedir,
|
|
|
|
struct componentname *cnp)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(dlabel);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
if (vp != NULL) {
|
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_revoke(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_setacl(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, acl_type_t type, struct acl *acl)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_setextattr(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *vnodelabel, int attrnamespace, const char *name,
|
|
|
|
struct uio *uio)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(vnodelabel);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
/* XXX: protect the MAC EA in a special way? */
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_setflags(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *vnodelabel, u_long flags)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(vnodelabel);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_setmode(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *vnodelabel, mode_t mode)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(vnodelabel);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_setowner(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *vnodelabel, uid_t uid, gid_t gid)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(vnodelabel);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_setutimes(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *vnodelabel, struct timespec atime, struct timespec mtime)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(vnodelabel);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_write(struct ucred *active_cred,
|
|
|
|
struct ucred *file_cred, struct vnode *vp, struct label *label)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled || !revocation_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(active_cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
obj = SLOT(label);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_thread_userret(struct thread *td)
|
|
|
|
{
|
|
|
|
struct proc *p = td->td_proc;
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
struct mac_lomac_proc *subj = PSLOT(p->p_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
struct ucred *newcred, *oldcred;
|
|
|
|
int dodrop;
|
|
|
|
|
|
|
|
mtx_lock(&subj->mtx);
|
|
|
|
if (subj->mac_lomac.ml_flags & MAC_LOMAC_FLAG_UPDATE) {
|
|
|
|
dodrop = 0;
|
|
|
|
mtx_unlock(&subj->mtx);
|
|
|
|
newcred = crget();
|
|
|
|
/*
|
|
|
|
* Prevent a lock order reversal in
|
|
|
|
* mac_cred_mmapped_drop_perms; ideally, the other
|
|
|
|
* user of subj->mtx wouldn't be holding Giant.
|
|
|
|
*/
|
|
|
|
mtx_lock(&Giant);
|
|
|
|
PROC_LOCK(p);
|
|
|
|
mtx_lock(&subj->mtx);
|
|
|
|
/*
|
|
|
|
* Check if we lost the race while allocating the cred.
|
|
|
|
*/
|
|
|
|
if ((subj->mac_lomac.ml_flags & MAC_LOMAC_FLAG_UPDATE) == 0) {
|
|
|
|
crfree(newcred);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
oldcred = p->p_ucred;
|
|
|
|
crcopy(newcred, oldcred);
|
|
|
|
crhold(newcred);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
mac_lomac_copy(&subj->mac_lomac, SLOT(newcred->cr_label));
|
2002-11-26 17:26:06 +00:00
|
|
|
p->p_ucred = newcred;
|
|
|
|
crfree(oldcred);
|
|
|
|
dodrop = 1;
|
|
|
|
out:
|
|
|
|
mtx_unlock(&subj->mtx);
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
if (dodrop)
|
|
|
|
mac_cred_mmapped_drop_perms(curthread, newcred);
|
|
|
|
mtx_unlock(&Giant);
|
|
|
|
} else {
|
|
|
|
mtx_unlock(&subj->mtx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct mac_policy_ops mac_lomac_ops =
|
|
|
|
{
|
|
|
|
.mpo_init = mac_lomac_init,
|
|
|
|
.mpo_init_bpfdesc_label = mac_lomac_init_label,
|
|
|
|
.mpo_init_cred_label = mac_lomac_init_label,
|
|
|
|
.mpo_init_devfsdirent_label = mac_lomac_init_label,
|
|
|
|
.mpo_init_ifnet_label = mac_lomac_init_label,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_init_inpcb_label = mac_lomac_init_label_waitcheck,
|
2003-03-26 15:12:03 +00:00
|
|
|
.mpo_init_ipq_label = mac_lomac_init_label_waitcheck,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_init_mbuf_label = mac_lomac_init_label_waitcheck,
|
|
|
|
.mpo_init_mount_label = mac_lomac_init_label,
|
|
|
|
.mpo_init_mount_fs_label = mac_lomac_init_label,
|
|
|
|
.mpo_init_pipe_label = mac_lomac_init_label,
|
|
|
|
.mpo_init_proc_label = mac_lomac_init_proc_label,
|
|
|
|
.mpo_init_socket_label = mac_lomac_init_label_waitcheck,
|
|
|
|
.mpo_init_socket_peer_label = mac_lomac_init_label_waitcheck,
|
|
|
|
.mpo_init_vnode_label = mac_lomac_init_label,
|
|
|
|
.mpo_destroy_bpfdesc_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_cred_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_devfsdirent_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_ifnet_label = mac_lomac_destroy_label,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_destroy_inpcb_label = mac_lomac_destroy_label,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_destroy_ipq_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_mbuf_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_mount_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_mount_fs_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_pipe_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_proc_label = mac_lomac_destroy_proc_label,
|
|
|
|
.mpo_destroy_socket_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_socket_peer_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_vnode_label = mac_lomac_destroy_label,
|
2003-12-06 21:48:03 +00:00
|
|
|
.mpo_copy_cred_label = mac_lomac_copy_label,
|
2004-06-24 03:34:46 +00:00
|
|
|
.mpo_copy_ifnet_label = mac_lomac_copy_label,
|
2003-06-02 18:49:11 +00:00
|
|
|
.mpo_copy_mbuf_label = mac_lomac_copy_label,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_copy_pipe_label = mac_lomac_copy_label,
|
Implement sockets support for __mac_get_fd() and __mac_set_fd()
system calls, and prefer these calls over getsockopt()/setsockopt()
for ABI reasons. When addressing UNIX domain sockets, these calls
retrieve and modify the socket label, not the label of the
rendezvous vnode.
- Create mac_copy_socket_label() entry point based on
mac_copy_pipe_label() entry point, intended to copy the socket
label into temporary storage that doesn't require a socket lock
to be held (currently Giant).
- Implement mac_copy_socket_label() for various policies.
- Expose socket label allocation, free, internalize, externalize
entry points as non-static from mac_net.c.
- Use mac_socket_label_set() in __mac_set_fd().
MAC-aware applications may now use mac_get_fd(), mac_set_fd(), and
mac_get_peer() to retrieve and set various socket labels without
directly invoking the getsockopt() interface.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-16 23:31:45 +00:00
|
|
|
.mpo_copy_socket_label = mac_lomac_copy_label,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_copy_vnode_label = mac_lomac_copy_label,
|
|
|
|
.mpo_externalize_cred_label = mac_lomac_externalize_label,
|
|
|
|
.mpo_externalize_ifnet_label = mac_lomac_externalize_label,
|
|
|
|
.mpo_externalize_pipe_label = mac_lomac_externalize_label,
|
|
|
|
.mpo_externalize_socket_label = mac_lomac_externalize_label,
|
|
|
|
.mpo_externalize_socket_peer_label = mac_lomac_externalize_label,
|
|
|
|
.mpo_externalize_vnode_label = mac_lomac_externalize_label,
|
|
|
|
.mpo_internalize_cred_label = mac_lomac_internalize_label,
|
|
|
|
.mpo_internalize_ifnet_label = mac_lomac_internalize_label,
|
|
|
|
.mpo_internalize_pipe_label = mac_lomac_internalize_label,
|
|
|
|
.mpo_internalize_socket_label = mac_lomac_internalize_label,
|
|
|
|
.mpo_internalize_vnode_label = mac_lomac_internalize_label,
|
|
|
|
.mpo_create_devfs_device = mac_lomac_create_devfs_device,
|
|
|
|
.mpo_create_devfs_directory = mac_lomac_create_devfs_directory,
|
|
|
|
.mpo_create_devfs_symlink = mac_lomac_create_devfs_symlink,
|
|
|
|
.mpo_create_mount = mac_lomac_create_mount,
|
|
|
|
.mpo_create_root_mount = mac_lomac_create_root_mount,
|
|
|
|
.mpo_relabel_vnode = mac_lomac_relabel_vnode,
|
|
|
|
.mpo_update_devfsdirent = mac_lomac_update_devfsdirent,
|
|
|
|
.mpo_associate_vnode_devfs = mac_lomac_associate_vnode_devfs,
|
|
|
|
.mpo_associate_vnode_extattr = mac_lomac_associate_vnode_extattr,
|
|
|
|
.mpo_associate_vnode_singlelabel =
|
|
|
|
mac_lomac_associate_vnode_singlelabel,
|
|
|
|
.mpo_create_vnode_extattr = mac_lomac_create_vnode_extattr,
|
|
|
|
.mpo_setlabel_vnode_extattr = mac_lomac_setlabel_vnode_extattr,
|
|
|
|
.mpo_create_mbuf_from_socket = mac_lomac_create_mbuf_from_socket,
|
|
|
|
.mpo_create_pipe = mac_lomac_create_pipe,
|
|
|
|
.mpo_create_socket = mac_lomac_create_socket,
|
|
|
|
.mpo_create_socket_from_socket = mac_lomac_create_socket_from_socket,
|
|
|
|
.mpo_relabel_pipe = mac_lomac_relabel_pipe,
|
|
|
|
.mpo_relabel_socket = mac_lomac_relabel_socket,
|
|
|
|
.mpo_set_socket_peer_from_mbuf = mac_lomac_set_socket_peer_from_mbuf,
|
|
|
|
.mpo_set_socket_peer_from_socket =
|
|
|
|
mac_lomac_set_socket_peer_from_socket,
|
|
|
|
.mpo_create_bpfdesc = mac_lomac_create_bpfdesc,
|
|
|
|
.mpo_create_datagram_from_ipq = mac_lomac_create_datagram_from_ipq,
|
|
|
|
.mpo_create_fragment = mac_lomac_create_fragment,
|
|
|
|
.mpo_create_ifnet = mac_lomac_create_ifnet,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_create_inpcb_from_socket = mac_lomac_create_inpcb_from_socket,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_create_ipq = mac_lomac_create_ipq,
|
2003-12-17 14:55:11 +00:00
|
|
|
.mpo_create_mbuf_from_inpcb = mac_lomac_create_mbuf_from_inpcb,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_create_mbuf_from_mbuf = mac_lomac_create_mbuf_from_mbuf,
|
|
|
|
.mpo_create_mbuf_linklayer = mac_lomac_create_mbuf_linklayer,
|
|
|
|
.mpo_create_mbuf_from_bpfdesc = mac_lomac_create_mbuf_from_bpfdesc,
|
|
|
|
.mpo_create_mbuf_from_ifnet = mac_lomac_create_mbuf_from_ifnet,
|
|
|
|
.mpo_create_mbuf_multicast_encap =
|
|
|
|
mac_lomac_create_mbuf_multicast_encap,
|
|
|
|
.mpo_create_mbuf_netlayer = mac_lomac_create_mbuf_netlayer,
|
|
|
|
.mpo_fragment_match = mac_lomac_fragment_match,
|
|
|
|
.mpo_relabel_ifnet = mac_lomac_relabel_ifnet,
|
|
|
|
.mpo_update_ipq = mac_lomac_update_ipq,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_inpcb_sosetlabel = mac_lomac_inpcb_sosetlabel,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_execve_transition = mac_lomac_execve_transition,
|
|
|
|
.mpo_execve_will_transition = mac_lomac_execve_will_transition,
|
|
|
|
.mpo_create_proc0 = mac_lomac_create_proc0,
|
|
|
|
.mpo_create_proc1 = mac_lomac_create_proc1,
|
|
|
|
.mpo_relabel_cred = mac_lomac_relabel_cred,
|
|
|
|
.mpo_check_bpfdesc_receive = mac_lomac_check_bpfdesc_receive,
|
|
|
|
.mpo_check_cred_relabel = mac_lomac_check_cred_relabel,
|
|
|
|
.mpo_check_cred_visible = mac_lomac_check_cred_visible,
|
|
|
|
.mpo_check_ifnet_relabel = mac_lomac_check_ifnet_relabel,
|
|
|
|
.mpo_check_ifnet_transmit = mac_lomac_check_ifnet_transmit,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_check_inpcb_deliver = mac_lomac_check_inpcb_deliver,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_check_kld_load = mac_lomac_check_kld_load,
|
|
|
|
.mpo_check_kld_unload = mac_lomac_check_kld_unload,
|
|
|
|
.mpo_check_pipe_ioctl = mac_lomac_check_pipe_ioctl,
|
|
|
|
.mpo_check_pipe_read = mac_lomac_check_pipe_read,
|
|
|
|
.mpo_check_pipe_relabel = mac_lomac_check_pipe_relabel,
|
|
|
|
.mpo_check_pipe_write = mac_lomac_check_pipe_write,
|
|
|
|
.mpo_check_proc_debug = mac_lomac_check_proc_debug,
|
|
|
|
.mpo_check_proc_sched = mac_lomac_check_proc_sched,
|
|
|
|
.mpo_check_proc_signal = mac_lomac_check_proc_signal,
|
|
|
|
.mpo_check_socket_deliver = mac_lomac_check_socket_deliver,
|
|
|
|
.mpo_check_socket_relabel = mac_lomac_check_socket_relabel,
|
|
|
|
.mpo_check_socket_visible = mac_lomac_check_socket_visible,
|
|
|
|
.mpo_check_system_swapon = mac_lomac_check_system_swapon,
|
|
|
|
.mpo_check_system_sysctl = mac_lomac_check_system_sysctl,
|
|
|
|
.mpo_check_vnode_access = mac_lomac_check_vnode_open,
|
|
|
|
.mpo_check_vnode_create = mac_lomac_check_vnode_create,
|
|
|
|
.mpo_check_vnode_delete = mac_lomac_check_vnode_delete,
|
|
|
|
.mpo_check_vnode_deleteacl = mac_lomac_check_vnode_deleteacl,
|
|
|
|
.mpo_check_vnode_link = mac_lomac_check_vnode_link,
|
|
|
|
.mpo_check_vnode_mmap = mac_lomac_check_vnode_mmap,
|
|
|
|
.mpo_check_vnode_mmap_downgrade = mac_lomac_check_vnode_mmap_downgrade,
|
|
|
|
.mpo_check_vnode_mprotect = mac_lomac_check_vnode_mprotect,
|
|
|
|
.mpo_check_vnode_open = mac_lomac_check_vnode_open,
|
|
|
|
.mpo_check_vnode_read = mac_lomac_check_vnode_read,
|
|
|
|
.mpo_check_vnode_relabel = mac_lomac_check_vnode_relabel,
|
|
|
|
.mpo_check_vnode_rename_from = mac_lomac_check_vnode_rename_from,
|
|
|
|
.mpo_check_vnode_rename_to = mac_lomac_check_vnode_rename_to,
|
|
|
|
.mpo_check_vnode_revoke = mac_lomac_check_vnode_revoke,
|
|
|
|
.mpo_check_vnode_setacl = mac_lomac_check_vnode_setacl,
|
|
|
|
.mpo_check_vnode_setextattr = mac_lomac_check_vnode_setextattr,
|
|
|
|
.mpo_check_vnode_setflags = mac_lomac_check_vnode_setflags,
|
|
|
|
.mpo_check_vnode_setmode = mac_lomac_check_vnode_setmode,
|
|
|
|
.mpo_check_vnode_setowner = mac_lomac_check_vnode_setowner,
|
|
|
|
.mpo_check_vnode_setutimes = mac_lomac_check_vnode_setutimes,
|
|
|
|
.mpo_check_vnode_write = mac_lomac_check_vnode_write,
|
|
|
|
.mpo_thread_userret = mac_lomac_thread_userret,
|
|
|
|
};
|
|
|
|
|
|
|
|
MAC_POLICY_SET(&mac_lomac_ops, mac_lomac, "TrustedBSD MAC/LOMAC",
|
2003-10-21 15:18:26 +00:00
|
|
|
MPC_LOADTIME_FLAG_NOTLATE | MPC_LOADTIME_FLAG_LABELMBUFS,
|
|
|
|
&mac_lomac_slot);
|