freebsd-dev/contrib/libg++/librx/rx.c

7194 lines
174 KiB
C
Raw Normal View History

/* Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
This file is part of the librx library.
Librx is free software; you can redistribute it and/or modify it under
the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
Librx is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU Library General Public
License along with this software; see the file COPYING.LIB. If not,
write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA
02139, USA. */
/* NOTE!!! AIX is so losing it requires this to be the first thing in the
* file.
* Do not put ANYTHING before it!
*/
#if !defined (__GNUC__) && defined (_AIX)
#pragma alloca
#endif
/* To make linux happy? */
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
char rx_version_string[] = "GNU Rx version 0.07.2";
/* ``Too hard!''
* -- anon.
*/
#include <stdio.h>
#include <ctype.h>
#ifndef isgraph
#define isgraph(c) (isprint (c) && !isspace (c))
#endif
#ifndef isblank
#define isblank(c) ((c) == ' ' || (c) == '\t')
#endif
#include <sys/types.h>
#undef MAX
#undef MIN
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
typedef char boolean;
#define false 0
#define true 1
#ifndef __GCC__
#undef __inline__
#define __inline__
#endif
/* Emacs already defines alloca, sometimes. */
#ifndef alloca
/* Make alloca work the best possible way. */
#ifdef __GNUC__
#define alloca __builtin_alloca
#else /* not __GNUC__ */
#if HAVE_ALLOCA_H
#include <alloca.h>
#else /* not __GNUC__ or HAVE_ALLOCA_H */
#ifndef _AIX /* Already did AIX, up at the top. */
char *alloca ();
#endif /* not _AIX */
#endif /* not HAVE_ALLOCA_H */
#endif /* not __GNUC__ */
#endif /* not alloca */
/* Memory management and stuff for emacs. */
#define CHARBITS 8
#define remalloc(M, S) (M ? realloc (M, S) : malloc (S))
/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
* use `alloca' instead of `malloc' for the backtracking stack.
*
* Emacs will die miserably if we don't do this.
*/
#ifdef REGEX_MALLOC
#define REGEX_ALLOCATE malloc
#else /* not REGEX_MALLOC */
#define REGEX_ALLOCATE alloca
#endif /* not REGEX_MALLOC */
#ifdef RX_WANT_RX_DEFS
#define RX_DECL extern
#define RX_DEF_QUAL
#else
#define RX_WANT_RX_DEFS
#define RX_DECL static
#define RX_DEF_QUAL static
#endif
#include "rx.h"
#undef RX_DECL
#define RX_DECL RX_DEF_QUAL
#ifndef emacs
#ifdef SYNTAX_TABLE
extern char *re_syntax_table;
#else /* not SYNTAX_TABLE */
#ifndef RX_WANT_RX_DEFS
RX_DECL char re_syntax_table[CHAR_SET_SIZE];
#endif
#ifdef __STDC__
static void
init_syntax_once (void)
#else
static void
init_syntax_once ()
#endif
{
register int c;
static int done = 0;
if (done)
return;
bzero (re_syntax_table, sizeof re_syntax_table);
for (c = 'a'; c <= 'z'; c++)
re_syntax_table[c] = Sword;
for (c = 'A'; c <= 'Z'; c++)
re_syntax_table[c] = Sword;
for (c = '0'; c <= '9'; c++)
re_syntax_table[c] = Sword;
re_syntax_table['_'] = Sword;
done = 1;
}
#endif /* not SYNTAX_TABLE */
#endif /* not emacs */
/* Compile with `-DRX_DEBUG' and use the following flags.
*
* Debugging flags:
* rx_debug - print information as a regexp is compiled
* rx_debug_trace - print information as a regexp is executed
*/
#ifdef RX_DEBUG
int rx_debug_compile = 0;
int rx_debug_trace = 0;
static struct re_pattern_buffer * dbug_rxb = 0;
#ifdef __STDC__
typedef void (*side_effect_printer) (struct rx *, void *, FILE *);
#else
typedef void (*side_effect_printer) ();
#endif
#ifdef __STDC__
static void print_cset (struct rx *rx, rx_Bitset cset, FILE * fp);
#else
static void print_cset ();
#endif
#ifdef __STDC__
static void
print_rexp (struct rx *rx,
struct rexp_node *node, int depth,
side_effect_printer seprint, FILE * fp)
#else
static void
print_rexp (rx, node, depth, seprint, fp)
struct rx *rx;
struct rexp_node *node;
int depth;
side_effect_printer seprint;
FILE * fp;
#endif
{
if (!node)
return;
else
{
switch (node->type)
{
case r_cset:
{
fprintf (fp, "%*s", depth, "");
print_cset (rx, node->params.cset, fp);
fputc ('\n', fp);
break;
}
case r_opt:
case r_star:
fprintf (fp, "%*s%s\n", depth, "",
node->type == r_opt ? "opt" : "star");
print_rexp (rx, node->params.pair.left, depth + 3, seprint, fp);
break;
case r_2phase_star:
fprintf (fp, "%*s2phase star\n", depth, "");
print_rexp (rx, node->params.pair.right, depth + 3, seprint, fp);
print_rexp (rx, node->params.pair.left, depth + 3, seprint, fp);
break;
case r_alternate:
case r_concat:
fprintf (fp, "%*s%s\n", depth, "",
node->type == r_alternate ? "alt" : "concat");
print_rexp (rx, node->params.pair.left, depth + 3, seprint, fp);
print_rexp (rx, node->params.pair.right, depth + 3, seprint, fp);
break;
case r_side_effect:
fprintf (fp, "%*sSide effect: ", depth, "");
seprint (rx, node->params.side_effect, fp);
fputc ('\n', fp);
}
}
}
#ifdef __STDC__
static void
print_nfa (struct rx * rx,
struct rx_nfa_state * n,
side_effect_printer seprint, FILE * fp)
#else
static void
print_nfa (rx, n, seprint, fp)
struct rx * rx;
struct rx_nfa_state * n;
side_effect_printer seprint;
FILE * fp;
#endif
{
while (n)
{
struct rx_nfa_edge *e = n->edges;
struct rx_possible_future *ec = n->futures;
fprintf (fp, "node %d %s\n", n->id,
n->is_final ? "final" : (n->is_start ? "start" : ""));
while (e)
{
fprintf (fp, " edge to %d, ", e->dest->id);
switch (e->type)
{
case ne_epsilon:
fprintf (fp, "epsilon\n");
break;
case ne_side_effect:
fprintf (fp, "side effect ");
seprint (rx, e->params.side_effect, fp);
fputc ('\n', fp);
break;
case ne_cset:
fprintf (fp, "cset ");
print_cset (rx, e->params.cset, fp);
fputc ('\n', fp);
break;
}
e = e->next;
}
while (ec)
{
int x;
struct rx_nfa_state_set * s;
struct rx_se_list * l;
fprintf (fp, " eclosure to {");
for (s = ec->destset; s; s = s->cdr)
fprintf (fp, "%d ", s->car->id);
fprintf (fp, "} (");
for (l = ec->effects; l; l = l->cdr)
{
seprint (rx, l->car, fp);
fputc (' ', fp);
}
fprintf (fp, ")\n");
ec = ec->next;
}
n = n->next;
}
}
static char * efnames [] =
{
"bogon",
"re_se_try",
"re_se_pushback",
"re_se_push0",
"re_se_pushpos",
"re_se_chkpos",
"re_se_poppos",
"re_se_at_dot",
"re_se_syntax",
"re_se_not_syntax",
"re_se_begbuf",
"re_se_hat",
"re_se_wordbeg",
"re_se_wordbound",
"re_se_notwordbound",
"re_se_wordend",
"re_se_endbuf",
"re_se_dollar",
"re_se_fail",
};
static char * efnames2[] =
{
"re_se_win",
"re_se_lparen",
"re_se_rparen",
"re_se_backref",
"re_se_iter",
"re_se_end_iter",
"re_se_tv"
};
static char * inx_names[] =
{
"rx_backtrack_point",
"rx_do_side_effects",
"rx_cache_miss",
"rx_next_char",
"rx_backtrack",
"rx_error_inx",
"rx_num_instructions"
};
#ifdef __STDC__
static void
re_seprint (struct rx * rx, void * effect, FILE * fp)
#else
static void
re_seprint (rx, effect, fp)
struct rx * rx;
void * effect;
FILE * fp;
#endif
{
if ((int)effect < 0)
fputs (efnames[-(int)effect], fp);
else if (dbug_rxb)
{
struct re_se_params * p = &dbug_rxb->se_params[(int)effect];
fprintf (fp, "%s(%d,%d)", efnames2[p->se], p->op1, p->op2);
}
else
fprintf (fp, "[complex op # %d]", (int)effect);
}
/* These are so the regex.c regression tests will compile. */
void
print_compiled_pattern (rxb)
struct re_pattern_buffer * rxb;
{
}
void
print_fastmap (fm)
char * fm;
{
}
#endif /* RX_DEBUG */
/* This page: Bitsets. Completely unintersting. */
#ifdef __STDC__
RX_DECL int
rx_bitset_is_equal (int size, rx_Bitset a, rx_Bitset b)
#else
RX_DECL int
rx_bitset_is_equal (size, a, b)
int size;
rx_Bitset a;
rx_Bitset b;
#endif
{
int x;
RX_subset s = b[0];
b[0] = ~a[0];
for (x = rx_bitset_numb_subsets(size) - 1; a[x] == b[x]; --x)
;
b[0] = s;
return !x && s == a[0];
}
#ifdef __STDC__
RX_DECL int
rx_bitset_is_subset (int size, rx_Bitset a, rx_Bitset b)
#else
RX_DECL int
rx_bitset_is_subset (size, a, b)
int size;
rx_Bitset a;
rx_Bitset b;
#endif
{
int x = rx_bitset_numb_subsets(size) - 1;
while (x-- && (a[x] & b[x]) == a[x]);
return x == -1;
}
#ifdef __STDC__
RX_DECL int
rx_bitset_empty (int size, rx_Bitset set)
#else
RX_DECL int
rx_bitset_empty (size, set)
int size;
rx_Bitset set;
#endif
{
int x;
RX_subset s = set[0];
set[0] = 1;
for (x = rx_bitset_numb_subsets(size) - 1; !set[x]; --x)
;
set[0] = s;
return !s;
}
#ifdef __STDC__
RX_DECL void
rx_bitset_null (int size, rx_Bitset b)
#else
RX_DECL void
rx_bitset_null (size, b)
int size;
rx_Bitset b;
#endif
{
bzero (b, rx_sizeof_bitset(size));
}
#ifdef __STDC__
RX_DECL void
rx_bitset_universe (int size, rx_Bitset b)
#else
RX_DECL void
rx_bitset_universe (size, b)
int size;
rx_Bitset b;
#endif
{
int x = rx_bitset_numb_subsets (size);
while (x--)
*b++ = ~(RX_subset)0;
}
#ifdef __STDC__
RX_DECL void
rx_bitset_complement (int size, rx_Bitset b)
#else
RX_DECL void
rx_bitset_complement (size, b)
int size;
rx_Bitset b;
#endif
{
int x = rx_bitset_numb_subsets (size);
while (x--)
{
*b = ~*b;
++b;
}
}
#ifdef __STDC__
RX_DECL void
rx_bitset_assign (int size, rx_Bitset a, rx_Bitset b)
#else
RX_DECL void
rx_bitset_assign (size, a, b)
int size;
rx_Bitset a;
rx_Bitset b;
#endif
{
int x;
for (x = rx_bitset_numb_subsets(size) - 1; x >=0; --x)
a[x] = b[x];
}
#ifdef __STDC__
RX_DECL void
rx_bitset_union (int size, rx_Bitset a, rx_Bitset b)
#else
RX_DECL void
rx_bitset_union (size, a, b)
int size;
rx_Bitset a;
rx_Bitset b;
#endif
{
int x;
for (x = rx_bitset_numb_subsets(size) - 1; x >=0; --x)
a[x] |= b[x];
}
#ifdef __STDC__
RX_DECL void
rx_bitset_intersection (int size,
rx_Bitset a, rx_Bitset b)
#else
RX_DECL void
rx_bitset_intersection (size, a, b)
int size;
rx_Bitset a;
rx_Bitset b;
#endif
{
int x;
for (x = rx_bitset_numb_subsets(size) - 1; x >=0; --x)
a[x] &= b[x];
}
#ifdef __STDC__
RX_DECL void
rx_bitset_difference (int size, rx_Bitset a, rx_Bitset b)
#else
RX_DECL void
rx_bitset_difference (size, a, b)
int size;
rx_Bitset a;
rx_Bitset b;
#endif
{
int x;
for (x = rx_bitset_numb_subsets(size) - 1; x >=0; --x)
a[x] &= ~ b[x];
}
#ifdef __STDC__
RX_DECL void
rx_bitset_revdifference (int size,
rx_Bitset a, rx_Bitset b)
#else
RX_DECL void
rx_bitset_revdifference (size, a, b)
int size;
rx_Bitset a;
rx_Bitset b;
#endif
{
int x;
for (x = rx_bitset_numb_subsets(size) - 1; x >=0; --x)
a[x] = ~a[x] & b[x];
}
#ifdef __STDC__
RX_DECL void
rx_bitset_xor (int size, rx_Bitset a, rx_Bitset b)
#else
RX_DECL void
rx_bitset_xor (size, a, b)
int size;
rx_Bitset a;
rx_Bitset b;
#endif
{
int x;
for (x = rx_bitset_numb_subsets(size) - 1; x >=0; --x)
a[x] ^= b[x];
}
#ifdef __STDC__
RX_DECL unsigned long
rx_bitset_hash (int size, rx_Bitset b)
#else
RX_DECL unsigned long
rx_bitset_hash (size, b)
int size;
rx_Bitset b;
#endif
{
int x;
unsigned long hash = (unsigned long)rx_bitset_hash;
for (x = rx_bitset_numb_subsets(size) - 1; x >= 0; --x)
hash ^= rx_bitset_subset_val(b, x);
return hash;
}
RX_DECL RX_subset rx_subset_singletons [RX_subset_bits] =
{
0x1,
0x2,
0x4,
0x8,
0x10,
0x20,
0x40,
0x80,
0x100,
0x200,
0x400,
0x800,
0x1000,
0x2000,
0x4000,
0x8000,
0x10000,
0x20000,
0x40000,
0x80000,
0x100000,
0x200000,
0x400000,
0x800000,
0x1000000,
0x2000000,
0x4000000,
0x8000000,
0x10000000,
0x20000000,
0x40000000,
0x80000000
};
#ifdef RX_DEBUG
#ifdef __STDC__
static void
print_cset (struct rx *rx, rx_Bitset cset, FILE * fp)
#else
static void
print_cset (rx, cset, fp)
struct rx *rx;
rx_Bitset cset;
FILE * fp;
#endif
{
int x;
fputc ('[', fp);
for (x = 0; x < rx->local_cset_size; ++x)
if (RX_bitset_member (cset, x))
{
if (isprint(x))
fputc (x, fp);
else
fprintf (fp, "\\0%o ", x);
}
fputc (']', fp);
}
#endif /* RX_DEBUG */
static unsigned long rx_hash_masks[4] =
{
0x12488421,
0x96699669,
0xbe7dd7eb,
0xffffffff
};
/* Hash tables */
#ifdef __STDC__
RX_DECL struct rx_hash_item *
rx_hash_find (struct rx_hash * table,
unsigned long hash,
void * value,
struct rx_hash_rules * rules)
#else
RX_DECL struct rx_hash_item *
rx_hash_find (table, hash, value, rules)
struct rx_hash * table;
unsigned long hash;
void * value;
struct rx_hash_rules * rules;
#endif
{
rx_hash_eq eq = rules->eq;
int maskc = 0;
long mask = rx_hash_masks [0];
int bucket = (hash & mask) % 13;
while (table->children [bucket])
{
table = table->children [bucket];
++maskc;
mask = rx_hash_masks[maskc];
bucket = (hash & mask) % 13;
}
{
struct rx_hash_item * it = table->buckets[bucket];
while (it)
if (eq (it->data, value))
return it;
else
it = it->next_same_hash;
}
return 0;
}
#ifdef __STDC__
RX_DECL struct rx_hash_item *
rx_hash_store (struct rx_hash * table,
unsigned long hash,
void * value,
struct rx_hash_rules * rules)
#else
RX_DECL struct rx_hash_item *
rx_hash_store (table, hash, value, rules)
struct rx_hash * table;
unsigned long hash;
void * value;
struct rx_hash_rules * rules;
#endif
{
rx_hash_eq eq = rules->eq;
int maskc = 0;
long mask = rx_hash_masks[0];
int bucket = (hash & mask) % 13;
int depth = 0;
while (table->children [bucket])
{
table = table->children [bucket];
++maskc;
mask = rx_hash_masks[maskc];
bucket = (hash & mask) % 13;
++depth;
}
{
struct rx_hash_item * it = table->buckets[bucket];
while (it)
if (eq (it->data, value))
return it;
else
it = it->next_same_hash;
}
{
if ( (depth < 3)
&& (table->bucket_size [bucket] >= 4))
{
struct rx_hash * newtab = ((struct rx_hash *)
rules->hash_alloc (rules));
if (!newtab)
goto add_to_bucket;
bzero (newtab, sizeof (*newtab));
newtab->parent = table;
{
struct rx_hash_item * them = table->buckets[bucket];
unsigned long newmask = rx_hash_masks[maskc + 1];
while (them)
{
struct rx_hash_item * save = them->next_same_hash;
int new_buck = (them->hash & newmask) % 13;
them->next_same_hash = newtab->buckets[new_buck];
newtab->buckets[new_buck] = them;
them->table = newtab;
them = save;
++newtab->bucket_size[new_buck];
++newtab->refs;
}
table->refs = (table->refs - table->bucket_size[bucket] + 1);
table->bucket_size[bucket] = 0;
table->buckets[bucket] = 0;
table->children[bucket] = newtab;
table = newtab;
bucket = (hash & newmask) % 13;
}
}
}
add_to_bucket:
{
struct rx_hash_item * it = ((struct rx_hash_item *)
rules->hash_item_alloc (rules, value));
if (!it)
return 0;
it->hash = hash;
it->table = table;
/* DATA and BINDING are to be set in hash_item_alloc */
it->next_same_hash = table->buckets [bucket];
table->buckets[bucket] = it;
++table->bucket_size [bucket];
++table->refs;
return it;
}
}
#ifdef __STDC__
RX_DECL void
rx_hash_free (struct rx_hash_item * it, struct rx_hash_rules * rules)
#else
RX_DECL void
rx_hash_free (it, rules)
struct rx_hash_item * it;
struct rx_hash_rules * rules;
#endif
{
if (it)
{
struct rx_hash * table = it->table;
unsigned long hash = it->hash;
int depth = (table->parent
? (table->parent->parent
? (table->parent->parent->parent
? 3
: 2)
: 1)
: 0);
int bucket = (hash & rx_hash_masks [depth]) % 13;
struct rx_hash_item ** pos = &table->buckets [bucket];
while (*pos != it)
pos = &(*pos)->next_same_hash;
*pos = it->next_same_hash;
rules->free_hash_item (it, rules);
--table->bucket_size[bucket];
--table->refs;
while (!table->refs && depth)
{
struct rx_hash * save = table;
table = table->parent;
--depth;
bucket = (hash & rx_hash_masks [depth]) % 13;
--table->refs;
table->children[bucket] = 0;
rules->free_hash (save, rules);
}
}
}
#ifdef __STDC__
RX_DECL void
rx_free_hash_table (struct rx_hash * tab, rx_hash_freefn freefn,
struct rx_hash_rules * rules)
#else
RX_DECL void
rx_free_hash_table (tab, freefn, rules)
struct rx_hash * tab;
rx_hash_freefn freefn;
struct rx_hash_rules * rules;
#endif
{
int x;
for (x = 0; x < 13; ++x)
if (tab->children[x])
{
rx_free_hash_table (tab->children[x], freefn, rules);
rules->free_hash (tab->children[x], rules);
}
else
{
struct rx_hash_item * them = tab->buckets[x];
while (them)
{
struct rx_hash_item * that = them;
them = that->next_same_hash;
freefn (that);
rules->free_hash_item (that, rules);
}
}
}
/* Utilities for manipulating bitset represntations of characters sets. */
#ifdef __STDC__
RX_DECL rx_Bitset
rx_cset (struct rx *rx)
#else
RX_DECL rx_Bitset
rx_cset (rx)
struct rx *rx;
#endif
{
rx_Bitset b = (rx_Bitset) malloc (rx_sizeof_bitset (rx->local_cset_size));
if (b)
rx_bitset_null (rx->local_cset_size, b);
return b;
}
#ifdef __STDC__
RX_DECL rx_Bitset
rx_copy_cset (struct rx *rx, rx_Bitset a)
#else
RX_DECL rx_Bitset
rx_copy_cset (rx, a)
struct rx *rx;
rx_Bitset a;
#endif
{
rx_Bitset cs = rx_cset (rx);
if (cs)
rx_bitset_union (rx->local_cset_size, cs, a);
return cs;
}
#ifdef __STDC__
RX_DECL void
rx_free_cset (struct rx * rx, rx_Bitset c)
#else
RX_DECL void
rx_free_cset (rx, c)
struct rx * rx;
rx_Bitset c;
#endif
{
if (c)
free ((char *)c);
}
/* Hash table memory allocation policy for the regexp compiler */
#ifdef __STDC__
static struct rx_hash *
compiler_hash_alloc (struct rx_hash_rules * rules)
#else
static struct rx_hash *
compiler_hash_alloc (rules)
struct rx_hash_rules * rules;
#endif
{
return (struct rx_hash *)malloc (sizeof (struct rx_hash));
}
#ifdef __STDC__
static struct rx_hash_item *
compiler_hash_item_alloc (struct rx_hash_rules * rules, void * value)
#else
static struct rx_hash_item *
compiler_hash_item_alloc (rules, value)
struct rx_hash_rules * rules;
void * value;
#endif
{
struct rx_hash_item * it;
it = (struct rx_hash_item *)malloc (sizeof (*it));
if (it)
{
it->data = value;
it->binding = 0;
}
return it;
}
#ifdef __STDC__
static void
compiler_free_hash (struct rx_hash * tab,
struct rx_hash_rules * rules)
#else
static void
compiler_free_hash (tab, rules)
struct rx_hash * tab;
struct rx_hash_rules * rules;
#endif
{
free ((char *)tab);
}
#ifdef __STDC__
static void
compiler_free_hash_item (struct rx_hash_item * item,
struct rx_hash_rules * rules)
#else
static void
compiler_free_hash_item (item, rules)
struct rx_hash_item * item;
struct rx_hash_rules * rules;
#endif
{
free ((char *)item);
}
/* This page: REXP_NODE (expression tree) structures. */
#ifdef __STDC__
RX_DECL struct rexp_node *
rexp_node (struct rx *rx,
enum rexp_node_type type)
#else
RX_DECL struct rexp_node *
rexp_node (rx, type)
struct rx *rx;
enum rexp_node_type type;
#endif
{
struct rexp_node *n;
n = (struct rexp_node *)malloc (sizeof (*n));
bzero (n, sizeof (*n));
if (n)
n->type = type;
return n;
}
/* free_rexp_node assumes that the bitset passed to rx_mk_r_cset
* can be freed using rx_free_cset.
*/
#ifdef __STDC__
RX_DECL struct rexp_node *
rx_mk_r_cset (struct rx * rx,
rx_Bitset b)
#else
RX_DECL struct rexp_node *
rx_mk_r_cset (rx, b)
struct rx * rx;
rx_Bitset b;
#endif
{
struct rexp_node * n = rexp_node (rx, r_cset);
if (n)
n->params.cset = b;
return n;
}
#ifdef __STDC__
RX_DECL struct rexp_node *
rx_mk_r_concat (struct rx * rx,
struct rexp_node * a,
struct rexp_node * b)
#else
RX_DECL struct rexp_node *
rx_mk_r_concat (rx, a, b)
struct rx * rx;
struct rexp_node * a;
struct rexp_node * b;
#endif
{
struct rexp_node * n = rexp_node (rx, r_concat);
if (n)
{
n->params.pair.left = a;
n->params.pair.right = b;
}
return n;
}
#ifdef __STDC__
RX_DECL struct rexp_node *
rx_mk_r_alternate (struct rx * rx,
struct rexp_node * a,
struct rexp_node * b)
#else
RX_DECL struct rexp_node *
rx_mk_r_alternate (rx, a, b)
struct rx * rx;
struct rexp_node * a;
struct rexp_node * b;
#endif
{
struct rexp_node * n = rexp_node (rx, r_alternate);
if (n)
{
n->params.pair.left = a;
n->params.pair.right = b;
}
return n;
}
#ifdef __STDC__
RX_DECL struct rexp_node *
rx_mk_r_opt (struct rx * rx,
struct rexp_node * a)
#else
RX_DECL struct rexp_node *
rx_mk_r_opt (rx, a)
struct rx * rx;
struct rexp_node * a;
#endif
{
struct rexp_node * n = rexp_node (rx, r_opt);
if (n)
{
n->params.pair.left = a;
n->params.pair.right = 0;
}
return n;
}
#ifdef __STDC__
RX_DECL struct rexp_node *
rx_mk_r_star (struct rx * rx,
struct rexp_node * a)
#else
RX_DECL struct rexp_node *
rx_mk_r_star (rx, a)
struct rx * rx;
struct rexp_node * a;
#endif
{
struct rexp_node * n = rexp_node (rx, r_star);
if (n)
{
n->params.pair.left = a;
n->params.pair.right = 0;
}
return n;
}
#ifdef __STDC__
RX_DECL struct rexp_node *
rx_mk_r_2phase_star (struct rx * rx,
struct rexp_node * a,
struct rexp_node * b)
#else
RX_DECL struct rexp_node *
rx_mk_r_2phase_star (rx, a, b)
struct rx * rx;
struct rexp_node * a;
struct rexp_node * b;
#endif
{
struct rexp_node * n = rexp_node (rx, r_2phase_star);
if (n)
{
n->params.pair.left = a;
n->params.pair.right = b;
}
return n;
}
#ifdef __STDC__
RX_DECL struct rexp_node *
rx_mk_r_side_effect (struct rx * rx,
rx_side_effect a)
#else
RX_DECL struct rexp_node *
rx_mk_r_side_effect (rx, a)
struct rx * rx;
rx_side_effect a;
#endif
{
struct rexp_node * n = rexp_node (rx, r_side_effect);
if (n)
{
n->params.side_effect = a;
n->params.pair.right = 0;
}
return n;
}
#ifdef __STDC__
RX_DECL struct rexp_node *
rx_mk_r_data (struct rx * rx,
void * a)
#else
RX_DECL struct rexp_node *
rx_mk_r_data (rx, a)
struct rx * rx;
void * a;
#endif
{
struct rexp_node * n = rexp_node (rx, r_data);
if (n)
{
n->params.pair.left = a;
n->params.pair.right = 0;
}
return n;
}
#ifdef __STDC__
RX_DECL void
rx_free_rexp (struct rx * rx, struct rexp_node * node)
#else
RX_DECL void
rx_free_rexp (rx, node)
struct rx * rx;
struct rexp_node * node;
#endif
{
if (node)
{
switch (node->type)
{
case r_cset:
if (node->params.cset)
rx_free_cset (rx, node->params.cset);
case r_side_effect:
break;
case r_concat:
case r_alternate:
case r_2phase_star:
case r_opt:
case r_star:
rx_free_rexp (rx, node->params.pair.left);
rx_free_rexp (rx, node->params.pair.right);
break;
case r_data:
/* This shouldn't occur. */
break;
}
free ((char *)node);
}
}
#ifdef __STDC__
RX_DECL struct rexp_node *
rx_copy_rexp (struct rx *rx,
struct rexp_node *node)
#else
RX_DECL struct rexp_node *
rx_copy_rexp (rx, node)
struct rx *rx;
struct rexp_node *node;
#endif
{
if (!node)
return 0;
else
{
struct rexp_node *n = rexp_node (rx, node->type);
if (!n)
return 0;
switch (node->type)
{
case r_cset:
n->params.cset = rx_copy_cset (rx, node->params.cset);
if (!n->params.cset)
{
rx_free_rexp (rx, n);
return 0;
}
break;
case r_side_effect:
n->params.side_effect = node->params.side_effect;
break;
case r_concat:
case r_alternate:
case r_opt:
case r_2phase_star:
case r_star:
n->params.pair.left =
rx_copy_rexp (rx, node->params.pair.left);
n->params.pair.right =
rx_copy_rexp (rx, node->params.pair.right);
if ( (node->params.pair.left && !n->params.pair.left)
|| (node->params.pair.right && !n->params.pair.right))
{
rx_free_rexp (rx, n);
return 0;
}
break;
case r_data:
/* shouldn't happen */
break;
}
return n;
}
}
/* This page: functions to build and destroy graphs that describe nfa's */
/* Constructs a new nfa node. */
#ifdef __STDC__
RX_DECL struct rx_nfa_state *
rx_nfa_state (struct rx *rx)
#else
RX_DECL struct rx_nfa_state *
rx_nfa_state (rx)
struct rx *rx;
#endif
{
struct rx_nfa_state * n = (struct rx_nfa_state *)malloc (sizeof (*n));
if (!n)
return 0;
bzero (n, sizeof (*n));
n->next = rx->nfa_states;
rx->nfa_states = n;
return n;
}
#ifdef __STDC__
RX_DECL void
rx_free_nfa_state (struct rx_nfa_state * n)
#else
RX_DECL void
rx_free_nfa_state (n)
struct rx_nfa_state * n;
#endif
{
free ((char *)n);
}
/* This looks up an nfa node, given a numeric id. Numeric id's are
* assigned after the nfa has been built.
*/
#ifdef __STDC__
RX_DECL struct rx_nfa_state *
rx_id_to_nfa_state (struct rx * rx,
int id)
#else
RX_DECL struct rx_nfa_state *
rx_id_to_nfa_state (rx, id)
struct rx * rx;
int id;
#endif
{
struct rx_nfa_state * n;
for (n = rx->nfa_states; n; n = n->next)
if (n->id == id)
return n;
return 0;
}
/* This adds an edge between two nodes, but doesn't initialize the
* edge label.
*/
#ifdef __STDC__
RX_DECL struct rx_nfa_edge *
rx_nfa_edge (struct rx *rx,
enum rx_nfa_etype type,
struct rx_nfa_state *start,
struct rx_nfa_state *dest)
#else
RX_DECL struct rx_nfa_edge *
rx_nfa_edge (rx, type, start, dest)
struct rx *rx;
enum rx_nfa_etype type;
struct rx_nfa_state *start;
struct rx_nfa_state *dest;
#endif
{
struct rx_nfa_edge *e;
e = (struct rx_nfa_edge *)malloc (sizeof (*e));
if (!e)
return 0;
e->next = start->edges;
start->edges = e;
e->type = type;
e->dest = dest;
return e;
}
#ifdef __STDC__
RX_DECL void
rx_free_nfa_edge (struct rx_nfa_edge * e)
#else
RX_DECL void
rx_free_nfa_edge (e)
struct rx_nfa_edge * e;
#endif
{
free ((char *)e);
}
/* This constructs a POSSIBLE_FUTURE, which is a kind epsilon-closure
* of an NFA. These are added to an nfa automaticly by eclose_nfa.
*/
#ifdef __STDC__
static struct rx_possible_future *
rx_possible_future (struct rx * rx,
struct rx_se_list * effects)
#else
static struct rx_possible_future *
rx_possible_future (rx, effects)
struct rx * rx;
struct rx_se_list * effects;
#endif
{
struct rx_possible_future *ec;
ec = (struct rx_possible_future *) malloc (sizeof (*ec));
if (!ec)
return 0;
ec->destset = 0;
ec->next = 0;
ec->effects = effects;
return ec;
}
#ifdef __STDC__
static void
rx_free_possible_future (struct rx_possible_future * pf)
#else
static void
rx_free_possible_future (pf)
struct rx_possible_future * pf;
#endif
{
free ((char *)pf);
}
#ifdef __STDC__
RX_DECL void
rx_free_nfa (struct rx *rx)
#else
RX_DECL void
rx_free_nfa (rx)
struct rx *rx;
#endif
{
while (rx->nfa_states)
{
while (rx->nfa_states->edges)
{
switch (rx->nfa_states->edges->type)
{
case ne_cset:
rx_free_cset (rx, rx->nfa_states->edges->params.cset);
break;
default:
break;
}
{
struct rx_nfa_edge * e;
e = rx->nfa_states->edges;
rx->nfa_states->edges = rx->nfa_states->edges->next;
rx_free_nfa_edge (e);
}
} /* while (rx->nfa_states->edges) */
{
/* Iterate over the partial epsilon closures of rx->nfa_states */
struct rx_possible_future * pf = rx->nfa_states->futures;
while (pf)
{
struct rx_possible_future * pft = pf;
pf = pf->next;
rx_free_possible_future (pft);
}
}
{
struct rx_nfa_state *n;
n = rx->nfa_states;
rx->nfa_states = rx->nfa_states->next;
rx_free_nfa_state (n);
}
}
}
/* This page: translating a pattern expression into an nfa and doing the
* static part of the nfa->super-nfa translation.
*/
/* This is the thompson regexp->nfa algorithm.
* It is modified to allow for `side-effect epsilons.' Those are
* edges that are taken whenever a similar epsilon edge would be,
* but which imply that some side effect occurs when the edge
* is taken.
*
* Side effects are used to model parts of the pattern langauge
* that are not regular (in the formal sense).
*/
#ifdef __STDC__
RX_DECL int
rx_build_nfa (struct rx *rx,
struct rexp_node *rexp,
struct rx_nfa_state **start,
struct rx_nfa_state **end)
#else
RX_DECL int
rx_build_nfa (rx, rexp, start, end)
struct rx *rx;
struct rexp_node *rexp;
struct rx_nfa_state **start;
struct rx_nfa_state **end;
#endif
{
struct rx_nfa_edge *edge;
/* Start & end nodes may have been allocated by the caller. */
*start = *start ? *start : rx_nfa_state (rx);
if (!*start)
return 0;
if (!rexp)
{
*end = *start;
return 1;
}
*end = *end ? *end : rx_nfa_state (rx);
if (!*end)
{
rx_free_nfa_state (*start);
return 0;
}
switch (rexp->type)
{
case r_data:
return 0;
case r_cset:
edge = rx_nfa_edge (rx, ne_cset, *start, *end);
if (!edge)
return 0;
edge->params.cset = rx_copy_cset (rx, rexp->params.cset);
if (!edge->params.cset)
{
rx_free_nfa_edge (edge);
return 0;
}
return 1;
case r_opt:
return (rx_build_nfa (rx, rexp->params.pair.left, start, end)
&& rx_nfa_edge (rx, ne_epsilon, *start, *end));
case r_star:
{
struct rx_nfa_state * star_start = 0;
struct rx_nfa_state * star_end = 0;
return (rx_build_nfa (rx, rexp->params.pair.left,
&star_start, &star_end)
&& star_start
&& star_end
&& rx_nfa_edge (rx, ne_epsilon, star_start, star_end)
&& rx_nfa_edge (rx, ne_epsilon, *start, star_start)
&& rx_nfa_edge (rx, ne_epsilon, star_end, *end)
&& rx_nfa_edge (rx, ne_epsilon, star_end, star_start));
}
case r_2phase_star:
{
struct rx_nfa_state * star_start = 0;
struct rx_nfa_state * star_end = 0;
struct rx_nfa_state * loop_exp_start = 0;
struct rx_nfa_state * loop_exp_end = 0;
return (rx_build_nfa (rx, rexp->params.pair.left,
&star_start, &star_end)
&& rx_build_nfa (rx, rexp->params.pair.right,
&loop_exp_start, &loop_exp_end)
&& star_start
&& star_end
&& loop_exp_end
&& loop_exp_start
&& rx_nfa_edge (rx, ne_epsilon, star_start, *end)
&& rx_nfa_edge (rx, ne_epsilon, *start, star_start)
&& rx_nfa_edge (rx, ne_epsilon, star_end, *end)
&& rx_nfa_edge (rx, ne_epsilon, star_end, loop_exp_start)
&& rx_nfa_edge (rx, ne_epsilon, loop_exp_end, star_start));
}
case r_concat:
{
struct rx_nfa_state *shared = 0;
return
(rx_build_nfa (rx, rexp->params.pair.left, start, &shared)
&& rx_build_nfa (rx, rexp->params.pair.right, &shared, end));
}
case r_alternate:
{
struct rx_nfa_state *ls = 0;
struct rx_nfa_state *le = 0;
struct rx_nfa_state *rs = 0;
struct rx_nfa_state *re = 0;
return (rx_build_nfa (rx, rexp->params.pair.left, &ls, &le)
&& rx_build_nfa (rx, rexp->params.pair.right, &rs, &re)
&& rx_nfa_edge (rx, ne_epsilon, *start, ls)
&& rx_nfa_edge (rx, ne_epsilon, *start, rs)
&& rx_nfa_edge (rx, ne_epsilon, le, *end)
&& rx_nfa_edge (rx, ne_epsilon, re, *end));
}
case r_side_effect:
edge = rx_nfa_edge (rx, ne_side_effect, *start, *end);
if (!edge)
return 0;
edge->params.side_effect = rexp->params.side_effect;
return 1;
}
/* this should never happen */
return 0;
}
/* RX_NAME_NFA_STATES identifies all nodes with outgoing non-epsilon
* transitions. Only these nodes can occur in super-states.
* All nodes are given an integer id.
* The id is non-negative if the node has non-epsilon out-transitions, negative
* otherwise (this is because we want the non-negative ids to be used as
* array indexes in a few places).
*/
#ifdef __STDC__
RX_DECL void
rx_name_nfa_states (struct rx *rx)
#else
RX_DECL void
rx_name_nfa_states (rx)
struct rx *rx;
#endif
{
struct rx_nfa_state *n = rx->nfa_states;
rx->nodec = 0;
rx->epsnodec = -1;
while (n)
{
struct rx_nfa_edge *e = n->edges;
if (n->is_start)
n->eclosure_needed = 1;
while (e)
{
switch (e->type)
{
case ne_epsilon:
case ne_side_effect:
break;
case ne_cset:
n->id = rx->nodec++;
{
struct rx_nfa_edge *from_n = n->edges;
while (from_n)
{
from_n->dest->eclosure_needed = 1;
from_n = from_n->next;
}
}
goto cont;
}
e = e->next;
}
n->id = rx->epsnodec--;
cont:
n = n->next;
}
rx->epsnodec = -rx->epsnodec;
}
/* This page: data structures for the static part of the nfa->supernfa
* translation.
*
* There are side effect lists -- lists of side effects occuring
* along an uninterrupted, acyclic path of side-effect epsilon edges.
* Such paths are collapsed to single edges in the course of computing
* epsilon closures. Such single edges are labled with a list of all
* the side effects entailed in crossing them. Like lists of side
* effects are made == by the constructors below.
*
* There are also nfa state sets. These are used to hold a list of all
* states reachable from a starting state for a given type of transition
* and side effect list. These are also hash-consed.
*/
/* The next several functions compare, construct, etc. lists of side
* effects. See ECLOSE_NFA (below) for details.
*/
/* Ordering of rx_se_list
* (-1, 0, 1 return value convention).
*/
#ifdef __STDC__
static int
se_list_cmp (void * va, void * vb)
#else
static int
se_list_cmp (va, vb)
void * va;
void * vb;
#endif
{
struct rx_se_list * a = (struct rx_se_list *)va;
struct rx_se_list * b = (struct rx_se_list *)vb;
return ((va == vb)
? 0
: (!va
? -1
: (!vb
? 1
: ((long)a->car < (long)b->car
? 1
: ((long)a->car > (long)b->car
? -1
: se_list_cmp ((void *)a->cdr, (void *)b->cdr))))));
}
#ifdef __STDC__
static int
se_list_equal (void * va, void * vb)
#else
static int
se_list_equal (va, vb)
void * va;
void * vb;
#endif
{
return !(se_list_cmp (va, vb));
}
static struct rx_hash_rules se_list_hash_rules =
{
se_list_equal,
compiler_hash_alloc,
compiler_free_hash,
compiler_hash_item_alloc,
compiler_free_hash_item
};
#ifdef __STDC__
static struct rx_se_list *
side_effect_cons (struct rx * rx,
void * se, struct rx_se_list * list)
#else
static struct rx_se_list *
side_effect_cons (rx, se, list)
struct rx * rx;
void * se;
struct rx_se_list * list;
#endif
{
struct rx_se_list * l;
l = ((struct rx_se_list *) malloc (sizeof (*l)));
if (!l)
return 0;
l->car = se;
l->cdr = list;
return l;
}
#ifdef __STDC__
static struct rx_se_list *
hash_cons_se_prog (struct rx * rx,
struct rx_hash * memo,
void * car, struct rx_se_list * cdr)
#else
static struct rx_se_list *
hash_cons_se_prog (rx, memo, car, cdr)
struct rx * rx;
struct rx_hash * memo;
void * car;
struct rx_se_list * cdr;
#endif
{
long hash = (long)car ^ (long)cdr;
struct rx_se_list template;
template.car = car;
template.cdr = cdr;
{
struct rx_hash_item * it = rx_hash_store (memo, hash,
(void *)&template,
&se_list_hash_rules);
if (!it)
return 0;
if (it->data == (void *)&template)
{
struct rx_se_list * consed;
consed = (struct rx_se_list *) malloc (sizeof (*consed));
*consed = template;
it->data = (void *)consed;
}
return (struct rx_se_list *)it->data;
}
}
#ifdef __STDC__
static struct rx_se_list *
hash_se_prog (struct rx * rx, struct rx_hash * memo, struct rx_se_list * prog)
#else
static struct rx_se_list *
hash_se_prog (rx, memo, prog)
struct rx * rx;
struct rx_hash * memo;
struct rx_se_list * prog;
#endif
{
struct rx_se_list * answer = 0;
while (prog)
{
answer = hash_cons_se_prog (rx, memo, prog->car, answer);
if (!answer)
return 0;
prog = prog->cdr;
}
return answer;
}
#ifdef __STDC__
static int
nfa_set_cmp (void * va, void * vb)
#else
static int
nfa_set_cmp (va, vb)
void * va;
void * vb;
#endif
{
struct rx_nfa_state_set * a = (struct rx_nfa_state_set *)va;
struct rx_nfa_state_set * b = (struct rx_nfa_state_set *)vb;
return ((va == vb)
? 0
: (!va
? -1
: (!vb
? 1
: (a->car->id < b->car->id
? 1
: (a->car->id > b->car->id
? -1
: nfa_set_cmp ((void *)a->cdr, (void *)b->cdr))))));
}
#ifdef __STDC__
static int
nfa_set_equal (void * va, void * vb)
#else
static int
nfa_set_equal (va, vb)
void * va;
void * vb;
#endif
{
return !nfa_set_cmp (va, vb);
}
static struct rx_hash_rules nfa_set_hash_rules =
{
nfa_set_equal,
compiler_hash_alloc,
compiler_free_hash,
compiler_hash_item_alloc,
compiler_free_hash_item
};
#ifdef __STDC__
static struct rx_nfa_state_set *
nfa_set_cons (struct rx * rx,
struct rx_hash * memo, struct rx_nfa_state * state,
struct rx_nfa_state_set * set)
#else
static struct rx_nfa_state_set *
nfa_set_cons (rx, memo, state, set)
struct rx * rx;
struct rx_hash * memo;
struct rx_nfa_state * state;
struct rx_nfa_state_set * set;
#endif
{
struct rx_nfa_state_set template;
struct rx_hash_item * node;
template.car = state;
template.cdr = set;
node = rx_hash_store (memo,
(((long)state) >> 8) ^ (long)set,
&template, &nfa_set_hash_rules);
if (!node)
return 0;
if (node->data == &template)
{
struct rx_nfa_state_set * l;
l = (struct rx_nfa_state_set *) malloc (sizeof (*l));
node->data = (void *) l;
if (!l)
return 0;
*l = template;
}
return (struct rx_nfa_state_set *)node->data;
}
#ifdef __STDC__
static struct rx_nfa_state_set *
nfa_set_enjoin (struct rx * rx,
struct rx_hash * memo, struct rx_nfa_state * state,
struct rx_nfa_state_set * set)
#else
static struct rx_nfa_state_set *
nfa_set_enjoin (rx, memo, state, set)
struct rx * rx;
struct rx_hash * memo;
struct rx_nfa_state * state;
struct rx_nfa_state_set * set;
#endif
{
if (!set || state->id < set->car->id)
return nfa_set_cons (rx, memo, state, set);
if (state->id == set->car->id)
return set;
else
{
struct rx_nfa_state_set * newcdr
= nfa_set_enjoin (rx, memo, state, set->cdr);
if (newcdr != set->cdr)
set = nfa_set_cons (rx, memo, set->car, newcdr);
return set;
}
}
/* This page: computing epsilon closures. The closures aren't total.
* Each node's closures are partitioned according to the side effects entailed
* along the epsilon edges. Return true on success.
*/
struct eclose_frame
{
struct rx_se_list *prog_backwards;
};
#ifdef __STDC__
static int
eclose_node (struct rx *rx, struct rx_nfa_state *outnode,
struct rx_nfa_state *node, struct eclose_frame *frame)
#else
static int
eclose_node (rx, outnode, node, frame)
struct rx *rx;
struct rx_nfa_state *outnode;
struct rx_nfa_state *node;
struct eclose_frame *frame;
#endif
{
struct rx_nfa_edge *e = node->edges;
/* For each node, we follow all epsilon paths to build the closure.
* The closure omits nodes that have only epsilon edges.
* The closure is split into partial closures -- all the states in
* a partial closure are reached by crossing the same list of
* of side effects (though not necessarily the same path).
*/
if (node->mark)
return 1;
node->mark = 1;
if (node->id >= 0 || node->is_final)
{
struct rx_possible_future **ec;
struct rx_se_list * prog_in_order
= ((struct rx_se_list *)hash_se_prog (rx,
&rx->se_list_memo,
frame->prog_backwards));
int cmp;
ec = &outnode->futures;
while (*ec)
{
cmp = se_list_cmp ((void *)(*ec)->effects, (void *)prog_in_order);
if (cmp <= 0)
break;
ec = &(*ec)->next;
}
if (!*ec || (cmp < 0))
{
struct rx_possible_future * saved = *ec;
*ec = rx_possible_future (rx, prog_in_order);
(*ec)->next = saved;
if (!*ec)
return 0;
}
if (node->id >= 0)
{
(*ec)->destset = nfa_set_enjoin (rx, &rx->set_list_memo,
node, (*ec)->destset);
if (!(*ec)->destset)
return 0;
}
}
while (e)
{
switch (e->type)
{
case ne_epsilon:
if (!eclose_node (rx, outnode, e->dest, frame))
return 0;
break;
case ne_side_effect:
{
frame->prog_backwards = side_effect_cons (rx,
e->params.side_effect,
frame->prog_backwards);
if (!frame->prog_backwards)
return 0;
if (!eclose_node (rx, outnode, e->dest, frame))
return 0;
{
struct rx_se_list * dying = frame->prog_backwards;
frame->prog_backwards = frame->prog_backwards->cdr;
free ((char *)dying);
}
break;
}
default:
break;
}
e = e->next;
}
node->mark = 0;
return 1;
}
#ifdef __STDC__
RX_DECL int
rx_eclose_nfa (struct rx *rx)
#else
RX_DECL int
rx_eclose_nfa (rx)
struct rx *rx;
#endif
{
struct rx_nfa_state *n = rx->nfa_states;
struct eclose_frame frame;
static int rx_id = 0;
frame.prog_backwards = 0;
rx->rx_id = rx_id++;
bzero (&rx->se_list_memo, sizeof (rx->se_list_memo));
bzero (&rx->set_list_memo, sizeof (rx->set_list_memo));
while (n)
{
n->futures = 0;
if (n->eclosure_needed && !eclose_node (rx, n, n, &frame))
return 0;
/* clear_marks (rx); */
n = n->next;
}
return 1;
}
/* This deletes epsilon edges from an NFA. After running eclose_node,
* we have no more need for these edges. They are removed to simplify
* further operations on the NFA.
*/
#ifdef __STDC__
RX_DECL void
rx_delete_epsilon_transitions (struct rx *rx)
#else
RX_DECL void
rx_delete_epsilon_transitions (rx)
struct rx *rx;
#endif
{
struct rx_nfa_state *n = rx->nfa_states;
struct rx_nfa_edge **e;
while (n)
{
e = &n->edges;
while (*e)
{
struct rx_nfa_edge *t;
switch ((*e)->type)
{
case ne_epsilon:
case ne_side_effect:
t = *e;
*e = t->next;
rx_free_nfa_edge (t);
break;
default:
e = &(*e)->next;
break;
}
}
n = n->next;
}
}
/* This page: storing the nfa in a contiguous region of memory for
* subsequent conversion to a super-nfa.
*/
/* This is for qsort on an array of nfa_states. The order
* is based on state ids and goes
* [0...MAX][MIN..-1] where (MAX>=0) and (MIN<0)
* This way, positive ids double as array indices.
*/
#ifdef __STDC__
static int
nfacmp (void * va, void * vb)
#else
static int
nfacmp (va, vb)
void * va;
void * vb;
#endif
{
struct rx_nfa_state **a = (struct rx_nfa_state **)va;
struct rx_nfa_state **b = (struct rx_nfa_state **)vb;
return (*a == *b /* &&&& 3.18 */
? 0
: (((*a)->id < 0) == ((*b)->id < 0)
? (((*a)->id < (*b)->id) ? -1 : 1)
: (((*a)->id < 0)
? 1 : -1)));
}
#ifdef __STDC__
static int
count_hash_nodes (struct rx_hash * st)
#else
static int
count_hash_nodes (st)
struct rx_hash * st;
#endif
{
int x;
int count = 0;
for (x = 0; x < 13; ++x)
count += ((st->children[x])
? count_hash_nodes (st->children[x])
: st->bucket_size[x]);
return count;
}
#ifdef __STDC__
static void
se_memo_freer (struct rx_hash_item * node)
#else
static void
se_memo_freer (node)
struct rx_hash_item * node;
#endif
{
free ((char *)node->data);
}
#ifdef __STDC__
static void
nfa_set_freer (struct rx_hash_item * node)
#else
static void
nfa_set_freer (node)
struct rx_hash_item * node;
#endif
{
free ((char *)node->data);
}
/* This copies an entire NFA into a single malloced block of memory.
* Mostly this is for compatability with regex.c, though it is convenient
* to have the nfa nodes in an array.
*/
#ifdef __STDC__
RX_DECL int
rx_compactify_nfa (struct rx *rx,
void **mem, unsigned long *size)
#else
RX_DECL int
rx_compactify_nfa (rx, mem, size)
struct rx *rx;
void **mem;
unsigned long *size;
#endif
{
int total_nodec;
struct rx_nfa_state *n;
int edgec = 0;
int eclosec = 0;
int se_list_consc = count_hash_nodes (&rx->se_list_memo);
int nfa_setc = count_hash_nodes (&rx->set_list_memo);
unsigned long total_size;
/* This takes place in two stages. First, the total size of the
* nfa is computed, then structures are copied.
*/
n = rx->nfa_states;
total_nodec = 0;
while (n)
{
struct rx_nfa_edge *e = n->edges;
struct rx_possible_future *ec = n->futures;
++total_nodec;
while (e)
{
++edgec;
e = e->next;
}
while (ec)
{
++eclosec;
ec = ec->next;
}
n = n->next;
}
total_size = (total_nodec * sizeof (struct rx_nfa_state)
+ edgec * rx_sizeof_bitset (rx->local_cset_size)
+ edgec * sizeof (struct rx_nfa_edge)
+ nfa_setc * sizeof (struct rx_nfa_state_set)
+ eclosec * sizeof (struct rx_possible_future)
+ se_list_consc * sizeof (struct rx_se_list)
+ rx->reserved);
if (total_size > *size)
{
*mem = remalloc (*mem, total_size);
if (*mem)
*size = total_size;
else
return 0;
}
/* Now we've allocated the memory; this copies the NFA. */
{
static struct rx_nfa_state **scratch = 0;
static int scratch_alloc = 0;
struct rx_nfa_state *state_base = (struct rx_nfa_state *) * mem;
struct rx_nfa_state *new_state = state_base;
struct rx_nfa_edge *new_edge =
(struct rx_nfa_edge *)
((char *) state_base + total_nodec * sizeof (struct rx_nfa_state));
struct rx_se_list * new_se_list =
(struct rx_se_list *)
((char *)new_edge + edgec * sizeof (struct rx_nfa_edge));
struct rx_possible_future *new_close =
((struct rx_possible_future *)
((char *) new_se_list
+ se_list_consc * sizeof (struct rx_se_list)));
struct rx_nfa_state_set * new_nfa_set =
((struct rx_nfa_state_set *)
((char *)new_close + eclosec * sizeof (struct rx_possible_future)));
char *new_bitset =
((char *) new_nfa_set + nfa_setc * sizeof (struct rx_nfa_state_set));
int x;
struct rx_nfa_state *n;
if (scratch_alloc < total_nodec)
{
scratch = ((struct rx_nfa_state **)
remalloc (scratch, total_nodec * sizeof (*scratch)));
if (scratch)
scratch_alloc = total_nodec;
else
{
scratch_alloc = 0;
return 0;
}
}
for (x = 0, n = rx->nfa_states; n; n = n->next)
scratch[x++] = n;
qsort (scratch, total_nodec,
sizeof (struct rx_nfa_state *), (int (*)())nfacmp);
for (x = 0; x < total_nodec; ++x)
{
struct rx_possible_future *eclose = scratch[x]->futures;
struct rx_nfa_edge *edge = scratch[x]->edges;
struct rx_nfa_state *cn = new_state++;
cn->futures = 0;
cn->edges = 0;
cn->next = (x == total_nodec - 1) ? 0 : (cn + 1);
cn->id = scratch[x]->id;
cn->is_final = scratch[x]->is_final;
cn->is_start = scratch[x]->is_start;
cn->mark = 0;
while (edge)
{
int indx = (edge->dest->id < 0
? (total_nodec + edge->dest->id)
: edge->dest->id);
struct rx_nfa_edge *e = new_edge++;
rx_Bitset cset = (rx_Bitset) new_bitset;
new_bitset += rx_sizeof_bitset (rx->local_cset_size);
rx_bitset_null (rx->local_cset_size, cset);
rx_bitset_union (rx->local_cset_size, cset, edge->params.cset);
e->next = cn->edges;
cn->edges = e;
e->type = edge->type;
e->dest = state_base + indx;
e->params.cset = cset;
edge = edge->next;
}
while (eclose)
{
struct rx_possible_future *ec = new_close++;
struct rx_hash_item * sp;
struct rx_se_list ** sepos;
struct rx_se_list * sesrc;
struct rx_nfa_state_set * destlst;
struct rx_nfa_state_set ** destpos;
ec->next = cn->futures;
cn->futures = ec;
for (sepos = &ec->effects, sesrc = eclose->effects;
sesrc;
sesrc = sesrc->cdr, sepos = &(*sepos)->cdr)
{
sp = rx_hash_find (&rx->se_list_memo,
(long)sesrc->car ^ (long)sesrc->cdr,
sesrc, &se_list_hash_rules);
if (sp->binding)
{
sesrc = (struct rx_se_list *)sp->binding;
break;
}
*new_se_list = *sesrc;
sp->binding = (void *)new_se_list;
*sepos = new_se_list;
++new_se_list;
}
*sepos = sesrc;
for (destpos = &ec->destset, destlst = eclose->destset;
destlst;
destpos = &(*destpos)->cdr, destlst = destlst->cdr)
{
sp = rx_hash_find (&rx->set_list_memo,
((((long)destlst->car) >> 8)
^ (long)destlst->cdr),
destlst, &nfa_set_hash_rules);
if (sp->binding)
{
destlst = (struct rx_nfa_state_set *)sp->binding;
break;
}
*new_nfa_set = *destlst;
new_nfa_set->car = state_base + destlst->car->id;
sp->binding = (void *)new_nfa_set;
*destpos = new_nfa_set;
++new_nfa_set;
}
*destpos = destlst;
eclose = eclose->next;
}
}
}
rx_free_hash_table (&rx->se_list_memo, se_memo_freer, &se_list_hash_rules);
bzero (&rx->se_list_memo, sizeof (rx->se_list_memo));
rx_free_hash_table (&rx->set_list_memo, nfa_set_freer, &nfa_set_hash_rules);
bzero (&rx->set_list_memo, sizeof (rx->set_list_memo));
rx_free_nfa (rx);
rx->nfa_states = (struct rx_nfa_state *)*mem;
return 1;
}
/* The functions in the next several pages define the lazy-NFA-conversion used
* by matchers. The input to this construction is an NFA such as
* is built by compactify_nfa (rx.c). The output is the superNFA.
*/
/* Match engines can use arbitrary values for opcodes. So, the parse tree
* is built using instructions names (enum rx_opcode), but the superstate
* nfa is populated with mystery opcodes (void *).
*
* For convenience, here is an id table. The opcodes are == to their inxs
*
* The lables in re_search_2 would make good values for instructions.
*/
void * rx_id_instruction_table[rx_num_instructions] =
{
(void *) rx_backtrack_point,
(void *) rx_do_side_effects,
(void *) rx_cache_miss,
(void *) rx_next_char,
(void *) rx_backtrack,
(void *) rx_error_inx
};
/* Memory mgt. for superstate graphs. */
#ifdef __STDC__
static char *
rx_cache_malloc (struct rx_cache * cache, int bytes)
#else
static char *
rx_cache_malloc (cache, bytes)
struct rx_cache * cache;
int bytes;
#endif
{
while (cache->bytes_left < bytes)
{
if (cache->memory_pos)
cache->memory_pos = cache->memory_pos->next;
if (!cache->memory_pos)
{
cache->morecore (cache);
if (!cache->memory_pos)
return 0;
}
cache->bytes_left = cache->memory_pos->bytes;
cache->memory_addr = ((char *)cache->memory_pos
+ sizeof (struct rx_blocklist));
}
cache->bytes_left -= bytes;
{
char * addr = cache->memory_addr;
cache->memory_addr += bytes;
return addr;
}
}
#ifdef __STDC__
static void
rx_cache_free (struct rx_cache * cache,
struct rx_freelist ** freelist, char * mem)
#else
static void
rx_cache_free (cache, freelist, mem)
struct rx_cache * cache;
struct rx_freelist ** freelist;
char * mem;
#endif
{
struct rx_freelist * it = (struct rx_freelist *)mem;
it->next = *freelist;
*freelist = it;
}
/* The partially instantiated superstate graph has a transition
* table at every node. There is one entry for every character.
* This fills in the transition for a set.
*/
#ifdef __STDC__
static void
install_transition (struct rx_superstate *super,
struct rx_inx *answer, rx_Bitset trcset)
#else
static void
install_transition (super, answer, trcset)
struct rx_superstate *super;
struct rx_inx *answer;
rx_Bitset trcset;
#endif
{
struct rx_inx * transitions = super->transitions;
int chr;
for (chr = 0; chr < 256; )
if (!*trcset)
{
++trcset;
chr += 32;
}
else
{
RX_subset sub = *trcset;
RX_subset mask = 1;
int bound = chr + 32;
while (chr < bound)
{
if (sub & mask)
transitions [chr] = *answer;
++chr;
mask <<= 1;
}
++trcset;
}
}
#ifdef __STDC__
static int
qlen (struct rx_superstate * q)
#else
static int
qlen (q)
struct rx_superstate * q;
#endif
{
int count = 1;
struct rx_superstate * it;
if (!q)
return 0;
for (it = q->next_recyclable; it != q; it = it->next_recyclable)
++count;
return count;
}
#ifdef __STDC__
static void
check_cache (struct rx_cache * cache)
#else
static void
check_cache (cache)
struct rx_cache * cache;
#endif
{
struct rx_cache * you_fucked_up = 0;
int total = cache->superstates;
int semi = cache->semifree_superstates;
if (semi != qlen (cache->semifree_superstate))
check_cache (you_fucked_up);
if ((total - semi) != qlen (cache->lru_superstate))
check_cache (you_fucked_up);
}
/* When a superstate is old and neglected, it can enter a
* semi-free state. A semi-free state is slated to die.
* Incoming transitions to a semi-free state are re-written
* to cause an (interpreted) fault when they are taken.
* The fault handler revives the semi-free state, patches
* incoming transitions back to normal, and continues.
*
* The idea is basicly to free in two stages, aborting
* between the two if the state turns out to be useful again.
* When a free is aborted, the rescued superstate is placed
* in the most-favored slot to maximize the time until it
* is next semi-freed.
*/
#ifdef __STDC__
static void
semifree_superstate (struct rx_cache * cache)
#else
static void
semifree_superstate (cache)
struct rx_cache * cache;
#endif
{
int disqualified = cache->semifree_superstates;
if (disqualified == cache->superstates)
return;
while (cache->lru_superstate->locks)
{
cache->lru_superstate = cache->lru_superstate->next_recyclable;
++disqualified;
if (disqualified == cache->superstates)
return;
}
{
struct rx_superstate * it = cache->lru_superstate;
it->next_recyclable->prev_recyclable = it->prev_recyclable;
it->prev_recyclable->next_recyclable = it->next_recyclable;
cache->lru_superstate = (it == it->next_recyclable
? 0
: it->next_recyclable);
if (!cache->semifree_superstate)
{
cache->semifree_superstate = it;
it->next_recyclable = it;
it->prev_recyclable = it;
}
else
{
it->prev_recyclable = cache->semifree_superstate->prev_recyclable;
it->next_recyclable = cache->semifree_superstate;
it->prev_recyclable->next_recyclable = it;
it->next_recyclable->prev_recyclable = it;
}
{
struct rx_distinct_future *df;
it->is_semifree = 1;
++cache->semifree_superstates;
df = it->transition_refs;
if (df)
{
df->prev_same_dest->next_same_dest = 0;
for (df = it->transition_refs; df; df = df->next_same_dest)
{
df->future_frame.inx = cache->instruction_table[rx_cache_miss];
df->future_frame.data = 0;
df->future_frame.data_2 = (void *) df;
/* If there are any NEXT-CHAR instruction frames that
* refer to this state, we convert them to CACHE-MISS frames.
*/
if (!df->effects
&& (df->edge->options->next_same_super_edge[0]
== df->edge->options))
install_transition (df->present, &df->future_frame,
df->edge->cset);
}
df = it->transition_refs;
df->prev_same_dest->next_same_dest = df;
}
}
}
}
#ifdef __STDC__
static void
refresh_semifree_superstate (struct rx_cache * cache,
struct rx_superstate * super)
#else
static void
refresh_semifree_superstate (cache, super)
struct rx_cache * cache;
struct rx_superstate * super;
#endif
{
struct rx_distinct_future *df;
if (super->transition_refs)
{
super->transition_refs->prev_same_dest->next_same_dest = 0;
for (df = super->transition_refs; df; df = df->next_same_dest)
{
df->future_frame.inx = cache->instruction_table[rx_next_char];
df->future_frame.data = (void *) super->transitions;
/* CACHE-MISS instruction frames that refer to this state,
* must be converted to NEXT-CHAR frames.
*/
if (!df->effects
&& (df->edge->options->next_same_super_edge[0]
== df->edge->options))
install_transition (df->present, &df->future_frame,
df->edge->cset);
}
super->transition_refs->prev_same_dest->next_same_dest
= super->transition_refs;
}
if (cache->semifree_superstate == super)
cache->semifree_superstate = (super->prev_recyclable == super
? 0
: super->prev_recyclable);
super->next_recyclable->prev_recyclable = super->prev_recyclable;
super->prev_recyclable->next_recyclable = super->next_recyclable;
if (!cache->lru_superstate)
(cache->lru_superstate
= super->next_recyclable
= super->prev_recyclable
= super);
else
{
super->next_recyclable = cache->lru_superstate;
super->prev_recyclable = cache->lru_superstate->prev_recyclable;
super->next_recyclable->prev_recyclable = super;
super->prev_recyclable->next_recyclable = super;
}
super->is_semifree = 0;
--cache->semifree_superstates;
}
#ifdef __STDC__
static void
rx_refresh_this_superstate (struct rx_cache * cache, struct rx_superstate * superstate)
#else
static void
rx_refresh_this_superstate (cache, superstate)
struct rx_cache * cache;
struct rx_superstate * superstate;
#endif
{
if (superstate->is_semifree)
refresh_semifree_superstate (cache, superstate);
else if (cache->lru_superstate == superstate)
cache->lru_superstate = superstate->next_recyclable;
else if (superstate != cache->lru_superstate->prev_recyclable)
{
superstate->next_recyclable->prev_recyclable
= superstate->prev_recyclable;
superstate->prev_recyclable->next_recyclable
= superstate->next_recyclable;
superstate->next_recyclable = cache->lru_superstate;
superstate->prev_recyclable = cache->lru_superstate->prev_recyclable;
superstate->next_recyclable->prev_recyclable = superstate;
superstate->prev_recyclable->next_recyclable = superstate;
}
}
#ifdef __STDC__
static void
release_superset_low (struct rx_cache * cache,
struct rx_superset *set)
#else
static void
release_superset_low (cache, set)
struct rx_cache * cache;
struct rx_superset *set;
#endif
{
if (!--set->refs)
{
if (set->cdr)
release_superset_low (cache, set->cdr);
set->starts_for = 0;
rx_hash_free
(rx_hash_find
(&cache->superset_table,
(unsigned long)set->car ^ set->id ^ (unsigned long)set->cdr,
(void *)set,
&cache->superset_hash_rules),
&cache->superset_hash_rules);
rx_cache_free (cache, &cache->free_supersets, (char *)set);
}
}
#ifdef __STDC__
RX_DECL void
rx_release_superset (struct rx *rx,
struct rx_superset *set)
#else
RX_DECL void
rx_release_superset (rx, set)
struct rx *rx;
struct rx_superset *set;
#endif
{
release_superset_low (rx->cache, set);
}
/* This tries to add a new superstate to the superstate freelist.
* It might, as a result, free some edge pieces or hash tables.
* If nothing can be freed because too many locks are being held, fail.
*/
#ifdef __STDC__
static int
rx_really_free_superstate (struct rx_cache * cache)
#else
static int
rx_really_free_superstate (cache)
struct rx_cache * cache;
#endif
{
int locked_superstates = 0;
struct rx_superstate * it;
if (!cache->superstates)
return 0;
{
/* This is a total guess. The idea is that we should expect as
* many misses as we've recently experienced. I.e., cache->misses
* should be the same as cache->semifree_superstates.
*/
while ((cache->hits + cache->misses) > cache->superstates_allowed)
{
cache->hits >>= 1;
cache->misses >>= 1;
}
if ( ((cache->hits + cache->misses) * cache->semifree_superstates)
< (cache->superstates * cache->misses))
{
semifree_superstate (cache);
semifree_superstate (cache);
}
}
while (cache->semifree_superstate && cache->semifree_superstate->locks)
{
refresh_semifree_superstate (cache, cache->semifree_superstate);
++locked_superstates;
if (locked_superstates == cache->superstates)
return 0;
}
if (cache->semifree_superstate)
{
it = cache->semifree_superstate;
it->next_recyclable->prev_recyclable = it->prev_recyclable;
it->prev_recyclable->next_recyclable = it->next_recyclable;
cache->semifree_superstate = ((it == it->next_recyclable)
? 0
: it->next_recyclable);
--cache->semifree_superstates;
}
else
{
while (cache->lru_superstate->locks)
{
cache->lru_superstate = cache->lru_superstate->next_recyclable;
++locked_superstates;
if (locked_superstates == cache->superstates)
return 0;
}
it = cache->lru_superstate;
it->next_recyclable->prev_recyclable = it->prev_recyclable;
it->prev_recyclable->next_recyclable = it->next_recyclable;
cache->lru_superstate = ((it == it->next_recyclable)
? 0
: it->next_recyclable);
}
if (it->transition_refs)
{
struct rx_distinct_future *df;
for (df = it->transition_refs,
df->prev_same_dest->next_same_dest = 0;
df;
df = df->next_same_dest)
{
df->future_frame.inx = cache->instruction_table[rx_cache_miss];
df->future_frame.data = 0;
df->future_frame.data_2 = (void *) df;
df->future = 0;
}
it->transition_refs->prev_same_dest->next_same_dest =
it->transition_refs;
}
{
struct rx_super_edge *tc = it->edges;
while (tc)
{
struct rx_distinct_future * df;
struct rx_super_edge *tct = tc->next;
df = tc->options;
df->next_same_super_edge[1]->next_same_super_edge[0] = 0;
while (df)
{
struct rx_distinct_future *dft = df;
df = df->next_same_super_edge[0];
if (dft->future && dft->future->transition_refs == dft)
{
dft->future->transition_refs = dft->next_same_dest;
if (dft->future->transition_refs == dft)
dft->future->transition_refs = 0;
}
dft->next_same_dest->prev_same_dest = dft->prev_same_dest;
dft->prev_same_dest->next_same_dest = dft->next_same_dest;
rx_cache_free (cache, &cache->free_discernable_futures,
(char *)dft);
}
rx_cache_free (cache, &cache->free_transition_classes, (char *)tc);
tc = tct;
}
}
if (it->contents->superstate == it)
it->contents->superstate = 0;
release_superset_low (cache, it->contents);
rx_cache_free (cache, &cache->free_superstates, (char *)it);
--cache->superstates;
return 1;
}
#ifdef __STDC__
static char *
rx_cache_get (struct rx_cache * cache,
struct rx_freelist ** freelist)
#else
static char *
rx_cache_get (cache, freelist)
struct rx_cache * cache;
struct rx_freelist ** freelist;
#endif
{
while (!*freelist && rx_really_free_superstate (cache))
;
if (!*freelist)
return 0;
{
struct rx_freelist * it = *freelist;
*freelist = it->next;
return (char *)it;
}
}
#ifdef __STDC__
static char *
rx_cache_malloc_or_get (struct rx_cache * cache,
struct rx_freelist ** freelist, int bytes)
#else
static char *
rx_cache_malloc_or_get (cache, freelist, bytes)
struct rx_cache * cache;
struct rx_freelist ** freelist;
int bytes;
#endif
{
if (!*freelist)
{
char * answer = rx_cache_malloc (cache, bytes);
if (answer)
return answer;
}
return rx_cache_get (cache, freelist);
}
#ifdef __STDC__
static char *
rx_cache_get_superstate (struct rx_cache * cache)
#else
static char *
rx_cache_get_superstate (cache)
struct rx_cache * cache;
#endif
{
char * answer;
int bytes = ( sizeof (struct rx_superstate)
+ cache->local_cset_size * sizeof (struct rx_inx));
if (!cache->free_superstates
&& (cache->superstates < cache->superstates_allowed))
{
answer = rx_cache_malloc (cache, bytes);
if (answer)
{
++cache->superstates;
return answer;
}
}
answer = rx_cache_get (cache, &cache->free_superstates);
if (!answer)
{
answer = rx_cache_malloc (cache, bytes);
if (answer)
++cache->superstates_allowed;
}
++cache->superstates;
return answer;
}
#ifdef __STDC__
static int
supersetcmp (void * va, void * vb)
#else
static int
supersetcmp (va, vb)
void * va;
void * vb;
#endif
{
struct rx_superset * a = (struct rx_superset *)va;
struct rx_superset * b = (struct rx_superset *)vb;
return ( (a == b)
|| (a && b && (a->car == b->car) && (a->cdr == b->cdr)));
}
#ifdef __STDC__
static struct rx_hash_item *
superset_allocator (struct rx_hash_rules * rules, void * val)
#else
static struct rx_hash_item *
superset_allocator (rules, val)
struct rx_hash_rules * rules;
void * val;
#endif
{
struct rx_cache * cache
= ((struct rx_cache *)
((char *)rules
- (unsigned long)(&((struct rx_cache *)0)->superset_hash_rules)));
struct rx_superset * template = (struct rx_superset *)val;
struct rx_superset * newset
= ((struct rx_superset *)
rx_cache_malloc_or_get (cache,
&cache->free_supersets,
sizeof (*template)));
if (!newset)
return 0;
newset->refs = 0;
newset->car = template->car;
newset->id = template->car->id;
newset->cdr = template->cdr;
newset->superstate = 0;
rx_protect_superset (rx, template->cdr);
newset->hash_item.data = (void *)newset;
newset->hash_item.binding = 0;
return &newset->hash_item;
}
#ifdef __STDC__
static struct rx_hash *
super_hash_allocator (struct rx_hash_rules * rules)
#else
static struct rx_hash *
super_hash_allocator (rules)
struct rx_hash_rules * rules;
#endif
{
struct rx_cache * cache
= ((struct rx_cache *)
((char *)rules
- (unsigned long)(&((struct rx_cache *)0)->superset_hash_rules)));
return ((struct rx_hash *)
rx_cache_malloc_or_get (cache,
&cache->free_hash, sizeof (struct rx_hash)));
}
#ifdef __STDC__
static void
super_hash_liberator (struct rx_hash * hash, struct rx_hash_rules * rules)
#else
static void
super_hash_liberator (hash, rules)
struct rx_hash * hash;
struct rx_hash_rules * rules;
#endif
{
struct rx_cache * cache
= ((struct rx_cache *)
(char *)rules - (long)(&((struct rx_cache *)0)->superset_hash_rules));
rx_cache_free (cache, &cache->free_hash, (char *)hash);
}
#ifdef __STDC__
static void
superset_hash_item_liberator (struct rx_hash_item * it,
struct rx_hash_rules * rules)
#else
static void
superset_hash_item_liberator (it, rules) /* Well, it does ya know. */
struct rx_hash_item * it;
struct rx_hash_rules * rules;
#endif
{
}
int rx_cache_bound = 128;
static int rx_default_cache_got = 0;
#ifdef __STDC__
static int
bytes_for_cache_size (int supers, int cset_size)
#else
static int
bytes_for_cache_size (supers, cset_size)
int supers;
int cset_size;
#endif
{
/* What the hell is this? !!!*/
return (int)
((float)supers *
( (1.03 * (float) ( rx_sizeof_bitset (cset_size)
+ sizeof (struct rx_super_edge)))
+ (1.80 * (float) sizeof (struct rx_possible_future))
+ (float) ( sizeof (struct rx_superstate)
+ cset_size * sizeof (struct rx_inx))));
}
#ifdef __STDC__
static void
rx_morecore (struct rx_cache * cache)
#else
static void
rx_morecore (cache)
struct rx_cache * cache;
#endif
{
if (rx_default_cache_got >= rx_cache_bound)
return;
rx_default_cache_got += 16;
cache->superstates_allowed = rx_cache_bound;
{
struct rx_blocklist ** pos = &cache->memory;
int size = bytes_for_cache_size (16, cache->local_cset_size);
while (*pos)
pos = &(*pos)->next;
*pos = ((struct rx_blocklist *)
malloc (size + sizeof (struct rx_blocklist)));
if (!*pos)
return;
(*pos)->next = 0;
(*pos)->bytes = size;
cache->memory_pos = *pos;
cache->memory_addr = (char *)*pos + sizeof (**pos);
cache->bytes_left = size;
}
}
static struct rx_cache default_cache =
{
{
supersetcmp,
super_hash_allocator,
super_hash_liberator,
superset_allocator,
superset_hash_item_liberator,
},
0,
0,
0,
0,
rx_morecore,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
128,
256,
rx_id_instruction_table,
{
0,
0,
{0},
{0},
{0}
}
};
/* This adds an element to a superstate set. These sets are lists, such
* that lists with == elements are ==. The empty set is returned by
* superset_cons (rx, 0, 0) and is NOT equivelent to
* (struct rx_superset)0.
*/
#ifdef __STDC__
RX_DECL struct rx_superset *
rx_superset_cons (struct rx * rx,
struct rx_nfa_state *car, struct rx_superset *cdr)
#else
RX_DECL struct rx_superset *
rx_superset_cons (rx, car, cdr)
struct rx * rx;
struct rx_nfa_state *car;
struct rx_superset *cdr;
#endif
{
struct rx_cache * cache = rx->cache;
if (!car && !cdr)
{
if (!cache->empty_superset)
{
cache->empty_superset
= ((struct rx_superset *)
rx_cache_malloc_or_get (cache, &cache->free_supersets,
sizeof (struct rx_superset)));
if (!cache->empty_superset)
return 0;
bzero (cache->empty_superset, sizeof (struct rx_superset));
cache->empty_superset->refs = 1000;
}
return cache->empty_superset;
}
{
struct rx_superset template;
struct rx_hash_item * hit;
template.car = car;
template.cdr = cdr;
template.id = car->id;
hit = rx_hash_store (&cache->superset_table,
(unsigned long)car ^ car->id ^ (unsigned long)cdr,
(void *)&template,
&cache->superset_hash_rules);
return (hit
? (struct rx_superset *)hit->data
: 0);
}
}
/* This computes a union of two NFA state sets. The sets do not have the
* same representation though. One is a RX_SUPERSET structure (part
* of the superstate NFA) and the other is an NFA_STATE_SET (part of the NFA).
*/
#ifdef __STDC__
RX_DECL struct rx_superset *
rx_superstate_eclosure_union
(struct rx * rx, struct rx_superset *set, struct rx_nfa_state_set *ecl)
#else
RX_DECL struct rx_superset *
rx_superstate_eclosure_union (rx, set, ecl)
struct rx * rx;
struct rx_superset *set;
struct rx_nfa_state_set *ecl;
#endif
{
if (!ecl)
return set;
if (!set->car)
return rx_superset_cons (rx, ecl->car,
rx_superstate_eclosure_union (rx, set, ecl->cdr));
if (set->car == ecl->car)
return rx_superstate_eclosure_union (rx, set, ecl->cdr);
{
struct rx_superset * tail;
struct rx_nfa_state * first;
if (set->car > ecl->car)
{
tail = rx_superstate_eclosure_union (rx, set->cdr, ecl);
first = set->car;
}
else
{
tail = rx_superstate_eclosure_union (rx, set, ecl->cdr);
first = ecl->car;
}
if (!tail)
return 0;
else
{
struct rx_superset * answer;
answer = rx_superset_cons (rx, first, tail);
if (!answer)
{
rx_protect_superset (rx, tail);
rx_release_superset (rx, tail);
return 0;
}
else
return answer;
}
}
}
/*
* This makes sure that a list of rx_distinct_futures contains
* a future for each possible set of side effects in the eclosure
* of a given state. This is some of the work of filling in a
* superstate transition.
*/
#ifdef __STDC__
static struct rx_distinct_future *
include_futures (struct rx *rx,
struct rx_distinct_future *df, struct rx_nfa_state
*state, struct rx_superstate *superstate)
#else
static struct rx_distinct_future *
include_futures (rx, df, state, superstate)
struct rx *rx;
struct rx_distinct_future *df;
struct rx_nfa_state *state;
struct rx_superstate *superstate;
#endif
{
struct rx_possible_future *future;
struct rx_cache * cache = rx->cache;
for (future = state->futures; future; future = future->next)
{
struct rx_distinct_future *dfp;
struct rx_distinct_future *insert_before = 0;
if (df)
df->next_same_super_edge[1]->next_same_super_edge[0] = 0;
for (dfp = df; dfp; dfp = dfp->next_same_super_edge[0])
if (dfp->effects == future->effects)
break;
else
{
int order = rx->se_list_cmp (rx, dfp->effects, future->effects);
if (order > 0)
{
insert_before = dfp;
dfp = 0;
break;
}
}
if (df)
df->next_same_super_edge[1]->next_same_super_edge[0] = df;
if (!dfp)
{
dfp
= ((struct rx_distinct_future *)
rx_cache_malloc_or_get (cache, &cache->free_discernable_futures,
sizeof (struct rx_distinct_future)));
if (!dfp)
return 0;
if (!df)
{
df = insert_before = dfp;
df->next_same_super_edge[0] = df->next_same_super_edge[1] = df;
}
else if (!insert_before)
insert_before = df;
else if (insert_before == df)
df = dfp;
dfp->next_same_super_edge[0] = insert_before;
dfp->next_same_super_edge[1]
= insert_before->next_same_super_edge[1];
dfp->next_same_super_edge[1]->next_same_super_edge[0] = dfp;
dfp->next_same_super_edge[0]->next_same_super_edge[1] = dfp;
dfp->next_same_dest = dfp->prev_same_dest = dfp;
dfp->future = 0;
dfp->present = superstate;
dfp->future_frame.inx = rx->instruction_table[rx_cache_miss];
dfp->future_frame.data = 0;
dfp->future_frame.data_2 = (void *) dfp;
dfp->side_effects_frame.inx
= rx->instruction_table[rx_do_side_effects];
dfp->side_effects_frame.data = 0;
dfp->side_effects_frame.data_2 = (void *) dfp;
dfp->effects = future->effects;
}
}
return df;
}
/* This constructs a new superstate from its state set. The only
* complexity here is memory management.
*/
#ifdef __STDC__
RX_DECL struct rx_superstate *
rx_superstate (struct rx *rx,
struct rx_superset *set)
#else
RX_DECL struct rx_superstate *
rx_superstate (rx, set)
struct rx *rx;
struct rx_superset *set;
#endif
{
struct rx_cache * cache = rx->cache;
struct rx_superstate * superstate = 0;
/* Does the superstate already exist in the cache? */
if (set->superstate)
{
if (set->superstate->rx_id != rx->rx_id)
{
/* Aha. It is in the cache, but belongs to a superstate
* that refers to an NFA that no longer exists.
* (We know it no longer exists because it was evidently
* stored in the same region of memory as the current nfa
* yet it has a different id.)
*/
superstate = set->superstate;
if (!superstate->is_semifree)
{
if (cache->lru_superstate == superstate)
{
cache->lru_superstate = superstate->next_recyclable;
if (cache->lru_superstate == superstate)
cache->lru_superstate = 0;
}
{
superstate->next_recyclable->prev_recyclable
= superstate->prev_recyclable;
superstate->prev_recyclable->next_recyclable
= superstate->next_recyclable;
if (!cache->semifree_superstate)
{
(cache->semifree_superstate
= superstate->next_recyclable
= superstate->prev_recyclable
= superstate);
}
else
{
superstate->next_recyclable = cache->semifree_superstate;
superstate->prev_recyclable
= cache->semifree_superstate->prev_recyclable;
superstate->next_recyclable->prev_recyclable
= superstate;
superstate->prev_recyclable->next_recyclable
= superstate;
cache->semifree_superstate = superstate;
}
++cache->semifree_superstates;
}
}
set->superstate = 0;
goto handle_cache_miss;
}
++cache->hits;
superstate = set->superstate;
rx_refresh_this_superstate (cache, superstate);
return superstate;
}
handle_cache_miss:
/* This point reached only for cache misses. */
++cache->misses;
#if RX_DEBUG
if (rx_debug_trace > 1)
{
struct rx_superset * setp = set;
fprintf (stderr, "Building a superstet %d(%d): ", rx->rx_id, set);
while (setp)
{
fprintf (stderr, "%d ", setp->id);
setp = setp->cdr;
}
fprintf (stderr, "(%d)\n", set);
}
#endif
superstate = (struct rx_superstate *)rx_cache_get_superstate (cache);
if (!superstate)
return 0;
if (!cache->lru_superstate)
(cache->lru_superstate
= superstate->next_recyclable
= superstate->prev_recyclable
= superstate);
else
{
superstate->next_recyclable = cache->lru_superstate;
superstate->prev_recyclable = cache->lru_superstate->prev_recyclable;
( superstate->prev_recyclable->next_recyclable
= superstate->next_recyclable->prev_recyclable
= superstate);
}
superstate->rx_id = rx->rx_id;
superstate->transition_refs = 0;
superstate->locks = 0;
superstate->is_semifree = 0;
set->superstate = superstate;
superstate->contents = set;
rx_protect_superset (rx, set);
superstate->edges = 0;
{
int x;
/* None of the transitions from this superstate are known yet. */
for (x = 0; x < rx->local_cset_size; ++x) /* &&&&& 3.8 % */
{
struct rx_inx * ifr = &superstate->transitions[x];
ifr->inx = rx->instruction_table [rx_cache_miss];
ifr->data = ifr->data_2 = 0;
}
}
return superstate;
}
/* This computes the destination set of one edge of the superstate NFA.
* Note that a RX_DISTINCT_FUTURE is a superstate edge.
* Returns 0 on an allocation failure.
*/
#ifdef __STDC__
static int
solve_destination (struct rx *rx, struct rx_distinct_future *df)
#else
static int
solve_destination (rx, df)
struct rx *rx;
struct rx_distinct_future *df;
#endif
{
struct rx_super_edge *tc = df->edge;
struct rx_superset *nfa_state;
struct rx_superset *nil_set = rx_superset_cons (rx, 0, 0);
struct rx_superset *solution = nil_set;
struct rx_superstate *dest;
rx_protect_superset (rx, solution);
/* Iterate over all NFA states in the state set of this superstate. */
for (nfa_state = df->present->contents;
nfa_state->car;
nfa_state = nfa_state->cdr)
{
struct rx_nfa_edge *e;
/* Iterate over all edges of each NFA state. */
for (e = nfa_state->car->edges; e; e = e->next)
/* If we find an edge that is labeled with
* the characters we are solving for.....
*/
if (rx_bitset_is_subset (rx->local_cset_size,
tc->cset, e->params.cset))
{
struct rx_nfa_state *n = e->dest;
struct rx_possible_future *pf;
/* ....search the partial epsilon closures of the destination
* of that edge for a path that involves the same set of
* side effects we are solving for.
* If we find such a RX_POSSIBLE_FUTURE, we add members to the
* stateset we are computing.
*/
for (pf = n->futures; pf; pf = pf->next)
if (pf->effects == df->effects)
{
struct rx_superset * old_sol;
old_sol = solution;
solution = rx_superstate_eclosure_union (rx, solution,
pf->destset);
if (!solution)
return 0;
rx_protect_superset (rx, solution);
rx_release_superset (rx, old_sol);
}
}
}
/* It is possible that the RX_DISTINCT_FUTURE we are working on has
* the empty set of NFA states as its definition. In that case, this
* is a failure point.
*/
if (solution == nil_set)
{
df->future_frame.inx = (void *) rx_backtrack;
df->future_frame.data = 0;
df->future_frame.data_2 = 0;
return 1;
}
dest = rx_superstate (rx, solution);
rx_release_superset (rx, solution);
if (!dest)
return 0;
{
struct rx_distinct_future *dft;
dft = df;
df->prev_same_dest->next_same_dest = 0;
while (dft)
{
dft->future = dest;
dft->future_frame.inx = rx->instruction_table[rx_next_char];
dft->future_frame.data = (void *) dest->transitions;
dft = dft->next_same_dest;
}
df->prev_same_dest->next_same_dest = df;
}
if (!dest->transition_refs)
dest->transition_refs = df;
else
{
struct rx_distinct_future *dft = dest->transition_refs->next_same_dest;
dest->transition_refs->next_same_dest = df->next_same_dest;
df->next_same_dest->prev_same_dest = dest->transition_refs;
df->next_same_dest = dft;
dft->prev_same_dest = df;
}
return 1;
}
/* This takes a superstate and a character, and computes some edges
* from the superstate NFA. In particular, this computes all edges
* that lead from SUPERSTATE given CHR. This function also
* computes the set of characters that share this edge set.
* This returns 0 on allocation error.
* The character set and list of edges are returned through
* the paramters CSETOUT and DFOUT.
} */
#ifdef __STDC__
static int
compute_super_edge (struct rx *rx, struct rx_distinct_future **dfout,
rx_Bitset csetout, struct rx_superstate *superstate,
unsigned char chr)
#else
static int
compute_super_edge (rx, dfout, csetout, superstate, chr)
struct rx *rx;
struct rx_distinct_future **dfout;
rx_Bitset csetout;
struct rx_superstate *superstate;
unsigned char chr;
#endif
{
struct rx_superset *stateset = superstate->contents;
/* To compute the set of characters that share edges with CHR,
* we start with the full character set, and subtract.
*/
rx_bitset_universe (rx->local_cset_size, csetout);
*dfout = 0;
/* Iterate over the NFA states in the superstate state-set. */
while (stateset->car)
{
struct rx_nfa_edge *e;
for (e = stateset->car->edges; e; e = e->next)
if (RX_bitset_member (e->params.cset, chr))
{
/* If we find an NFA edge that applies, we make sure there
* are corresponding edges in the superstate NFA.
*/
{
struct rx_distinct_future * saved;
saved = *dfout;
*dfout = include_futures (rx, *dfout, e->dest, superstate);
if (!*dfout)
{
struct rx_distinct_future * df;
df = saved;
if (df)
df->next_same_super_edge[1]->next_same_super_edge[0] = 0;
while (df)
{
struct rx_distinct_future *dft;
dft = df;
df = df->next_same_super_edge[0];
if (dft->future && dft->future->transition_refs == dft)
{
dft->future->transition_refs = dft->next_same_dest;
if (dft->future->transition_refs == dft)
dft->future->transition_refs = 0;
}
dft->next_same_dest->prev_same_dest = dft->prev_same_dest;
dft->prev_same_dest->next_same_dest = dft->next_same_dest;
rx_cache_free (rx->cache,
&rx->cache->free_discernable_futures,
(char *)dft);
}
return 0;
}
}
/* We also trim the character set a bit. */
rx_bitset_intersection (rx->local_cset_size,
csetout, e->params.cset);
}
else
/* An edge that doesn't apply at least tells us some characters
* that don't share the same edge set as CHR.
*/
rx_bitset_difference (rx->local_cset_size, csetout, e->params.cset);
stateset = stateset->cdr;
}
return 1;
}
/* This is a constructor for RX_SUPER_EDGE structures. These are
* wrappers for lists of superstate NFA edges that share character sets labels.
* If a transition class contains more than one rx_distinct_future (superstate
* edge), then it represents a non-determinism in the superstate NFA.
*/
#ifdef __STDC__
static struct rx_super_edge *
rx_super_edge (struct rx *rx,
struct rx_superstate *super, rx_Bitset cset,
struct rx_distinct_future *df)
#else
static struct rx_super_edge *
rx_super_edge (rx, super, cset, df)
struct rx *rx;
struct rx_superstate *super;
rx_Bitset cset;
struct rx_distinct_future *df;
#endif
{
struct rx_super_edge *tc =
(struct rx_super_edge *)rx_cache_malloc_or_get
(rx->cache, &rx->cache->free_transition_classes,
sizeof (struct rx_super_edge) + rx_sizeof_bitset (rx->local_cset_size));
if (!tc)
return 0;
tc->next = super->edges;
super->edges = tc;
tc->rx_backtrack_frame.inx = rx->instruction_table[rx_backtrack_point];
tc->rx_backtrack_frame.data = 0;
tc->rx_backtrack_frame.data_2 = (void *) tc;
tc->options = df;
tc->cset = (rx_Bitset) ((char *) tc + sizeof (*tc));
rx_bitset_assign (rx->local_cset_size, tc->cset, cset);
if (df)
{
struct rx_distinct_future * dfp = df;
df->next_same_super_edge[1]->next_same_super_edge[0] = 0;
while (dfp)
{
dfp->edge = tc;
dfp = dfp->next_same_super_edge[0];
}
df->next_same_super_edge[1]->next_same_super_edge[0] = df;
}
return tc;
}
/* There are three kinds of cache miss. The first occurs when a
* transition is taken that has never been computed during the
* lifetime of the source superstate. That cache miss is handled by
* calling COMPUTE_SUPER_EDGE. The second kind of cache miss
* occurs when the destination superstate of a transition doesn't
* exist. SOLVE_DESTINATION is used to construct the destination superstate.
* Finally, the third kind of cache miss occurs when the destination
* superstate of a transition is in a `semi-free state'. That case is
* handled by UNFREE_SUPERSTATE.
*
* The function of HANDLE_CACHE_MISS is to figure out which of these
* cases applies.
*/
#ifdef __STDC__
static void
install_partial_transition (struct rx_superstate *super,
struct rx_inx *answer,
RX_subset set, int offset)
#else
static void
install_partial_transition (super, answer, set, offset)
struct rx_superstate *super;
struct rx_inx *answer;
RX_subset set;
int offset;
#endif
{
int start = offset;
int end = start + 32;
RX_subset pos = 1;
struct rx_inx * transitions = super->transitions;
while (start < end)
{
if (set & pos)
transitions[start] = *answer;
pos <<= 1;
++start;
}
}
#ifdef __STDC__
RX_DECL struct rx_inx *
rx_handle_cache_miss
(struct rx *rx, struct rx_superstate *super, unsigned char chr, void *data)
#else
RX_DECL struct rx_inx *
rx_handle_cache_miss (rx, super, chr, data)
struct rx *rx;
struct rx_superstate *super;
unsigned char chr;
void *data;
#endif
{
int offset = chr / RX_subset_bits;
struct rx_distinct_future *df = data;
if (!df) /* must be the shared_cache_miss_frame */
{
/* Perhaps this is just a transition waiting to be filled. */
struct rx_super_edge *tc;
RX_subset mask = rx_subset_singletons [chr % RX_subset_bits];
for (tc = super->edges; tc; tc = tc->next)
if (tc->cset[offset] & mask)
{
struct rx_inx * answer;
df = tc->options;
answer = ((tc->options->next_same_super_edge[0] != tc->options)
? &tc->rx_backtrack_frame
: (df->effects
? &df->side_effects_frame
: &df->future_frame));
install_partial_transition (super, answer,
tc->cset [offset], offset * 32);
return answer;
}
/* Otherwise, it's a flushed or newly encountered edge. */
{
char cset_space[1024]; /* this limit is far from unreasonable */
rx_Bitset trcset;
struct rx_inx *answer;
if (rx_sizeof_bitset (rx->local_cset_size) > sizeof (cset_space))
return 0; /* If the arbitrary limit is hit, always fail */
/* cleanly. */
trcset = (rx_Bitset)cset_space;
rx_lock_superstate (rx, super);
if (!compute_super_edge (rx, &df, trcset, super, chr))
{
rx_unlock_superstate (rx, super);
return 0;
}
if (!df) /* We just computed the fail transition. */
{
static struct rx_inx
shared_fail_frame = { 0, 0, (void *)rx_backtrack, 0 };
answer = &shared_fail_frame;
}
else
{
tc = rx_super_edge (rx, super, trcset, df);
if (!tc)
{
rx_unlock_superstate (rx, super);
return 0;
}
answer = ((tc->options->next_same_super_edge[0] != tc->options)
? &tc->rx_backtrack_frame
: (df->effects
? &df->side_effects_frame
: &df->future_frame));
}
install_partial_transition (super, answer,
trcset[offset], offset * 32);
rx_unlock_superstate (rx, super);
return answer;
}
}
else if (df->future) /* A cache miss on an edge with a future? Must be
* a semi-free destination. */
{
if (df->future->is_semifree)
refresh_semifree_superstate (rx->cache, df->future);
return &df->future_frame;
}
else
/* no future superstate on an existing edge */
{
rx_lock_superstate (rx, super);
if (!solve_destination (rx, df))
{
rx_unlock_superstate (rx, super);
return 0;
}
if (!df->effects
&& (df->edge->options->next_same_super_edge[0] == df->edge->options))
install_partial_transition (super, &df->future_frame,
df->edge->cset[offset], offset * 32);
rx_unlock_superstate (rx, super);
return &df->future_frame;
}
}
/* The rest of the code provides a regex.c compatable interface. */
__const__ char *re_error_msg[] =
{
0, /* REG_NOUT */
"No match", /* REG_NOMATCH */
"Invalid regular expression", /* REG_BADPAT */
"Invalid collation character", /* REG_ECOLLATE */
"Invalid character class name", /* REG_ECTYPE */
"Trailing backslash", /* REG_EESCAPE */
"Invalid back reference", /* REG_ESUBREG */
"Unmatched [ or [^", /* REG_EBRACK */
"Unmatched ( or \\(", /* REG_EPAREN */
"Unmatched \\{", /* REG_EBRACE */
"Invalid content of \\{\\}", /* REG_BADBR */
"Invalid range end", /* REG_ERANGE */
"Memory exhausted", /* REG_ESPACE */
"Invalid preceding regular expression", /* REG_BADRPT */
"Premature end of regular expression", /* REG_EEND */
"Regular expression too big", /* REG_ESIZE */
"Unmatched ) or \\)", /* REG_ERPAREN */
};
/*
* Macros used while compiling patterns.
*
* By convention, PEND points just past the end of the uncompiled pattern,
* P points to the read position in the pattern. `translate' is the name
* of the translation table (`TRANSLATE' is the name of a macro that looks
* things up in `translate').
*/
/*
* Fetch the next character in the uncompiled pattern---translating it
* if necessary. *Also cast from a signed character in the constant
* string passed to us by the user to an unsigned char that we can use
* as an array index (in, e.g., `translate').
*/
#define PATFETCH(c) \
do {if (p == pend) return REG_EEND; \
c = (unsigned char) *p++; \
c = translate[c]; \
} while (0)
/*
* Fetch the next character in the uncompiled pattern, with no
* translation.
*/
#define PATFETCH_RAW(c) \
do {if (p == pend) return REG_EEND; \
c = (unsigned char) *p++; \
} while (0)
/* Go backwards one character in the pattern. */
#define PATUNFETCH p--
#define TRANSLATE(d) translate[(unsigned char) (d)]
typedef unsigned regnum_t;
/* Since offsets can go either forwards or backwards, this type needs to
* be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.
*/
typedef int pattern_offset_t;
typedef struct
{
struct rexp_node ** top_expression; /* was begalt */
struct rexp_node ** last_expression; /* was laststart */
pattern_offset_t inner_group_offset;
regnum_t regnum;
} compile_stack_elt_t;
typedef struct
{
compile_stack_elt_t *stack;
unsigned size;
unsigned avail; /* Offset of next open position. */
} compile_stack_type;
#define INIT_COMPILE_STACK_SIZE 32
#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
/* The next available element. */
#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
/* Set the bit for character C in a list. */
#define SET_LIST_BIT(c) \
(b[((unsigned char) (c)) / CHARBITS] \
|= 1 << (((unsigned char) c) % CHARBITS))
/* Get the next unsigned number in the uncompiled pattern. */
#define GET_UNSIGNED_NUMBER(num) \
{ if (p != pend) \
{ \
PATFETCH (c); \
while (isdigit (c)) \
{ \
if (num < 0) \
num = 0; \
num = num * 10 + c - '0'; \
if (p == pend) \
break; \
PATFETCH (c); \
} \
} \
}
#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
#define IS_CHAR_CLASS(string) \
(!strcmp (string, "alpha") || !strcmp (string, "upper") \
|| !strcmp (string, "lower") || !strcmp (string, "digit") \
|| !strcmp (string, "alnum") || !strcmp (string, "xdigit") \
|| !strcmp (string, "space") || !strcmp (string, "print") \
|| !strcmp (string, "punct") || !strcmp (string, "graph") \
|| !strcmp (string, "cntrl") || !strcmp (string, "blank"))
/* These predicates are used in regex_compile. */
/* P points to just after a ^ in PATTERN. Return true if that ^ comes
* after an alternative or a begin-subexpression. We assume there is at
* least one character before the ^.
*/
#ifdef __STDC__
static boolean
at_begline_loc_p (__const__ char *pattern, __const__ char * p, reg_syntax_t syntax)
#else
static boolean
at_begline_loc_p (pattern, p, syntax)
__const__ char *pattern;
__const__ char * p;
reg_syntax_t syntax;
#endif
{
__const__ char *prev = p - 2;
boolean prev_prev_backslash = ((prev > pattern) && (prev[-1] == '\\'));
return
(/* After a subexpression? */
((*prev == '(') && ((syntax & RE_NO_BK_PARENS) || prev_prev_backslash))
||
/* After an alternative? */
((*prev == '|') && ((syntax & RE_NO_BK_VBAR) || prev_prev_backslash))
);
}
/* The dual of at_begline_loc_p. This one is for $. We assume there is
* at least one character after the $, i.e., `P < PEND'.
*/
#ifdef __STDC__
static boolean
at_endline_loc_p (__const__ char *p, __const__ char *pend, int syntax)
#else
static boolean
at_endline_loc_p (p, pend, syntax)
__const__ char *p;
__const__ char *pend;
int syntax;
#endif
{
__const__ char *next = p;
boolean next_backslash = (*next == '\\');
__const__ char *next_next = (p + 1 < pend) ? (p + 1) : 0;
return
(
/* Before a subexpression? */
((syntax & RE_NO_BK_PARENS)
? (*next == ')')
: (next_backslash && next_next && (*next_next == ')')))
||
/* Before an alternative? */
((syntax & RE_NO_BK_VBAR)
? (*next == '|')
: (next_backslash && next_next && (*next_next == '|')))
);
}
unsigned char rx_id_translation[256] =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100, 101, 102, 103, 104, 105, 106, 107, 108, 109,
110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189,
190, 191, 192, 193, 194, 195, 196, 197, 198, 199,
200, 201, 202, 203, 204, 205, 206, 207, 208, 209,
210, 211, 212, 213, 214, 215, 216, 217, 218, 219,
220, 221, 222, 223, 224, 225, 226, 227, 228, 229,
230, 231, 232, 233, 234, 235, 236, 237, 238, 239,
240, 241, 242, 243, 244, 245, 246, 247, 248, 249,
250, 251, 252, 253, 254, 255
};
/* The compiler keeps an inverted translation table.
* This looks up/inititalize elements.
* VALID is an array of booleans that validate CACHE.
*/
#ifdef __STDC__
static rx_Bitset
inverse_translation (struct re_pattern_buffer * rxb,
char * valid, rx_Bitset cache,
unsigned char * translate, int c)
#else
static rx_Bitset
inverse_translation (rxb, valid, cache, translate, c)
struct re_pattern_buffer * rxb;
char * valid;
rx_Bitset cache;
unsigned char * translate;
int c;
#endif
{
rx_Bitset cs
= cache + c * rx_bitset_numb_subsets (rxb->rx.local_cset_size);
if (!valid[c])
{
int x;
int c_tr = TRANSLATE(c);
rx_bitset_null (rxb->rx.local_cset_size, cs);
for (x = 0; x < 256; ++x) /* &&&& 13.37 */
if (TRANSLATE(x) == c_tr)
RX_bitset_enjoin (cs, x);
valid[c] = 1;
}
return cs;
}
/* More subroutine declarations and macros for regex_compile. */
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
false if it's not. */
#ifdef __STDC__
static boolean
group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
#else
static boolean
group_in_compile_stack (compile_stack, regnum)
compile_stack_type compile_stack;
regnum_t regnum;
#endif
{
int this_element;
for (this_element = compile_stack.avail - 1;
this_element >= 0;
this_element--)
if (compile_stack.stack[this_element].regnum == regnum)
return true;
return false;
}
/*
* Read the ending character of a range (in a bracket expression) from the
* uncompiled pattern *P_PTR (which ends at PEND). We assume the
* starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
* Then we set the translation of all bits between the starting and
* ending characters (inclusive) in the compiled pattern B.
*
* Return an error code.
*
* We use these short variable names so we can use the same macros as
* `regex_compile' itself.
*/
#ifdef __STDC__
static reg_errcode_t
compile_range (struct re_pattern_buffer * rxb, rx_Bitset cs,
__const__ char ** p_ptr, __const__ char * pend,
unsigned char * translate, reg_syntax_t syntax,
rx_Bitset inv_tr, char * valid_inv_tr)
#else
static reg_errcode_t
compile_range (rxb, cs, p_ptr, pend, translate, syntax, inv_tr, valid_inv_tr)
struct re_pattern_buffer * rxb;
rx_Bitset cs;
__const__ char ** p_ptr;
__const__ char * pend;
unsigned char * translate;
reg_syntax_t syntax;
rx_Bitset inv_tr;
char * valid_inv_tr;
#endif
{
unsigned this_char;
__const__ char *p = *p_ptr;
unsigned char range_end;
unsigned char range_start = TRANSLATE(p[-2]);
if (p == pend)
return REG_ERANGE;
PATFETCH (range_end);
(*p_ptr)++;
if (range_start > range_end)
return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
for (this_char = range_start; this_char <= range_end; this_char++)
{
rx_Bitset it =
inverse_translation (rxb, valid_inv_tr, inv_tr, translate, this_char);
rx_bitset_union (rxb->rx.local_cset_size, cs, it);
}
return REG_NOERROR;
}
/* This searches a regexp for backreference side effects.
* It fills in the array OUT with 1 at the index of every register pair
* referenced by a backreference.
*
* This is used to help optimize patterns for searching. The information is
* useful because, if the caller doesn't want register values, backreferenced
* registers are the only registers for which we need rx_backtrack.
*/
#ifdef __STDC__
static void
find_backrefs (char * out, struct rexp_node * rexp,
struct re_se_params * params)
#else
static void
find_backrefs (out, rexp, params)
char * out;
struct rexp_node * rexp;
struct re_se_params * params;
#endif
{
if (rexp)
switch (rexp->type)
{
case r_cset:
case r_data:
return;
case r_alternate:
case r_concat:
case r_opt:
case r_star:
case r_2phase_star:
find_backrefs (out, rexp->params.pair.left, params);
find_backrefs (out, rexp->params.pair.right, params);
return;
case r_side_effect:
if ( ((long)rexp->params.side_effect >= 0)
&& (params [(long)rexp->params.side_effect].se == re_se_backref))
out[ params [(long)rexp->params.side_effect].op1] = 1;
return;
}
}
/* Returns 0 unless the pattern can match the empty string. */
#ifdef __STDC__
static int
compute_fastset (struct re_pattern_buffer * rxb, struct rexp_node * rexp)
#else
static int
compute_fastset (rxb, rexp)
struct re_pattern_buffer * rxb;
struct rexp_node * rexp;
#endif
{
if (!rexp)
return 1;
switch (rexp->type)
{
case r_data:
return 1;
case r_cset:
{
rx_bitset_union (rxb->rx.local_cset_size,
rxb->fastset, rexp->params.cset);
}
return 0;
case r_concat:
return (compute_fastset (rxb, rexp->params.pair.left)
&& compute_fastset (rxb, rexp->params.pair.right));
case r_2phase_star:
compute_fastset (rxb, rexp->params.pair.left);
/* compute_fastset (rxb, rexp->params.pair.right); nope... */
return 1;
case r_alternate:
return !!(compute_fastset (rxb, rexp->params.pair.left)
+ compute_fastset (rxb, rexp->params.pair.right));
case r_opt:
case r_star:
compute_fastset (rxb, rexp->params.pair.left);
return 1;
case r_side_effect:
return 1;
}
/* this should never happen */
return 0;
}
/* returns
* 1 -- yes, definately anchored by the given side effect.
* 2 -- maybe anchored, maybe the empty string.
* 0 -- definately not anchored
* There is simply no other possibility.
*/
#ifdef __STDC__
static int
is_anchored (struct rexp_node * rexp, rx_side_effect se)
#else
static int
is_anchored (rexp, se)
struct rexp_node * rexp;
rx_side_effect se;
#endif
{
if (!rexp)
return 2;
switch (rexp->type)
{
case r_cset:
case r_data:
return 0;
case r_concat:
case r_2phase_star:
{
int l = is_anchored (rexp->params.pair.left, se);
return (l == 2 ? is_anchored (rexp->params.pair.right, se) : l);
}
case r_alternate:
{
int l = is_anchored (rexp->params.pair.left, se);
int r = l ? is_anchored (rexp->params.pair.right, se) : 0;
if (l == r)
return l;
else if ((l == 0) || (r == 0))
return 0;
else
return 2;
}
case r_opt:
case r_star:
return is_anchored (rexp->params.pair.left, se) ? 2 : 0;
case r_side_effect:
return ((rexp->params.side_effect == se)
? 1 : 2);
}
/* this should never happen */
return 0;
}
/* This removes register assignments that aren't required by backreferencing.
* This can speed up explore_future, especially if it eliminates
* non-determinism in the superstate NFA.
*
* NEEDED is an array of characters, presumably filled in by FIND_BACKREFS.
* The non-zero elements of the array indicate which register assignments
* can NOT be removed from the expression.
*/
#ifdef __STDC__
static struct rexp_node *
remove_unecessary_side_effects (struct rx * rx, char * needed,
struct rexp_node * rexp,
struct re_se_params * params)
#else
static struct rexp_node *
remove_unecessary_side_effects (rx, needed, rexp, params)
struct rx * rx;
char * needed;
struct rexp_node * rexp;
struct re_se_params * params;
#endif
{
struct rexp_node * l;
struct rexp_node * r;
if (!rexp)
return 0;
else
switch (rexp->type)
{
case r_cset:
case r_data:
return rexp;
case r_alternate:
case r_concat:
case r_2phase_star:
l = remove_unecessary_side_effects (rx, needed,
rexp->params.pair.left, params);
r = remove_unecessary_side_effects (rx, needed,
rexp->params.pair.right, params);
if ((l && r) || (rexp->type != r_concat))
{
rexp->params.pair.left = l;
rexp->params.pair.right = r;
return rexp;
}
else
{
rexp->params.pair.left = rexp->params.pair.right = 0;
rx_free_rexp (rx, rexp);
return l ? l : r;
}
case r_opt:
case r_star:
l = remove_unecessary_side_effects (rx, needed,
rexp->params.pair.left, params);
if (l)
{
rexp->params.pair.left = l;
return rexp;
}
else
{
rexp->params.pair.left = 0;
rx_free_rexp (rx, rexp);
return 0;
}
case r_side_effect:
{
int se = (long)rexp->params.side_effect;
if ( (se >= 0)
&& ( ((enum re_side_effects)params[se].se == re_se_lparen)
|| ((enum re_side_effects)params[se].se == re_se_rparen))
&& (params [se].op1 > 0)
&& (!needed [params [se].op1]))
{
rx_free_rexp (rx, rexp);
return 0;
}
else
return rexp;
}
}
/* this should never happen */
return 0;
}
#ifdef __STDC__
static int
pointless_if_repeated (struct rexp_node * node, struct re_se_params * params)
#else
static int
pointless_if_repeated (node, params)
struct rexp_node * node;
struct re_se_params * params;
#endif
{
if (!node)
return 1;
switch (node->type)
{
case r_cset:
return 0;
case r_alternate:
case r_concat:
case r_2phase_star:
return (pointless_if_repeated (node->params.pair.left, params)
&& pointless_if_repeated (node->params.pair.right, params));
case r_opt:
case r_star:
return pointless_if_repeated (node->params.pair.left, params);
case r_side_effect:
switch (((long)node->params.side_effect < 0)
? (enum re_side_effects)node->params.side_effect
: (enum re_side_effects)params[(long)node->params.side_effect].se)
{
case re_se_try:
case re_se_at_dot:
case re_se_begbuf:
case re_se_hat:
case re_se_wordbeg:
case re_se_wordbound:
case re_se_notwordbound:
case re_se_wordend:
case re_se_endbuf:
case re_se_dollar:
case re_se_fail:
case re_se_win:
return 1;
case re_se_lparen:
case re_se_rparen:
case re_se_iter:
case re_se_end_iter:
case re_se_syntax:
case re_se_not_syntax:
case re_se_backref:
return 0;
}
case r_data:
default:
return 0;
}
}
#ifdef __STDC__
static int
registers_on_stack (struct re_pattern_buffer * rxb,
struct rexp_node * rexp, int in_danger,
struct re_se_params * params)
#else
static int
registers_on_stack (rxb, rexp, in_danger, params)
struct re_pattern_buffer * rxb;
struct rexp_node * rexp;
int in_danger;
struct re_se_params * params;
#endif
{
if (!rexp)
return 0;
else
switch (rexp->type)
{
case r_cset:
case r_data:
return 0;
case r_alternate:
case r_concat:
return ( registers_on_stack (rxb, rexp->params.pair.left,
in_danger, params)
|| (registers_on_stack
(rxb, rexp->params.pair.right,
in_danger, params)));
case r_opt:
return registers_on_stack (rxb, rexp->params.pair.left, 0, params);
case r_star:
return registers_on_stack (rxb, rexp->params.pair.left, 1, params);
case r_2phase_star:
return
( registers_on_stack (rxb, rexp->params.pair.left, 1, params)
|| registers_on_stack (rxb, rexp->params.pair.right, 1, params));
case r_side_effect:
{
int se = (long)rexp->params.side_effect;
if ( in_danger
&& (se >= 0)
&& (params [se].op1 > 0)
&& ( ((enum re_side_effects)params[se].se == re_se_lparen)
|| ((enum re_side_effects)params[se].se == re_se_rparen)))
return 1;
else
return 0;
}
}
/* this should never happen */
return 0;
}
static char idempotent_complex_se[] =
{
#define RX_WANT_SE_DEFS 1
#undef RX_DEF_SE
#undef RX_DEF_CPLX_SE
#define RX_DEF_SE(IDEM, NAME, VALUE)
#define RX_DEF_CPLX_SE(IDEM, NAME, VALUE) IDEM,
#include "rx.h"
#undef RX_DEF_SE
#undef RX_DEF_CPLX_SE
#undef RX_WANT_SE_DEFS
23
};
static char idempotent_se[] =
{
13,
#define RX_WANT_SE_DEFS 1
#undef RX_DEF_SE
#undef RX_DEF_CPLX_SE
#define RX_DEF_SE(IDEM, NAME, VALUE) IDEM,
#define RX_DEF_CPLX_SE(IDEM, NAME, VALUE)
#include "rx.h"
#undef RX_DEF_SE
#undef RX_DEF_CPLX_SE
#undef RX_WANT_SE_DEFS
42
};
#ifdef __STDC__
static int
has_any_se (struct rx * rx,
struct rexp_node * rexp)
#else
static int
has_any_se (rx, rexp)
struct rx * rx;
struct rexp_node * rexp;
#endif
{
if (!rexp)
return 0;
switch (rexp->type)
{
case r_cset:
case r_data:
return 0;
case r_side_effect:
return 1;
case r_2phase_star:
case r_concat:
case r_alternate:
return
( has_any_se (rx, rexp->params.pair.left)
|| has_any_se (rx, rexp->params.pair.right));
case r_opt:
case r_star:
return has_any_se (rx, rexp->params.pair.left);
}
/* this should never happen */
return 0;
}
/* This must be called AFTER `convert_hard_loops' for a given REXP. */
#ifdef __STDC__
static int
has_non_idempotent_epsilon_path (struct rx * rx,
struct rexp_node * rexp,
struct re_se_params * params)
#else
static int
has_non_idempotent_epsilon_path (rx, rexp, params)
struct rx * rx;
struct rexp_node * rexp;
struct re_se_params * params;
#endif
{
if (!rexp)
return 0;
switch (rexp->type)
{
case r_cset:
case r_data:
case r_star:
return 0;
case r_side_effect:
return
!((long)rexp->params.side_effect > 0
? idempotent_complex_se [ params [(long)rexp->params.side_effect].se ]
: idempotent_se [-(long)rexp->params.side_effect]);
case r_alternate:
return
( has_non_idempotent_epsilon_path (rx,
rexp->params.pair.left, params)
|| has_non_idempotent_epsilon_path (rx,
rexp->params.pair.right, params));
case r_2phase_star:
case r_concat:
return
( has_non_idempotent_epsilon_path (rx,
rexp->params.pair.left, params)
&& has_non_idempotent_epsilon_path (rx,
rexp->params.pair.right, params));
case r_opt:
return has_non_idempotent_epsilon_path (rx,
rexp->params.pair.left, params);
}
/* this should never happen */
return 0;
}
/* This computes rougly what it's name suggests. It can (and does) go wrong
* in the direction of returning spurious 0 without causing disasters.
*/
#ifdef __STDC__
static int
begins_with_complex_se (struct rx * rx, struct rexp_node * rexp)
#else
static int
begins_with_complex_se (rx, rexp)
struct rx * rx;
struct rexp_node * rexp;
#endif
{
if (!rexp)
return 0;
switch (rexp->type)
{
case r_cset:
case r_data:
return 0;
case r_side_effect:
return ((long)rexp->params.side_effect >= 0);
case r_alternate:
return
( begins_with_complex_se (rx, rexp->params.pair.left)
&& begins_with_complex_se (rx, rexp->params.pair.right));
case r_concat:
return has_any_se (rx, rexp->params.pair.left);
case r_opt:
case r_star:
case r_2phase_star:
return 0;
}
/* this should never happen */
return 0;
}
/* This destructively removes some of the re_se_tv side effects from
* a rexp tree. In particular, during parsing re_se_tv was inserted on the
* right half of every | to guarantee that posix path preference could be
* honored. This function removes some which it can be determined aren't
* needed.
*/
#ifdef __STDC__
static void
speed_up_alt (struct rx * rx,
struct rexp_node * rexp,
int unposix)
#else
static void
speed_up_alt (rx, rexp, unposix)
struct rx * rx;
struct rexp_node * rexp;
int unposix;
#endif
{
if (!rexp)
return;
switch (rexp->type)
{
case r_cset:
case r_data:
case r_side_effect:
return;
case r_opt:
case r_star:
speed_up_alt (rx, rexp->params.pair.left, unposix);
return;
case r_2phase_star:
case r_concat:
speed_up_alt (rx, rexp->params.pair.left, unposix);
speed_up_alt (rx, rexp->params.pair.right, unposix);
return;
case r_alternate:
/* the right child is guaranteed to be (concat re_se_tv <subexp>) */
speed_up_alt (rx, rexp->params.pair.left, unposix);
speed_up_alt (rx, rexp->params.pair.right->params.pair.right, unposix);
if ( unposix
|| (begins_with_complex_se
(rx, rexp->params.pair.right->params.pair.right))
|| !( has_any_se (rx, rexp->params.pair.right->params.pair.right)
|| has_any_se (rx, rexp->params.pair.left)))
{
struct rexp_node * conc = rexp->params.pair.right;
rexp->params.pair.right = conc->params.pair.right;
conc->params.pair.right = 0;
rx_free_rexp (rx, conc);
}
}
}
/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
Returns one of error codes defined in `regex.h', or zero for success.
Assumes the `allocated' (and perhaps `buffer') and `translate'
fields are set in BUFP on entry.
If it succeeds, results are put in BUFP (if it returns an error, the
contents of BUFP are undefined):
`buffer' is the compiled pattern;
`syntax' is set to SYNTAX;
`used' is set to the length of the compiled pattern;
`fastmap_accurate' is set to zero;
`re_nsub' is set to the number of groups in PATTERN;
`not_bol' and `not_eol' are set to zero.
The `fastmap' and `newline_anchor' fields are neither
examined nor set. */
#ifdef __STDC__
RX_DECL reg_errcode_t
rx_compile (__const__ char *pattern, int size,
reg_syntax_t syntax,
struct re_pattern_buffer * rxb)
#else
RX_DECL reg_errcode_t
rx_compile (pattern, size, syntax, rxb)
__const__ char *pattern;
int size;
reg_syntax_t syntax;
struct re_pattern_buffer * rxb;
#endif
{
RX_subset
inverse_translate [CHAR_SET_SIZE * rx_bitset_numb_subsets(CHAR_SET_SIZE)];
char
validate_inv_tr [CHAR_SET_SIZE * rx_bitset_numb_subsets(CHAR_SET_SIZE)];
/* We fetch characters from PATTERN here. Even though PATTERN is
`char *' (i.e., signed), we declare these variables as unsigned, so
they can be reliably used as array indices. */
register unsigned char c, c1;
/* A random tempory spot in PATTERN. */
__const__ char *p1;
/* Keeps track of unclosed groups. */
compile_stack_type compile_stack;
/* Points to the current (ending) position in the pattern. */
__const__ char *p = pattern;
__const__ char *pend = pattern + size;
/* How to translate the characters in the pattern. */
unsigned char *translate = (rxb->translate
? rxb->translate
: rx_id_translation);
/* When parsing is done, this will hold the expression tree. */
struct rexp_node * rexp = 0;
/* In the midst of compilation, this holds onto the regexp
* first parst while rexp goes on to aquire additional constructs.
*/
struct rexp_node * orig_rexp = 0;
struct rexp_node * fewer_side_effects = 0;
/* This and top_expression are saved on the compile stack. */
struct rexp_node ** top_expression = &rexp;
struct rexp_node ** last_expression = top_expression;
/* Parameter to `goto append_node' */
struct rexp_node * append;
/* Counts open-groups as they are encountered. This is the index of the
* innermost group being compiled.
*/
regnum_t regnum = 0;
/* Place in the uncompiled pattern (i.e., the {) to
* which to go back if the interval is invalid.
*/
__const__ char *beg_interval;
struct re_se_params * params = 0;
int paramc = 0; /* How many complex side effects so far? */
rx_side_effect side; /* param to `goto add_side_effect' */
bzero (validate_inv_tr, sizeof (validate_inv_tr));
rxb->rx.instruction_table = rx_id_instruction_table;
/* Initialize the compile stack. */
compile_stack.stack = (( compile_stack_elt_t *) malloc ((INIT_COMPILE_STACK_SIZE) * sizeof ( compile_stack_elt_t)));
if (compile_stack.stack == 0)
return REG_ESPACE;
compile_stack.size = INIT_COMPILE_STACK_SIZE;
compile_stack.avail = 0;
/* Initialize the pattern buffer. */
rxb->rx.cache = &default_cache;
rxb->syntax = syntax;
rxb->fastmap_accurate = 0;
rxb->not_bol = rxb->not_eol = 0;
rxb->least_subs = 0;
/* Always count groups, whether or not rxb->no_sub is set.
* The whole pattern is implicitly group 0, so counting begins
* with 1.
*/
rxb->re_nsub = 0;
#if !defined (emacs) && !defined (SYNTAX_TABLE)
/* Initialize the syntax table. */
init_syntax_once ();
#endif
/* Loop through the uncompiled pattern until we're at the end. */
while (p != pend)
{
PATFETCH (c);
switch (c)
{
case '^':
{
if ( /* If at start of pattern, it's an operator. */
p == pattern + 1
/* If context independent, it's an operator. */
|| syntax & RE_CONTEXT_INDEP_ANCHORS
/* Otherwise, depends on what's come before. */
|| at_begline_loc_p (pattern, p, syntax))
{
struct rexp_node * n
= rx_mk_r_side_effect (&rxb->rx, (rx_side_effect)re_se_hat);
if (!n)
return REG_ESPACE;
append = n;
goto append_node;
}
else
goto normal_char;
}
break;
case '$':
{
if ( /* If at end of pattern, it's an operator. */
p == pend
/* If context independent, it's an operator. */
|| syntax & RE_CONTEXT_INDEP_ANCHORS
/* Otherwise, depends on what's next. */
|| at_endline_loc_p (p, pend, syntax))
{
struct rexp_node * n
= rx_mk_r_side_effect (&rxb->rx, (rx_side_effect)re_se_dollar);
if (!n)
return REG_ESPACE;
append = n;
goto append_node;
}
else
goto normal_char;
}
break;
case '+':
case '?':
if ((syntax & RE_BK_PLUS_QM)
|| (syntax & RE_LIMITED_OPS))
goto normal_char;
handle_plus:
case '*':
/* If there is no previous pattern... */
if (pointless_if_repeated (*last_expression, params))
{
if (syntax & RE_CONTEXT_INVALID_OPS)
return REG_BADRPT;
else if (!(syntax & RE_CONTEXT_INDEP_OPS))
goto normal_char;
}
{
/* 1 means zero (many) matches is allowed. */
char zero_times_ok = 0, many_times_ok = 0;
/* If there is a sequence of repetition chars, collapse it
down to just one (the right one). We can't combine
interval operators with these because of, e.g., `a{2}*',
which should only match an even number of `a's. */
for (;;)
{
zero_times_ok |= c != '+';
many_times_ok |= c != '?';
if (p == pend)
break;
PATFETCH (c);
if (c == '*'
|| (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
;
else if (syntax & RE_BK_PLUS_QM && c == '\\')
{
if (p == pend) return REG_EESCAPE;
PATFETCH (c1);
if (!(c1 == '+' || c1 == '?'))
{
PATUNFETCH;
PATUNFETCH;
break;
}
c = c1;
}
else
{
PATUNFETCH;
break;
}
/* If we get here, we found another repeat character. */
}
/* Star, etc. applied to an empty pattern is equivalent
to an empty pattern. */
if (!last_expression)
break;
/* Now we know whether or not zero matches is allowed
* and also whether or not two or more matches is allowed.
*/
{
struct rexp_node * inner_exp = *last_expression;
int need_sync = 0;
if (many_times_ok
&& has_non_idempotent_epsilon_path (&rxb->rx,
inner_exp, params))
{
struct rexp_node * pusher
= rx_mk_r_side_effect (&rxb->rx,
(rx_side_effect)re_se_pushpos);
struct rexp_node * checker
= rx_mk_r_side_effect (&rxb->rx,
(rx_side_effect)re_se_chkpos);
struct rexp_node * pushback
= rx_mk_r_side_effect (&rxb->rx,
(rx_side_effect)re_se_pushback);
rx_Bitset cs = rx_cset (&rxb->rx);
struct rexp_node * lit_t = rx_mk_r_cset (&rxb->rx, cs);
struct rexp_node * fake_state
= rx_mk_r_concat (&rxb->rx, pushback, lit_t);
struct rexp_node * phase2
= rx_mk_r_concat (&rxb->rx, checker, fake_state);
struct rexp_node * popper
= rx_mk_r_side_effect (&rxb->rx,
(rx_side_effect)re_se_poppos);
struct rexp_node * star
= rx_mk_r_2phase_star (&rxb->rx, inner_exp, phase2);
struct rexp_node * a
= rx_mk_r_concat (&rxb->rx, pusher, star);
struct rexp_node * whole_thing
= rx_mk_r_concat (&rxb->rx, a, popper);
if (!(pusher && star && pushback && lit_t && fake_state
&& lit_t && phase2 && checker && popper
&& a && whole_thing))
return REG_ESPACE;
RX_bitset_enjoin (cs, 't');
*last_expression = whole_thing;
}
else
{
struct rexp_node * star =
(many_times_ok ? rx_mk_r_star : rx_mk_r_opt)
(&rxb->rx, *last_expression);
if (!star)
return REG_ESPACE;
*last_expression = star;
need_sync = has_any_se (&rxb->rx, *last_expression);
}
if (!zero_times_ok)
{
struct rexp_node * concat
= rx_mk_r_concat (&rxb->rx,
rx_copy_rexp (&rxb->rx,
inner_exp),
*last_expression);
if (!concat)
return REG_ESPACE;
*last_expression = concat;
}
if (need_sync)
{
int sync_se = paramc;
params = (params
? ((struct re_se_params *)
realloc (params,
sizeof (*params) * (1 + paramc)))
: ((struct re_se_params *)
malloc (sizeof (*params))));
if (!params)
return REG_ESPACE;
++paramc;
params [sync_se].se = re_se_tv;
side = (rx_side_effect)sync_se;
goto add_side_effect;
}
}
/* The old regex.c used to optimize `.*\n'.
* Maybe rx should too?
*/
}
break;
case '.':
{
rx_Bitset cs = rx_cset (&rxb->rx);
struct rexp_node * n = rx_mk_r_cset (&rxb->rx, cs);
if (!(cs && n))
return REG_ESPACE;
rx_bitset_universe (rxb->rx.local_cset_size, cs);
if (!(rxb->syntax & RE_DOT_NEWLINE))
RX_bitset_remove (cs, '\n');
if (!(rxb->syntax & RE_DOT_NOT_NULL))
RX_bitset_remove (cs, 0);
append = n;
goto append_node;
break;
}
case '[':
if (p == pend) return REG_EBRACK;
{
boolean had_char_class = false;
rx_Bitset cs = rx_cset (&rxb->rx);
struct rexp_node * node = rx_mk_r_cset (&rxb->rx, cs);
int is_inverted = *p == '^';
if (!(node && cs))
return REG_ESPACE;
/* This branch of the switch is normally exited with
*`goto append_node'
*/
append = node;
if (is_inverted)
p++;
/* Remember the first position in the bracket expression. */
p1 = p;
/* Read in characters and ranges, setting map bits. */
for (;;)
{
if (p == pend) return REG_EBRACK;
PATFETCH (c);
/* \ might escape characters inside [...] and [^...]. */
if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
{
if (p == pend) return REG_EESCAPE;
PATFETCH (c1);
{
rx_Bitset it = inverse_translation (rxb,
validate_inv_tr,
inverse_translate,
translate,
c1);
rx_bitset_union (rxb->rx.local_cset_size, cs, it);
}
continue;
}
/* Could be the end of the bracket expression. If it's
not (i.e., when the bracket expression is `[]' so
far), the ']' character bit gets set way below. */
if (c == ']' && p != p1 + 1)
goto finalize_class_and_append;
/* Look ahead to see if it's a range when the last thing
was a character class. */
if (had_char_class && c == '-' && *p != ']')
return REG_ERANGE;
/* Look ahead to see if it's a range when the last thing
was a character: if this is a hyphen not at the
beginning or the end of a list, then it's the range
operator. */
if (c == '-'
&& !(p - 2 >= pattern && p[-2] == '[')
&& !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
&& *p != ']')
{
reg_errcode_t ret
= compile_range (rxb, cs, &p, pend, translate, syntax,
inverse_translate, validate_inv_tr);
if (ret != REG_NOERROR) return ret;
}
else if (p[0] == '-' && p[1] != ']')
{ /* This handles ranges made up of characters only. */
reg_errcode_t ret;
/* Move past the `-'. */
PATFETCH (c1);
ret = compile_range (rxb, cs, &p, pend, translate, syntax,
inverse_translate, validate_inv_tr);
if (ret != REG_NOERROR) return ret;
}
/* See if we're at the beginning of a possible character
class. */
else if ((syntax & RE_CHAR_CLASSES)
&& (c == '[') && (*p == ':'))
{
char str[CHAR_CLASS_MAX_LENGTH + 1];
PATFETCH (c);
c1 = 0;
/* If pattern is `[[:'. */
if (p == pend) return REG_EBRACK;
for (;;)
{
PATFETCH (c);
if (c == ':' || c == ']' || p == pend
|| c1 == CHAR_CLASS_MAX_LENGTH)
break;
str[c1++] = c;
}
str[c1] = '\0';
/* If isn't a word bracketed by `[:' and:`]':
undo the ending character, the letters, and leave
the leading `:' and `[' (but set bits for them). */
if (c == ':' && *p == ']')
{
int ch;
boolean is_alnum = !strcmp (str, "alnum");
boolean is_alpha = !strcmp (str, "alpha");
boolean is_blank = !strcmp (str, "blank");
boolean is_cntrl = !strcmp (str, "cntrl");
boolean is_digit = !strcmp (str, "digit");
boolean is_graph = !strcmp (str, "graph");
boolean is_lower = !strcmp (str, "lower");
boolean is_print = !strcmp (str, "print");
boolean is_punct = !strcmp (str, "punct");
boolean is_space = !strcmp (str, "space");
boolean is_upper = !strcmp (str, "upper");
boolean is_xdigit = !strcmp (str, "xdigit");
if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
/* Throw away the ] at the end of the character
class. */
PATFETCH (c);
if (p == pend) return REG_EBRACK;
for (ch = 0; ch < 1 << CHARBITS; ch++)
{
if ( (is_alnum && isalnum (ch))
|| (is_alpha && isalpha (ch))
|| (is_blank && isblank (ch))
|| (is_cntrl && iscntrl (ch))
|| (is_digit && isdigit (ch))
|| (is_graph && isgraph (ch))
|| (is_lower && islower (ch))
|| (is_print && isprint (ch))
|| (is_punct && ispunct (ch))
|| (is_space && isspace (ch))
|| (is_upper && isupper (ch))
|| (is_xdigit && isxdigit (ch)))
{
rx_Bitset it =
inverse_translation (rxb,
validate_inv_tr,
inverse_translate,
translate,
ch);
rx_bitset_union (rxb->rx.local_cset_size,
cs, it);
}
}
had_char_class = true;
}
else
{
c1++;
while (c1--)
PATUNFETCH;
{
rx_Bitset it =
inverse_translation (rxb,
validate_inv_tr,
inverse_translate,
translate,
'[');
rx_bitset_union (rxb->rx.local_cset_size,
cs, it);
}
{
rx_Bitset it =
inverse_translation (rxb,
validate_inv_tr,
inverse_translate,
translate,
':');
rx_bitset_union (rxb->rx.local_cset_size,
cs, it);
}
had_char_class = false;
}
}
else
{
had_char_class = false;
{
rx_Bitset it = inverse_translation (rxb,
validate_inv_tr,
inverse_translate,
translate,
c);
rx_bitset_union (rxb->rx.local_cset_size, cs, it);
}
}
}
finalize_class_and_append:
if (is_inverted)
{
rx_bitset_complement (rxb->rx.local_cset_size, cs);
if (syntax & RE_HAT_LISTS_NOT_NEWLINE)
RX_bitset_remove (cs, '\n');
}
goto append_node;
}
break;
case '(':
if (syntax & RE_NO_BK_PARENS)
goto handle_open;
else
goto normal_char;
case ')':
if (syntax & RE_NO_BK_PARENS)
goto handle_close;
else
goto normal_char;
case '\n':
if (syntax & RE_NEWLINE_ALT)
goto handle_alt;
else
goto normal_char;
case '|':
if (syntax & RE_NO_BK_VBAR)
goto handle_alt;
else
goto normal_char;
case '{':
if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
goto handle_interval;
else
goto normal_char;
case '\\':
if (p == pend) return REG_EESCAPE;
/* Do not translate the character after the \, so that we can
distinguish, e.g., \B from \b, even if we normally would
translate, e.g., B to b. */
PATFETCH_RAW (c);
switch (c)
{
case '(':
if (syntax & RE_NO_BK_PARENS)
goto normal_backslash;
handle_open:
rxb->re_nsub++;
regnum++;
if (COMPILE_STACK_FULL)
{
((compile_stack.stack) =
(compile_stack_elt_t *) realloc (compile_stack.stack, ( compile_stack.size << 1) * sizeof (
compile_stack_elt_t)));
if (compile_stack.stack == 0) return REG_ESPACE;
compile_stack.size <<= 1;
}
if (*last_expression)
{
struct rexp_node * concat
= rx_mk_r_concat (&rxb->rx, *last_expression, 0);
if (!concat)
return REG_ESPACE;
*last_expression = concat;
last_expression = &concat->params.pair.right;
}
/*
* These are the values to restore when we hit end of this
* group.
*/
COMPILE_STACK_TOP.top_expression = top_expression;
COMPILE_STACK_TOP.last_expression = last_expression;
COMPILE_STACK_TOP.regnum = regnum;
compile_stack.avail++;
top_expression = last_expression;
break;
case ')':
if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
handle_close:
/* See similar code for backslashed left paren above. */
if (COMPILE_STACK_EMPTY)
if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
goto normal_char;
else
return REG_ERPAREN;
/* Since we just checked for an empty stack above, this
``can't happen''. */
{
/* We don't just want to restore into `regnum', because
later groups should continue to be numbered higher,
as in `(ab)c(de)' -- the second group is #2. */
regnum_t this_group_regnum;
struct rexp_node ** inner = top_expression;
compile_stack.avail--;
top_expression = COMPILE_STACK_TOP.top_expression;
last_expression = COMPILE_STACK_TOP.last_expression;
this_group_regnum = COMPILE_STACK_TOP.regnum;
{
int left_se = paramc;
int right_se = paramc + 1;
params = (params
? ((struct re_se_params *)
realloc (params,
(paramc + 2) * sizeof (params[0])))
: ((struct re_se_params *)
malloc (2 * sizeof (params[0]))));
if (!params)
return REG_ESPACE;
paramc += 2;
params[left_se].se = re_se_lparen;
params[left_se].op1 = this_group_regnum;
params[right_se].se = re_se_rparen;
params[right_se].op1 = this_group_regnum;
{
struct rexp_node * left
= rx_mk_r_side_effect (&rxb->rx,
(rx_side_effect)left_se);
struct rexp_node * right
= rx_mk_r_side_effect (&rxb->rx,
(rx_side_effect)right_se);
struct rexp_node * c1
= (*inner
? rx_mk_r_concat (&rxb->rx, left, *inner) : left);
struct rexp_node * c2
= rx_mk_r_concat (&rxb->rx, c1, right);
if (!(left && right && c1 && c2))
return REG_ESPACE;
*inner = c2;
}
}
break;
}
case '|': /* `\|'. */
if ((syntax & RE_LIMITED_OPS) || (syntax & RE_NO_BK_VBAR))
goto normal_backslash;
handle_alt:
if (syntax & RE_LIMITED_OPS)
goto normal_char;
{
struct rexp_node * alt
= rx_mk_r_alternate (&rxb->rx, *top_expression, 0);
if (!alt)
return REG_ESPACE;
*top_expression = alt;
last_expression = &alt->params.pair.right;
{
int sync_se = paramc;
params = (params
? ((struct re_se_params *)
realloc (params,
(paramc + 1) * sizeof (params[0])))
: ((struct re_se_params *)
malloc (sizeof (params[0]))));
if (!params)
return REG_ESPACE;
++paramc;
params[sync_se].se = re_se_tv;
{
struct rexp_node * sync
= rx_mk_r_side_effect (&rxb->rx,
(rx_side_effect)sync_se);
struct rexp_node * conc
= rx_mk_r_concat (&rxb->rx, sync, 0);
if (!sync || !conc)
return REG_ESPACE;
*last_expression = conc;
last_expression = &conc->params.pair.right;
}
}
}
break;
case '{':
/* If \{ is a literal. */
if (!(syntax & RE_INTERVALS)
/* If we're at `\{' and it's not the open-interval
operator. */
|| ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
|| (p - 2 == pattern && p == pend))
goto normal_backslash;
handle_interval:
{
/* If got here, then the syntax allows intervals. */
/* At least (most) this many matches must be made. */
int lower_bound = -1, upper_bound = -1;
beg_interval = p - 1;
if (p == pend)
{
if (syntax & RE_NO_BK_BRACES)
goto unfetch_interval;
else
return REG_EBRACE;
}
GET_UNSIGNED_NUMBER (lower_bound);
if (c == ',')
{
GET_UNSIGNED_NUMBER (upper_bound);
if (upper_bound < 0) upper_bound = RE_DUP_MAX;
}
else
/* Interval such as `{1}' => match exactly once. */
upper_bound = lower_bound;
if (lower_bound < 0 || upper_bound > RE_DUP_MAX
|| lower_bound > upper_bound)
{
if (syntax & RE_NO_BK_BRACES)
goto unfetch_interval;
else
return REG_BADBR;
}
if (!(syntax & RE_NO_BK_BRACES))
{
if (c != '\\') return REG_EBRACE;
PATFETCH (c);
}
if (c != '}')
{
if (syntax & RE_NO_BK_BRACES)
goto unfetch_interval;
else
return REG_BADBR;
}
/* We just parsed a valid interval. */
/* If it's invalid to have no preceding re. */
if (pointless_if_repeated (*last_expression, params))
{
if (syntax & RE_CONTEXT_INVALID_OPS)
return REG_BADRPT;
else if (!(syntax & RE_CONTEXT_INDEP_OPS))
goto unfetch_interval;
/* was: else laststart = b; */
}
/* If the upper bound is zero, don't want to iterate
* at all.
*/
if (upper_bound == 0)
{
if (*last_expression)
{
rx_free_rexp (&rxb->rx, *last_expression);
*last_expression = 0;
}
}
else
/* Otherwise, we have a nontrivial interval. */
{
int iter_se = paramc;
int end_se = paramc + 1;
params = (params
? ((struct re_se_params *)
realloc (params,
sizeof (*params) * (2 + paramc)))
: ((struct re_se_params *)
malloc (2 * sizeof (*params))));
if (!params)
return REG_ESPACE;
paramc += 2;
params [iter_se].se = re_se_iter;
params [iter_se].op1 = lower_bound;
params[iter_se].op2 = upper_bound;
params[end_se].se = re_se_end_iter;
params[end_se].op1 = lower_bound;
params[end_se].op2 = upper_bound;
{
struct rexp_node * push0
= rx_mk_r_side_effect (&rxb->rx,
(rx_side_effect)re_se_push0);
struct rexp_node * start_one_iter
= rx_mk_r_side_effect (&rxb->rx,
(rx_side_effect)iter_se);
struct rexp_node * phase1
= rx_mk_r_concat (&rxb->rx, start_one_iter,
*last_expression);
struct rexp_node * pushback
= rx_mk_r_side_effect (&rxb->rx,
(rx_side_effect)re_se_pushback);
rx_Bitset cs = rx_cset (&rxb->rx);
struct rexp_node * lit_t
= rx_mk_r_cset (&rxb->rx, cs);
struct rexp_node * phase2
= rx_mk_r_concat (&rxb->rx, pushback, lit_t);
struct rexp_node * loop
= rx_mk_r_2phase_star (&rxb->rx, phase1, phase2);
struct rexp_node * push_n_loop
= rx_mk_r_concat (&rxb->rx, push0, loop);
struct rexp_node * final_test
= rx_mk_r_side_effect (&rxb->rx,
(rx_side_effect)end_se);
struct rexp_node * full_exp
= rx_mk_r_concat (&rxb->rx, push_n_loop, final_test);
if (!(push0 && start_one_iter && phase1
&& pushback && lit_t && phase2
&& loop && push_n_loop && final_test && full_exp))
return REG_ESPACE;
RX_bitset_enjoin(cs, 't');
*last_expression = full_exp;
}
}
beg_interval = 0;
}
break;
unfetch_interval:
/* If an invalid interval, match the characters as literals. */
p = beg_interval;
beg_interval = 0;
/* normal_char and normal_backslash need `c'. */
PATFETCH (c);
if (!(syntax & RE_NO_BK_BRACES))
{
if (p > pattern && p[-1] == '\\')
goto normal_backslash;
}
goto normal_char;
#ifdef emacs
/* There is no way to specify the before_dot and after_dot
operators. rms says this is ok. --karl */
case '=':
side = (rx_side_effect)rx_se_at_dot;
goto add_side_effect;
break;
case 's':
case 'S':
{
rx_Bitset cs = rx_cset (&rxb->rx);
struct rexp_node * set = rx_mk_r_cset (&rxb->rx, cs);
if (!(cs && set))
return REG_ESPACE;
if (c == 'S')
rx_bitset_universe (rxb->rx.local_cset_size, cs);
PATFETCH (c);
{
int x;
enum syntaxcode code = syntax_spec_code [c];
for (x = 0; x < 256; ++x)
{
if (SYNTAX (x) == code)
{
rx_Bitset it =
inverse_translation (rxb, validate_inv_tr,
inverse_translate,
translate, x);
rx_bitset_xor (rxb->rx.local_cset_size, cs, it);
}
}
}
append = set;
goto append_node;
}
break;
#endif /* emacs */
case 'w':
case 'W':
{
rx_Bitset cs = rx_cset (&rxb->rx);
struct rexp_node * n = (cs ? rx_mk_r_cset (&rxb->rx, cs) : 0);
if (!(cs && n))
return REG_ESPACE;
if (c == 'W')
rx_bitset_universe (rxb->rx.local_cset_size ,cs);
{
int x;
for (x = rxb->rx.local_cset_size - 1; x > 0; --x)
if (SYNTAX(x) & Sword)
RX_bitset_toggle (cs, x);
}
append = n;
goto append_node;
}
break;
/* With a little extra work, some of these side effects could be optimized
* away (basicly by looking at what we already know about the surrounding
* chars).
*/
case '<':
side = (rx_side_effect)re_se_wordbeg;
goto add_side_effect;
break;
case '>':
side = (rx_side_effect)re_se_wordend;
goto add_side_effect;
break;
case 'b':
side = (rx_side_effect)re_se_wordbound;
goto add_side_effect;
break;
case 'B':
side = (rx_side_effect)re_se_notwordbound;
goto add_side_effect;
break;
case '`':
side = (rx_side_effect)re_se_begbuf;
goto add_side_effect;
break;
case '\'':
side = (rx_side_effect)re_se_endbuf;
goto add_side_effect;
break;
add_side_effect:
{
struct rexp_node * se
= rx_mk_r_side_effect (&rxb->rx, side);
if (!se)
return REG_ESPACE;
append = se;
goto append_node;
}
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
if (syntax & RE_NO_BK_REFS)
goto normal_char;
c1 = c - '0';
if (c1 > regnum)
return REG_ESUBREG;
/* Can't back reference to a subexpression if inside of it. */
if (group_in_compile_stack (compile_stack, c1))
return REG_ESUBREG;
{
int backref_se = paramc;
params = (params
? ((struct re_se_params *)
realloc (params,
sizeof (*params) * (1 + paramc)))
: ((struct re_se_params *)
malloc (sizeof (*params))));
if (!params)
return REG_ESPACE;
++paramc;
params[backref_se].se = re_se_backref;
params[backref_se].op1 = c1;
side = (rx_side_effect)backref_se;
goto add_side_effect;
}
break;
case '+':
case '?':
if (syntax & RE_BK_PLUS_QM)
goto handle_plus;
else
goto normal_backslash;
default:
normal_backslash:
/* You might think it would be useful for \ to mean
not to translate; but if we don't translate it
it will never match anything. */
c = TRANSLATE (c);
goto normal_char;
}
break;
default:
/* Expects the character in `c'. */
normal_char:
{
rx_Bitset cs = rx_cset(&rxb->rx);
struct rexp_node * match = rx_mk_r_cset (&rxb->rx, cs);
rx_Bitset it;
if (!(cs && match))
return REG_ESPACE;
it = inverse_translation (rxb, validate_inv_tr,
inverse_translate, translate, c);
rx_bitset_union (CHAR_SET_SIZE, cs, it);
append = match;
append_node:
/* This genericly appends the rexp APPEND to *LAST_EXPRESSION
* and then parses the next character normally.
*/
if (*last_expression)
{
struct rexp_node * concat
= rx_mk_r_concat (&rxb->rx, *last_expression, append);
if (!concat)
return REG_ESPACE;
*last_expression = concat;
last_expression = &concat->params.pair.right;
}
else
*last_expression = append;
}
} /* switch (c) */
} /* while p != pend */
{
int win_se = paramc;
params = (params
? ((struct re_se_params *)
realloc (params,
sizeof (*params) * (1 + paramc)))
: ((struct re_se_params *)
malloc (sizeof (*params))));
if (!params)
return REG_ESPACE;
++paramc;
params[win_se].se = re_se_win;
{
struct rexp_node * se
= rx_mk_r_side_effect (&rxb->rx, (rx_side_effect)win_se);
struct rexp_node * concat
= rx_mk_r_concat (&rxb->rx, rexp, se);
if (!(se && concat))
return REG_ESPACE;
rexp = concat;
}
}
/* Through the pattern now. */
if (!COMPILE_STACK_EMPTY)
return REG_EPAREN;
free (compile_stack.stack);
orig_rexp = rexp;
#ifdef RX_DEBUG
if (rx_debug_compile)
{
dbug_rxb = rxb;
fputs ("\n\nCompiling ", stdout);
fwrite (pattern, 1, size, stdout);
fputs (":\n", stdout);
rxb->se_params = params;
print_rexp (&rxb->rx, orig_rexp, 2, re_seprint, stdout);
}
#endif
{
rx_Bitset cs = rx_cset(&rxb->rx);
rx_Bitset cs2 = rx_cset(&rxb->rx);
char * se_map = (char *) alloca (paramc);
struct rexp_node * new_rexp = 0;
bzero (se_map, paramc);
find_backrefs (se_map, rexp, params);
fewer_side_effects =
remove_unecessary_side_effects (&rxb->rx, se_map,
rx_copy_rexp (&rxb->rx, rexp), params);
speed_up_alt (&rxb->rx, rexp, 0);
speed_up_alt (&rxb->rx, fewer_side_effects, 1);
{
char * syntax_parens = rxb->syntax_parens;
if (syntax_parens == (char *)0x1)
rexp = remove_unecessary_side_effects
(&rxb->rx, se_map, rexp, params);
else if (syntax_parens)
{
int x;
for (x = 0; x < paramc; ++x)
if (( (params[x].se == re_se_lparen)
|| (params[x].se == re_se_rparen))
&& (!syntax_parens [params[x].op1]))
se_map [x] = 1;
rexp = remove_unecessary_side_effects
(&rxb->rx, se_map, rexp, params);
}
}
/* At least one more optimization would be nice to have here but i ran out
* of time. The idea would be to delay side effects.
* For examle, `(abc)' is the same thing as `abc()' except that the
* left paren is offset by 3 (which we know at compile time).
* (In this comment, write that second pattern `abc(:3:)'
* where `(:3:' is a syntactic unit.)
*
* Trickier: `(abc|defg)' is the same as `(abc(:3:|defg(:4:))'
* (The paren nesting may be hard to follow -- that's an alternation
* of `abc(:3:' and `defg(:4:' inside (purely syntactic) parens
* followed by the closing paren from the original expression.)
*
* Neither the expression tree representation nor the the nfa make
* this very easy to write. :(
*/
/* What we compile is different than what the parser returns.
* Suppose the parser returns expression R.
* Let R' be R with unnecessary register assignments removed
* (see REMOVE_UNECESSARY_SIDE_EFFECTS, above).
*
* What we will compile is the expression:
*
* m{try}R{win}\|s{try}R'{win}
*
* {try} and {win} denote side effect epsilons (see EXPLORE_FUTURE).
*
* When trying a match, we insert an `m' at the beginning of the
* string if the user wants registers to be filled, `s' if not.
*/
new_rexp =
rx_mk_r_alternate
(&rxb->rx,
rx_mk_r_concat (&rxb->rx, rx_mk_r_cset (&rxb->rx, cs2), rexp),
rx_mk_r_concat (&rxb->rx,
rx_mk_r_cset (&rxb->rx, cs), fewer_side_effects));
if (!(new_rexp && cs && cs2))
return REG_ESPACE;
RX_bitset_enjoin (cs2, '\0'); /* prefixed to the rexp used for matching. */
RX_bitset_enjoin (cs, '\1'); /* prefixed to the rexp used for searching. */
rexp = new_rexp;
}
#ifdef RX_DEBUG
if (rx_debug_compile)
{
fputs ("\n...which is compiled as:\n", stdout);
print_rexp (&rxb->rx, rexp, 2, re_seprint, stdout);
}
#endif
{
struct rx_nfa_state *start = 0;
struct rx_nfa_state *end = 0;
if (!rx_build_nfa (&rxb->rx, rexp, &start, &end))
return REG_ESPACE; /* */
else
{
void * mem = (void *)rxb->buffer;
unsigned long size = rxb->allocated;
int start_id;
char * perm_mem;
int iterator_size = paramc * sizeof (params[0]);
end->is_final = 1;
start->is_start = 1;
rx_name_nfa_states (&rxb->rx);
start_id = start->id;
#ifdef RX_DEBUG
if (rx_debug_compile)
{
fputs ("...giving the NFA: \n", stdout);
dbug_rxb = rxb;
print_nfa (&rxb->rx, rxb->rx.nfa_states, re_seprint, stdout);
}
#endif
if (!rx_eclose_nfa (&rxb->rx))
return REG_ESPACE;
else
{
rx_delete_epsilon_transitions (&rxb->rx);
/* For compatability reasons, we need to shove the
* compiled nfa into one chunk of malloced memory.
*/
rxb->rx.reserved = ( sizeof (params[0]) * paramc
+ rx_sizeof_bitset (rxb->rx.local_cset_size));
#ifdef RX_DEBUG
if (rx_debug_compile)
{
dbug_rxb = rxb;
fputs ("...which cooks down (uncompactified) to: \n", stdout);
print_nfa (&rxb->rx, rxb->rx.nfa_states, re_seprint, stdout);
}
#endif
if (!rx_compactify_nfa (&rxb->rx, &mem, &size))
return REG_ESPACE;
rxb->buffer = mem;
rxb->allocated = size;
rxb->rx.buffer = mem;
rxb->rx.allocated = size;
perm_mem = ((char *)rxb->rx.buffer
+ rxb->rx.allocated - rxb->rx.reserved);
rxb->se_params = ((struct re_se_params *)perm_mem);
bcopy (params, rxb->se_params, iterator_size);
perm_mem += iterator_size;
rxb->fastset = (rx_Bitset) perm_mem;
rxb->start = rx_id_to_nfa_state (&rxb->rx, start_id);
}
rx_bitset_null (rxb->rx.local_cset_size, rxb->fastset);
rxb->can_match_empty = compute_fastset (rxb, orig_rexp);
rxb->match_regs_on_stack =
registers_on_stack (rxb, orig_rexp, 0, params);
rxb->search_regs_on_stack =
registers_on_stack (rxb, fewer_side_effects, 0, params);
if (rxb->can_match_empty)
rx_bitset_universe (rxb->rx.local_cset_size, rxb->fastset);
rxb->is_anchored = is_anchored (orig_rexp, (rx_side_effect) re_se_hat);
rxb->begbuf_only = is_anchored (orig_rexp,
(rx_side_effect) re_se_begbuf);
}
rx_free_rexp (&rxb->rx, rexp);
if (params)
free (params);
#ifdef RX_DEBUG
if (rx_debug_compile)
{
dbug_rxb = rxb;
fputs ("...which cooks down to: \n", stdout);
print_nfa (&rxb->rx, rxb->rx.nfa_states, re_seprint, stdout);
}
#endif
}
return REG_NOERROR;
}
/* This table gives an error message for each of the error codes listed
in regex.h. Obviously the order here has to be same as there. */
__const__ char * rx_error_msg[] =
{ 0, /* REG_NOERROR */
"No match", /* REG_NOMATCH */
"Invalid regular expression", /* REG_BADPAT */
"Invalid collation character", /* REG_ECOLLATE */
"Invalid character class name", /* REG_ECTYPE */
"Trailing backslash", /* REG_EESCAPE */
"Invalid back reference", /* REG_ESUBREG */
"Unmatched [ or [^", /* REG_EBRACK */
"Unmatched ( or \\(", /* REG_EPAREN */
"Unmatched \\{", /* REG_EBRACE */
"Invalid content of \\{\\}", /* REG_BADBR */
"Invalid range end", /* REG_ERANGE */
"Memory exhausted", /* REG_ESPACE */
"Invalid preceding regular expression", /* REG_BADRPT */
"Premature end of regular expression", /* REG_EEND */
"Regular expression too big", /* REG_ESIZE */
"Unmatched ) or \\)", /* REG_ERPAREN */
};
char rx_slowmap [256] =
{
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
};
#ifdef __STDC__
RX_DECL void
rx_blow_up_fastmap (struct re_pattern_buffer * rxb)
#else
RX_DECL void
rx_blow_up_fastmap (rxb)
struct re_pattern_buffer * rxb;
#endif
{
int x;
for (x = 0; x < 256; ++x) /* &&&& 3.6 % */
rxb->fastmap [x] = !!RX_bitset_member (rxb->fastset, x);
rxb->fastmap_accurate = 1;
}
#if !defined(REGEX_MALLOC) && !defined(__GNUC__)
#define RE_SEARCH_2_FN inner_re_search_2
#define RE_S2_QUAL static
#else
#define RE_SEARCH_2_FN re_search_2
#define RE_S2_QUAL
#endif
struct re_search_2_closure
{
__const__ char * string1;
int size1;
__const__ char * string2;
int size2;
};
static __inline__ enum rx_get_burst_return
re_search_2_get_burst (pos, vclosure, stop)
struct rx_string_position * pos;
void * vclosure;
int stop;
{
struct re_search_2_closure * closure;
closure = (struct re_search_2_closure *)vclosure;
if (!closure->string2)
{
int inset;
inset = pos->pos - pos->string;
if ((inset < -1) || (inset > closure->size1))
return rx_get_burst_no_more;
else
{
pos->pos = (__const__ unsigned char *) closure->string1 + inset;
pos->string = (__const__ unsigned char *) closure->string1;
pos->size = closure->size1;
pos->end = ((__const__ unsigned char *)
MIN(closure->string1 + closure->size1,
closure->string1 + stop));
pos->offset = 0;
return ((pos->pos < pos->end)
? rx_get_burst_ok
: rx_get_burst_no_more);
}
}
else if (!closure->string1)
{
int inset;
inset = pos->pos - pos->string;
pos->pos = (__const__ unsigned char *) closure->string2 + inset;
pos->string = (__const__ unsigned char *) closure->string2;
pos->size = closure->size2;
pos->end = ((__const__ unsigned char *)
MIN(closure->string2 + closure->size2,
closure->string2 + stop));
pos->offset = 0;
return ((pos->pos < pos->end)
? rx_get_burst_ok
: rx_get_burst_no_more);
}
else
{
int inset;
inset = pos->pos - pos->string + pos->offset;
if (inset < closure->size1)
{
pos->pos = (__const__ unsigned char *) closure->string1 + inset;
pos->string = (__const__ unsigned char *) closure->string1;
pos->size = closure->size1;
pos->end = ((__const__ unsigned char *)
MIN(closure->string1 + closure->size1,
closure->string1 + stop));
pos->offset = 0;
return rx_get_burst_ok;
}
else
{
pos->pos = ((__const__ unsigned char *)
closure->string2 + inset - closure->size1);
pos->string = (__const__ unsigned char *) closure->string2;
pos->size = closure->size2;
pos->end = ((__const__ unsigned char *)
MIN(closure->string2 + closure->size2,
closure->string2 + stop - closure->size1));
pos->offset = closure->size1;
return ((pos->pos < pos->end)
? rx_get_burst_ok
: rx_get_burst_no_more);
}
}
}
static __inline__ enum rx_back_check_return
re_search_2_back_check (pos, lparen, rparen, translate, vclosure, stop)
struct rx_string_position * pos;
int lparen;
int rparen;
unsigned char * translate;
void * vclosure;
int stop;
{
struct rx_string_position there;
struct rx_string_position past;
there = *pos;
there.pos = there.string + lparen - there.offset;
re_search_2_get_burst (&there, vclosure, stop);
past = *pos;
past.pos = past.string + rparen - there.offset;
re_search_2_get_burst (&past, vclosure, stop);
++pos->pos;
re_search_2_get_burst (pos, vclosure, stop);
while ( (there.pos != past.pos)
&& (pos->pos != pos->end))
if (TRANSLATE(*there.pos) != TRANSLATE(*pos->pos))
return rx_back_check_fail;
else
{
++there.pos;
++pos->pos;
if (there.pos == there.end)
re_search_2_get_burst (&there, vclosure, stop);
if (pos->pos == pos->end)
re_search_2_get_burst (pos, vclosure, stop);
}
if (there.pos != past.pos)
return rx_back_check_fail;
--pos->pos;
re_search_2_get_burst (pos, vclosure, stop);
return rx_back_check_pass;
}
static __inline__ int
re_search_2_fetch_char (pos, offset, app_closure, stop)
struct rx_string_position * pos;
int offset;
void * app_closure;
int stop;
{
struct re_search_2_closure * closure;
closure = (struct re_search_2_closure *)app_closure;
if (offset == 0)
{
if (pos->pos >= pos->string)
return *pos->pos;
else
{
if ( (pos->string == (__const__ unsigned char *) closure->string2)
&& (closure->string1)
&& (closure->size1))
return closure->string1[closure->size1 - 1];
else
return 0; /* sure, why not. */
}
}
if (pos->pos == pos->end)
return *closure->string2;
else
return pos->pos[1];
}
#ifdef __STDC__
RE_S2_QUAL int
RE_SEARCH_2_FN (struct re_pattern_buffer *rxb,
__const__ char * string1, int size1,
__const__ char * string2, int size2,
int startpos, int range,
struct re_registers *regs,
int stop)
#else
RE_S2_QUAL int
RE_SEARCH_2_FN (rxb,
string1, size1, string2, size2, startpos, range, regs, stop)
struct re_pattern_buffer *rxb;
__const__ char * string1;
int size1;
__const__ char * string2;
int size2;
int startpos;
int range;
struct re_registers *regs;
int stop;
#endif
{
int answer;
struct re_search_2_closure closure;
closure.string1 = string1;
closure.size1 = size1;
closure.string2 = string2;
closure.size2 = size2;
answer = rx_search (rxb, startpos, range, stop, size1 + size2,
re_search_2_get_burst,
re_search_2_back_check,
re_search_2_fetch_char,
(void *)&closure,
regs,
0,
0);
switch (answer)
{
case rx_search_continuation:
abort ();
case rx_search_error:
return -2;
case rx_search_soft_fail:
case rx_search_fail:
return -1;
default:
return answer;
}
}
/* Export rx_search to callers outside this file. */
int
re_rx_search (rxb, startpos, range, stop, total_size,
get_burst, back_check, fetch_char,
app_closure, regs, resume_state, save_state)
struct re_pattern_buffer * rxb;
int startpos;
int range;
int stop;
int total_size;
rx_get_burst_fn get_burst;
rx_back_check_fn back_check;
rx_fetch_char_fn fetch_char;
void * app_closure;
struct re_registers * regs;
struct rx_search_state * resume_state;
struct rx_search_state * save_state;
{
return rx_search (rxb, startpos, range, stop, total_size,
get_burst, back_check, fetch_char, app_closure,
regs, resume_state, save_state);
}
#if !defined(REGEX_MALLOC) && !defined(__GNUC__)
#ifdef __STDC__
int
re_search_2 (struct re_pattern_buffer *rxb,
__const__ char * string1, int size1,
__const__ char * string2, int size2,
int startpos, int range,
struct re_registers *regs,
int stop)
#else
int
re_search_2 (rxb, string1, size1, string2, size2, startpos, range, regs, stop)
struct re_pattern_buffer *rxb;
__const__ char * string1;
int size1;
__const__ char * string2;
int size2;
int startpos;
int range;
struct re_registers *regs;
int stop;
#endif
{
int ret;
ret = inner_re_search_2 (rxb, string1, size1, string2, size2, startpos,
range, regs, stop);
alloca (0);
return ret;
}
#endif
/* Like re_search_2, above, but only one string is specified, and
* doesn't let you say where to stop matching.
*/
#ifdef __STDC__
int
re_search (struct re_pattern_buffer * rxb, __const__ char *string,
int size, int startpos, int range,
struct re_registers *regs)
#else
int
re_search (rxb, string, size, startpos, range, regs)
struct re_pattern_buffer * rxb;
__const__ char * string;
int size;
int startpos;
int range;
struct re_registers *regs;
#endif
{
return re_search_2 (rxb, 0, 0, string, size, startpos, range, regs, size);
}
#ifdef __STDC__
int
re_match_2 (struct re_pattern_buffer * rxb,
__const__ char * string1, int size1,
__const__ char * string2, int size2,
int pos, struct re_registers *regs, int stop)
#else
int
re_match_2 (rxb, string1, size1, string2, size2, pos, regs, stop)
struct re_pattern_buffer * rxb;
__const__ char * string1;
int size1;
__const__ char * string2;
int size2;
int pos;
struct re_registers *regs;
int stop;
#endif
{
struct re_registers some_regs;
regoff_t start;
regoff_t end;
int srch;
int save = rxb->regs_allocated;
struct re_registers * regs_to_pass = regs;
if (!regs)
{
some_regs.start = &start;
some_regs.end = &end;
some_regs.num_regs = 1;
regs_to_pass = &some_regs;
rxb->regs_allocated = REGS_FIXED;
}
srch = re_search_2 (rxb, string1, size1, string2, size2,
pos, 1, regs_to_pass, stop);
if (regs_to_pass != regs)
rxb->regs_allocated = save;
if (srch < 0)
return srch;
return regs_to_pass->end[0] - regs_to_pass->start[0];
}
/* re_match is like re_match_2 except it takes only a single string. */
#ifdef __STDC__
int
re_match (struct re_pattern_buffer * rxb,
__const__ char * string,
int size, int pos,
struct re_registers *regs)
#else
int
re_match (rxb, string, size, pos, regs)
struct re_pattern_buffer * rxb;
__const__ char *string;
int size;
int pos;
struct re_registers *regs;
#endif
{
return re_match_2 (rxb, string, size, 0, 0, pos, regs, size);
}
/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
also be assigned to arbitrarily: each pattern buffer stores its own
syntax, so it can be changed between regex compilations. */
reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
/* Specify the precise syntax of regexps for compilation. This provides
for compatibility for various utilities which historically have
different, incompatible syntaxes.
The argument SYNTAX is a bit mask comprised of the various bits
defined in regex.h. We return the old syntax. */
#ifdef __STDC__
reg_syntax_t
re_set_syntax (reg_syntax_t syntax)
#else
reg_syntax_t
re_set_syntax (syntax)
reg_syntax_t syntax;
#endif
{
reg_syntax_t ret = re_syntax_options;
re_syntax_options = syntax;
return ret;
}
/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
this memory for recording register information. STARTS and ENDS
must be allocated using the malloc library routine, and must each
be at least NUM_REGS * sizeof (regoff_t) bytes long.
If NUM_REGS == 0, then subsequent matches should allocate their own
register data.
Unless this function is called, the first search or match using
PATTERN_BUFFER will allocate its own register data, without
freeing the old data. */
#ifdef __STDC__
void
re_set_registers (struct re_pattern_buffer *bufp,
struct re_registers *regs,
unsigned num_regs,
regoff_t * starts, regoff_t * ends)
#else
void
re_set_registers (bufp, regs, num_regs, starts, ends)
struct re_pattern_buffer *bufp;
struct re_registers *regs;
unsigned num_regs;
regoff_t * starts;
regoff_t * ends;
#endif
{
if (num_regs)
{
bufp->regs_allocated = REGS_REALLOCATE;
regs->num_regs = num_regs;
regs->start = starts;
regs->end = ends;
}
else
{
bufp->regs_allocated = REGS_UNALLOCATED;
regs->num_regs = 0;
regs->start = regs->end = (regoff_t) 0;
}
}
#ifdef __STDC__
static int
cplx_se_sublist_len (struct rx_se_list * list)
#else
static int
cplx_se_sublist_len (list)
struct rx_se_list * list;
#endif
{
int x = 0;
while (list)
{
if ((long)list->car >= 0)
++x;
list = list->cdr;
}
return x;
}
/* For rx->se_list_cmp */
#ifdef __STDC__
static int
posix_se_list_order (struct rx * rx,
struct rx_se_list * a, struct rx_se_list * b)
#else
static int
posix_se_list_order (rx, a, b)
struct rx * rx;
struct rx_se_list * a;
struct rx_se_list * b;
#endif
{
int al = cplx_se_sublist_len (a);
int bl = cplx_se_sublist_len (b);
if (!al && !bl)
return ((a == b)
? 0
: ((a < b) ? -1 : 1));
else if (!al)
return -1;
else if (!bl)
return 1;
else
{
rx_side_effect * av = ((rx_side_effect *)
alloca (sizeof (rx_side_effect) * (al + 1)));
rx_side_effect * bv = ((rx_side_effect *)
alloca (sizeof (rx_side_effect) * (bl + 1)));
struct rx_se_list * ap = a;
struct rx_se_list * bp = b;
int ai, bi;
for (ai = al - 1; ai >= 0; --ai)
{
while ((long)ap->car < 0)
ap = ap->cdr;
av[ai] = ap->car;
ap = ap->cdr;
}
av[al] = (rx_side_effect)-2;
for (bi = bl - 1; bi >= 0; --bi)
{
while ((long)bp->car < 0)
bp = bp->cdr;
bv[bi] = bp->car;
bp = bp->cdr;
}
bv[bl] = (rx_side_effect)-1;
{
int ret;
int x = 0;
while (av[x] == bv[x])
++x;
ret = (((unsigned *)(av[x]) < (unsigned *)(bv[x])) ? -1 : 1);
return ret;
}
}
}
/* re_compile_pattern is the GNU regular expression compiler: it
compiles PATTERN (of length SIZE) and puts the result in RXB.
Returns 0 if the pattern was valid, otherwise an error string.
Assumes the `allocated' (and perhaps `buffer') and `translate' fields
are set in RXB on entry.
We call rx_compile to do the actual compilation. */
#ifdef __STDC__
__const__ char *
re_compile_pattern (__const__ char *pattern,
int length,
struct re_pattern_buffer * rxb)
#else
__const__ char *
re_compile_pattern (pattern, length, rxb)
__const__ char *pattern;
int length;
struct re_pattern_buffer * rxb;
#endif
{
reg_errcode_t ret;
/* GNU code is written to assume at least RE_NREGS registers will be set
(and at least one extra will be -1). */
rxb->regs_allocated = REGS_UNALLOCATED;
/* And GNU code determines whether or not to get register information
by passing null for the REGS argument to re_match, etc., not by
setting no_sub. */
rxb->no_sub = 0;
rxb->rx.local_cset_size = 256;
/* Match anchors at newline. */
rxb->newline_anchor = 1;
rxb->re_nsub = 0;
rxb->start = 0;
rxb->se_params = 0;
rxb->rx.nodec = 0;
rxb->rx.epsnodec = 0;
rxb->rx.instruction_table = 0;
rxb->rx.nfa_states = 0;
rxb->rx.se_list_cmp = posix_se_list_order;
rxb->rx.start_set = 0;
ret = rx_compile (pattern, length, re_syntax_options, rxb);
alloca (0);
return rx_error_msg[(int) ret];
}
#ifdef __STDC__
int
re_compile_fastmap (struct re_pattern_buffer * rxb)
#else
int
re_compile_fastmap (rxb)
struct re_pattern_buffer * rxb;
#endif
{
rx_blow_up_fastmap (rxb);
return 0;
}
/* Entry points compatible with 4.2 BSD regex library. We don't define
them if this is an Emacs or POSIX compilation. */
/* Don't build them for libg++ either. This is a temporary measure
* until the functions are moved to another file and reconditionalized.
*/
#if 0
/* #if (!defined (emacs) && !defined (_POSIX_SOURCE)) || defined(USE_BSD_REGEX) */
/* BSD has one and only one pattern buffer. */
static struct re_pattern_buffer rx_comp_buf;
#ifdef __STDC__
char *
re_comp (__const__ char *s)
#else
char *
re_comp (s)
__const__ char *s;
#endif
{
reg_errcode_t ret;
if (!s || (*s == '\0'))
{
if (!rx_comp_buf.buffer)
return "No previous regular expression";
return 0;
}
if (!rx_comp_buf.fastmap)
{
rx_comp_buf.fastmap = (char *) malloc (1 << CHARBITS);
if (!rx_comp_buf.fastmap)
return "Memory exhausted";
}
/* Since `rx_exec' always passes NULL for the `regs' argument, we
don't need to initialize the pattern buffer fields which affect it. */
/* Match anchors at newlines. */
rx_comp_buf.newline_anchor = 1;
rx_comp_buf.fastmap_accurate = 0;
rx_comp_buf.re_nsub = 0;
rx_comp_buf.start = 0;
rx_comp_buf.se_params = 0;
rx_comp_buf.rx.nodec = 0;
rx_comp_buf.rx.epsnodec = 0;
rx_comp_buf.rx.instruction_table = 0;
rx_comp_buf.rx.nfa_states = 0;
rx_comp_buf.rx.start = 0;
rx_comp_buf.rx.se_list_cmp = posix_se_list_order;
rx_comp_buf.rx.start_set = 0;
rx_comp_buf.rx.local_cset_size = 256;
ret = rx_compile (s, strlen (s), re_syntax_options, &rx_comp_buf);
alloca (0);
/* Yes, we're discarding `__const__' here. */
return (char *) rx_error_msg[(int) ret];
}
#ifdef __STDC__
int
re_exec (__const__ char *s)
#else
int
re_exec (s)
__const__ char *s;
#endif
{
__const__ int len = strlen (s);
return
0 <= re_search (&rx_comp_buf, s, len, 0, len, (struct re_registers *) 0);
}
#endif /* not emacs and not _POSIX_SOURCE */
/* POSIX.2 functions. Don't define these for Emacs. */
/* For now we leave these out, because regex_t is not binary
compatible with the implementation in other systems. */
#if 0 /*!defined(emacs)*/
/* regcomp takes a regular expression as a string and compiles it.
PREG is a regex_t *. We do not expect any fields to be initialized,
since POSIX says we shouldn't. Thus, we set
`buffer' to the compiled pattern;
`used' to the length of the compiled pattern;
`syntax' to RE_SYNTAX_POSIX_EXTENDED if the
REG_EXTENDED bit in CFLAGS is set; otherwise, to
RE_SYNTAX_POSIX_BASIC;
`newline_anchor' to REG_NEWLINE being set in CFLAGS;
`fastmap' and `fastmap_accurate' to zero;
`re_nsub' to the number of subexpressions in PATTERN.
PATTERN is the address of the pattern string.
CFLAGS is a series of bits which affect compilation.
If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
use POSIX basic syntax.
If REG_NEWLINE is set, then . and [^...] don't match newline.
Also, regexec will try a match beginning after every newline.
If REG_ICASE is set, then we considers upper- and lowercase
versions of letters to be equivalent when matching.
If REG_NOSUB is set, then when PREG is passed to regexec, that
routine will report only success or failure, and nothing about the
registers.
It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
the return codes and their meanings.) */
#ifdef __STDC__
int
regcomp (regex_t * preg, __const__ char * pattern, int cflags)
#else
int
regcomp (preg, pattern, cflags)
regex_t * preg;
__const__ char * pattern;
int cflags;
#endif
{
reg_errcode_t ret;
unsigned syntax
= cflags & REG_EXTENDED ? RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
/* regex_compile will allocate the space for the compiled pattern. */
preg->buffer = 0;
preg->allocated = 0;
preg->fastmap = malloc (256);
if (!preg->fastmap)
return REG_ESPACE;
preg->fastmap_accurate = 0;
if (cflags & REG_ICASE)
{
unsigned i;
preg->translate = (unsigned char *) malloc (256);
if (!preg->translate)
return (int) REG_ESPACE;
/* Map uppercase characters to corresponding lowercase ones. */
for (i = 0; i < CHAR_SET_SIZE; i++)
preg->translate[i] = isupper (i) ? tolower (i) : i;
}
else
preg->translate = 0;
/* If REG_NEWLINE is set, newlines are treated differently. */
if (cflags & REG_NEWLINE)
{ /* REG_NEWLINE implies neither . nor [^...] match newline. */
syntax &= ~RE_DOT_NEWLINE;
syntax |= RE_HAT_LISTS_NOT_NEWLINE;
/* It also changes the matching behavior. */
preg->newline_anchor = 1;
}
else
preg->newline_anchor = 0;
preg->no_sub = !!(cflags & REG_NOSUB);
/* POSIX says a null character in the pattern terminates it, so we
can use strlen here in compiling the pattern. */
preg->re_nsub = 0;
preg->start = 0;
preg->se_params = 0;
preg->syntax_parens = 0;
preg->rx.nodec = 0;
preg->rx.epsnodec = 0;
preg->rx.instruction_table = 0;
preg->rx.nfa_states = 0;
preg->rx.local_cset_size = 256;
preg->rx.start = 0;
preg->rx.se_list_cmp = posix_se_list_order;
preg->rx.start_set = 0;
ret = rx_compile (pattern, strlen (pattern), syntax, preg);
alloca (0);
/* POSIX doesn't distinguish between an unmatched open-group and an
unmatched close-group: both are REG_EPAREN. */
if (ret == REG_ERPAREN) ret = REG_EPAREN;
return (int) ret;
}
/* regexec searches for a given pattern, specified by PREG, in the
string STRING.
If NMATCH is zero or REG_NOSUB was set in the cflags argument to
`regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
least NMATCH elements, and we set them to the offsets of the
corresponding matched substrings.
EFLAGS specifies `execution flags' which affect matching: if
REG_NOTBOL is set, then ^ does not match at the beginning of the
string; if REG_NOTEOL is set, then $ does not match at the end.
We return 0 if we find a match and REG_NOMATCH if not. */
#ifdef __STDC__
int
regexec (__const__ regex_t *preg, __const__ char *string,
size_t nmatch, regmatch_t pmatch[],
int eflags)
#else
int
regexec (preg, string, nmatch, pmatch, eflags)
__const__ regex_t *preg;
__const__ char *string;
size_t nmatch;
regmatch_t pmatch[];
int eflags;
#endif
{
int ret;
struct re_registers regs;
regex_t private_preg;
int len = strlen (string);
boolean want_reg_info = !preg->no_sub && nmatch > 0;
private_preg = *preg;
private_preg.not_bol = !!(eflags & REG_NOTBOL);
private_preg.not_eol = !!(eflags & REG_NOTEOL);
/* The user has told us exactly how many registers to return
* information about, via `nmatch'. We have to pass that on to the
* matching routines.
*/
private_preg.regs_allocated = REGS_FIXED;
if (want_reg_info)
{
regs.num_regs = nmatch;
regs.start = (( regoff_t *) malloc ((nmatch) * sizeof ( regoff_t)));
regs.end = (( regoff_t *) malloc ((nmatch) * sizeof ( regoff_t)));
if (regs.start == 0 || regs.end == 0)
return (int) REG_NOMATCH;
}
/* Perform the searching operation. */
ret = re_search (&private_preg,
string, len,
/* start: */ 0,
/* range: */ len,
want_reg_info ? &regs : (struct re_registers *) 0);
/* Copy the register information to the POSIX structure. */
if (want_reg_info)
{
if (ret >= 0)
{
unsigned r;
for (r = 0; r < nmatch; r++)
{
pmatch[r].rm_so = regs.start[r];
pmatch[r].rm_eo = regs.end[r];
}
}
/* If we needed the temporary register info, free the space now. */
free (regs.start);
free (regs.end);
}
/* We want zero return to mean success, unlike `re_search'. */
return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
}
/* Returns a message corresponding to an error code, ERRCODE, returned
from either regcomp or regexec. */
#ifdef __STDC__
size_t
regerror (int errcode, __const__ regex_t *preg,
char *errbuf, size_t errbuf_size)
#else
size_t
regerror (errcode, preg, errbuf, errbuf_size)
int errcode;
__const__ regex_t *preg;
char *errbuf;
size_t errbuf_size;
#endif
{
__const__ char *msg
= rx_error_msg[errcode] == 0 ? "Success" : rx_error_msg[errcode];
size_t msg_size = strlen (msg) + 1; /* Includes the 0. */
if (errbuf_size != 0)
{
if (msg_size > errbuf_size)
{
strncpy (errbuf, msg, errbuf_size - 1);
errbuf[errbuf_size - 1] = 0;
}
else
strcpy (errbuf, msg);
}
return msg_size;
}
/* Free dynamically allocated space used by PREG. */
#ifdef __STDC__
void
regfree (regex_t *preg)
#else
void
regfree (preg)
regex_t *preg;
#endif
{
if (preg->buffer != 0)
free (preg->buffer);
preg->buffer = 0;
preg->allocated = 0;
if (preg->fastmap != 0)
free (preg->fastmap);
preg->fastmap = 0;
preg->fastmap_accurate = 0;
if (preg->translate != 0)
free (preg->translate);
preg->translate = 0;
}
#endif /* not emacs */