freebsd-dev/sys/dev/mpt/mpt_cam.c

5554 lines
149 KiB
C
Raw Normal View History

Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*-
* FreeBSD/CAM specific routines for LSI '909 FC adapters.
* FreeBSD Version.
*
* Copyright (c) 2000, 2001 by Greg Ansley
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 2002, 2006 by Matthew Jacob
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon including
* a substantially similar Disclaimer requirement for further binary
* redistribution.
* 3. Neither the names of the above listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
* OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*
* Support from Chris Ellsworth in order to make SAS adapters work
* is gratefully acknowledged.
*
* Support from LSI-Logic has also gone a great deal toward making this a
* workable subsystem and is gratefully acknowledged.
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
/*-
* Copyright (c) 2004, Avid Technology, Inc. and its contributors.
* Copyright (c) 2005, WHEEL Sp. z o.o.
* Copyright (c) 2004, 2005 Justin T. Gibbs
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon including
* a substantially similar Disclaimer requirement for further binary
* redistribution.
* 3. Neither the names of the above listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
* OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/mpt/mpt.h>
#include <dev/mpt/mpt_cam.h>
#include <dev/mpt/mpt_raid.h>
#include "dev/mpt/mpilib/mpi_ioc.h" /* XXX Fix Event Handling!!! */
#include "dev/mpt/mpilib/mpi_init.h"
#include "dev/mpt/mpilib/mpi_targ.h"
#include "dev/mpt/mpilib/mpi_fc.h"
#include "dev/mpt/mpilib/mpi_sas.h"
#if __FreeBSD_version >= 500000
#include <sys/sysctl.h>
#endif
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
#include <sys/callout.h>
#include <sys/kthread.h>
#if __FreeBSD_version >= 700025
#ifndef CAM_NEW_TRAN_CODE
#define CAM_NEW_TRAN_CODE 1
#endif
#endif
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
static void mpt_poll(struct cam_sim *);
static timeout_t mpt_timeout;
static void mpt_action(struct cam_sim *, union ccb *);
static int
mpt_get_spi_settings(struct mpt_softc *, struct ccb_trans_settings *);
static void mpt_setwidth(struct mpt_softc *, int, int);
static void mpt_setsync(struct mpt_softc *, int, int, int);
static int mpt_update_spi_config(struct mpt_softc *, int);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
static void mpt_calc_geometry(struct ccb_calc_geometry *ccg, int extended);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
static mpt_reply_handler_t mpt_scsi_reply_handler;
static mpt_reply_handler_t mpt_scsi_tmf_reply_handler;
static mpt_reply_handler_t mpt_fc_els_reply_handler;
static int mpt_scsi_reply_frame_handler(struct mpt_softc *, request_t *,
MSG_DEFAULT_REPLY *);
static int mpt_bus_reset(struct mpt_softc *, target_id_t, lun_id_t, int);
static int mpt_fc_reset_link(struct mpt_softc *, int);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
static int mpt_spawn_recovery_thread(struct mpt_softc *mpt);
static void mpt_terminate_recovery_thread(struct mpt_softc *mpt);
static void mpt_recovery_thread(void *arg);
static void mpt_recover_commands(struct mpt_softc *mpt);
static int mpt_scsi_send_tmf(struct mpt_softc *, u_int, u_int, u_int,
u_int, u_int, u_int, int);
static void mpt_fc_post_els(struct mpt_softc *mpt, request_t *, int);
static void mpt_post_target_command(struct mpt_softc *, request_t *, int);
static int mpt_add_els_buffers(struct mpt_softc *mpt);
static int mpt_add_target_commands(struct mpt_softc *mpt);
static int mpt_enable_lun(struct mpt_softc *, target_id_t, lun_id_t);
static int mpt_disable_lun(struct mpt_softc *, target_id_t, lun_id_t);
static void mpt_target_start_io(struct mpt_softc *, union ccb *);
static cam_status mpt_abort_target_ccb(struct mpt_softc *, union ccb *);
static int mpt_abort_target_cmd(struct mpt_softc *, request_t *);
static void mpt_scsi_tgt_status(struct mpt_softc *, union ccb *, request_t *,
uint8_t, uint8_t const *);
static void
mpt_scsi_tgt_tsk_mgmt(struct mpt_softc *, request_t *, mpt_task_mgmt_t,
tgt_resource_t *, int);
static void mpt_tgt_dump_tgt_state(struct mpt_softc *, request_t *);
static void mpt_tgt_dump_req_state(struct mpt_softc *, request_t *);
static mpt_reply_handler_t mpt_scsi_tgt_reply_handler;
static mpt_reply_handler_t mpt_sata_pass_reply_handler;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
static uint32_t scsi_io_handler_id = MPT_HANDLER_ID_NONE;
static uint32_t scsi_tmf_handler_id = MPT_HANDLER_ID_NONE;
static uint32_t fc_els_handler_id = MPT_HANDLER_ID_NONE;
static uint32_t sata_pass_handler_id = MPT_HANDLER_ID_NONE;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
static mpt_probe_handler_t mpt_cam_probe;
static mpt_attach_handler_t mpt_cam_attach;
static mpt_enable_handler_t mpt_cam_enable;
static mpt_ready_handler_t mpt_cam_ready;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
static mpt_event_handler_t mpt_cam_event;
static mpt_reset_handler_t mpt_cam_ioc_reset;
static mpt_detach_handler_t mpt_cam_detach;
static struct mpt_personality mpt_cam_personality =
{
.name = "mpt_cam",
.probe = mpt_cam_probe,
.attach = mpt_cam_attach,
.enable = mpt_cam_enable,
.ready = mpt_cam_ready,
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
.event = mpt_cam_event,
.reset = mpt_cam_ioc_reset,
.detach = mpt_cam_detach,
};
DECLARE_MPT_PERSONALITY(mpt_cam, SI_ORDER_SECOND);
MODULE_DEPEND(mpt_cam, cam, 1, 1, 1);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
int mpt_enable_sata_wc = -1;
TUNABLE_INT("hw.mpt.enable_sata_wc", &mpt_enable_sata_wc);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
int
mpt_cam_probe(struct mpt_softc *mpt)
{
int role;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Only attach to nodes that support the initiator or target role
* (or want to) or have RAID physical devices that need CAM pass-thru
* support.
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
if (mpt->do_cfg_role) {
role = mpt->cfg_role;
} else {
role = mpt->role;
}
if ((role & (MPT_ROLE_TARGET|MPT_ROLE_INITIATOR)) != 0 ||
(mpt->ioc_page2 != NULL && mpt->ioc_page2->MaxPhysDisks != 0)) {
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
return (0);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
return (ENODEV);
}
int
mpt_cam_attach(struct mpt_softc *mpt)
{
struct cam_devq *devq;
mpt_handler_t handler;
int maxq;
int error;
MPT_LOCK(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
TAILQ_INIT(&mpt->request_timeout_list);
maxq = (mpt->ioc_facts.GlobalCredits < MPT_MAX_REQUESTS(mpt))?
mpt->ioc_facts.GlobalCredits : MPT_MAX_REQUESTS(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
handler.reply_handler = mpt_scsi_reply_handler;
error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
&scsi_io_handler_id);
if (error != 0) {
MPT_UNLOCK(mpt);
goto cleanup;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
handler.reply_handler = mpt_scsi_tmf_reply_handler;
error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
&scsi_tmf_handler_id);
if (error != 0) {
MPT_UNLOCK(mpt);
goto cleanup;
}
/*
* If we're fibre channel and could support target mode, we register
* an ELS reply handler and give it resources.
*/
if (mpt->is_fc && (mpt->role & MPT_ROLE_TARGET) != 0) {
handler.reply_handler = mpt_fc_els_reply_handler;
error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
&fc_els_handler_id);
if (error != 0) {
MPT_UNLOCK(mpt);
goto cleanup;
}
if (mpt_add_els_buffers(mpt) == FALSE) {
error = ENOMEM;
MPT_UNLOCK(mpt);
goto cleanup;
}
maxq -= mpt->els_cmds_allocated;
}
/*
* If we support target mode, we register a reply handler for it,
* but don't add command resources until we actually enable target
* mode.
*/
if (mpt->is_fc && (mpt->role & MPT_ROLE_TARGET) != 0) {
handler.reply_handler = mpt_scsi_tgt_reply_handler;
error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
&mpt->scsi_tgt_handler_id);
if (error != 0) {
MPT_UNLOCK(mpt);
goto cleanup;
}
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (mpt->is_sas) {
handler.reply_handler = mpt_sata_pass_reply_handler;
error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
&sata_pass_handler_id);
if (error != 0) {
MPT_UNLOCK(mpt);
goto cleanup;
}
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* We keep one request reserved for timeout TMF requests.
*/
mpt->tmf_req = mpt_get_request(mpt, FALSE);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (mpt->tmf_req == NULL) {
mpt_prt(mpt, "Unable to allocate dedicated TMF request!\n");
error = ENOMEM;
MPT_UNLOCK(mpt);
goto cleanup;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
/*
* Mark the request as free even though not on the free list.
* There is only one TMF request allowed to be outstanding at
* a time and the TMF routines perform their own allocation
* tracking using the standard state flags.
*/
mpt->tmf_req->state = REQ_STATE_FREE;
maxq--;
/*
* The rest of this is CAM foo, for which we need to drop our lock
*/
MPT_UNLOCK(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (mpt_spawn_recovery_thread(mpt) != 0) {
mpt_prt(mpt, "Unable to spawn recovery thread!\n");
error = ENOMEM;
goto cleanup;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
/*
* Create the device queue for our SIM(s).
*/
devq = cam_simq_alloc(maxq);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (devq == NULL) {
mpt_prt(mpt, "Unable to allocate CAM SIMQ!\n");
error = ENOMEM;
goto cleanup;
}
/*
* Construct our SIM entry.
*/
mpt->sim =
mpt_sim_alloc(mpt_action, mpt_poll, "mpt", mpt, 1, maxq, devq);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (mpt->sim == NULL) {
mpt_prt(mpt, "Unable to allocate CAM SIM!\n");
cam_simq_free(devq);
error = ENOMEM;
goto cleanup;
}
/*
* Register exactly this bus.
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
MPT_LOCK(mpt);
if (mpt_xpt_bus_register(mpt->sim, mpt->dev, 0) != CAM_SUCCESS) {
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt_prt(mpt, "Bus registration Failed!\n");
error = ENOMEM;
MPT_UNLOCK(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
goto cleanup;
}
if (xpt_create_path(&mpt->path, NULL, cam_sim_path(mpt->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
mpt_prt(mpt, "Unable to allocate Path!\n");
error = ENOMEM;
MPT_UNLOCK(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
goto cleanup;
}
MPT_UNLOCK(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Only register a second bus for RAID physical
* devices if the controller supports RAID.
*/
if (mpt->ioc_page2 == NULL || mpt->ioc_page2->MaxPhysDisks == 0) {
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
return (0);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Create a "bus" to export all hidden disks to CAM.
*/
mpt->phydisk_sim =
mpt_sim_alloc(mpt_action, mpt_poll, "mpt", mpt, 1, maxq, devq);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (mpt->phydisk_sim == NULL) {
mpt_prt(mpt, "Unable to allocate Physical Disk CAM SIM!\n");
error = ENOMEM;
goto cleanup;
}
/*
* Register this bus.
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
MPT_LOCK(mpt);
if (mpt_xpt_bus_register(mpt->phydisk_sim, mpt->dev, 1) !=
CAM_SUCCESS) {
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt_prt(mpt, "Physical Disk Bus registration Failed!\n");
error = ENOMEM;
MPT_UNLOCK(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
goto cleanup;
}
if (xpt_create_path(&mpt->phydisk_path, NULL,
cam_sim_path(mpt->phydisk_sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
mpt_prt(mpt, "Unable to allocate Physical Disk Path!\n");
error = ENOMEM;
MPT_UNLOCK(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
goto cleanup;
}
MPT_UNLOCK(mpt);
mpt_lprt(mpt, MPT_PRT_DEBUG, "attached cam\n");
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
return (0);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
cleanup:
mpt_cam_detach(mpt);
return (error);
}
/*
* Read FC configuration information
*/
static int
mpt_read_config_info_fc(struct mpt_softc *mpt)
{
char *topology = NULL;
int rv;
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_FC_PORT, 0,
0, &mpt->mpt_fcport_page0.Header, FALSE, 5000);
if (rv) {
return (-1);
}
mpt_lprt(mpt, MPT_PRT_DEBUG, "FC Port Page 0 Header: %x %x %x %x\n",
mpt->mpt_fcport_page0.Header.PageVersion,
mpt->mpt_fcport_page0.Header.PageLength,
mpt->mpt_fcport_page0.Header.PageNumber,
mpt->mpt_fcport_page0.Header.PageType);
rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_fcport_page0.Header,
sizeof(mpt->mpt_fcport_page0), FALSE, 5000);
if (rv) {
mpt_prt(mpt, "failed to read FC Port Page 0\n");
return (-1);
}
mpt2host_config_page_fc_port_0(&mpt->mpt_fcport_page0);
mpt->mpt_fcport_speed = mpt->mpt_fcport_page0.CurrentSpeed;
switch (mpt->mpt_fcport_page0.Flags &
MPI_FCPORTPAGE0_FLAGS_ATTACH_TYPE_MASK) {
case MPI_FCPORTPAGE0_FLAGS_ATTACH_NO_INIT:
mpt->mpt_fcport_speed = 0;
topology = "<NO LOOP>";
break;
case MPI_FCPORTPAGE0_FLAGS_ATTACH_POINT_TO_POINT:
topology = "N-Port";
break;
case MPI_FCPORTPAGE0_FLAGS_ATTACH_PRIVATE_LOOP:
topology = "NL-Port";
break;
case MPI_FCPORTPAGE0_FLAGS_ATTACH_FABRIC_DIRECT:
topology = "F-Port";
break;
case MPI_FCPORTPAGE0_FLAGS_ATTACH_PUBLIC_LOOP:
topology = "FL-Port";
break;
default:
mpt->mpt_fcport_speed = 0;
topology = "?";
break;
}
mpt_lprt(mpt, MPT_PRT_INFO,
"FC Port Page 0: Topology <%s> WWNN 0x%08x%08x WWPN 0x%08x%08x "
"Speed %u-Gbit\n", topology,
mpt->mpt_fcport_page0.WWNN.High,
mpt->mpt_fcport_page0.WWNN.Low,
mpt->mpt_fcport_page0.WWPN.High,
mpt->mpt_fcport_page0.WWPN.Low,
mpt->mpt_fcport_speed);
#if __FreeBSD_version >= 500000
MPT_UNLOCK(mpt);
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
snprintf(mpt->scinfo.fc.wwnn,
sizeof (mpt->scinfo.fc.wwnn), "0x%08x%08x",
mpt->mpt_fcport_page0.WWNN.High,
mpt->mpt_fcport_page0.WWNN.Low);
snprintf(mpt->scinfo.fc.wwpn,
sizeof (mpt->scinfo.fc.wwpn), "0x%08x%08x",
mpt->mpt_fcport_page0.WWPN.High,
mpt->mpt_fcport_page0.WWPN.Low);
SYSCTL_ADD_STRING(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"wwnn", CTLFLAG_RD, mpt->scinfo.fc.wwnn, 0,
"World Wide Node Name");
SYSCTL_ADD_STRING(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"wwpn", CTLFLAG_RD, mpt->scinfo.fc.wwpn, 0,
"World Wide Port Name");
}
MPT_LOCK(mpt);
#endif
return (0);
}
/*
* Set FC configuration information.
*/
static int
mpt_set_initial_config_fc(struct mpt_softc *mpt)
{
CONFIG_PAGE_FC_PORT_1 fc;
U32 fl;
int r, doit = 0;
int role;
r = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_FC_PORT, 1, 0,
&fc.Header, FALSE, 5000);
if (r) {
mpt_prt(mpt, "failed to read FC page 1 header\n");
return (mpt_fc_reset_link(mpt, 1));
}
r = mpt_read_cfg_page(mpt, MPI_CONFIG_ACTION_PAGE_READ_NVRAM, 0,
&fc.Header, sizeof (fc), FALSE, 5000);
if (r) {
mpt_prt(mpt, "failed to read FC page 1\n");
return (mpt_fc_reset_link(mpt, 1));
}
mpt2host_config_page_fc_port_1(&fc);
/*
* Check our flags to make sure we support the role we want.
*/
doit = 0;
role = 0;
fl = fc.Flags;
if (fl & MPI_FCPORTPAGE1_FLAGS_PROT_FCP_INIT) {
role |= MPT_ROLE_INITIATOR;
}
if (fl & MPI_FCPORTPAGE1_FLAGS_PROT_FCP_TARG) {
role |= MPT_ROLE_TARGET;
}
fl &= ~MPI_FCPORTPAGE1_FLAGS_PROT_MASK;
if (mpt->do_cfg_role == 0) {
role = mpt->cfg_role;
} else {
mpt->do_cfg_role = 0;
}
if (role != mpt->cfg_role) {
if (mpt->cfg_role & MPT_ROLE_INITIATOR) {
if ((role & MPT_ROLE_INITIATOR) == 0) {
mpt_prt(mpt, "adding initiator role\n");
fl |= MPI_FCPORTPAGE1_FLAGS_PROT_FCP_INIT;
doit++;
} else {
mpt_prt(mpt, "keeping initiator role\n");
}
} else if (role & MPT_ROLE_INITIATOR) {
mpt_prt(mpt, "removing initiator role\n");
doit++;
}
if (mpt->cfg_role & MPT_ROLE_TARGET) {
if ((role & MPT_ROLE_TARGET) == 0) {
mpt_prt(mpt, "adding target role\n");
fl |= MPI_FCPORTPAGE1_FLAGS_PROT_FCP_TARG;
doit++;
} else {
mpt_prt(mpt, "keeping target role\n");
}
} else if (role & MPT_ROLE_TARGET) {
mpt_prt(mpt, "removing target role\n");
doit++;
}
mpt->role = mpt->cfg_role;
}
if (fl & MPI_FCPORTPAGE1_FLAGS_PROT_FCP_TARG) {
if ((fl & MPI_FCPORTPAGE1_FLAGS_TARGET_MODE_OXID) == 0) {
mpt_prt(mpt, "adding OXID option\n");
fl |= MPI_FCPORTPAGE1_FLAGS_TARGET_MODE_OXID;
doit++;
}
}
if (doit) {
fc.Flags = fl;
host2mpt_config_page_fc_port_1(&fc);
r = mpt_write_cfg_page(mpt,
MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM, 0, &fc.Header,
sizeof(fc), FALSE, 5000);
if (r != 0) {
mpt_prt(mpt, "failed to update NVRAM with changes\n");
return (0);
}
mpt_prt(mpt, "NOTE: NVRAM changes will not take "
"effect until next reboot or IOC reset\n");
}
return (0);
}
static int
mptsas_sas_io_unit_pg0(struct mpt_softc *mpt, struct mptsas_portinfo *portinfo)
{
ConfigExtendedPageHeader_t hdr;
struct mptsas_phyinfo *phyinfo;
SasIOUnitPage0_t *buffer;
int error, len, i;
error = mpt_read_extcfg_header(mpt, MPI_SASIOUNITPAGE0_PAGEVERSION,
0, 0, MPI_CONFIG_EXTPAGETYPE_SAS_IO_UNIT,
&hdr, 0, 10000);
if (error)
goto out;
if (hdr.ExtPageLength == 0) {
error = ENXIO;
goto out;
}
len = hdr.ExtPageLength * 4;
buffer = malloc(len, M_DEVBUF, M_NOWAIT|M_ZERO);
if (buffer == NULL) {
error = ENOMEM;
goto out;
}
error = mpt_read_extcfg_page(mpt, MPI_CONFIG_ACTION_PAGE_READ_CURRENT,
0, &hdr, buffer, len, 0, 10000);
if (error) {
free(buffer, M_DEVBUF);
goto out;
}
portinfo->num_phys = buffer->NumPhys;
portinfo->phy_info = malloc(sizeof(*portinfo->phy_info) *
portinfo->num_phys, M_DEVBUF, M_NOWAIT|M_ZERO);
if (portinfo->phy_info == NULL) {
free(buffer, M_DEVBUF);
error = ENOMEM;
goto out;
}
for (i = 0; i < portinfo->num_phys; i++) {
phyinfo = &portinfo->phy_info[i];
phyinfo->phy_num = i;
phyinfo->port_id = buffer->PhyData[i].Port;
phyinfo->negotiated_link_rate =
buffer->PhyData[i].NegotiatedLinkRate;
phyinfo->handle =
le16toh(buffer->PhyData[i].ControllerDevHandle);
}
free(buffer, M_DEVBUF);
out:
return (error);
}
static int
mptsas_sas_phy_pg0(struct mpt_softc *mpt, struct mptsas_phyinfo *phy_info,
uint32_t form, uint32_t form_specific)
{
ConfigExtendedPageHeader_t hdr;
SasPhyPage0_t *buffer;
int error;
error = mpt_read_extcfg_header(mpt, MPI_SASPHY0_PAGEVERSION, 0, 0,
MPI_CONFIG_EXTPAGETYPE_SAS_PHY, &hdr,
0, 10000);
if (error)
goto out;
if (hdr.ExtPageLength == 0) {
error = ENXIO;
goto out;
}
buffer = malloc(sizeof(SasPhyPage0_t), M_DEVBUF, M_NOWAIT|M_ZERO);
if (buffer == NULL) {
error = ENOMEM;
goto out;
}
error = mpt_read_extcfg_page(mpt, MPI_CONFIG_ACTION_PAGE_READ_CURRENT,
form + form_specific, &hdr, buffer,
sizeof(SasPhyPage0_t), 0, 10000);
if (error) {
free(buffer, M_DEVBUF);
goto out;
}
phy_info->hw_link_rate = buffer->HwLinkRate;
phy_info->programmed_link_rate = buffer->ProgrammedLinkRate;
phy_info->identify.dev_handle = le16toh(buffer->OwnerDevHandle);
phy_info->attached.dev_handle = le16toh(buffer->AttachedDevHandle);
free(buffer, M_DEVBUF);
out:
return (error);
}
static int
mptsas_sas_device_pg0(struct mpt_softc *mpt, struct mptsas_devinfo *device_info,
uint32_t form, uint32_t form_specific)
{
ConfigExtendedPageHeader_t hdr;
SasDevicePage0_t *buffer;
uint64_t sas_address;
int error = 0;
bzero(device_info, sizeof(*device_info));
error = mpt_read_extcfg_header(mpt, MPI_SASDEVICE0_PAGEVERSION, 0, 0,
MPI_CONFIG_EXTPAGETYPE_SAS_DEVICE,
&hdr, 0, 10000);
if (error)
goto out;
if (hdr.ExtPageLength == 0) {
error = ENXIO;
goto out;
}
buffer = malloc(sizeof(SasDevicePage0_t), M_DEVBUF, M_NOWAIT|M_ZERO);
if (buffer == NULL) {
error = ENOMEM;
goto out;
}
error = mpt_read_extcfg_page(mpt, MPI_CONFIG_ACTION_PAGE_READ_CURRENT,
form + form_specific, &hdr, buffer,
sizeof(SasDevicePage0_t), 0, 10000);
if (error) {
free(buffer, M_DEVBUF);
goto out;
}
device_info->dev_handle = le16toh(buffer->DevHandle);
device_info->parent_dev_handle = le16toh(buffer->ParentDevHandle);
device_info->enclosure_handle = le16toh(buffer->EnclosureHandle);
device_info->slot = le16toh(buffer->Slot);
device_info->phy_num = buffer->PhyNum;
device_info->physical_port = buffer->PhysicalPort;
device_info->target_id = buffer->TargetID;
device_info->bus = buffer->Bus;
bcopy(&buffer->SASAddress, &sas_address, sizeof(uint64_t));
device_info->sas_address = le64toh(sas_address);
device_info->device_info = le32toh(buffer->DeviceInfo);
free(buffer, M_DEVBUF);
out:
return (error);
}
/*
* Read SAS configuration information. Nothing to do yet.
*/
static int
mpt_read_config_info_sas(struct mpt_softc *mpt)
{
struct mptsas_portinfo *portinfo;
struct mptsas_phyinfo *phyinfo;
int error, i;
portinfo = malloc(sizeof(*portinfo), M_DEVBUF, M_NOWAIT|M_ZERO);
if (portinfo == NULL)
return (ENOMEM);
error = mptsas_sas_io_unit_pg0(mpt, portinfo);
if (error) {
free(portinfo, M_DEVBUF);
return (0);
}
for (i = 0; i < portinfo->num_phys; i++) {
phyinfo = &portinfo->phy_info[i];
error = mptsas_sas_phy_pg0(mpt, phyinfo,
(MPI_SAS_PHY_PGAD_FORM_PHY_NUMBER <<
MPI_SAS_PHY_PGAD_FORM_SHIFT), i);
if (error)
break;
error = mptsas_sas_device_pg0(mpt, &phyinfo->identify,
(MPI_SAS_DEVICE_PGAD_FORM_HANDLE <<
MPI_SAS_DEVICE_PGAD_FORM_SHIFT),
phyinfo->handle);
if (error)
break;
phyinfo->identify.phy_num = phyinfo->phy_num = i;
if (phyinfo->attached.dev_handle)
error = mptsas_sas_device_pg0(mpt,
&phyinfo->attached,
(MPI_SAS_DEVICE_PGAD_FORM_HANDLE <<
MPI_SAS_DEVICE_PGAD_FORM_SHIFT),
phyinfo->attached.dev_handle);
if (error)
break;
}
mpt->sas_portinfo = portinfo;
return (0);
}
static void
mptsas_set_sata_wc(struct mpt_softc *mpt, struct mptsas_devinfo *devinfo,
int enabled)
{
SataPassthroughRequest_t *pass;
request_t *req;
int error, status;
req = mpt_get_request(mpt, 0);
if (req == NULL)
return;
pass = req->req_vbuf;
bzero(pass, sizeof(SataPassthroughRequest_t));
pass->Function = MPI_FUNCTION_SATA_PASSTHROUGH;
pass->TargetID = devinfo->target_id;
pass->Bus = devinfo->bus;
pass->PassthroughFlags = 0;
pass->ConnectionRate = MPI_SATA_PT_REQ_CONNECT_RATE_NEGOTIATED;
pass->DataLength = 0;
pass->MsgContext = htole32(req->index | sata_pass_handler_id);
pass->CommandFIS[0] = 0x27;
pass->CommandFIS[1] = 0x80;
pass->CommandFIS[2] = 0xef;
pass->CommandFIS[3] = (enabled) ? 0x02 : 0x82;
pass->CommandFIS[7] = 0x40;
pass->CommandFIS[15] = 0x08;
mpt_check_doorbell(mpt);
mpt_send_cmd(mpt, req);
error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 0,
10 * 1000);
if (error) {
mpt_free_request(mpt, req);
printf("error %d sending passthrough\n", error);
return;
}
status = le16toh(req->IOCStatus);
if (status != MPI_IOCSTATUS_SUCCESS) {
mpt_free_request(mpt, req);
printf("IOCSTATUS %d\n", status);
return;
}
mpt_free_request(mpt, req);
}
/*
* Set SAS configuration information. Nothing to do yet.
*/
static int
mpt_set_initial_config_sas(struct mpt_softc *mpt)
{
struct mptsas_phyinfo *phyinfo;
int i;
if ((mpt_enable_sata_wc != -1) && (mpt->sas_portinfo != NULL)) {
for (i = 0; i < mpt->sas_portinfo->num_phys; i++) {
phyinfo = &mpt->sas_portinfo->phy_info[i];
if (phyinfo->attached.dev_handle == 0)
continue;
if ((phyinfo->attached.device_info &
MPI_SAS_DEVICE_INFO_SATA_DEVICE) == 0)
continue;
if (bootverbose)
device_printf(mpt->dev,
"%sabling SATA WC on phy %d\n",
(mpt_enable_sata_wc) ? "En" : "Dis", i);
mptsas_set_sata_wc(mpt, &phyinfo->attached,
mpt_enable_sata_wc);
}
}
return (0);
}
static int
mpt_sata_pass_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
if (req != NULL) {
if (reply_frame != NULL) {
req->IOCStatus = le16toh(reply_frame->IOCStatus);
}
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
wakeup(req);
} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
/*
* Whew- we can free this request (late completion)
*/
mpt_free_request(mpt, req);
}
}
return (TRUE);
}
/*
* Read SCSI configuration information
*/
static int
mpt_read_config_info_spi(struct mpt_softc *mpt)
{
int rv, i;
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_PORT, 0, 0,
&mpt->mpt_port_page0.Header, FALSE, 5000);
if (rv) {
return (-1);
}
mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Port Page 0 Header: %x %x %x %x\n",
mpt->mpt_port_page0.Header.PageVersion,
mpt->mpt_port_page0.Header.PageLength,
mpt->mpt_port_page0.Header.PageNumber,
mpt->mpt_port_page0.Header.PageType);
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_PORT, 1, 0,
&mpt->mpt_port_page1.Header, FALSE, 5000);
if (rv) {
return (-1);
}
mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Port Page 1 Header: %x %x %x %x\n",
mpt->mpt_port_page1.Header.PageVersion,
mpt->mpt_port_page1.Header.PageLength,
mpt->mpt_port_page1.Header.PageNumber,
mpt->mpt_port_page1.Header.PageType);
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_PORT, 2, 0,
&mpt->mpt_port_page2.Header, FALSE, 5000);
if (rv) {
return (-1);
}
mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Port Page 2 Header: %x %x %x %x\n",
mpt->mpt_port_page2.Header.PageVersion,
mpt->mpt_port_page2.Header.PageLength,
mpt->mpt_port_page2.Header.PageNumber,
mpt->mpt_port_page2.Header.PageType);
for (i = 0; i < 16; i++) {
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_DEVICE,
0, i, &mpt->mpt_dev_page0[i].Header, FALSE, 5000);
if (rv) {
return (-1);
}
mpt_lprt(mpt, MPT_PRT_DEBUG,
"SPI Target %d Device Page 0 Header: %x %x %x %x\n", i,
mpt->mpt_dev_page0[i].Header.PageVersion,
mpt->mpt_dev_page0[i].Header.PageLength,
mpt->mpt_dev_page0[i].Header.PageNumber,
mpt->mpt_dev_page0[i].Header.PageType);
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_DEVICE,
1, i, &mpt->mpt_dev_page1[i].Header, FALSE, 5000);
if (rv) {
return (-1);
}
mpt_lprt(mpt, MPT_PRT_DEBUG,
"SPI Target %d Device Page 1 Header: %x %x %x %x\n", i,
mpt->mpt_dev_page1[i].Header.PageVersion,
mpt->mpt_dev_page1[i].Header.PageLength,
mpt->mpt_dev_page1[i].Header.PageNumber,
mpt->mpt_dev_page1[i].Header.PageType);
}
/*
* At this point, we don't *have* to fail. As long as we have
* valid config header information, we can (barely) lurch
* along.
*/
rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_port_page0.Header,
sizeof(mpt->mpt_port_page0), FALSE, 5000);
if (rv) {
mpt_prt(mpt, "failed to read SPI Port Page 0\n");
} else {
mpt2host_config_page_scsi_port_0(&mpt->mpt_port_page0);
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"SPI Port Page 0: Capabilities %x PhysicalInterface %x\n",
mpt->mpt_port_page0.Capabilities,
mpt->mpt_port_page0.PhysicalInterface);
}
rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_port_page1.Header,
sizeof(mpt->mpt_port_page1), FALSE, 5000);
if (rv) {
mpt_prt(mpt, "failed to read SPI Port Page 1\n");
} else {
mpt2host_config_page_scsi_port_1(&mpt->mpt_port_page1);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"SPI Port Page 1: Configuration %x OnBusTimerValue %x\n",
mpt->mpt_port_page1.Configuration,
mpt->mpt_port_page1.OnBusTimerValue);
}
rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_port_page2.Header,
sizeof(mpt->mpt_port_page2), FALSE, 5000);
if (rv) {
mpt_prt(mpt, "failed to read SPI Port Page 2\n");
} else {
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"Port Page 2: Flags %x Settings %x\n",
mpt->mpt_port_page2.PortFlags,
mpt->mpt_port_page2.PortSettings);
mpt2host_config_page_scsi_port_2(&mpt->mpt_port_page2);
for (i = 0; i < 16; i++) {
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
" Port Page 2 Tgt %d: timo %x SF %x Flags %x\n",
i, mpt->mpt_port_page2.DeviceSettings[i].Timeout,
mpt->mpt_port_page2.DeviceSettings[i].SyncFactor,
mpt->mpt_port_page2.DeviceSettings[i].DeviceFlags);
}
}
for (i = 0; i < 16; i++) {
rv = mpt_read_cur_cfg_page(mpt, i,
&mpt->mpt_dev_page0[i].Header, sizeof(*mpt->mpt_dev_page0),
FALSE, 5000);
if (rv) {
mpt_prt(mpt,
"cannot read SPI Target %d Device Page 0\n", i);
continue;
}
mpt2host_config_page_scsi_device_0(&mpt->mpt_dev_page0[i]);
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"target %d page 0: Negotiated Params %x Information %x\n",
i, mpt->mpt_dev_page0[i].NegotiatedParameters,
mpt->mpt_dev_page0[i].Information);
rv = mpt_read_cur_cfg_page(mpt, i,
&mpt->mpt_dev_page1[i].Header, sizeof(*mpt->mpt_dev_page1),
FALSE, 5000);
if (rv) {
mpt_prt(mpt,
"cannot read SPI Target %d Device Page 1\n", i);
continue;
}
mpt2host_config_page_scsi_device_1(&mpt->mpt_dev_page1[i]);
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"target %d page 1: Requested Params %x Configuration %x\n",
i, mpt->mpt_dev_page1[i].RequestedParameters,
mpt->mpt_dev_page1[i].Configuration);
}
return (0);
}
/*
* Validate SPI configuration information.
*
* In particular, validate SPI Port Page 1.
*/
static int
mpt_set_initial_config_spi(struct mpt_softc *mpt)
{
int i, pp1val = ((1 << mpt->mpt_ini_id) << 16) | mpt->mpt_ini_id;
int error;
mpt->mpt_disc_enable = 0xff;
mpt->mpt_tag_enable = 0;
if (mpt->mpt_port_page1.Configuration != pp1val) {
CONFIG_PAGE_SCSI_PORT_1 tmp;
mpt_prt(mpt, "SPI Port Page 1 Config value bad (%x)- should "
"be %x\n", mpt->mpt_port_page1.Configuration, pp1val);
tmp = mpt->mpt_port_page1;
tmp.Configuration = pp1val;
host2mpt_config_page_scsi_port_1(&tmp);
error = mpt_write_cur_cfg_page(mpt, 0,
&tmp.Header, sizeof(tmp), FALSE, 5000);
if (error) {
return (-1);
}
error = mpt_read_cur_cfg_page(mpt, 0,
&tmp.Header, sizeof(tmp), FALSE, 5000);
if (error) {
return (-1);
}
mpt2host_config_page_scsi_port_1(&tmp);
if (tmp.Configuration != pp1val) {
mpt_prt(mpt,
"failed to reset SPI Port Page 1 Config value\n");
return (-1);
}
mpt->mpt_port_page1 = tmp;
}
/*
* The purpose of this exercise is to get
* all targets back to async/narrow.
*
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
* We skip this step if the BIOS has already negotiated
* speeds with the targets.
*/
i = mpt->mpt_port_page2.PortSettings &
MPI_SCSIPORTPAGE2_PORT_MASK_NEGO_MASTER_SETTINGS;
if (i == MPI_SCSIPORTPAGE2_PORT_ALL_MASTER_SETTINGS) {
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"honoring BIOS transfer negotiations\n");
} else {
for (i = 0; i < 16; i++) {
mpt->mpt_dev_page1[i].RequestedParameters = 0;
mpt->mpt_dev_page1[i].Configuration = 0;
(void) mpt_update_spi_config(mpt, i);
}
}
return (0);
}
int
mpt_cam_enable(struct mpt_softc *mpt)
{
int error;
MPT_LOCK(mpt);
error = EIO;
if (mpt->is_fc) {
if (mpt_read_config_info_fc(mpt)) {
goto out;
}
if (mpt_set_initial_config_fc(mpt)) {
goto out;
}
} else if (mpt->is_sas) {
if (mpt_read_config_info_sas(mpt)) {
goto out;
}
if (mpt_set_initial_config_sas(mpt)) {
goto out;
}
} else if (mpt->is_spi) {
if (mpt_read_config_info_spi(mpt)) {
goto out;
}
if (mpt_set_initial_config_spi(mpt)) {
goto out;
}
}
error = 0;
out:
MPT_UNLOCK(mpt);
return (error);
}
void
mpt_cam_ready(struct mpt_softc *mpt)
{
/*
* If we're in target mode, hang out resources now
* so we don't cause the world to hang talking to us.
*/
if (mpt->is_fc && (mpt->role & MPT_ROLE_TARGET)) {
/*
* Try to add some target command resources
*/
MPT_LOCK(mpt);
if (mpt_add_target_commands(mpt) == FALSE) {
mpt_prt(mpt, "failed to add target commands\n");
}
MPT_UNLOCK(mpt);
}
mpt->ready = 1;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
void
mpt_cam_detach(struct mpt_softc *mpt)
{
mpt_handler_t handler;
MPT_LOCK(mpt);
mpt->ready = 0;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt_terminate_recovery_thread(mpt);
handler.reply_handler = mpt_scsi_reply_handler;
mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
scsi_io_handler_id);
handler.reply_handler = mpt_scsi_tmf_reply_handler;
mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
scsi_tmf_handler_id);
handler.reply_handler = mpt_fc_els_reply_handler;
mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
fc_els_handler_id);
handler.reply_handler = mpt_scsi_tgt_reply_handler;
mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
mpt->scsi_tgt_handler_id);
handler.reply_handler = mpt_sata_pass_reply_handler;
mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
sata_pass_handler_id);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (mpt->tmf_req != NULL) {
mpt->tmf_req->state = REQ_STATE_ALLOCATED;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt_free_request(mpt, mpt->tmf_req);
mpt->tmf_req = NULL;
}
2007-06-04 04:35:04 +00:00
if (mpt->sas_portinfo != NULL) {
free(mpt->sas_portinfo, M_DEVBUF);
mpt->sas_portinfo = NULL;
}
MPT_UNLOCK(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (mpt->sim != NULL) {
xpt_free_path(mpt->path);
xpt_bus_deregister(cam_sim_path(mpt->sim));
cam_sim_free(mpt->sim, TRUE);
mpt->sim = NULL;
}
if (mpt->phydisk_sim != NULL) {
xpt_free_path(mpt->phydisk_path);
xpt_bus_deregister(cam_sim_path(mpt->phydisk_sim));
cam_sim_free(mpt->phydisk_sim, TRUE);
mpt->phydisk_sim = NULL;
}
}
/* This routine is used after a system crash to dump core onto the swap device.
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
static void
mpt_poll(struct cam_sim *sim)
{
struct mpt_softc *mpt;
mpt = (struct mpt_softc *)cam_sim_softc(sim);
mpt_intr(mpt);
}
/*
* Watchdog timeout routine for SCSI requests.
*/
static void
mpt_timeout(void *arg)
{
union ccb *ccb;
struct mpt_softc *mpt;
request_t *req;
ccb = (union ccb *)arg;
mpt = ccb->ccb_h.ccb_mpt_ptr;
#if __FreeBSD_version < 500000
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
MPT_LOCK(mpt);
#endif
MPT_LOCK_ASSERT(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
req = ccb->ccb_h.ccb_req_ptr;
mpt_prt(mpt, "request %p:%u timed out for ccb %p (req->ccb %p)\n", req,
req->serno, ccb, req->ccb);
/* XXX: WHAT ARE WE TRYING TO DO HERE? */
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if ((req->state & REQ_STATE_QUEUED) == REQ_STATE_QUEUED) {
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
TAILQ_INSERT_TAIL(&mpt->request_timeout_list, req, links);
req->state |= REQ_STATE_TIMEDOUT;
mpt_wakeup_recovery_thread(mpt);
}
#if __FreeBSD_version < 500000
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
MPT_UNLOCK(mpt);
#endif
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
/*
* Callback routine from "bus_dmamap_load" or, in simple cases, called directly.
*
* Takes a list of physical segments and builds the SGL for SCSI IO command
* and forwards the commard to the IOC after one last check that CAM has not
* aborted the transaction.
*/
static void
mpt_execute_req_a64(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
{
request_t *req, *trq;
char *mpt_off;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
union ccb *ccb;
struct mpt_softc *mpt;
int seg, first_lim;
uint32_t flags, nxt_off;
void *sglp = NULL;
MSG_REQUEST_HEADER *hdrp;
SGE_SIMPLE64 *se;
SGE_CHAIN64 *ce;
int istgt = 0;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
req = (request_t *)arg;
ccb = req->ccb;
mpt = ccb->ccb_h.ccb_mpt_ptr;
req = ccb->ccb_h.ccb_req_ptr;
hdrp = req->req_vbuf;
mpt_off = req->req_vbuf;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) {
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
error = EFBIG;
}
if (error == 0) {
switch (hdrp->Function) {
case MPI_FUNCTION_SCSI_IO_REQUEST:
case MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
istgt = 0;
sglp = &((PTR_MSG_SCSI_IO_REQUEST)hdrp)->SGL;
break;
case MPI_FUNCTION_TARGET_ASSIST:
istgt = 1;
sglp = &((PTR_MSG_TARGET_ASSIST_REQUEST)hdrp)->SGL;
break;
default:
mpt_prt(mpt, "bad fct 0x%x in mpt_execute_req_a64\n",
hdrp->Function);
error = EINVAL;
break;
}
}
if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) {
error = EFBIG;
mpt_prt(mpt, "segment count %d too large (max %u)\n",
nseg, mpt->max_seg_cnt);
}
bad:
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (error != 0) {
if (error != EFBIG && error != ENOMEM) {
mpt_prt(mpt, "mpt_execute_req_a64: err %d\n", error);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG) {
cam_status status;
mpt_freeze_ccb(ccb);
if (error == EFBIG) {
status = CAM_REQ_TOO_BIG;
} else if (error == ENOMEM) {
if (mpt->outofbeer == 0) {
mpt->outofbeer = 1;
xpt_freeze_simq(mpt->sim, 1);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"FREEZEQ\n");
}
status = CAM_REQUEUE_REQ;
} else {
status = CAM_REQ_CMP_ERR;
}
mpt_set_ccb_status(ccb, status);
}
if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
request_t *cmd_req =
MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM;
MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL;
MPT_TGT_STATE(mpt, cmd_req)->req = NULL;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
mpt_free_request(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
return;
}
/*
* No data to transfer?
* Just make a single simple SGL with zero length.
*/
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (mpt->verbose >= MPT_PRT_DEBUG) {
int tidx = ((char *)sglp) - mpt_off;
memset(&mpt_off[tidx], 0xff, MPT_REQUEST_AREA - tidx);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (nseg == 0) {
SGE_SIMPLE32 *se1 = (SGE_SIMPLE32 *) sglp;
MPI_pSGE_SET_FLAGS(se1,
(MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST));
se1->FlagsLength = htole32(se1->FlagsLength);
goto out;
}
flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_64_BIT_ADDRESSING;
if (istgt == 0) {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
}
} else {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
}
}
if (!(ccb->ccb_h.flags & (CAM_SG_LIST_PHYS|CAM_DATA_PHYS))) {
bus_dmasync_op_t op;
if (istgt == 0) {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
op = BUS_DMASYNC_PREREAD;
} else {
op = BUS_DMASYNC_PREWRITE;
}
} else {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
op = BUS_DMASYNC_PREWRITE;
} else {
op = BUS_DMASYNC_PREREAD;
}
}
bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Okay, fill in what we can at the end of the command frame.
* If we have up to MPT_NSGL_FIRST, we can fit them all into
* the command frame.
*
* Otherwise, we fill up through MPT_NSGL_FIRST less one
* SIMPLE64 pointers and start doing CHAIN64 entries after
* that.
*/
if (nseg < MPT_NSGL_FIRST(mpt)) {
first_lim = nseg;
} else {
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Leave room for CHAIN element
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
first_lim = MPT_NSGL_FIRST(mpt) - 1;
}
se = (SGE_SIMPLE64 *) sglp;
for (seg = 0; seg < first_lim; seg++, se++, dm_segs++) {
uint32_t tf;
memset(se, 0, sizeof (*se));
se->Address.Low = htole32(dm_segs->ds_addr & 0xffffffff);
if (sizeof(bus_addr_t) > 4) {
se->Address.High =
htole32(((uint64_t)dm_segs->ds_addr) >> 32);
}
MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
tf = flags;
if (seg == first_lim - 1) {
tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
}
if (seg == nseg - 1) {
tf |= MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
}
MPI_pSGE_SET_FLAGS(se, tf);
se->FlagsLength = htole32(se->FlagsLength);
}
if (seg == nseg) {
goto out;
}
/*
* Tell the IOC where to find the first chain element.
*/
hdrp->ChainOffset = ((char *)se - (char *)hdrp) >> 2;
nxt_off = MPT_RQSL(mpt);
trq = req;
/*
* Make up the rest of the data segments out of a chain element
* (contiained in the current request frame) which points to
* SIMPLE64 elements in the next request frame, possibly ending
* with *another* chain element (if there's more).
*/
while (seg < nseg) {
int this_seg_lim;
uint32_t tf, cur_off;
bus_addr_t chain_list_addr;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Point to the chain descriptor. Note that the chain
* descriptor is at the end of the *previous* list (whether
* chain or simple).
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
ce = (SGE_CHAIN64 *) se;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Before we change our current pointer, make sure we won't
* overflow the request area with this frame. Note that we
* test against 'greater than' here as it's okay in this case
* to have next offset be just outside the request area.
*/
if ((nxt_off + MPT_RQSL(mpt)) > MPT_REQUEST_AREA) {
nxt_off = MPT_REQUEST_AREA;
goto next_chain;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
/*
* Set our SGE element pointer to the beginning of the chain
* list and update our next chain list offset.
*/
se = (SGE_SIMPLE64 *) &mpt_off[nxt_off];
cur_off = nxt_off;
nxt_off += MPT_RQSL(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Now initialized the chain descriptor.
*/
memset(ce, 0, sizeof (*ce));
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Get the physical address of the chain list.
*/
chain_list_addr = trq->req_pbuf;
chain_list_addr += cur_off;
if (sizeof (bus_addr_t) > 4) {
ce->Address.High =
htole32(((uint64_t)chain_list_addr) >> 32);
}
ce->Address.Low = htole32(chain_list_addr & 0xffffffff);
ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT |
MPI_SGE_FLAGS_64_BIT_ADDRESSING;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* If we have more than a frame's worth of segments left,
* set up the chain list to have the last element be another
* chain descriptor.
*/
if ((nseg - seg) > MPT_NSGL(mpt)) {
this_seg_lim = seg + MPT_NSGL(mpt) - 1;
/*
* The length of the chain is the length in bytes of the
* number of segments plus the next chain element.
*
* The next chain descriptor offset is the length,
* in words, of the number of segments.
*/
ce->Length = (this_seg_lim - seg) *
sizeof (SGE_SIMPLE64);
ce->NextChainOffset = ce->Length >> 2;
ce->Length += sizeof (SGE_CHAIN64);
} else {
this_seg_lim = nseg;
ce->Length = (this_seg_lim - seg) *
sizeof (SGE_SIMPLE64);
}
ce->Length = htole16(ce->Length);
/*
* Fill in the chain list SGE elements with our segment data.
*
* If we're the last element in this chain list, set the last
* element flag. If we're the completely last element period,
* set the end of list and end of buffer flags.
*/
while (seg < this_seg_lim) {
memset(se, 0, sizeof (*se));
se->Address.Low = htole32(dm_segs->ds_addr &
0xffffffff);
if (sizeof (bus_addr_t) > 4) {
se->Address.High =
htole32(((uint64_t)dm_segs->ds_addr) >> 32);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
tf = flags;
if (seg == this_seg_lim - 1) {
tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
}
if (seg == nseg - 1) {
tf |= MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
MPI_pSGE_SET_FLAGS(se, tf);
se->FlagsLength = htole32(se->FlagsLength);
se++;
seg++;
dm_segs++;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
next_chain:
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* If we have more segments to do and we've used up all of
* the space in a request area, go allocate another one
* and chain to that.
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
if (seg < nseg && nxt_off >= MPT_REQUEST_AREA) {
request_t *nrq;
CAMLOCK_2_MPTLOCK(mpt);
nrq = mpt_get_request(mpt, FALSE);
MPTLOCK_2_CAMLOCK(mpt);
if (nrq == NULL) {
error = ENOMEM;
goto bad;
}
/*
* Append the new request area on the tail of our list.
*/
if ((trq = req->chain) == NULL) {
req->chain = nrq;
} else {
while (trq->chain != NULL) {
trq = trq->chain;
}
trq->chain = nrq;
}
trq = nrq;
mpt_off = trq->req_vbuf;
if (mpt->verbose >= MPT_PRT_DEBUG) {
memset(mpt_off, 0xff, MPT_REQUEST_AREA);
}
nxt_off = 0;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
out:
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Last time we need to check if this CCB needs to be aborted.
*/
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
request_t *cmd_req =
MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM;
MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL;
MPT_TGT_STATE(mpt, cmd_req)->req = NULL;
}
mpt_prt(mpt,
"mpt_execute_req_a64: I/O cancelled (status 0x%x)\n",
ccb->ccb_h.status & CAM_STATUS_MASK);
if (nseg && (ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
bus_dmamap_unload(mpt->buffer_dmat, req->dmap);
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
xpt_done(ccb);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
CAMLOCK_2_MPTLOCK(mpt);
mpt_free_request(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
return;
}
ccb->ccb_h.status |= CAM_SIM_QUEUED;
if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) {
mpt_req_timeout(req, (ccb->ccb_h.timeout * hz) / 1000,
mpt_timeout, ccb);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
if (mpt->verbose > MPT_PRT_DEBUG) {
int nc = 0;
mpt_print_request(req->req_vbuf);
for (trq = req->chain; trq; trq = trq->chain) {
printf(" Additional Chain Area %d\n", nc++);
mpt_dump_sgl(trq->req_vbuf, 0);
}
}
if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
request_t *cmd_req = MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, cmd_req);
#ifdef WE_TRUST_AUTO_GOOD_STATUS
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) &&
csio->scsi_status == SCSI_STATUS_OK && tgt->resid == 0) {
tgt->state = TGT_STATE_MOVING_DATA_AND_STATUS;
} else {
tgt->state = TGT_STATE_MOVING_DATA;
}
#else
tgt->state = TGT_STATE_MOVING_DATA;
#endif
}
CAMLOCK_2_MPTLOCK(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt_send_cmd(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
}
static void
mpt_execute_req(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
{
request_t *req, *trq;
char *mpt_off;
union ccb *ccb;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
struct mpt_softc *mpt;
int seg, first_lim;
uint32_t flags, nxt_off;
void *sglp = NULL;
MSG_REQUEST_HEADER *hdrp;
SGE_SIMPLE32 *se;
SGE_CHAIN32 *ce;
int istgt = 0;
req = (request_t *)arg;
ccb = req->ccb;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt = ccb->ccb_h.ccb_mpt_ptr;
req = ccb->ccb_h.ccb_req_ptr;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
hdrp = req->req_vbuf;
mpt_off = req->req_vbuf;
if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) {
error = EFBIG;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
if (error == 0) {
switch (hdrp->Function) {
case MPI_FUNCTION_SCSI_IO_REQUEST:
case MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
sglp = &((PTR_MSG_SCSI_IO_REQUEST)hdrp)->SGL;
break;
case MPI_FUNCTION_TARGET_ASSIST:
istgt = 1;
sglp = &((PTR_MSG_TARGET_ASSIST_REQUEST)hdrp)->SGL;
break;
default:
mpt_prt(mpt, "bad fct 0x%x in mpt_execute_req\n",
hdrp->Function);
error = EINVAL;
break;
}
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) {
error = EFBIG;
mpt_prt(mpt, "segment count %d too large (max %u)\n",
nseg, mpt->max_seg_cnt);
}
bad:
if (error != 0) {
if (error != EFBIG && error != ENOMEM) {
mpt_prt(mpt, "mpt_execute_req: err %d\n", error);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG) {
cam_status status;
mpt_freeze_ccb(ccb);
if (error == EFBIG) {
status = CAM_REQ_TOO_BIG;
} else if (error == ENOMEM) {
if (mpt->outofbeer == 0) {
mpt->outofbeer = 1;
xpt_freeze_simq(mpt->sim, 1);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"FREEZEQ\n");
}
status = CAM_REQUEUE_REQ;
} else {
status = CAM_REQ_CMP_ERR;
}
mpt_set_ccb_status(ccb, status);
}
if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
request_t *cmd_req =
MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM;
MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL;
MPT_TGT_STATE(mpt, cmd_req)->req = NULL;
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
mpt_free_request(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
return;
}
/*
* No data to transfer?
* Just make a single simple SGL with zero length.
*/
if (mpt->verbose >= MPT_PRT_DEBUG) {
int tidx = ((char *)sglp) - mpt_off;
memset(&mpt_off[tidx], 0xff, MPT_REQUEST_AREA - tidx);
}
if (nseg == 0) {
SGE_SIMPLE32 *se1 = (SGE_SIMPLE32 *) sglp;
MPI_pSGE_SET_FLAGS(se1,
(MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST));
se1->FlagsLength = htole32(se1->FlagsLength);
goto out;
}
flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
if (istgt == 0) {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
}
} else {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
}
}
if (!(ccb->ccb_h.flags & (CAM_SG_LIST_PHYS|CAM_DATA_PHYS))) {
bus_dmasync_op_t op;
if (istgt) {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
op = BUS_DMASYNC_PREREAD;
} else {
op = BUS_DMASYNC_PREWRITE;
}
} else {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
op = BUS_DMASYNC_PREWRITE;
} else {
op = BUS_DMASYNC_PREREAD;
}
}
bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op);
}
/*
* Okay, fill in what we can at the end of the command frame.
* If we have up to MPT_NSGL_FIRST, we can fit them all into
* the command frame.
*
* Otherwise, we fill up through MPT_NSGL_FIRST less one
* SIMPLE32 pointers and start doing CHAIN32 entries after
* that.
*/
if (nseg < MPT_NSGL_FIRST(mpt)) {
first_lim = nseg;
} else {
/*
* Leave room for CHAIN element
*/
first_lim = MPT_NSGL_FIRST(mpt) - 1;
}
se = (SGE_SIMPLE32 *) sglp;
for (seg = 0; seg < first_lim; seg++, se++, dm_segs++) {
uint32_t tf;
memset(se, 0,sizeof (*se));
se->Address = htole32(dm_segs->ds_addr);
MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
tf = flags;
if (seg == first_lim - 1) {
tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
}
if (seg == nseg - 1) {
tf |= MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
}
MPI_pSGE_SET_FLAGS(se, tf);
se->FlagsLength = htole32(se->FlagsLength);
}
if (seg == nseg) {
goto out;
}
/*
* Tell the IOC where to find the first chain element.
*/
hdrp->ChainOffset = ((char *)se - (char *)hdrp) >> 2;
nxt_off = MPT_RQSL(mpt);
trq = req;
/*
* Make up the rest of the data segments out of a chain element
* (contiained in the current request frame) which points to
* SIMPLE32 elements in the next request frame, possibly ending
* with *another* chain element (if there's more).
*/
while (seg < nseg) {
int this_seg_lim;
uint32_t tf, cur_off;
bus_addr_t chain_list_addr;
/*
* Point to the chain descriptor. Note that the chain
* descriptor is at the end of the *previous* list (whether
* chain or simple).
*/
ce = (SGE_CHAIN32 *) se;
/*
* Before we change our current pointer, make sure we won't
* overflow the request area with this frame. Note that we
* test against 'greater than' here as it's okay in this case
* to have next offset be just outside the request area.
*/
if ((nxt_off + MPT_RQSL(mpt)) > MPT_REQUEST_AREA) {
nxt_off = MPT_REQUEST_AREA;
goto next_chain;
}
/*
* Set our SGE element pointer to the beginning of the chain
* list and update our next chain list offset.
*/
se = (SGE_SIMPLE32 *) &mpt_off[nxt_off];
cur_off = nxt_off;
nxt_off += MPT_RQSL(mpt);
/*
* Now initialized the chain descriptor.
*/
memset(ce, 0, sizeof (*ce));
/*
* Get the physical address of the chain list.
*/
chain_list_addr = trq->req_pbuf;
chain_list_addr += cur_off;
ce->Address = htole32(chain_list_addr);
ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT;
/*
* If we have more than a frame's worth of segments left,
* set up the chain list to have the last element be another
* chain descriptor.
*/
if ((nseg - seg) > MPT_NSGL(mpt)) {
this_seg_lim = seg + MPT_NSGL(mpt) - 1;
/*
* The length of the chain is the length in bytes of the
* number of segments plus the next chain element.
*
* The next chain descriptor offset is the length,
* in words, of the number of segments.
*/
ce->Length = (this_seg_lim - seg) *
sizeof (SGE_SIMPLE32);
ce->NextChainOffset = ce->Length >> 2;
ce->Length += sizeof (SGE_CHAIN32);
} else {
this_seg_lim = nseg;
ce->Length = (this_seg_lim - seg) *
sizeof (SGE_SIMPLE32);
}
ce->Length = htole16(ce->Length);
/*
* Fill in the chain list SGE elements with our segment data.
*
* If we're the last element in this chain list, set the last
* element flag. If we're the completely last element period,
* set the end of list and end of buffer flags.
*/
while (seg < this_seg_lim) {
memset(se, 0, sizeof (*se));
se->Address = htole32(dm_segs->ds_addr);
MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
tf = flags;
if (seg == this_seg_lim - 1) {
tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
}
if (seg == nseg - 1) {
tf |= MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
}
MPI_pSGE_SET_FLAGS(se, tf);
se->FlagsLength = htole32(se->FlagsLength);
se++;
seg++;
dm_segs++;
}
next_chain:
/*
* If we have more segments to do and we've used up all of
* the space in a request area, go allocate another one
* and chain to that.
*/
if (seg < nseg && nxt_off >= MPT_REQUEST_AREA) {
request_t *nrq;
CAMLOCK_2_MPTLOCK(mpt);
nrq = mpt_get_request(mpt, FALSE);
MPTLOCK_2_CAMLOCK(mpt);
if (nrq == NULL) {
error = ENOMEM;
goto bad;
}
/*
* Append the new request area on the tail of our list.
*/
if ((trq = req->chain) == NULL) {
req->chain = nrq;
} else {
while (trq->chain != NULL) {
trq = trq->chain;
}
trq->chain = nrq;
}
trq = nrq;
mpt_off = trq->req_vbuf;
if (mpt->verbose >= MPT_PRT_DEBUG) {
memset(mpt_off, 0xff, MPT_REQUEST_AREA);
}
nxt_off = 0;
}
}
out:
/*
* Last time we need to check if this CCB needs to be aborted.
*/
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
request_t *cmd_req =
MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM;
MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL;
MPT_TGT_STATE(mpt, cmd_req)->req = NULL;
}
mpt_prt(mpt,
"mpt_execute_req: I/O cancelled (status 0x%x)\n",
ccb->ccb_h.status & CAM_STATUS_MASK);
if (nseg && (ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
bus_dmamap_unload(mpt->buffer_dmat, req->dmap);
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
mpt_free_request(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
return;
}
ccb->ccb_h.status |= CAM_SIM_QUEUED;
if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) {
mpt_req_timeout(req, (ccb->ccb_h.timeout * hz) / 1000,
mpt_timeout, ccb);
}
if (mpt->verbose > MPT_PRT_DEBUG) {
int nc = 0;
mpt_print_request(req->req_vbuf);
for (trq = req->chain; trq; trq = trq->chain) {
printf(" Additional Chain Area %d\n", nc++);
mpt_dump_sgl(trq->req_vbuf, 0);
}
}
if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
request_t *cmd_req = MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, cmd_req);
#ifdef WE_TRUST_AUTO_GOOD_STATUS
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) &&
csio->scsi_status == SCSI_STATUS_OK && tgt->resid == 0) {
tgt->state = TGT_STATE_MOVING_DATA_AND_STATUS;
} else {
tgt->state = TGT_STATE_MOVING_DATA;
}
#else
tgt->state = TGT_STATE_MOVING_DATA;
#endif
}
CAMLOCK_2_MPTLOCK(mpt);
mpt_send_cmd(mpt, req);
MPTLOCK_2_CAMLOCK(mpt);
}
static void
mpt_start(struct cam_sim *sim, union ccb *ccb)
{
request_t *req;
struct mpt_softc *mpt;
MSG_SCSI_IO_REQUEST *mpt_req;
struct ccb_scsiio *csio = &ccb->csio;
struct ccb_hdr *ccbh = &ccb->ccb_h;
bus_dmamap_callback_t *cb;
target_id_t tgt;
int raid_passthru;
/* Get the pointer for the physical addapter */
mpt = ccb->ccb_h.ccb_mpt_ptr;
raid_passthru = (sim == mpt->phydisk_sim);
CAMLOCK_2_MPTLOCK(mpt);
if ((req = mpt_get_request(mpt, FALSE)) == NULL) {
if (mpt->outofbeer == 0) {
mpt->outofbeer = 1;
xpt_freeze_simq(mpt->sim, 1);
mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n");
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ);
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
return;
}
#ifdef INVARIANTS
mpt_req_not_spcl(mpt, req, "mpt_start", __LINE__);
#endif
MPTLOCK_2_CAMLOCK(mpt);
if (sizeof (bus_addr_t) > 4) {
cb = mpt_execute_req_a64;
} else {
cb = mpt_execute_req;
}
/*
* Link the ccb and the request structure so we can find
* the other knowing either the request or the ccb
*/
req->ccb = ccb;
ccb->ccb_h.ccb_req_ptr = req;
/* Now we build the command for the IOC */
mpt_req = req->req_vbuf;
memset(mpt_req, 0, sizeof (MSG_SCSI_IO_REQUEST));
mpt_req->Function = MPI_FUNCTION_SCSI_IO_REQUEST;
if (raid_passthru) {
mpt_req->Function = MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH;
CAMLOCK_2_MPTLOCK(mpt);
if (mpt_map_physdisk(mpt, ccb, &tgt) != 0) {
MPTLOCK_2_CAMLOCK(mpt);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_DEV_NOT_THERE);
xpt_done(ccb);
return;
}
MPTLOCK_2_CAMLOCK(mpt);
mpt_req->Bus = 0; /* we never set bus here */
} else {
tgt = ccb->ccb_h.target_id;
mpt_req->Bus = 0; /* XXX */
}
mpt_req->SenseBufferLength =
(csio->sense_len < MPT_SENSE_SIZE) ?
csio->sense_len : MPT_SENSE_SIZE;
/*
* We use the message context to find the request structure when we
* Get the command completion interrupt from the IOC.
*/
mpt_req->MsgContext = htole32(req->index | scsi_io_handler_id);
/* Which physical device to do the I/O on */
mpt_req->TargetID = tgt;
/* We assume a single level LUN type */
if (ccb->ccb_h.target_lun >= MPT_MAX_LUNS) {
mpt_req->LUN[0] = 0x40 | ((ccb->ccb_h.target_lun >> 8) & 0x3f);
mpt_req->LUN[1] = ccb->ccb_h.target_lun & 0xff;
} else {
mpt_req->LUN[1] = ccb->ccb_h.target_lun;
}
/* Set the direction of the transfer */
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
mpt_req->Control = MPI_SCSIIO_CONTROL_READ;
} else if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
mpt_req->Control = MPI_SCSIIO_CONTROL_WRITE;
} else {
mpt_req->Control = MPI_SCSIIO_CONTROL_NODATATRANSFER;
}
if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) {
switch(ccb->csio.tag_action) {
case MSG_HEAD_OF_Q_TAG:
mpt_req->Control |= MPI_SCSIIO_CONTROL_HEADOFQ;
break;
case MSG_ACA_TASK:
mpt_req->Control |= MPI_SCSIIO_CONTROL_ACAQ;
break;
case MSG_ORDERED_Q_TAG:
mpt_req->Control |= MPI_SCSIIO_CONTROL_ORDEREDQ;
break;
case MSG_SIMPLE_Q_TAG:
default:
mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
break;
}
} else {
if (mpt->is_fc || mpt->is_sas) {
mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
} else {
/* XXX No such thing for a target doing packetized. */
mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED;
}
}
if (mpt->is_spi) {
if (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) {
mpt_req->Control |= MPI_SCSIIO_CONTROL_NO_DISCONNECT;
}
}
mpt_req->Control = htole32(mpt_req->Control);
/* Copy the scsi command block into place */
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
bcopy(csio->cdb_io.cdb_ptr, mpt_req->CDB, csio->cdb_len);
} else {
bcopy(csio->cdb_io.cdb_bytes, mpt_req->CDB, csio->cdb_len);
}
mpt_req->CDBLength = csio->cdb_len;
mpt_req->DataLength = htole32(csio->dxfer_len);
mpt_req->SenseBufferLowAddr = htole32(req->sense_pbuf);
/*
* Do a *short* print here if we're set to MPT_PRT_DEBUG
*/
if (mpt->verbose == MPT_PRT_DEBUG) {
U32 df;
mpt_prt(mpt, "mpt_start: %s op 0x%x ",
(mpt_req->Function == MPI_FUNCTION_SCSI_IO_REQUEST)?
"SCSI_IO_REQUEST" : "SCSI_IO_PASSTHRU", mpt_req->CDB[0]);
df = mpt_req->Control & MPI_SCSIIO_CONTROL_DATADIRECTION_MASK;
if (df != MPI_SCSIIO_CONTROL_NODATATRANSFER) {
mpt_prtc(mpt, "(%s %u byte%s ",
(df == MPI_SCSIIO_CONTROL_READ)?
"read" : "write", csio->dxfer_len,
(csio->dxfer_len == 1)? ")" : "s)");
}
mpt_prtc(mpt, "tgt %u lun %u req %p:%u\n", tgt,
ccb->ccb_h.target_lun, req, req->serno);
}
/*
* If we have any data to send with this command map it into bus space.
*/
if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((ccbh->flags & CAM_SCATTER_VALID) == 0) {
/*
* We've been given a pointer to a single buffer.
*/
if ((ccbh->flags & CAM_DATA_PHYS) == 0) {
/*
* Virtual address that needs to translated into
* one or more physical address ranges.
*/
int error;
int s = splsoftvm();
error = bus_dmamap_load(mpt->buffer_dmat,
req->dmap, csio->data_ptr, csio->dxfer_len,
cb, req, 0);
splx(s);
if (error == EINPROGRESS) {
/*
* So as to maintain ordering,
* freeze the controller queue
* until our mapping is
* returned.
*/
xpt_freeze_simq(mpt->sim, 1);
ccbh->status |= CAM_RELEASE_SIMQ;
}
} else {
/*
* We have been given a pointer to single
* physical buffer.
*/
struct bus_dma_segment seg;
seg.ds_addr =
(bus_addr_t)(vm_offset_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
(*cb)(req, &seg, 1, 0);
}
} else {
/*
* We have been given a list of addresses.
* This case could be easily supported but they are not
* currently generated by the CAM subsystem so there
* is no point in wasting the time right now.
*/
struct bus_dma_segment *segs;
if ((ccbh->flags & CAM_SG_LIST_PHYS) == 0) {
(*cb)(req, NULL, 0, EFAULT);
} else {
/* Just use the segments provided */
segs = (struct bus_dma_segment *)csio->data_ptr;
(*cb)(req, segs, csio->sglist_cnt, 0);
}
}
} else {
(*cb)(req, NULL, 0, 0);
}
}
static int
mpt_bus_reset(struct mpt_softc *mpt, target_id_t tgt, lun_id_t lun,
int sleep_ok)
{
int error;
uint16_t status;
uint8_t response;
error = mpt_scsi_send_tmf(mpt,
(tgt != CAM_TARGET_WILDCARD || lun != CAM_LUN_WILDCARD) ?
MPI_SCSITASKMGMT_TASKTYPE_TARGET_RESET :
MPI_SCSITASKMGMT_TASKTYPE_RESET_BUS,
mpt->is_fc ? MPI_SCSITASKMGMT_MSGFLAGS_LIP_RESET_OPTION : 0,
0, /* XXX How do I get the channel ID? */
tgt != CAM_TARGET_WILDCARD ? tgt : 0,
lun != CAM_LUN_WILDCARD ? lun : 0,
0, sleep_ok);
if (error != 0) {
/*
* mpt_scsi_send_tmf hard resets on failure, so no
* need to do so here.
*/
mpt_prt(mpt,
"mpt_bus_reset: mpt_scsi_send_tmf returned %d\n", error);
return (EIO);
}
/* Wait for bus reset to be processed by the IOC. */
error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_DONE,
REQ_STATE_DONE, sleep_ok, 5000);
status = le16toh(mpt->tmf_req->IOCStatus);
response = mpt->tmf_req->ResponseCode;
mpt->tmf_req->state = REQ_STATE_FREE;
if (error) {
mpt_prt(mpt, "mpt_bus_reset: Reset timed-out. "
"Resetting controller.\n");
mpt_reset(mpt, TRUE);
return (ETIMEDOUT);
}
if ((status & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
mpt_prt(mpt, "mpt_bus_reset: TMF IOC Status 0x%x. "
"Resetting controller.\n", status);
mpt_reset(mpt, TRUE);
return (EIO);
}
if (response != MPI_SCSITASKMGMT_RSP_TM_SUCCEEDED &&
response != MPI_SCSITASKMGMT_RSP_TM_COMPLETE) {
mpt_prt(mpt, "mpt_bus_reset: TMF Response 0x%x. "
"Resetting controller.\n", response);
mpt_reset(mpt, TRUE);
return (EIO);
}
return (0);
}
static int
mpt_fc_reset_link(struct mpt_softc *mpt, int dowait)
{
int r = 0;
request_t *req;
PTR_MSG_FC_PRIMITIVE_SEND_REQUEST fc;
req = mpt_get_request(mpt, FALSE);
if (req == NULL) {
return (ENOMEM);
}
fc = req->req_vbuf;
memset(fc, 0, sizeof(*fc));
fc->SendFlags = MPI_FC_PRIM_SEND_FLAGS_RESET_LINK;
fc->Function = MPI_FUNCTION_FC_PRIMITIVE_SEND;
fc->MsgContext = htole32(req->index | fc_els_handler_id);
mpt_send_cmd(mpt, req);
if (dowait) {
r = mpt_wait_req(mpt, req, REQ_STATE_DONE,
REQ_STATE_DONE, FALSE, 60 * 1000);
if (r == 0) {
mpt_free_request(mpt, req);
}
}
return (r);
}
static int
mpt_cam_event(struct mpt_softc *mpt, request_t *req,
MSG_EVENT_NOTIFY_REPLY *msg)
{
uint32_t data0, data1;
data0 = le32toh(msg->Data[0]);
data1 = le32toh(msg->Data[1]);
switch(msg->Event & 0xFF) {
case MPI_EVENT_UNIT_ATTENTION:
mpt_prt(mpt, "UNIT ATTENTION: Bus: 0x%02x TargetID: 0x%02x\n",
(data0 >> 8) & 0xff, data0 & 0xff);
break;
case MPI_EVENT_IOC_BUS_RESET:
/* We generated a bus reset */
mpt_prt(mpt, "IOC Generated Bus Reset Port: %d\n",
(data0 >> 8) & 0xff);
xpt_async(AC_BUS_RESET, mpt->path, NULL);
break;
case MPI_EVENT_EXT_BUS_RESET:
/* Someone else generated a bus reset */
mpt_prt(mpt, "External Bus Reset Detected\n");
/*
* These replies don't return EventData like the MPI
* spec says they do
*/
xpt_async(AC_BUS_RESET, mpt->path, NULL);
break;
case MPI_EVENT_RESCAN:
2007-03-11 01:59:44 +00:00
#if __FreeBSD_version >= 600000
{
union ccb *ccb;
uint32_t pathid;
/*
* In general this means a device has been added to the loop.
*/
mpt_prt(mpt, "Rescan Port: %d\n", (data0 >> 8) & 0xff);
if (mpt->ready == 0) {
break;
}
if (mpt->phydisk_sim) {
pathid = cam_sim_path(mpt->phydisk_sim);
} else {
pathid = cam_sim_path(mpt->sim);
}
MPTLOCK_2_CAMLOCK(mpt);
/*
* Allocate a CCB, create a wildcard path for this bus,
* and schedule a rescan.
*/
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
mpt_prt(mpt, "unable to alloc CCB for rescan\n");
CAMLOCK_2_MPTLOCK(mpt);
break;
}
if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, pathid,
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
CAMLOCK_2_MPTLOCK(mpt);
mpt_prt(mpt, "unable to create path for rescan\n");
xpt_free_ccb(ccb);
break;
}
xpt_rescan(ccb);
CAMLOCK_2_MPTLOCK(mpt);
break;
}
2007-03-11 01:59:44 +00:00
#else
mpt_prt(mpt, "Rescan Port: %d\n", (data0 >> 8) & 0xff);
break;
#endif
case MPI_EVENT_LINK_STATUS_CHANGE:
mpt_prt(mpt, "Port %d: LinkState: %s\n",
(data1 >> 8) & 0xff,
((data0 & 0xff) == 0)? "Failed" : "Active");
break;
case MPI_EVENT_LOOP_STATE_CHANGE:
switch ((data0 >> 16) & 0xff) {
case 0x01:
mpt_prt(mpt,
"Port 0x%x: FC LinkEvent: LIP(%02x,%02x) "
"(Loop Initialization)\n",
(data1 >> 8) & 0xff,
(data0 >> 8) & 0xff,
(data0 ) & 0xff);
switch ((data0 >> 8) & 0xff) {
case 0xF7:
if ((data0 & 0xff) == 0xF7) {
mpt_prt(mpt, "Device needs AL_PA\n");
} else {
mpt_prt(mpt, "Device %02x doesn't like "
"FC performance\n",
data0 & 0xFF);
}
break;
case 0xF8:
if ((data0 & 0xff) == 0xF7) {
mpt_prt(mpt, "Device had loop failure "
"at its receiver prior to acquiring"
" AL_PA\n");
} else {
mpt_prt(mpt, "Device %02x detected loop"
" failure at its receiver\n",
data0 & 0xFF);
}
break;
default:
mpt_prt(mpt, "Device %02x requests that device "
"%02x reset itself\n",
data0 & 0xFF,
(data0 >> 8) & 0xFF);
break;
}
break;
case 0x02:
mpt_prt(mpt, "Port 0x%x: FC LinkEvent: "
"LPE(%02x,%02x) (Loop Port Enable)\n",
(data1 >> 8) & 0xff, /* Port */
(data0 >> 8) & 0xff, /* Character 3 */
(data0 ) & 0xff /* Character 4 */);
break;
case 0x03:
mpt_prt(mpt, "Port 0x%x: FC LinkEvent: "
"LPB(%02x,%02x) (Loop Port Bypass)\n",
(data1 >> 8) & 0xff, /* Port */
(data0 >> 8) & 0xff, /* Character 3 */
(data0 ) & 0xff /* Character 4 */);
break;
default:
mpt_prt(mpt, "Port 0x%x: FC LinkEvent: Unknown "
"FC event (%02x %02x %02x)\n",
(data1 >> 8) & 0xff, /* Port */
(data0 >> 16) & 0xff, /* Event */
(data0 >> 8) & 0xff, /* Character 3 */
(data0 ) & 0xff /* Character 4 */);
}
break;
case MPI_EVENT_LOGOUT:
mpt_prt(mpt, "FC Logout Port: %d N_PortID: %02x\n",
(data1 >> 8) & 0xff, data0);
break;
case MPI_EVENT_QUEUE_FULL:
{
struct cam_sim *sim;
struct cam_path *tmppath;
struct ccb_relsim crs;
PTR_EVENT_DATA_QUEUE_FULL pqf;
lun_id_t lun_id;
pqf = (PTR_EVENT_DATA_QUEUE_FULL)msg->Data;
pqf->CurrentDepth = le16toh(pqf->CurrentDepth);
mpt_prt(mpt, "QUEUE FULL EVENT: Bus 0x%02x Target 0x%02x Depth "
"%d\n", pqf->Bus, pqf->TargetID, pqf->CurrentDepth);
if (mpt->phydisk_sim) {
sim = mpt->phydisk_sim;
} else {
sim = mpt->sim;
}
MPTLOCK_2_CAMLOCK(mpt);
for (lun_id = 0; lun_id < MPT_MAX_LUNS; lun_id++) {
if (xpt_create_path(&tmppath, NULL, cam_sim_path(sim),
pqf->TargetID, lun_id) != CAM_REQ_CMP) {
mpt_prt(mpt, "unable to create a path to send "
"XPT_REL_SIMQ");
CAMLOCK_2_MPTLOCK(mpt);
break;
}
xpt_setup_ccb(&crs.ccb_h, tmppath, 5);
crs.ccb_h.func_code = XPT_REL_SIMQ;
crs.ccb_h.flags = CAM_DEV_QFREEZE;
crs.release_flags = RELSIM_ADJUST_OPENINGS;
crs.openings = pqf->CurrentDepth - 1;
xpt_action((union ccb *)&crs);
if (crs.ccb_h.status != CAM_REQ_CMP) {
mpt_prt(mpt, "XPT_REL_SIMQ failed\n");
}
xpt_free_path(tmppath);
}
CAMLOCK_2_MPTLOCK(mpt);
break;
}
case MPI_EVENT_EVENT_CHANGE:
case MPI_EVENT_INTEGRATED_RAID:
case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
case MPI_EVENT_SAS_SES:
break;
default:
mpt_lprt(mpt, MPT_PRT_WARN, "mpt_cam_event: 0x%x\n",
msg->Event & 0xFF);
return (0);
}
return (1);
}
/*
* Reply path for all SCSI I/O requests, called from our
* interrupt handler by extracting our handler index from
* the MsgContext field of the reply from the IOC.
*
* This routine is optimized for the common case of a
* completion without error. All exception handling is
* offloaded to non-inlined helper routines to minimize
* cache footprint.
*/
static int
mpt_scsi_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
MSG_SCSI_IO_REQUEST *scsi_req;
union ccb *ccb;
if (req->state == REQ_STATE_FREE) {
mpt_prt(mpt, "mpt_scsi_reply_handler: req already free\n");
return (TRUE);
}
scsi_req = (MSG_SCSI_IO_REQUEST *)req->req_vbuf;
ccb = req->ccb;
if (ccb == NULL) {
mpt_prt(mpt, "mpt_scsi_reply_handler: req %p:%u with no ccb\n",
req, req->serno);
return (TRUE);
}
mpt_req_untimeout(req, mpt_timeout, ccb);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op);
bus_dmamap_unload(mpt->buffer_dmat, req->dmap);
}
if (reply_frame == NULL) {
/*
* Context only reply, completion without error status.
*/
ccb->csio.resid = 0;
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
ccb->csio.scsi_status = SCSI_STATUS_OK;
} else {
mpt_scsi_reply_frame_handler(mpt, req, reply_frame);
}
if (mpt->outofbeer) {
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
mpt->outofbeer = 0;
mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n");
}
if (scsi_req->CDB[0] == INQUIRY && (scsi_req->CDB[1] & SI_EVPD) == 0) {
struct scsi_inquiry_data *iq =
(struct scsi_inquiry_data *)ccb->csio.data_ptr;
if (scsi_req->Function ==
MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
/*
* Fake out the device type so that only the
* pass-thru device will attach.
*/
iq->device &= ~0x1F;
iq->device |= T_NODEVICE;
}
}
if (mpt->verbose == MPT_PRT_DEBUG) {
mpt_prt(mpt, "mpt_scsi_reply_handler: %p:%u complete\n",
req, req->serno);
}
KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
if ((req->state & REQ_STATE_TIMEDOUT) == 0) {
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
} else {
mpt_prt(mpt, "completing timedout/aborted req %p:%u\n",
req, req->serno);
TAILQ_REMOVE(&mpt->request_timeout_list, req, links);
}
KASSERT((req->state & REQ_STATE_NEED_WAKEUP) == 0,
("CCB req needed wakeup"));
#ifdef INVARIANTS
mpt_req_not_spcl(mpt, req, "mpt_scsi_reply_handler", __LINE__);
#endif
mpt_free_request(mpt, req);
return (TRUE);
}
static int
mpt_scsi_tmf_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
MSG_SCSI_TASK_MGMT_REPLY *tmf_reply;
KASSERT(req == mpt->tmf_req, ("TMF Reply not using mpt->tmf_req"));
#ifdef INVARIANTS
mpt_req_not_spcl(mpt, req, "mpt_scsi_tmf_reply_handler", __LINE__);
#endif
tmf_reply = (MSG_SCSI_TASK_MGMT_REPLY *)reply_frame;
/* Record IOC Status and Response Code of TMF for any waiters. */
req->IOCStatus = le16toh(tmf_reply->IOCStatus);
req->ResponseCode = tmf_reply->ResponseCode;
mpt_lprt(mpt, MPT_PRT_DEBUG, "TMF complete: req %p:%u status 0x%x\n",
req, req->serno, le16toh(tmf_reply->IOCStatus));
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
req->state |= REQ_STATE_DONE;
wakeup(req);
} else {
mpt->tmf_req->state = REQ_STATE_FREE;
}
return (TRUE);
}
/*
* XXX: Move to definitions file
*/
#define ELS 0x22
#define FC4LS 0x32
#define ABTS 0x81
#define BA_ACC 0x84
#define LS_RJT 0x01
#define LS_ACC 0x02
#define PLOGI 0x03
#define LOGO 0x05
#define SRR 0x14
#define PRLI 0x20
#define PRLO 0x21
#define ADISC 0x52
#define RSCN 0x61
static void
mpt_fc_els_send_response(struct mpt_softc *mpt, request_t *req,
PTR_MSG_LINK_SERVICE_BUFFER_POST_REPLY rp, U8 length)
{
uint32_t fl;
MSG_LINK_SERVICE_RSP_REQUEST tmp;
PTR_MSG_LINK_SERVICE_RSP_REQUEST rsp;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* We are going to reuse the ELS request to send this response back.
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
rsp = &tmp;
memset(rsp, 0, sizeof(*rsp));
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
#ifdef USE_IMMEDIATE_LINK_DATA
/*
* Apparently the IMMEDIATE stuff doesn't seem to work.
*/
rsp->RspFlags = LINK_SERVICE_RSP_FLAGS_IMMEDIATE;
#endif
rsp->RspLength = length;
rsp->Function = MPI_FUNCTION_FC_LINK_SRVC_RSP;
rsp->MsgContext = htole32(req->index | fc_els_handler_id);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Copy over information from the original reply frame to
* it's correct place in the response.
*/
memcpy((U8 *)rsp + 0x0c, (U8 *)rp + 0x1c, 24);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* And now copy back the temporary area to the original frame.
*/
memcpy(req->req_vbuf, rsp, sizeof (MSG_LINK_SERVICE_RSP_REQUEST));
rsp = req->req_vbuf;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
#ifdef USE_IMMEDIATE_LINK_DATA
memcpy((U8 *)&rsp->SGL, &((U8 *)req->req_vbuf)[MPT_RQSL(mpt)], length);
#else
{
PTR_SGE_SIMPLE32 se = (PTR_SGE_SIMPLE32) &rsp->SGL;
bus_addr_t paddr = req->req_pbuf;
paddr += MPT_RQSL(mpt);
fl =
MPI_SGE_FLAGS_HOST_TO_IOC |
MPI_SGE_FLAGS_SIMPLE_ELEMENT |
MPI_SGE_FLAGS_LAST_ELEMENT |
MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
fl <<= MPI_SGE_FLAGS_SHIFT;
fl |= (length);
se->FlagsLength = htole32(fl);
se->Address = htole32((uint32_t) paddr);
}
#endif
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Send it on...
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
mpt_send_cmd(mpt, req);
}
static int
mpt_fc_els_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
PTR_MSG_LINK_SERVICE_BUFFER_POST_REPLY rp =
(PTR_MSG_LINK_SERVICE_BUFFER_POST_REPLY) reply_frame;
U8 rctl;
U8 type;
U8 cmd;
U16 status = le16toh(reply_frame->IOCStatus);
U32 *elsbuf;
int ioindex;
int do_refresh = TRUE;
#ifdef INVARIANTS
KASSERT(mpt_req_on_free_list(mpt, req) == 0,
("fc_els_reply_handler: req %p:%u for function %x on freelist!",
req, req->serno, rp->Function));
if (rp->Function != MPI_FUNCTION_FC_PRIMITIVE_SEND) {
mpt_req_spcl(mpt, req, "fc_els_reply_handler", __LINE__);
} else {
mpt_req_not_spcl(mpt, req, "fc_els_reply_handler", __LINE__);
}
#endif
mpt_lprt(mpt, MPT_PRT_DEBUG,
"FC_ELS Complete: req %p:%u, reply %p function %x\n",
req, req->serno, reply_frame, reply_frame->Function);
if (status != MPI_IOCSTATUS_SUCCESS) {
mpt_prt(mpt, "ELS REPLY STATUS 0x%x for Function %x\n",
status, reply_frame->Function);
if (status == MPI_IOCSTATUS_INVALID_STATE) {
/*
* XXX: to get around shutdown issue
*/
mpt->disabled = 1;
return (TRUE);
}
return (TRUE);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* If the function of a link service response, we recycle the
* response to be a refresh for a new link service request.
*
* The request pointer is bogus in this case and we have to fetch
* it based upon the TransactionContext.
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
if (rp->Function == MPI_FUNCTION_FC_LINK_SRVC_RSP) {
/* Freddie Uncle Charlie Katie */
/* We don't get the IOINDEX as part of the Link Svc Rsp */
for (ioindex = 0; ioindex < mpt->els_cmds_allocated; ioindex++)
if (mpt->els_cmd_ptrs[ioindex] == req) {
break;
}
KASSERT(ioindex < mpt->els_cmds_allocated,
("can't find my mommie!"));
/* remove from active list as we're going to re-post it */
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
mpt_fc_post_els(mpt, req, ioindex);
return (TRUE);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (rp->Function == MPI_FUNCTION_FC_PRIMITIVE_SEND) {
/* remove from active list as we're done */
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
if (req->state & REQ_STATE_TIMEDOUT) {
mpt_lprt(mpt, MPT_PRT_DEBUG,
"Sync Primitive Send Completed After Timeout\n");
mpt_free_request(mpt, req);
} else if ((req->state & REQ_STATE_NEED_WAKEUP) == 0) {
mpt_lprt(mpt, MPT_PRT_DEBUG,
"Async Primitive Send Complete\n");
mpt_free_request(mpt, req);
} else {
mpt_lprt(mpt, MPT_PRT_DEBUG,
"Sync Primitive Send Complete- Waking Waiter\n");
wakeup(req);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
return (TRUE);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
if (rp->Function != MPI_FUNCTION_FC_LINK_SRVC_BUF_POST) {
mpt_prt(mpt, "unexpected ELS_REPLY: Function 0x%x Flags %x "
"Length %d Message Flags %x\n", rp->Function, rp->Flags,
rp->MsgLength, rp->MsgFlags);
return (TRUE);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
if (rp->MsgLength <= 5) {
/*
* This is just a ack of an original ELS buffer post
*/
mpt_lprt(mpt, MPT_PRT_DEBUG,
"RECV'd ACK of FC_ELS buf post %p:%u\n", req, req->serno);
return (TRUE);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
rctl = (le32toh(rp->Rctl_Did) & MPI_FC_RCTL_MASK) >> MPI_FC_RCTL_SHIFT;
type = (le32toh(rp->Type_Fctl) & MPI_FC_TYPE_MASK) >> MPI_FC_TYPE_SHIFT;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
elsbuf = &((U32 *)req->req_vbuf)[MPT_RQSL(mpt)/sizeof (U32)];
cmd = be32toh(elsbuf[0]) >> 24;
if (rp->Flags & MPI_LS_BUF_POST_REPLY_FLAG_NO_RSP_NEEDED) {
mpt_lprt(mpt, MPT_PRT_ALWAYS, "ELS_REPLY: response unneeded\n");
return (TRUE);
}
ioindex = le32toh(rp->TransactionContext);
req = mpt->els_cmd_ptrs[ioindex];
if (rctl == ELS && type == 1) {
switch (cmd) {
case PRLI:
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Send back a PRLI ACC
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
mpt_prt(mpt, "PRLI from 0x%08x%08x\n",
le32toh(rp->Wwn.PortNameHigh),
le32toh(rp->Wwn.PortNameLow));
elsbuf[0] = htobe32(0x02100014);
elsbuf[1] |= htobe32(0x00000100);
elsbuf[4] = htobe32(0x00000002);
if (mpt->role & MPT_ROLE_TARGET)
elsbuf[4] |= htobe32(0x00000010);
if (mpt->role & MPT_ROLE_INITIATOR)
elsbuf[4] |= htobe32(0x00000020);
/* remove from active list as we're done */
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
mpt_fc_els_send_response(mpt, req, rp, 20);
do_refresh = FALSE;
break;
case PRLO:
memset(elsbuf, 0, 5 * (sizeof (U32)));
elsbuf[0] = htobe32(0x02100014);
elsbuf[1] = htobe32(0x08000100);
mpt_prt(mpt, "PRLO from 0x%08x%08x\n",
le32toh(rp->Wwn.PortNameHigh),
le32toh(rp->Wwn.PortNameLow));
/* remove from active list as we're done */
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
mpt_fc_els_send_response(mpt, req, rp, 20);
do_refresh = FALSE;
break;
default:
mpt_prt(mpt, "ELS TYPE 1 COMMAND: %x\n", cmd);
break;
}
} else if (rctl == ABTS && type == 0) {
uint16_t rx_id = le16toh(rp->Rxid);
uint16_t ox_id = le16toh(rp->Oxid);
request_t *tgt_req = NULL;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt_prt(mpt,
"ELS: ABTS OX_ID 0x%x RX_ID 0x%x from 0x%08x%08x\n",
ox_id, rx_id, le32toh(rp->Wwn.PortNameHigh),
le32toh(rp->Wwn.PortNameLow));
if (rx_id >= mpt->mpt_max_tgtcmds) {
mpt_prt(mpt, "Bad RX_ID 0x%x\n", rx_id);
} else if (mpt->tgt_cmd_ptrs == NULL) {
mpt_prt(mpt, "No TGT CMD PTRS\n");
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
} else {
tgt_req = mpt->tgt_cmd_ptrs[rx_id];
}
if (tgt_req) {
mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, tgt_req);
union ccb *ccb = tgt->ccb;
uint32_t ct_id;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Check to make sure we have the correct command
* The reply descriptor in the target state should
* should contain an IoIndex that should match the
* RX_ID.
*
* It'd be nice to have OX_ID to crosscheck with
* as well.
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
ct_id = GET_IO_INDEX(tgt->reply_desc);
if (ct_id != rx_id) {
mpt_lprt(mpt, MPT_PRT_ERROR, "ABORT Mismatch: "
"RX_ID received=0x%x; RX_ID in cmd=0x%x\n",
rx_id, ct_id);
goto skip;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
ccb = tgt->ccb;
if (ccb) {
mpt_prt(mpt,
"CCB (%p): lun %u flags %x status %x\n",
ccb, ccb->ccb_h.target_lun,
ccb->ccb_h.flags, ccb->ccb_h.status);
}
mpt_prt(mpt, "target state 0x%x resid %u xfrd %u rpwrd "
"%x nxfers %x\n", tgt->state,
tgt->resid, tgt->bytes_xfered, tgt->reply_desc,
tgt->nxfers);
skip:
if (mpt_abort_target_cmd(mpt, tgt_req)) {
mpt_prt(mpt, "unable to start TargetAbort\n");
}
} else {
mpt_prt(mpt, "no back pointer for RX_ID 0x%x\n", rx_id);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
memset(elsbuf, 0, 5 * (sizeof (U32)));
elsbuf[0] = htobe32(0);
elsbuf[1] = htobe32((ox_id << 16) | rx_id);
elsbuf[2] = htobe32(0x000ffff);
/*
* Dork with the reply frame so that the reponse to it
* will be correct.
*/
rp->Rctl_Did += ((BA_ACC - ABTS) << MPI_FC_RCTL_SHIFT);
/* remove from active list as we're done */
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
mpt_fc_els_send_response(mpt, req, rp, 12);
do_refresh = FALSE;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
} else {
mpt_prt(mpt, "ELS: RCTL %x TYPE %x CMD %x\n", rctl, type, cmd);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
if (do_refresh == TRUE) {
/* remove from active list as we're done */
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
mpt_fc_post_els(mpt, req, ioindex);
}
return (TRUE);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
/*
* Clean up all SCSI Initiator personality state in response
* to a controller reset.
*/
static void
mpt_cam_ioc_reset(struct mpt_softc *mpt, int type)
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
{
/*
* The pending list is already run down by
* the generic handler. Perform the same
* operation on the timed out request list.
*/
mpt_complete_request_chain(mpt, &mpt->request_timeout_list,
MPI_IOCSTATUS_INVALID_STATE);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* XXX: We need to repost ELS and Target Command Buffers?
*/
/*
* Inform the XPT that a bus reset has occurred.
*/
xpt_async(AC_BUS_RESET, mpt->path, NULL);
}
/*
* Parse additional completion information in the reply
* frame for SCSI I/O requests.
*/
static int
mpt_scsi_reply_frame_handler(struct mpt_softc *mpt, request_t *req,
MSG_DEFAULT_REPLY *reply_frame)
{
union ccb *ccb;
MSG_SCSI_IO_REPLY *scsi_io_reply;
u_int ioc_status;
u_int sstate;
MPT_DUMP_REPLY_FRAME(mpt, reply_frame);
KASSERT(reply_frame->Function == MPI_FUNCTION_SCSI_IO_REQUEST
|| reply_frame->Function == MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
("MPT SCSI I/O Handler called with incorrect reply type"));
KASSERT((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0,
("MPT SCSI I/O Handler called with continuation reply"));
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
scsi_io_reply = (MSG_SCSI_IO_REPLY *)reply_frame;
ioc_status = le16toh(scsi_io_reply->IOCStatus);
ioc_status &= MPI_IOCSTATUS_MASK;
sstate = scsi_io_reply->SCSIState;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
ccb = req->ccb;
ccb->csio.resid =
ccb->csio.dxfer_len - le32toh(scsi_io_reply->TransferCount);
if ((sstate & MPI_SCSI_STATE_AUTOSENSE_VALID) != 0
&& (ccb->ccb_h.flags & (CAM_SENSE_PHYS | CAM_SENSE_PTR)) == 0) {
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
ccb->csio.sense_resid =
ccb->csio.sense_len - le32toh(scsi_io_reply->SenseCount);
bcopy(req->sense_vbuf, &ccb->csio.sense_data,
min(ccb->csio.sense_len,
le32toh(scsi_io_reply->SenseCount)));
}
if ((sstate & MPI_SCSI_STATE_QUEUE_TAG_REJECTED) != 0) {
/*
* Tag messages rejected, but non-tagged retry
* was successful.
XXXX
mpt_set_tags(mpt, devinfo, MPT_QUEUE_NONE);
*/
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
switch(ioc_status) {
case MPI_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
/*
* XXX
* Linux driver indicates that a zero
* transfer length with this error code
* indicates a CRC error.
*
* No need to swap the bytes for checking
* against zero.
*/
if (scsi_io_reply->TransferCount == 0) {
mpt_set_ccb_status(ccb, CAM_UNCOR_PARITY);
break;
}
/* FALLTHROUGH */
case MPI_IOCSTATUS_SCSI_DATA_UNDERRUN:
case MPI_IOCSTATUS_SUCCESS:
case MPI_IOCSTATUS_SCSI_RECOVERED_ERROR:
if ((sstate & MPI_SCSI_STATE_NO_SCSI_STATUS) != 0) {
/*
* Status was never returned for this transaction.
*/
mpt_set_ccb_status(ccb, CAM_UNEXP_BUSFREE);
} else if (scsi_io_reply->SCSIStatus != SCSI_STATUS_OK) {
ccb->csio.scsi_status = scsi_io_reply->SCSIStatus;
mpt_set_ccb_status(ccb, CAM_SCSI_STATUS_ERROR);
if ((sstate & MPI_SCSI_STATE_AUTOSENSE_FAILED) != 0)
mpt_set_ccb_status(ccb, CAM_AUTOSENSE_FAIL);
} else if ((sstate & MPI_SCSI_STATE_RESPONSE_INFO_VALID) != 0) {
/* XXX Handle SPI-Packet and FCP-2 reponse info. */
mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
} else
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
break;
case MPI_IOCSTATUS_SCSI_DATA_OVERRUN:
mpt_set_ccb_status(ccb, CAM_DATA_RUN_ERR);
break;
case MPI_IOCSTATUS_SCSI_IO_DATA_ERROR:
mpt_set_ccb_status(ccb, CAM_UNCOR_PARITY);
break;
case MPI_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
/*
* Since selection timeouts and "device really not
* there" are grouped into this error code, report
* selection timeout. Selection timeouts are
* typically retried before giving up on the device
* whereas "device not there" errors are considered
* unretryable.
*/
mpt_set_ccb_status(ccb, CAM_SEL_TIMEOUT);
break;
case MPI_IOCSTATUS_SCSI_PROTOCOL_ERROR:
mpt_set_ccb_status(ccb, CAM_SEQUENCE_FAIL);
break;
case MPI_IOCSTATUS_SCSI_INVALID_BUS:
mpt_set_ccb_status(ccb, CAM_PATH_INVALID);
break;
case MPI_IOCSTATUS_SCSI_INVALID_TARGETID:
mpt_set_ccb_status(ccb, CAM_TID_INVALID);
break;
case MPI_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
ccb->ccb_h.status = CAM_UA_TERMIO;
break;
case MPI_IOCSTATUS_INVALID_STATE:
/*
* The IOC has been reset. Emulate a bus reset.
*/
/* FALLTHROUGH */
case MPI_IOCSTATUS_SCSI_EXT_TERMINATED:
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
break;
case MPI_IOCSTATUS_SCSI_TASK_TERMINATED:
case MPI_IOCSTATUS_SCSI_IOC_TERMINATED:
/*
* Don't clobber any timeout status that has
* already been set for this transaction. We
* want the SCSI layer to be able to differentiate
* between the command we aborted due to timeout
* and any innocent bystanders.
*/
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG)
break;
mpt_set_ccb_status(ccb, CAM_REQ_TERMIO);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
break;
case MPI_IOCSTATUS_INSUFFICIENT_RESOURCES:
mpt_set_ccb_status(ccb, CAM_RESRC_UNAVAIL);
break;
case MPI_IOCSTATUS_BUSY:
mpt_set_ccb_status(ccb, CAM_BUSY);
break;
case MPI_IOCSTATUS_INVALID_FUNCTION:
case MPI_IOCSTATUS_INVALID_SGL:
case MPI_IOCSTATUS_INTERNAL_ERROR:
case MPI_IOCSTATUS_INVALID_FIELD:
default:
/* XXX
* Some of the above may need to kick
* of a recovery action!!!!
*/
ccb->ccb_h.status = CAM_UNREC_HBA_ERROR;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
break;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
mpt_freeze_ccb(ccb);
}
return (TRUE);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
static void
mpt_action(struct cam_sim *sim, union ccb *ccb)
{
struct mpt_softc *mpt;
struct ccb_trans_settings *cts;
target_id_t tgt;
lun_id_t lun;
int raid_passthru;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("mpt_action\n"));
mpt = (struct mpt_softc *)cam_sim_softc(sim);
raid_passthru = (sim == mpt->phydisk_sim);
MPT_LOCK_ASSERT(mpt);
tgt = ccb->ccb_h.target_id;
lun = ccb->ccb_h.target_lun;
if (raid_passthru &&
ccb->ccb_h.func_code != XPT_PATH_INQ &&
ccb->ccb_h.func_code != XPT_RESET_BUS &&
ccb->ccb_h.func_code != XPT_RESET_DEV) {
CAMLOCK_2_MPTLOCK(mpt);
if (mpt_map_physdisk(mpt, ccb, &tgt) != 0) {
MPTLOCK_2_CAMLOCK(mpt);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_DEV_NOT_THERE);
xpt_done(ccb);
return;
}
MPTLOCK_2_CAMLOCK(mpt);
}
ccb->ccb_h.ccb_mpt_ptr = mpt;
switch (ccb->ccb_h.func_code) {
case XPT_SCSI_IO: /* Execute the requested I/O operation */
/*
* Do a couple of preliminary checks...
*/
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
if ((ccb->ccb_h.flags & CAM_CDB_PHYS) != 0) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
break;
}
}
/* Max supported CDB length is 16 bytes */
/* XXX Unless we implement the new 32byte message type */
if (ccb->csio.cdb_len >
sizeof (((PTR_MSG_SCSI_IO_REQUEST)0)->CDB)) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
break;
}
#ifdef MPT_TEST_MULTIPATH
if (mpt->failure_id == ccb->ccb_h.target_id) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_SEL_TIMEOUT);
break;
}
#endif
ccb->csio.scsi_status = SCSI_STATUS_OK;
mpt_start(sim, ccb);
return;
case XPT_RESET_BUS:
if (raid_passthru) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
}
case XPT_RESET_DEV:
if (ccb->ccb_h.func_code == XPT_RESET_BUS) {
if (bootverbose) {
xpt_print(ccb->ccb_h.path, "reset bus\n");
}
} else {
xpt_print(ccb->ccb_h.path, "reset device\n");
}
CAMLOCK_2_MPTLOCK(mpt);
(void) mpt_bus_reset(mpt, tgt, lun, FALSE);
MPTLOCK_2_CAMLOCK(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* mpt_bus_reset is always successful in that it
* will fall back to a hard reset should a bus
* reset attempt fail.
*/
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
case XPT_ABORT:
{
union ccb *accb = ccb->cab.abort_ccb;
CAMLOCK_2_MPTLOCK(mpt);
switch (accb->ccb_h.func_code) {
case XPT_ACCEPT_TARGET_IO:
case XPT_IMMED_NOTIFY:
ccb->ccb_h.status = mpt_abort_target_ccb(mpt, ccb);
break;
case XPT_CONT_TARGET_IO:
mpt_prt(mpt, "cannot abort active CTIOs yet\n");
ccb->ccb_h.status = CAM_UA_ABORT;
break;
case XPT_SCSI_IO:
ccb->ccb_h.status = CAM_UA_ABORT;
break;
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
MPTLOCK_2_CAMLOCK(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
break;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
#ifdef CAM_NEW_TRAN_CODE
#define IS_CURRENT_SETTINGS(c) ((c)->type == CTS_TYPE_CURRENT_SETTINGS)
#else
#define IS_CURRENT_SETTINGS(c) ((c)->flags & CCB_TRANS_CURRENT_SETTINGS)
#endif
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
#define DP_DISC_ENABLE 0x1
#define DP_DISC_DISABL 0x2
#define DP_DISC (DP_DISC_ENABLE|DP_DISC_DISABL)
#define DP_TQING_ENABLE 0x4
#define DP_TQING_DISABL 0x8
#define DP_TQING (DP_TQING_ENABLE|DP_TQING_DISABL)
#define DP_WIDE 0x10
#define DP_NARROW 0x20
#define DP_WIDTH (DP_WIDE|DP_NARROW)
#define DP_SYNC 0x40
case XPT_SET_TRAN_SETTINGS: /* Nexus Settings */
{
#ifdef CAM_NEW_TRAN_CODE
struct ccb_trans_settings_scsi *scsi;
struct ccb_trans_settings_spi *spi;
#endif
uint8_t dval;
u_int period;
u_int offset;
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
int i, j;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
cts = &ccb->cts;
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
if (mpt->is_fc || mpt->is_sas) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
}
#ifdef CAM_NEW_TRAN_CODE
scsi = &cts->proto_specific.scsi;
spi = &cts->xport_specific.spi;
/*
* We can be called just to valid transport and proto versions
*/
if (scsi->valid == 0 && spi->valid == 0) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
}
#endif
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
/*
* Skip attempting settings on RAID volume disks.
* Other devices on the bus get the normal treatment.
*/
if (mpt->phydisk_sim && raid_passthru == 0 &&
mpt_is_raid_volume(mpt, tgt) != 0) {
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"no transfer settings for RAID vols\n");
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
}
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
i = mpt->mpt_port_page2.PortSettings &
MPI_SCSIPORTPAGE2_PORT_MASK_NEGO_MASTER_SETTINGS;
j = mpt->mpt_port_page2.PortFlags &
MPI_SCSIPORTPAGE2_PORT_FLAGS_DV_MASK;
if (i == MPI_SCSIPORTPAGE2_PORT_ALL_MASTER_SETTINGS &&
j == MPI_SCSIPORTPAGE2_PORT_FLAGS_OFF_DV) {
mpt_lprt(mpt, MPT_PRT_ALWAYS,
"honoring BIOS transfer negotiations\n");
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
}
dval = 0;
period = 0;
offset = 0;
#ifndef CAM_NEW_TRAN_CODE
if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
dval |= (cts->flags & CCB_TRANS_DISC_ENB) ?
DP_DISC_ENABLE : DP_DISC_DISABL;
}
if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
dval |= (cts->flags & CCB_TRANS_TAG_ENB) ?
DP_TQING_ENABLE : DP_TQING_DISABL;
}
if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) {
dval |= cts->bus_width ? DP_WIDE : DP_NARROW;
}
if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) &&
(cts->valid & CCB_TRANS_SYNC_OFFSET_VALID)) {
dval |= DP_SYNC;
period = cts->sync_period;
offset = cts->sync_offset;
}
#else
if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
dval |= ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) ?
DP_DISC_ENABLE : DP_DISC_DISABL;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
dval |= ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) ?
DP_TQING_ENABLE : DP_TQING_DISABL;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) {
dval |= (spi->bus_width == MSG_EXT_WDTR_BUS_16_BIT) ?
DP_WIDE : DP_NARROW;
}
if (spi->valid & CTS_SPI_VALID_SYNC_OFFSET) {
dval |= DP_SYNC;
offset = spi->sync_offset;
} else {
PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr =
&mpt->mpt_dev_page1[tgt];
offset = ptr->RequestedParameters;
offset &= MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK;
offset >>= MPI_SCSIDEVPAGE1_RP_SHIFT_MAX_SYNC_OFFSET;
}
if (spi->valid & CTS_SPI_VALID_SYNC_RATE) {
dval |= DP_SYNC;
period = spi->sync_period;
} else {
PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr =
&mpt->mpt_dev_page1[tgt];
period = ptr->RequestedParameters;
period &= MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK;
period >>= MPI_SCSIDEVPAGE1_RP_SHIFT_MIN_SYNC_PERIOD;
}
#endif
CAMLOCK_2_MPTLOCK(mpt);
if (dval & DP_DISC_ENABLE) {
mpt->mpt_disc_enable |= (1 << tgt);
} else if (dval & DP_DISC_DISABL) {
mpt->mpt_disc_enable &= ~(1 << tgt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
if (dval & DP_TQING_ENABLE) {
mpt->mpt_tag_enable |= (1 << tgt);
} else if (dval & DP_TQING_DISABL) {
mpt->mpt_tag_enable &= ~(1 << tgt);
}
if (dval & DP_WIDTH) {
mpt_setwidth(mpt, tgt, 1);
}
if (dval & DP_SYNC) {
mpt_setsync(mpt, tgt, period, offset);
}
if (dval == 0) {
MPTLOCK_2_CAMLOCK(mpt);
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
break;
}
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"set [%d]: 0x%x period 0x%x offset %d\n",
tgt, dval, period, offset);
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
if (mpt_update_spi_config(mpt, tgt)) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
} else {
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
}
MPTLOCK_2_CAMLOCK(mpt);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
break;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
case XPT_GET_TRAN_SETTINGS:
{
#ifdef CAM_NEW_TRAN_CODE
struct ccb_trans_settings_scsi *scsi;
cts = &ccb->cts;
cts->protocol = PROTO_SCSI;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (mpt->is_fc) {
struct ccb_trans_settings_fc *fc =
&cts->xport_specific.fc;
cts->protocol_version = SCSI_REV_SPC;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
cts->transport = XPORT_FC;
cts->transport_version = 0;
fc->valid = CTS_FC_VALID_SPEED;
fc->bitrate = 100000;
} else if (mpt->is_sas) {
struct ccb_trans_settings_sas *sas =
&cts->xport_specific.sas;
cts->protocol_version = SCSI_REV_SPC2;
cts->transport = XPORT_SAS;
cts->transport_version = 0;
sas->valid = CTS_SAS_VALID_SPEED;
sas->bitrate = 300000;
} else {
cts->protocol_version = SCSI_REV_2;
cts->transport = XPORT_SPI;
cts->transport_version = 2;
if (mpt_get_spi_settings(mpt, cts) != 0) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
break;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
scsi = &cts->proto_specific.scsi;
scsi->valid = CTS_SCSI_VALID_TQ;
scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
#else
cts = &ccb->cts;
if (mpt->is_fc) {
cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB;
cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
} else if (mpt->is_sas) {
cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB;
cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
} else if (mpt_get_spi_settings(mpt, cts) != 0) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
break;
}
#endif
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
break;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
ccg = &ccb->ccg;
if (ccg->block_size == 0) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
break;
}
mpt_calc_geometry(ccg, /*extended*/1);
KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
break;
}
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->target_sprt = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = mpt->port_facts[0].MaxDevices - 1;
/*
* FC cards report MAX_DEVICES of 512, but
* the MSG_SCSI_IO_REQUEST target id field
* is only 8 bits. Until we fix the driver
* to support 'channels' for bus overflow,
* just limit it.
*/
if (cpi->max_target > 255) {
cpi->max_target = 255;
}
/*
* VMware ESX reports > 16 devices and then dies when we probe.
*/
if (mpt->is_spi && cpi->max_target > 15) {
cpi->max_target = 15;
}
if (mpt->is_spi)
cpi->max_lun = 7;
else
cpi->max_lun = MPT_MAX_LUNS;
cpi->initiator_id = mpt->mpt_ini_id;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
cpi->bus_id = cam_sim_bus(sim);
/*
* The base speed is the speed of the underlying connection.
*/
#ifdef CAM_NEW_TRAN_CODE
cpi->protocol = PROTO_SCSI;
if (mpt->is_fc) {
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
cpi->hba_misc = PIM_NOBUSRESET;
cpi->base_transfer_speed = 100000;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
cpi->hba_inquiry = PI_TAG_ABLE;
cpi->transport = XPORT_FC;
cpi->transport_version = 0;
cpi->protocol_version = SCSI_REV_SPC;
} else if (mpt->is_sas) {
cpi->hba_misc = PIM_NOBUSRESET;
cpi->base_transfer_speed = 300000;
cpi->hba_inquiry = PI_TAG_ABLE;
cpi->transport = XPORT_SAS;
cpi->transport_version = 0;
cpi->protocol_version = SCSI_REV_SPC2;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
} else {
cpi->hba_misc = PIM_SEQSCAN;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
cpi->base_transfer_speed = 3300;
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
cpi->transport = XPORT_SPI;
cpi->transport_version = 2;
cpi->protocol_version = SCSI_REV_2;
}
#else
if (mpt->is_fc) {
cpi->hba_misc = PIM_NOBUSRESET;
cpi->base_transfer_speed = 100000;
cpi->hba_inquiry = PI_TAG_ABLE;
} else if (mpt->is_sas) {
cpi->hba_misc = PIM_NOBUSRESET;
cpi->base_transfer_speed = 300000;
cpi->hba_inquiry = PI_TAG_ABLE;
} else {
cpi->hba_misc = PIM_SEQSCAN;
cpi->base_transfer_speed = 3300;
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
}
#endif
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
/*
* We give our fake RAID passhtru bus a width that is MaxVolumes
* wide and restrict it to one lun.
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
*/
if (raid_passthru) {
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
cpi->max_target = mpt->ioc_page2->MaxPhysDisks - 1;
cpi->initiator_id = cpi->max_target + 1;
cpi->max_lun = 0;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
if ((mpt->role & MPT_ROLE_INITIATOR) == 0) {
cpi->hba_misc |= PIM_NOINITIATOR;
}
if (mpt->is_fc && (mpt->role & MPT_ROLE_TARGET)) {
cpi->target_sprt =
PIT_PROCESSOR | PIT_DISCONNECT | PIT_TERM_IO;
} else {
cpi->target_sprt = 0;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "LSI", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_EN_LUN: /* Enable LUN as a target */
{
int result;
CAMLOCK_2_MPTLOCK(mpt);
if (ccb->cel.enable)
result = mpt_enable_lun(mpt,
ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
else
result = mpt_disable_lun(mpt,
ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
MPTLOCK_2_CAMLOCK(mpt);
if (result == 0) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
} else {
mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
}
break;
}
case XPT_NOTIFY_ACK: /* recycle notify ack */
case XPT_IMMED_NOTIFY: /* Add Immediate Notify Resource */
case XPT_ACCEPT_TARGET_IO: /* Add Accept Target IO Resource */
{
tgt_resource_t *trtp;
lun_id_t lun = ccb->ccb_h.target_lun;
ccb->ccb_h.sim_priv.entries[0].field = 0;
ccb->ccb_h.sim_priv.entries[1].ptr = mpt;
ccb->ccb_h.flags = 0;
if (lun == CAM_LUN_WILDCARD) {
if (ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
break;
}
trtp = &mpt->trt_wildcard;
} else if (lun >= MPT_MAX_LUNS) {
mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
break;
} else {
trtp = &mpt->trt[lun];
}
CAMLOCK_2_MPTLOCK(mpt);
if (ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) {
mpt_lprt(mpt, MPT_PRT_DEBUG1,
"Put FREE ATIO %p lun %d\n", ccb, lun);
STAILQ_INSERT_TAIL(&trtp->atios, &ccb->ccb_h,
sim_links.stqe);
} else if (ccb->ccb_h.func_code == XPT_IMMED_NOTIFY) {
mpt_lprt(mpt, MPT_PRT_DEBUG1,
"Put FREE INOT lun %d\n", lun);
STAILQ_INSERT_TAIL(&trtp->inots, &ccb->ccb_h,
sim_links.stqe);
} else {
mpt_lprt(mpt, MPT_PRT_ALWAYS, "Got Notify ACK\n");
}
mpt_set_ccb_status(ccb, CAM_REQ_INPROG);
MPTLOCK_2_CAMLOCK(mpt);
return;
}
case XPT_CONT_TARGET_IO:
CAMLOCK_2_MPTLOCK(mpt);
mpt_target_start_io(mpt, ccb);
MPTLOCK_2_CAMLOCK(mpt);
return;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
static int
mpt_get_spi_settings(struct mpt_softc *mpt, struct ccb_trans_settings *cts)
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
{
#ifdef CAM_NEW_TRAN_CODE
struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
#endif
target_id_t tgt;
uint32_t dval, pval, oval;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
int rv;
if (IS_CURRENT_SETTINGS(cts) == 0) {
tgt = cts->ccb_h.target_id;
} else if (xpt_path_sim(cts->ccb_h.path) == mpt->phydisk_sim) {
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
if (mpt_map_physdisk(mpt, (union ccb *)cts, &tgt)) {
return (-1);
}
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
} else {
tgt = cts->ccb_h.target_id;
}
/*
* We aren't looking at Port Page 2 BIOS settings here-
* sometimes these have been known to be bogus XXX.
*
* For user settings, we pick the max from port page 0
*
* For current settings we read the current settings out from
* device page 0 for that target.
*/
if (IS_CURRENT_SETTINGS(cts)) {
CONFIG_PAGE_SCSI_DEVICE_0 tmp;
dval = 0;
CAMLOCK_2_MPTLOCK(mpt);
tmp = mpt->mpt_dev_page0[tgt];
rv = mpt_read_cur_cfg_page(mpt, tgt, &tmp.Header,
sizeof(tmp), FALSE, 5000);
if (rv) {
MPTLOCK_2_CAMLOCK(mpt);
mpt_prt(mpt, "can't get tgt %d config page 0\n", tgt);
return (rv);
}
mpt2host_config_page_scsi_device_0(&tmp);
MPTLOCK_2_CAMLOCK(mpt);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"mpt_get_spi_settings[%d]: current NP %x Info %x\n", tgt,
tmp.NegotiatedParameters, tmp.Information);
dval |= (tmp.NegotiatedParameters & MPI_SCSIDEVPAGE0_NP_WIDE) ?
DP_WIDE : DP_NARROW;
dval |= (mpt->mpt_disc_enable & (1 << tgt)) ?
DP_DISC_ENABLE : DP_DISC_DISABL;
dval |= (mpt->mpt_tag_enable & (1 << tgt)) ?
DP_TQING_ENABLE : DP_TQING_DISABL;
oval = tmp.NegotiatedParameters;
oval &= MPI_SCSIDEVPAGE0_NP_NEG_SYNC_OFFSET_MASK;
oval >>= MPI_SCSIDEVPAGE0_NP_SHIFT_SYNC_OFFSET;
pval = tmp.NegotiatedParameters;
pval &= MPI_SCSIDEVPAGE0_NP_NEG_SYNC_PERIOD_MASK;
pval >>= MPI_SCSIDEVPAGE0_NP_SHIFT_SYNC_PERIOD;
mpt->mpt_dev_page0[tgt] = tmp;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
} else {
dval = DP_WIDE|DP_DISC_ENABLE|DP_TQING_ENABLE|DP_SYNC;
oval = mpt->mpt_port_page0.Capabilities;
oval = MPI_SCSIPORTPAGE0_CAP_GET_MAX_SYNC_OFFSET(oval);
pval = mpt->mpt_port_page0.Capabilities;
pval = MPI_SCSIPORTPAGE0_CAP_GET_MIN_SYNC_PERIOD(pval);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
#ifndef CAM_NEW_TRAN_CODE
cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
cts->valid = 0;
cts->sync_period = pval;
cts->sync_offset = oval;
cts->valid |= CCB_TRANS_SYNC_RATE_VALID;
cts->valid |= CCB_TRANS_SYNC_OFFSET_VALID;
cts->valid |= CCB_TRANS_BUS_WIDTH_VALID;
if (dval & DP_WIDE) {
cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
} else {
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
}
if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) {
cts->valid |= CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
if (dval & DP_DISC_ENABLE) {
cts->flags |= CCB_TRANS_DISC_ENB;
}
if (dval & DP_TQING_ENABLE) {
cts->flags |= CCB_TRANS_TAG_ENB;
}
}
#else
spi->valid = 0;
scsi->valid = 0;
spi->flags = 0;
scsi->flags = 0;
spi->sync_offset = oval;
spi->sync_period = pval;
spi->valid |= CTS_SPI_VALID_SYNC_OFFSET;
spi->valid |= CTS_SPI_VALID_SYNC_RATE;
spi->valid |= CTS_SPI_VALID_BUS_WIDTH;
if (dval & DP_WIDE) {
spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
} else {
spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
}
if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) {
scsi->valid = CTS_SCSI_VALID_TQ;
if (dval & DP_TQING_ENABLE) {
scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
}
spi->valid |= CTS_SPI_VALID_DISC;
if (dval & DP_DISC_ENABLE) {
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
}
}
#endif
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"mpt_get_spi_settings[%d]: %s flags 0x%x per 0x%x off=%d\n", tgt,
IS_CURRENT_SETTINGS(cts)? "ACTIVE" : "NVRAM ", dval, pval, oval);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
return (0);
}
static void
mpt_setwidth(struct mpt_softc *mpt, int tgt, int onoff)
{
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr;
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
ptr = &mpt->mpt_dev_page1[tgt];
if (onoff) {
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_WIDE;
} else {
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_WIDE;
}
}
static void
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt_setsync(struct mpt_softc *mpt, int tgt, int period, int offset)
{
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr;
+ Change some debug messages to MPT_PRT_NEGOTIATE level (so we can see the results of SPI negotiation w/o being overwhelmed with other crap). + For U320 devices, check against both Settings *and* DV flags before deciding whether we need to skip actual SPI settings for a device. + Go back to creating a 'physical disk' side of a raid/passthru bus that is limited to the number of maximum physical disks. Actually, this isn't probably *quite* right yet for one RAID volume, and if we ever end up with finding a device that supports more than one RAID volume (not likely), it probably won't quite be right either. The problem here is that the creating of this 'physical' passthru sim is just a cheap way to leverage off the CAM midlayer to do our negotiation for us on the subentities that make up a RAID volume. It almost causes more trouble than it is worth because we have to remember which side we're talking to in terms of forming commands and which target ids are real and so on. Bleah. + Skip trying to actually do SPI settings for the RAID volumes on the real side of the raid/passthru bus pair- this just confuses the issue. The underlying real physical devices will have the negotiation performed and the Raid volume will inherit the resultant settings. At the sime time, non-RAID devices can be on the same real bus, so *do* perform negotiations with them. + At the end of doing all of the settings twiddling, *ahem*, remember to go update the settings on the card itself (dunno how this got nuked). At this point, negotiations *seem* to be being done (again) correctly for both RAID volumes and their subentities. And they seem to be *mostly* now right for other non-RAID entities on the same bus (I ended up with 3 out of 8 other disks still at narror/async- haven't the slightest idea why yes). Finally, negotiations on a normal bus seem to work (again). There's still more work coming into this area, but we're in the final stretch.
2006-05-29 20:30:40 +00:00
ptr = &mpt->mpt_dev_page1[tgt];
ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK;
ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK;
ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_DT;
ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_QAS;
ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_IU;
if (period == 0) {
return;
}
ptr->RequestedParameters |=
period << MPI_SCSIDEVPAGE1_RP_SHIFT_MIN_SYNC_PERIOD;
ptr->RequestedParameters |=
offset << MPI_SCSIDEVPAGE1_RP_SHIFT_MAX_SYNC_OFFSET;
if (period < 0xa) {
ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_DT;
}
if (period < 0x9) {
ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_QAS;
ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_IU;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
}
static int
mpt_update_spi_config(struct mpt_softc *mpt, int tgt)
{
CONFIG_PAGE_SCSI_DEVICE_1 tmp;
int rv;
mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
"mpt_update_spi_config[%d].page1: Requested Params 0x%08x\n",
tgt, mpt->mpt_dev_page1[tgt].RequestedParameters);
tmp = mpt->mpt_dev_page1[tgt];
host2mpt_config_page_scsi_device_1(&tmp);
rv = mpt_write_cur_cfg_page(mpt, tgt,
&tmp.Header, sizeof(tmp), FALSE, 5000);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (rv) {
mpt_prt(mpt, "mpt_update_spi_config: write cur page failed\n");
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
return (-1);
}
return (0);
}
static void
mpt_calc_geometry(struct ccb_calc_geometry *ccg, int extended)
{
#if __FreeBSD_version >= 500000
cam_calc_geometry(ccg, extended);
#else
uint32_t size_mb;
uint32_t secs_per_cylinder;
if (ccg->block_size == 0) {
ccg->ccb_h.status = CAM_REQ_INVALID;
return;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
size_mb = ccg->volume_size / ((1024L * 1024L) / ccg->block_size);
if (size_mb > 1024 && extended) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccg->ccb_h.status = CAM_REQ_CMP;
#endif
}
/****************************** Timeout Recovery ******************************/
static int
mpt_spawn_recovery_thread(struct mpt_softc *mpt)
{
int error;
error = mpt_kthread_create(mpt_recovery_thread, mpt,
&mpt->recovery_thread, /*flags*/0,
/*altstack*/0, "mpt_recovery%d", mpt->unit);
return (error);
}
static void
mpt_terminate_recovery_thread(struct mpt_softc *mpt)
{
if (mpt->recovery_thread == NULL) {
return;
}
mpt->shutdwn_recovery = 1;
wakeup(mpt);
/*
* Sleep on a slightly different location
* for this interlock just for added safety.
*/
mpt_sleep(mpt, &mpt->recovery_thread, PUSER, "thtrm", 0);
}
static void
mpt_recovery_thread(void *arg)
{
struct mpt_softc *mpt;
mpt = (struct mpt_softc *)arg;
MPT_LOCK(mpt);
for (;;) {
if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) {
if (mpt->shutdwn_recovery == 0) {
mpt_sleep(mpt, mpt, PUSER, "idle", 0);
}
}
if (mpt->shutdwn_recovery != 0) {
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
break;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt_recover_commands(mpt);
}
mpt->recovery_thread = NULL;
wakeup(&mpt->recovery_thread);
MPT_UNLOCK(mpt);
mpt_kthread_exit(0);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
static int
mpt_scsi_send_tmf(struct mpt_softc *mpt, u_int type, u_int flags,
u_int channel, u_int target, u_int lun, u_int abort_ctx, int sleep_ok)
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
{
MSG_SCSI_TASK_MGMT *tmf_req;
int error;
/*
* Wait for any current TMF request to complete.
* We're only allowed to issue one TMF at a time.
*/
error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_FREE, REQ_STATE_FREE,
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
sleep_ok, MPT_TMF_MAX_TIMEOUT);
if (error != 0) {
mpt_reset(mpt, TRUE);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
return (ETIMEDOUT);
}
mpt_assign_serno(mpt, mpt->tmf_req);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt->tmf_req->state = REQ_STATE_ALLOCATED|REQ_STATE_QUEUED;
tmf_req = (MSG_SCSI_TASK_MGMT *)mpt->tmf_req->req_vbuf;
memset(tmf_req, 0, sizeof(*tmf_req));
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
tmf_req->TargetID = target;
tmf_req->Bus = channel;
tmf_req->Function = MPI_FUNCTION_SCSI_TASK_MGMT;
tmf_req->TaskType = type;
tmf_req->MsgFlags = flags;
tmf_req->MsgContext =
htole32(mpt->tmf_req->index | scsi_tmf_handler_id);
if (lun > MPT_MAX_LUNS) {
tmf_req->LUN[0] = 0x40 | ((lun >> 8) & 0x3f);
tmf_req->LUN[1] = lun & 0xff;
} else {
tmf_req->LUN[1] = lun;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
tmf_req->TaskMsgContext = abort_ctx;
mpt_lprt(mpt, MPT_PRT_DEBUG,
"Issuing TMF %p:%u with MsgContext of 0x%x\n", mpt->tmf_req,
mpt->tmf_req->serno, tmf_req->MsgContext);
if (mpt->verbose > MPT_PRT_DEBUG) {
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt_print_request(tmf_req);
}
KASSERT(mpt_req_on_pending_list(mpt, mpt->tmf_req) == 0,
("mpt_scsi_send_tmf: tmf_req already on pending list"));
TAILQ_INSERT_HEAD(&mpt->request_pending_list, mpt->tmf_req, links);
error = mpt_send_handshake_cmd(mpt, sizeof(*tmf_req), tmf_req);
if (error != MPT_OK) {
TAILQ_REMOVE(&mpt->request_pending_list, mpt->tmf_req, links);
mpt->tmf_req->state = REQ_STATE_FREE;
mpt_reset(mpt, TRUE);
}
return (error);
}
/*
* When a command times out, it is placed on the requeust_timeout_list
* and we wake our recovery thread. The MPT-Fusion architecture supports
* only a single TMF operation at a time, so we serially abort/bdr, etc,
* the timedout transactions. The next TMF is issued either by the
* completion handler of the current TMF waking our recovery thread,
* or the TMF timeout handler causing a hard reset sequence.
*/
static void
mpt_recover_commands(struct mpt_softc *mpt)
{
request_t *req;
union ccb *ccb;
int error;
if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) {
/*
* No work to do- leave.
*/
mpt_prt(mpt, "mpt_recover_commands: no requests.\n");
return;
}
/*
* Flush any commands whose completion coincides with their timeout.
*/
mpt_intr(mpt);
if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) {
/*
* The timedout commands have already
* completed. This typically means
* that either the timeout value was on
* the hairy edge of what the device
* requires or - more likely - interrupts
* are not happening.
*/
mpt_prt(mpt, "Timedout requests already complete. "
"Interrupts may not be functioning.\n");
mpt_enable_ints(mpt);
return;
}
/*
* We have no visibility into the current state of the
* controller, so attempt to abort the commands in the
* order they timed-out. For initiator commands, we
* depend on the reply handler pulling requests off
* the timeout list.
*/
while ((req = TAILQ_FIRST(&mpt->request_timeout_list)) != NULL) {
uint16_t status;
uint8_t response;
MSG_REQUEST_HEADER *hdrp = req->req_vbuf;
mpt_prt(mpt, "attempting to abort req %p:%u function %x\n",
req, req->serno, hdrp->Function);
ccb = req->ccb;
if (ccb == NULL) {
mpt_prt(mpt, "null ccb in timed out request. "
"Resetting Controller.\n");
mpt_reset(mpt, TRUE);
continue;
}
mpt_set_ccb_status(ccb, CAM_CMD_TIMEOUT);
/*
* Check to see if this is not an initiator command and
* deal with it differently if it is.
*/
switch (hdrp->Function) {
case MPI_FUNCTION_SCSI_IO_REQUEST:
case MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
break;
default:
/*
* XXX: FIX ME: need to abort target assists...
*/
mpt_prt(mpt, "just putting it back on the pend q\n");
TAILQ_REMOVE(&mpt->request_timeout_list, req, links);
TAILQ_INSERT_HEAD(&mpt->request_pending_list, req,
links);
continue;
}
error = mpt_scsi_send_tmf(mpt,
MPI_SCSITASKMGMT_TASKTYPE_ABORT_TASK,
0, 0, ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
htole32(req->index | scsi_io_handler_id), TRUE);
if (error != 0) {
/*
* mpt_scsi_send_tmf hard resets on failure, so no
* need to do so here. Our queue should be emptied
* by the hard reset.
*/
continue;
}
error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_DONE,
REQ_STATE_DONE, TRUE, 500);
status = le16toh(mpt->tmf_req->IOCStatus);
response = mpt->tmf_req->ResponseCode;
mpt->tmf_req->state = REQ_STATE_FREE;
if (error != 0) {
/*
* If we've errored out,, reset the controller.
*/
mpt_prt(mpt, "mpt_recover_commands: abort timed-out. "
"Resetting controller\n");
mpt_reset(mpt, TRUE);
continue;
}
if ((status & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
mpt_prt(mpt, "mpt_recover_commands: IOC Status 0x%x. "
"Resetting controller.\n", status);
mpt_reset(mpt, TRUE);
continue;
}
if (response != MPI_SCSITASKMGMT_RSP_TM_SUCCEEDED &&
response != MPI_SCSITASKMGMT_RSP_TM_COMPLETE) {
mpt_prt(mpt, "mpt_recover_commands: TMF Response 0x%x. "
"Resetting controller.\n", response);
mpt_reset(mpt, TRUE);
continue;
}
mpt_prt(mpt, "abort of req %p:%u completed\n", req, req->serno);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
/************************ Target Mode Support ****************************/
static void
mpt_fc_post_els(struct mpt_softc *mpt, request_t *req, int ioindex)
{
MSG_LINK_SERVICE_BUFFER_POST_REQUEST *fc;
PTR_SGE_TRANSACTION32 tep;
PTR_SGE_SIMPLE32 se;
bus_addr_t paddr;
uint32_t fl;
paddr = req->req_pbuf;
paddr += MPT_RQSL(mpt);
fc = req->req_vbuf;
memset(fc, 0, MPT_REQUEST_AREA);
fc->BufferCount = 1;
fc->Function = MPI_FUNCTION_FC_LINK_SRVC_BUF_POST;
fc->MsgContext = htole32(req->index | fc_els_handler_id);
/*
* Okay, set up ELS buffer pointers. ELS buffer pointers
* consist of a TE SGL element (with details length of zero)
* followe by a SIMPLE SGL element which holds the address
* of the buffer.
*/
tep = (PTR_SGE_TRANSACTION32) &fc->SGL;
tep->ContextSize = 4;
tep->Flags = 0;
tep->TransactionContext[0] = htole32(ioindex);
se = (PTR_SGE_SIMPLE32) &tep->TransactionDetails[0];
fl =
MPI_SGE_FLAGS_HOST_TO_IOC |
MPI_SGE_FLAGS_SIMPLE_ELEMENT |
MPI_SGE_FLAGS_LAST_ELEMENT |
MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
fl <<= MPI_SGE_FLAGS_SHIFT;
fl |= (MPT_NRFM(mpt) - MPT_RQSL(mpt));
se->FlagsLength = htole32(fl);
se->Address = htole32((uint32_t) paddr);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"add ELS index %d ioindex %d for %p:%u\n",
req->index, ioindex, req, req->serno);
KASSERT(((req->state & REQ_STATE_LOCKED) != 0),
("mpt_fc_post_els: request not locked"));
mpt_send_cmd(mpt, req);
}
static void
mpt_post_target_command(struct mpt_softc *mpt, request_t *req, int ioindex)
{
PTR_MSG_TARGET_CMD_BUFFER_POST_REQUEST fc;
PTR_CMD_BUFFER_DESCRIPTOR cb;
bus_addr_t paddr;
paddr = req->req_pbuf;
paddr += MPT_RQSL(mpt);
memset(req->req_vbuf, 0, MPT_REQUEST_AREA);
MPT_TGT_STATE(mpt, req)->state = TGT_STATE_LOADING;
fc = req->req_vbuf;
fc->BufferCount = 1;
fc->Function = MPI_FUNCTION_TARGET_CMD_BUFFER_POST;
fc->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);
cb = &fc->Buffer[0];
cb->IoIndex = htole16(ioindex);
cb->u.PhysicalAddress32 = htole32((U32) paddr);
mpt_check_doorbell(mpt);
mpt_send_cmd(mpt, req);
}
static int
mpt_add_els_buffers(struct mpt_softc *mpt)
{
int i;
if (mpt->is_fc == 0) {
return (TRUE);
}
if (mpt->els_cmds_allocated) {
return (TRUE);
}
mpt->els_cmd_ptrs = malloc(MPT_MAX_ELS * sizeof (request_t *),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (mpt->els_cmd_ptrs == NULL) {
return (FALSE);
}
/*
* Feed the chip some ELS buffer resources
*/
for (i = 0; i < MPT_MAX_ELS; i++) {
request_t *req = mpt_get_request(mpt, FALSE);
if (req == NULL) {
break;
}
req->state |= REQ_STATE_LOCKED;
mpt->els_cmd_ptrs[i] = req;
mpt_fc_post_els(mpt, req, i);
}
if (i == 0) {
mpt_prt(mpt, "unable to add ELS buffer resources\n");
free(mpt->els_cmd_ptrs, M_DEVBUF);
mpt->els_cmd_ptrs = NULL;
return (FALSE);
}
if (i != MPT_MAX_ELS) {
mpt_lprt(mpt, MPT_PRT_INFO,
"only added %d of %d ELS buffers\n", i, MPT_MAX_ELS);
}
mpt->els_cmds_allocated = i;
return(TRUE);
}
static int
mpt_add_target_commands(struct mpt_softc *mpt)
{
int i, max;
if (mpt->tgt_cmd_ptrs) {
return (TRUE);
}
max = MPT_MAX_REQUESTS(mpt) >> 1;
if (max > mpt->mpt_max_tgtcmds) {
max = mpt->mpt_max_tgtcmds;
}
mpt->tgt_cmd_ptrs =
malloc(max * sizeof (request_t *), M_DEVBUF, M_NOWAIT | M_ZERO);
if (mpt->tgt_cmd_ptrs == NULL) {
mpt_prt(mpt,
"mpt_add_target_commands: could not allocate cmd ptrs\n");
return (FALSE);
}
for (i = 0; i < max; i++) {
request_t *req;
req = mpt_get_request(mpt, FALSE);
if (req == NULL) {
break;
}
req->state |= REQ_STATE_LOCKED;
mpt->tgt_cmd_ptrs[i] = req;
mpt_post_target_command(mpt, req, i);
}
if (i == 0) {
mpt_lprt(mpt, MPT_PRT_ERROR, "could not add any target bufs\n");
free(mpt->tgt_cmd_ptrs, M_DEVBUF);
mpt->tgt_cmd_ptrs = NULL;
return (FALSE);
}
mpt->tgt_cmds_allocated = i;
if (i < max) {
mpt_lprt(mpt, MPT_PRT_INFO,
"added %d of %d target bufs\n", i, max);
}
return (i);
}
static int
mpt_enable_lun(struct mpt_softc *mpt, target_id_t tgt, lun_id_t lun)
{
if (tgt == CAM_TARGET_WILDCARD && lun == CAM_LUN_WILDCARD) {
mpt->twildcard = 1;
} else if (lun >= MPT_MAX_LUNS) {
return (EINVAL);
} else if (tgt != CAM_TARGET_WILDCARD && tgt != 0) {
return (EINVAL);
}
if (mpt->tenabled == 0) {
if (mpt->is_fc) {
(void) mpt_fc_reset_link(mpt, 0);
}
mpt->tenabled = 1;
}
if (lun == CAM_LUN_WILDCARD) {
mpt->trt_wildcard.enabled = 1;
} else {
mpt->trt[lun].enabled = 1;
}
return (0);
}
static int
mpt_disable_lun(struct mpt_softc *mpt, target_id_t tgt, lun_id_t lun)
{
int i;
if (tgt == CAM_TARGET_WILDCARD && lun == CAM_LUN_WILDCARD) {
mpt->twildcard = 0;
} else if (lun >= MPT_MAX_LUNS) {
return (EINVAL);
} else if (tgt != CAM_TARGET_WILDCARD && tgt != 0) {
return (EINVAL);
}
if (lun == CAM_LUN_WILDCARD) {
mpt->trt_wildcard.enabled = 0;
} else {
mpt->trt[lun].enabled = 0;
}
for (i = 0; i < MPT_MAX_LUNS; i++) {
if (mpt->trt[lun].enabled) {
break;
}
}
if (i == MPT_MAX_LUNS && mpt->twildcard == 0) {
if (mpt->is_fc) {
(void) mpt_fc_reset_link(mpt, 0);
}
mpt->tenabled = 0;
}
return (0);
}
/*
* Called with MPT lock held
*/
static void
mpt_target_start_io(struct mpt_softc *mpt, union ccb *ccb)
{
struct ccb_scsiio *csio = &ccb->csio;
request_t *cmd_req = MPT_TAG_2_REQ(mpt, csio->tag_id);
mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, cmd_req);
switch (tgt->state) {
case TGT_STATE_IN_CAM:
break;
case TGT_STATE_MOVING_DATA:
mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ);
xpt_freeze_simq(mpt->sim, 1);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
tgt->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
return;
default:
mpt_prt(mpt, "ccb %p flags 0x%x tag 0x%08x had bad request "
"starting I/O\n", ccb, csio->ccb_h.flags, csio->tag_id);
mpt_tgt_dump_req_state(mpt, cmd_req);
mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
return;
}
if (csio->dxfer_len) {
bus_dmamap_callback_t *cb;
PTR_MSG_TARGET_ASSIST_REQUEST ta;
request_t *req;
KASSERT((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE,
("dxfer_len %u but direction is NONE\n", csio->dxfer_len));
if ((req = mpt_get_request(mpt, FALSE)) == NULL) {
if (mpt->outofbeer == 0) {
mpt->outofbeer = 1;
xpt_freeze_simq(mpt->sim, 1);
mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n");
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ);
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
return;
}
ccb->ccb_h.status = CAM_SIM_QUEUED | CAM_REQ_INPROG;
if (sizeof (bus_addr_t) > 4) {
cb = mpt_execute_req_a64;
} else {
cb = mpt_execute_req;
}
req->ccb = ccb;
ccb->ccb_h.ccb_req_ptr = req;
/*
* Record the currently active ccb and the
* request for it in our target state area.
*/
tgt->ccb = ccb;
tgt->req = req;
memset(req->req_vbuf, 0, MPT_RQSL(mpt));
ta = req->req_vbuf;
if (mpt->is_sas) {
PTR_MPI_TARGET_SSP_CMD_BUFFER ssp =
cmd_req->req_vbuf;
ta->QueueTag = ssp->InitiatorTag;
} else if (mpt->is_spi) {
PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp =
cmd_req->req_vbuf;
ta->QueueTag = sp->Tag;
}
ta->Function = MPI_FUNCTION_TARGET_ASSIST;
ta->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);
ta->ReplyWord = htole32(tgt->reply_desc);
if (csio->ccb_h.target_lun > MPT_MAX_LUNS) {
ta->LUN[0] =
0x40 | ((csio->ccb_h.target_lun >> 8) & 0x3f);
ta->LUN[1] = csio->ccb_h.target_lun & 0xff;
} else {
ta->LUN[1] = csio->ccb_h.target_lun;
}
ta->RelativeOffset = tgt->bytes_xfered;
ta->DataLength = ccb->csio.dxfer_len;
if (ta->DataLength > tgt->resid) {
ta->DataLength = tgt->resid;
}
/*
* XXX Should be done after data transfer completes?
*/
tgt->resid -= csio->dxfer_len;
tgt->bytes_xfered += csio->dxfer_len;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
ta->TargetAssistFlags |=
TARGET_ASSIST_FLAGS_DATA_DIRECTION;
}
#ifdef WE_TRUST_AUTO_GOOD_STATUS
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) &&
csio->scsi_status == SCSI_STATUS_OK && tgt->resid == 0) {
ta->TargetAssistFlags |=
TARGET_ASSIST_FLAGS_AUTO_STATUS;
}
#endif
tgt->state = TGT_STATE_SETTING_UP_FOR_DATA;
mpt_lprt(mpt, MPT_PRT_DEBUG,
"DATA_CCB %p tag %x %u bytes %u resid flg %x req %p:%u "
"nxtstate=%d\n", csio, csio->tag_id, csio->dxfer_len,
tgt->resid, ccb->ccb_h.flags, req, req->serno, tgt->state);
MPTLOCK_2_CAMLOCK(mpt);
if ((ccb->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
if ((ccb->ccb_h.flags & CAM_DATA_PHYS) == 0) {
int error;
int s = splsoftvm();
error = bus_dmamap_load(mpt->buffer_dmat,
req->dmap, csio->data_ptr, csio->dxfer_len,
cb, req, 0);
splx(s);
if (error == EINPROGRESS) {
xpt_freeze_simq(mpt->sim, 1);
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
}
} else {
/*
* We have been given a pointer to single
* physical buffer.
*/
struct bus_dma_segment seg;
seg.ds_addr = (bus_addr_t)
(vm_offset_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
(*cb)(req, &seg, 1, 0);
}
} else {
/*
* We have been given a list of addresses.
* This case could be easily supported but they are not
* currently generated by the CAM subsystem so there
* is no point in wasting the time right now.
*/
struct bus_dma_segment *sgs;
if ((ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
(*cb)(req, NULL, 0, EFAULT);
} else {
/* Just use the segments provided */
sgs = (struct bus_dma_segment *)csio->data_ptr;
(*cb)(req, sgs, csio->sglist_cnt, 0);
}
}
CAMLOCK_2_MPTLOCK(mpt);
} else {
uint8_t *sp = NULL, sense[MPT_SENSE_SIZE];
/*
* XXX: I don't know why this seems to happen, but
* XXX: completing the CCB seems to make things happy.
* XXX: This seems to happen if the initiator requests
* XXX: enough data that we have to do multiple CTIOs.
*/
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) == 0) {
mpt_lprt(mpt, MPT_PRT_DEBUG,
"Meaningless STATUS CCB (%p): flags %x status %x "
"resid %d bytes_xfered %u\n", ccb, ccb->ccb_h.flags,
ccb->ccb_h.status, tgt->resid, tgt->bytes_xfered);
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
return;
}
if (ccb->ccb_h.flags & CAM_SEND_SENSE) {
sp = sense;
memcpy(sp, &csio->sense_data,
min(csio->sense_len, MPT_SENSE_SIZE));
}
mpt_scsi_tgt_status(mpt, ccb, cmd_req, csio->scsi_status, sp);
}
}
static void
mpt_scsi_tgt_local(struct mpt_softc *mpt, request_t *cmd_req,
uint32_t lun, int send, uint8_t *data, size_t length)
{
mpt_tgt_state_t *tgt;
PTR_MSG_TARGET_ASSIST_REQUEST ta;
SGE_SIMPLE32 *se;
uint32_t flags;
uint8_t *dptr;
bus_addr_t pptr;
request_t *req;
/*
* We enter with resid set to the data load for the command.
*/
tgt = MPT_TGT_STATE(mpt, cmd_req);
if (length == 0 || tgt->resid == 0) {
tgt->resid = 0;
mpt_scsi_tgt_status(mpt, NULL, cmd_req, 0, NULL);
return;
}
if ((req = mpt_get_request(mpt, FALSE)) == NULL) {
mpt_prt(mpt, "out of resources- dropping local response\n");
return;
}
tgt->is_local = 1;
memset(req->req_vbuf, 0, MPT_RQSL(mpt));
ta = req->req_vbuf;
if (mpt->is_sas) {
PTR_MPI_TARGET_SSP_CMD_BUFFER ssp = cmd_req->req_vbuf;
ta->QueueTag = ssp->InitiatorTag;
} else if (mpt->is_spi) {
PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp = cmd_req->req_vbuf;
ta->QueueTag = sp->Tag;
}
ta->Function = MPI_FUNCTION_TARGET_ASSIST;
ta->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);
ta->ReplyWord = htole32(tgt->reply_desc);
if (lun > MPT_MAX_LUNS) {
ta->LUN[0] = 0x40 | ((lun >> 8) & 0x3f);
ta->LUN[1] = lun & 0xff;
} else {
ta->LUN[1] = lun;
}
ta->RelativeOffset = 0;
ta->DataLength = length;
dptr = req->req_vbuf;
dptr += MPT_RQSL(mpt);
pptr = req->req_pbuf;
pptr += MPT_RQSL(mpt);
memcpy(dptr, data, min(length, MPT_RQSL(mpt)));
se = (SGE_SIMPLE32 *) &ta->SGL[0];
memset(se, 0,sizeof (*se));
flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
if (send) {
ta->TargetAssistFlags |= TARGET_ASSIST_FLAGS_DATA_DIRECTION;
flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
}
se->Address = pptr;
MPI_pSGE_SET_LENGTH(se, length);
flags |= MPI_SGE_FLAGS_LAST_ELEMENT;
flags |= MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_END_OF_BUFFER;
MPI_pSGE_SET_FLAGS(se, flags);
tgt->ccb = NULL;
tgt->req = req;
tgt->resid -= length;
tgt->bytes_xfered = length;
#ifdef WE_TRUST_AUTO_GOOD_STATUS
tgt->state = TGT_STATE_MOVING_DATA_AND_STATUS;
#else
tgt->state = TGT_STATE_MOVING_DATA;
#endif
mpt_send_cmd(mpt, req);
}
/*
* Abort queued up CCBs
*/
static cam_status
mpt_abort_target_ccb(struct mpt_softc *mpt, union ccb *ccb)
{
struct mpt_hdr_stailq *lp;
struct ccb_hdr *srch;
int found = 0;
union ccb *accb = ccb->cab.abort_ccb;
tgt_resource_t *trtp;
mpt_lprt(mpt, MPT_PRT_DEBUG, "aborting ccb %p\n", accb);
if (ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
trtp = &mpt->trt_wildcard;
} else {
trtp = &mpt->trt[ccb->ccb_h.target_lun];
}
if (accb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) {
lp = &trtp->atios;
} else if (accb->ccb_h.func_code == XPT_IMMED_NOTIFY) {
lp = &trtp->inots;
} else {
return (CAM_REQ_INVALID);
}
STAILQ_FOREACH(srch, lp, sim_links.stqe) {
if (srch == &accb->ccb_h) {
found = 1;
STAILQ_REMOVE(lp, srch, ccb_hdr, sim_links.stqe);
break;
}
}
if (found) {
accb->ccb_h.status = CAM_REQ_ABORTED;
xpt_done(accb);
return (CAM_REQ_CMP);
}
mpt_prt(mpt, "mpt_abort_tgt_ccb: CCB %p not found\n", ccb);
return (CAM_PATH_INVALID);
}
/*
* Ask the MPT to abort the current target command
*/
static int
mpt_abort_target_cmd(struct mpt_softc *mpt, request_t *cmd_req)
{
int error;
request_t *req;
PTR_MSG_TARGET_MODE_ABORT abtp;
req = mpt_get_request(mpt, FALSE);
if (req == NULL) {
return (-1);
}
abtp = req->req_vbuf;
memset(abtp, 0, sizeof (*abtp));
abtp->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);
abtp->AbortType = TARGET_MODE_ABORT_TYPE_EXACT_IO;
abtp->Function = MPI_FUNCTION_TARGET_MODE_ABORT;
abtp->ReplyWord = htole32(MPT_TGT_STATE(mpt, cmd_req)->reply_desc);
error = 0;
if (mpt->is_fc || mpt->is_sas) {
mpt_send_cmd(mpt, req);
} else {
error = mpt_send_handshake_cmd(mpt, sizeof(*req), req);
}
return (error);
}
/*
* WE_TRUST_AUTO_GOOD_STATUS- I've found that setting
* TARGET_STATUS_SEND_FLAGS_AUTO_GOOD_STATUS leads the
* FC929 to set bogus FC_RSP fields (nonzero residuals
* but w/o RESID fields set). This causes QLogic initiators
* to think maybe that a frame was lost.
*
* WE_CAN_USE_AUTO_REPOST- we can't use AUTO_REPOST because
* we use allocated requests to do TARGET_ASSIST and we
* need to know when to release them.
*/
static void
mpt_scsi_tgt_status(struct mpt_softc *mpt, union ccb *ccb, request_t *cmd_req,
uint8_t status, uint8_t const *sense_data)
{
uint8_t *cmd_vbuf;
mpt_tgt_state_t *tgt;
PTR_MSG_TARGET_STATUS_SEND_REQUEST tp;
request_t *req;
bus_addr_t paddr;
int resplen = 0;
uint32_t fl;
cmd_vbuf = cmd_req->req_vbuf;
cmd_vbuf += MPT_RQSL(mpt);
tgt = MPT_TGT_STATE(mpt, cmd_req);
if ((req = mpt_get_request(mpt, FALSE)) == NULL) {
if (mpt->outofbeer == 0) {
mpt->outofbeer = 1;
xpt_freeze_simq(mpt->sim, 1);
mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n");
}
if (ccb) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ);
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
} else {
mpt_prt(mpt,
"could not allocate status request- dropping\n");
}
return;
}
req->ccb = ccb;
if (ccb) {
ccb->ccb_h.ccb_mpt_ptr = mpt;
ccb->ccb_h.ccb_req_ptr = req;
}
/*
* Record the currently active ccb, if any, and the
* request for it in our target state area.
*/
tgt->ccb = ccb;
tgt->req = req;
tgt->state = TGT_STATE_SENDING_STATUS;
tp = req->req_vbuf;
paddr = req->req_pbuf;
paddr += MPT_RQSL(mpt);
memset(tp, 0, sizeof (*tp));
tp->Function = MPI_FUNCTION_TARGET_STATUS_SEND;
if (mpt->is_fc) {
PTR_MPI_TARGET_FCP_CMD_BUFFER fc =
(PTR_MPI_TARGET_FCP_CMD_BUFFER) cmd_vbuf;
uint8_t *sts_vbuf;
uint32_t *rsp;
sts_vbuf = req->req_vbuf;
sts_vbuf += MPT_RQSL(mpt);
rsp = (uint32_t *) sts_vbuf;
memcpy(tp->LUN, fc->FcpLun, sizeof (tp->LUN));
/*
* The MPI_TARGET_FCP_RSP_BUFFER define is unfortunate.
* It has to be big-endian in memory and is organized
* in 32 bit words, which are much easier to deal with
* as words which are swizzled as needed.
*
* All we're filling here is the FC_RSP payload.
* We may just have the chip synthesize it if
* we have no residual and an OK status.
*
*/
memset(rsp, 0, sizeof (MPI_TARGET_FCP_RSP_BUFFER));
rsp[2] = status;
if (tgt->resid) {
rsp[2] |= 0x800; /* XXXX NEED MNEMONIC!!!! */
rsp[3] = htobe32(tgt->resid);
#ifdef WE_TRUST_AUTO_GOOD_STATUS
resplen = sizeof (MPI_TARGET_FCP_RSP_BUFFER);
#endif
}
if (status == SCSI_STATUS_CHECK_COND) {
int i;
rsp[2] |= 0x200; /* XXXX NEED MNEMONIC!!!! */
rsp[4] = htobe32(MPT_SENSE_SIZE);
if (sense_data) {
memcpy(&rsp[8], sense_data, MPT_SENSE_SIZE);
} else {
mpt_prt(mpt, "mpt_scsi_tgt_status: CHECK CONDI"
"TION but no sense data?\n");
memset(&rsp, 0, MPT_SENSE_SIZE);
}
for (i = 8; i < (8 + (MPT_SENSE_SIZE >> 2)); i++) {
rsp[i] = htobe32(rsp[i]);
}
#ifdef WE_TRUST_AUTO_GOOD_STATUS
resplen = sizeof (MPI_TARGET_FCP_RSP_BUFFER);
#endif
}
#ifndef WE_TRUST_AUTO_GOOD_STATUS
resplen = sizeof (MPI_TARGET_FCP_RSP_BUFFER);
#endif
rsp[2] = htobe32(rsp[2]);
} else if (mpt->is_sas) {
PTR_MPI_TARGET_SSP_CMD_BUFFER ssp =
(PTR_MPI_TARGET_SSP_CMD_BUFFER) cmd_vbuf;
memcpy(tp->LUN, ssp->LogicalUnitNumber, sizeof (tp->LUN));
} else {
PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp =
(PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER) cmd_vbuf;
tp->StatusCode = status;
tp->QueueTag = htole16(sp->Tag);
memcpy(tp->LUN, sp->LogicalUnitNumber, sizeof (tp->LUN));
}
tp->ReplyWord = htole32(tgt->reply_desc);
tp->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);
#ifdef WE_CAN_USE_AUTO_REPOST
tp->MsgFlags = TARGET_STATUS_SEND_FLAGS_REPOST_CMD_BUFFER;
#endif
if (status == SCSI_STATUS_OK && resplen == 0) {
tp->MsgFlags |= TARGET_STATUS_SEND_FLAGS_AUTO_GOOD_STATUS;
} else {
tp->StatusDataSGE.u.Address32 = htole32((uint32_t) paddr);
fl =
MPI_SGE_FLAGS_HOST_TO_IOC |
MPI_SGE_FLAGS_SIMPLE_ELEMENT |
MPI_SGE_FLAGS_LAST_ELEMENT |
MPI_SGE_FLAGS_END_OF_LIST |
MPI_SGE_FLAGS_END_OF_BUFFER;
fl <<= MPI_SGE_FLAGS_SHIFT;
fl |= resplen;
tp->StatusDataSGE.FlagsLength = htole32(fl);
}
mpt_lprt(mpt, MPT_PRT_DEBUG,
"STATUS_CCB %p (wit%s sense) tag %x req %p:%u resid %u\n",
ccb, sense_data?"h" : "hout", ccb? ccb->csio.tag_id : -1, req,
req->serno, tgt->resid);
if (ccb) {
ccb->ccb_h.status = CAM_SIM_QUEUED | CAM_REQ_INPROG;
mpt_req_timeout(req, 60 * hz, mpt_timeout, ccb);
}
mpt_send_cmd(mpt, req);
}
static void
mpt_scsi_tgt_tsk_mgmt(struct mpt_softc *mpt, request_t *req, mpt_task_mgmt_t fc,
tgt_resource_t *trtp, int init_id)
{
struct ccb_immed_notify *inot;
mpt_tgt_state_t *tgt;
tgt = MPT_TGT_STATE(mpt, req);
inot = (struct ccb_immed_notify *) STAILQ_FIRST(&trtp->inots);
if (inot == NULL) {
mpt_lprt(mpt, MPT_PRT_WARN, "no INOTSs- sending back BSY\n");
mpt_scsi_tgt_status(mpt, NULL, req, SCSI_STATUS_BUSY, NULL);
return;
}
STAILQ_REMOVE_HEAD(&trtp->inots, sim_links.stqe);
mpt_lprt(mpt, MPT_PRT_DEBUG1,
"Get FREE INOT %p lun %d\n", inot, inot->ccb_h.target_lun);
memset(&inot->sense_data, 0, sizeof (inot->sense_data));
inot->sense_len = 0;
memset(inot->message_args, 0, sizeof (inot->message_args));
inot->initiator_id = init_id; /* XXX */
/*
* This is a somewhat grotesque attempt to map from task management
* to old style SCSI messages. God help us all.
*/
switch (fc) {
case MPT_ABORT_TASK_SET:
inot->message_args[0] = MSG_ABORT_TAG;
break;
case MPT_CLEAR_TASK_SET:
inot->message_args[0] = MSG_CLEAR_TASK_SET;
break;
case MPT_TARGET_RESET:
inot->message_args[0] = MSG_TARGET_RESET;
break;
case MPT_CLEAR_ACA:
inot->message_args[0] = MSG_CLEAR_ACA;
break;
case MPT_TERMINATE_TASK:
inot->message_args[0] = MSG_ABORT_TAG;
break;
default:
inot->message_args[0] = MSG_NOOP;
break;
}
tgt->ccb = (union ccb *) inot;
inot->ccb_h.status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
MPTLOCK_2_CAMLOCK(mpt);
xpt_done((union ccb *)inot);
CAMLOCK_2_MPTLOCK(mpt);
}
static void
mpt_scsi_tgt_atio(struct mpt_softc *mpt, request_t *req, uint32_t reply_desc)
{
static uint8_t null_iqd[SHORT_INQUIRY_LENGTH] = {
0x7f, 0x00, 0x02, 0x02, 0x20, 0x00, 0x00, 0x32,
'F', 'R', 'E', 'E', 'B', 'S', 'D', ' ',
'L', 'S', 'I', '-', 'L', 'O', 'G', 'I',
'C', ' ', 'N', 'U', 'L', 'D', 'E', 'V',
'0', '0', '0', '1'
};
struct ccb_accept_tio *atiop;
lun_id_t lun;
int tag_action = 0;
mpt_tgt_state_t *tgt;
tgt_resource_t *trtp = NULL;
U8 *lunptr;
U8 *vbuf;
U16 itag;
U16 ioindex;
mpt_task_mgmt_t fct = MPT_NIL_TMT_VALUE;
uint8_t *cdbp;
/*
* First, DMA sync the received command-
* which is in the *request* * phys area.
*
* XXX: We could optimize this for a range
*/
bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
BUS_DMASYNC_POSTREAD);
/*
* Stash info for the current command where we can get at it later.
*/
vbuf = req->req_vbuf;
vbuf += MPT_RQSL(mpt);
/*
* Get our state pointer set up.
*/
tgt = MPT_TGT_STATE(mpt, req);
if (tgt->state != TGT_STATE_LOADED) {
mpt_tgt_dump_req_state(mpt, req);
panic("bad target state in mpt_scsi_tgt_atio");
}
memset(tgt, 0, sizeof (mpt_tgt_state_t));
tgt->state = TGT_STATE_IN_CAM;
tgt->reply_desc = reply_desc;
ioindex = GET_IO_INDEX(reply_desc);
if (mpt->verbose >= MPT_PRT_DEBUG) {
mpt_dump_data(mpt, "mpt_scsi_tgt_atio response", vbuf,
max(sizeof (MPI_TARGET_FCP_CMD_BUFFER),
max(sizeof (MPI_TARGET_SSP_CMD_BUFFER),
sizeof (MPI_TARGET_SCSI_SPI_CMD_BUFFER))));
}
if (mpt->is_fc) {
PTR_MPI_TARGET_FCP_CMD_BUFFER fc;
fc = (PTR_MPI_TARGET_FCP_CMD_BUFFER) vbuf;
if (fc->FcpCntl[2]) {
/*
* Task Management Request
*/
switch (fc->FcpCntl[2]) {
case 0x2:
fct = MPT_ABORT_TASK_SET;
break;
case 0x4:
fct = MPT_CLEAR_TASK_SET;
break;
case 0x20:
fct = MPT_TARGET_RESET;
break;
case 0x40:
fct = MPT_CLEAR_ACA;
break;
case 0x80:
fct = MPT_TERMINATE_TASK;
break;
default:
mpt_prt(mpt, "CORRUPTED TASK MGMT BITS: 0x%x\n",
fc->FcpCntl[2]);
mpt_scsi_tgt_status(mpt, 0, req,
SCSI_STATUS_OK, 0);
return;
}
} else {
switch (fc->FcpCntl[1]) {
case 0:
tag_action = MSG_SIMPLE_Q_TAG;
break;
case 1:
tag_action = MSG_HEAD_OF_Q_TAG;
break;
case 2:
tag_action = MSG_ORDERED_Q_TAG;
break;
default:
/*
* Bah. Ignore Untagged Queing and ACA
*/
tag_action = MSG_SIMPLE_Q_TAG;
break;
}
}
tgt->resid = be32toh(fc->FcpDl);
cdbp = fc->FcpCdb;
lunptr = fc->FcpLun;
itag = be16toh(fc->OptionalOxid);
} else if (mpt->is_sas) {
PTR_MPI_TARGET_SSP_CMD_BUFFER ssp;
ssp = (PTR_MPI_TARGET_SSP_CMD_BUFFER) vbuf;
cdbp = ssp->CDB;
lunptr = ssp->LogicalUnitNumber;
itag = ssp->InitiatorTag;
} else {
PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp;
sp = (PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER) vbuf;
cdbp = sp->CDB;
lunptr = sp->LogicalUnitNumber;
itag = sp->Tag;
}
/*
* Generate a simple lun
*/
switch (lunptr[0] & 0xc0) {
case 0x40:
lun = ((lunptr[0] & 0x3f) << 8) | lunptr[1];
break;
case 0:
lun = lunptr[1];
break;
default:
mpt_lprt(mpt, MPT_PRT_ERROR, "cannot handle this type lun\n");
lun = 0xffff;
break;
}
/*
* Deal with non-enabled or bad luns here.
*/
if (lun >= MPT_MAX_LUNS || mpt->tenabled == 0 ||
mpt->trt[lun].enabled == 0) {
if (mpt->twildcard) {
trtp = &mpt->trt_wildcard;
} else if (fct == MPT_NIL_TMT_VALUE) {
/*
* In this case, we haven't got an upstream listener
* for either a specific lun or wildcard luns. We
* have to make some sensible response. For regular
* inquiry, just return some NOT HERE inquiry data.
* For VPD inquiry, report illegal field in cdb.
* For REQUEST SENSE, just return NO SENSE data.
* REPORT LUNS gets illegal command.
* All other commands get 'no such device'.
*/
uint8_t *sp, cond, buf[MPT_SENSE_SIZE];
size_t len;
memset(buf, 0, MPT_SENSE_SIZE);
cond = SCSI_STATUS_CHECK_COND;
buf[0] = 0xf0;
buf[2] = 0x5;
buf[7] = 0x8;
sp = buf;
tgt->tag_id = MPT_MAKE_TAGID(mpt, req, ioindex);
switch (cdbp[0]) {
case INQUIRY:
{
if (cdbp[1] != 0) {
buf[12] = 0x26;
buf[13] = 0x01;
break;
}
len = min(tgt->resid, cdbp[4]);
len = min(len, sizeof (null_iqd));
mpt_lprt(mpt, MPT_PRT_DEBUG,
"local inquiry %ld bytes\n", (long) len);
mpt_scsi_tgt_local(mpt, req, lun, 1,
null_iqd, len);
return;
}
case REQUEST_SENSE:
{
buf[2] = 0x0;
len = min(tgt->resid, cdbp[4]);
len = min(len, sizeof (buf));
mpt_lprt(mpt, MPT_PRT_DEBUG,
"local reqsense %ld bytes\n", (long) len);
mpt_scsi_tgt_local(mpt, req, lun, 1,
buf, len);
return;
}
case REPORT_LUNS:
mpt_lprt(mpt, MPT_PRT_DEBUG, "REPORT LUNS\n");
buf[12] = 0x26;
return;
default:
mpt_lprt(mpt, MPT_PRT_DEBUG,
"CMD 0x%x to unmanaged lun %u\n",
cdbp[0], lun);
buf[12] = 0x25;
break;
}
mpt_scsi_tgt_status(mpt, NULL, req, cond, sp);
return;
}
/* otherwise, leave trtp NULL */
} else {
trtp = &mpt->trt[lun];
}
/*
* Deal with any task management
*/
if (fct != MPT_NIL_TMT_VALUE) {
if (trtp == NULL) {
mpt_prt(mpt, "task mgmt function %x but no listener\n",
fct);
mpt_scsi_tgt_status(mpt, 0, req,
SCSI_STATUS_OK, 0);
} else {
mpt_scsi_tgt_tsk_mgmt(mpt, req, fct, trtp,
GET_INITIATOR_INDEX(reply_desc));
}
return;
}
atiop = (struct ccb_accept_tio *) STAILQ_FIRST(&trtp->atios);
if (atiop == NULL) {
mpt_lprt(mpt, MPT_PRT_WARN,
"no ATIOs for lun %u- sending back %s\n", lun,
mpt->tenabled? "QUEUE FULL" : "BUSY");
mpt_scsi_tgt_status(mpt, NULL, req,
mpt->tenabled? SCSI_STATUS_QUEUE_FULL : SCSI_STATUS_BUSY,
NULL);
return;
}
STAILQ_REMOVE_HEAD(&trtp->atios, sim_links.stqe);
mpt_lprt(mpt, MPT_PRT_DEBUG1,
"Get FREE ATIO %p lun %d\n", atiop, atiop->ccb_h.target_lun);
atiop->ccb_h.ccb_mpt_ptr = mpt;
atiop->ccb_h.status = CAM_CDB_RECVD;
atiop->ccb_h.target_lun = lun;
atiop->sense_len = 0;
atiop->init_id = GET_INITIATOR_INDEX(reply_desc);
atiop->cdb_len = mpt_cdblen(cdbp[0], 16);
memcpy(atiop->cdb_io.cdb_bytes, cdbp, atiop->cdb_len);
/*
* The tag we construct here allows us to find the
* original request that the command came in with.
*
* This way we don't have to depend on anything but the
* tag to find things when CCBs show back up from CAM.
*/
atiop->tag_id = MPT_MAKE_TAGID(mpt, req, ioindex);
tgt->tag_id = atiop->tag_id;
if (tag_action) {
atiop->tag_action = tag_action;
atiop->ccb_h.flags = CAM_TAG_ACTION_VALID;
}
if (mpt->verbose >= MPT_PRT_DEBUG) {
int i;
mpt_prt(mpt, "START_CCB %p for lun %u CDB=<", atiop,
atiop->ccb_h.target_lun);
for (i = 0; i < atiop->cdb_len; i++) {
mpt_prtc(mpt, "%02x%c", cdbp[i] & 0xff,
(i == (atiop->cdb_len - 1))? '>' : ' ');
}
mpt_prtc(mpt, " itag %x tag %x rdesc %x dl=%u\n",
itag, atiop->tag_id, tgt->reply_desc, tgt->resid);
}
MPTLOCK_2_CAMLOCK(mpt);
xpt_done((union ccb *)atiop);
CAMLOCK_2_MPTLOCK(mpt);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
static void
mpt_tgt_dump_tgt_state(struct mpt_softc *mpt, request_t *req)
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
{
mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, req);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt_prt(mpt, "req %p:%u tgt:rdesc 0x%x resid %u xfrd %u ccb %p treq %p "
"nx %d tag 0x%08x state=%d\n", req, req->serno, tgt->reply_desc,
tgt->resid, tgt->bytes_xfered, tgt->ccb, tgt->req, tgt->nxfers,
tgt->tag_id, tgt->state);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
static void
mpt_tgt_dump_req_state(struct mpt_softc *mpt, request_t *req)
{
mpt_prt(mpt, "req %p:%u index %u (%x) state %x\n", req, req->serno,
req->index, req->index, req->state);
mpt_tgt_dump_tgt_state(mpt, req);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
static int
mpt_scsi_tgt_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
int dbg;
union ccb *ccb;
U16 status;
if (reply_frame == NULL) {
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Figure out what the state of the command is.
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, req);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
#ifdef INVARIANTS
mpt_req_spcl(mpt, req, "turbo scsi_tgt_reply", __LINE__);
if (tgt->req) {
mpt_req_not_spcl(mpt, tgt->req,
"turbo scsi_tgt_reply associated req", __LINE__);
}
#endif
switch(tgt->state) {
case TGT_STATE_LOADED:
/*
* This is a new command starting.
*/
mpt_scsi_tgt_atio(mpt, req, reply_desc);
break;
case TGT_STATE_MOVING_DATA:
{
uint8_t *sp = NULL, sense[MPT_SENSE_SIZE];
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
ccb = tgt->ccb;
if (tgt->req == NULL) {
panic("mpt: turbo target reply with null "
"associated request moving data");
/* NOTREACHED */
}
if (ccb == NULL) {
if (tgt->is_local == 0) {
panic("mpt: turbo target reply with "
"null associated ccb moving data");
/* NOTREACHED */
}
mpt_lprt(mpt, MPT_PRT_DEBUG,
"TARGET_ASSIST local done\n");
TAILQ_REMOVE(&mpt->request_pending_list,
tgt->req, links);
mpt_free_request(mpt, tgt->req);
tgt->req = NULL;
mpt_scsi_tgt_status(mpt, NULL, req,
0, NULL);
return (TRUE);
}
tgt->ccb = NULL;
tgt->nxfers++;
mpt_req_untimeout(req, mpt_timeout, ccb);
mpt_lprt(mpt, MPT_PRT_DEBUG,
"TARGET_ASSIST %p (req %p:%u) done tag 0x%x\n",
ccb, tgt->req, tgt->req->serno, ccb->csio.tag_id);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* Free the Target Assist Request
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
KASSERT(tgt->req->ccb == ccb,
("tgt->req %p:%u tgt->req->ccb %p", tgt->req,
tgt->req->serno, tgt->req->ccb));
TAILQ_REMOVE(&mpt->request_pending_list,
tgt->req, links);
mpt_free_request(mpt, tgt->req);
tgt->req = NULL;
/*
* Do we need to send status now? That is, are
* we done with all our data transfers?
*/
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) == 0) {
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
KASSERT(ccb->ccb_h.status,
("zero ccb sts at %d\n", __LINE__));
tgt->state = TGT_STATE_IN_CAM;
if (mpt->outofbeer) {
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
mpt->outofbeer = 0;
mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n");
}
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
break;
}
/*
* Otherwise, send status (and sense)
*/
if (ccb->ccb_h.flags & CAM_SEND_SENSE) {
sp = sense;
memcpy(sp, &ccb->csio.sense_data,
min(ccb->csio.sense_len, MPT_SENSE_SIZE));
}
mpt_scsi_tgt_status(mpt, ccb, req,
ccb->csio.scsi_status, sp);
break;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
case TGT_STATE_SENDING_STATUS:
case TGT_STATE_MOVING_DATA_AND_STATUS:
{
int ioindex;
ccb = tgt->ccb;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
if (tgt->req == NULL) {
panic("mpt: turbo target reply with null "
"associated request sending status");
/* NOTREACHED */
}
if (ccb) {
tgt->ccb = NULL;
if (tgt->state ==
TGT_STATE_MOVING_DATA_AND_STATUS) {
tgt->nxfers++;
}
mpt_req_untimeout(req, mpt_timeout, ccb);
if (ccb->ccb_h.flags & CAM_SEND_SENSE) {
ccb->ccb_h.status |= CAM_SENT_SENSE;
}
mpt_lprt(mpt, MPT_PRT_DEBUG,
"TARGET_STATUS tag %x sts %x flgs %x req "
"%p\n", ccb->csio.tag_id, ccb->ccb_h.status,
ccb->ccb_h.flags, tgt->req);
/*
* Free the Target Send Status Request
*/
KASSERT(tgt->req->ccb == ccb,
("tgt->req %p:%u tgt->req->ccb %p",
tgt->req, tgt->req->serno, tgt->req->ccb));
/*
* Notify CAM that we're done
*/
mpt_set_ccb_status(ccb, CAM_REQ_CMP);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
KASSERT(ccb->ccb_h.status,
("ZERO ccb sts at %d\n", __LINE__));
tgt->ccb = NULL;
} else {
mpt_lprt(mpt, MPT_PRT_DEBUG,
"TARGET_STATUS non-CAM for req %p:%u\n",
tgt->req, tgt->req->serno);
}
TAILQ_REMOVE(&mpt->request_pending_list,
tgt->req, links);
mpt_free_request(mpt, tgt->req);
tgt->req = NULL;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* And re-post the Command Buffer.
* This will reset the state.
*/
ioindex = GET_IO_INDEX(reply_desc);
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
tgt->is_local = 0;
mpt_post_target_command(mpt, req, ioindex);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
/*
* And post a done for anyone who cares
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
*/
if (ccb) {
if (mpt->outofbeer) {
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
mpt->outofbeer = 0;
mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n");
}
MPTLOCK_2_CAMLOCK(mpt);
xpt_done(ccb);
CAMLOCK_2_MPTLOCK(mpt);
}
break;
}
case TGT_STATE_NIL: /* XXX This Never Happens XXX */
tgt->state = TGT_STATE_LOADED;
break;
default:
mpt_prt(mpt, "Unknown Target State 0x%x in Context "
"Reply Function\n", tgt->state);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
return (TRUE);
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
status = le16toh(reply_frame->IOCStatus);
if (status != MPI_IOCSTATUS_SUCCESS) {
dbg = MPT_PRT_ERROR;
} else {
dbg = MPT_PRT_DEBUG1;
}
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
mpt_lprt(mpt, dbg,
"SCSI_TGT REPLY: req=%p:%u reply=%p func=%x IOCstatus 0x%x\n",
req, req->serno, reply_frame, reply_frame->Function, status);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
switch (reply_frame->Function) {
case MPI_FUNCTION_TARGET_CMD_BUFFER_POST:
{
mpt_tgt_state_t *tgt;
#ifdef INVARIANTS
mpt_req_spcl(mpt, req, "tgt reply BUFFER POST", __LINE__);
#endif
if (status != MPI_IOCSTATUS_SUCCESS) {
/*
* XXX What to do?
*/
break;
}
tgt = MPT_TGT_STATE(mpt, req);
KASSERT(tgt->state == TGT_STATE_LOADING,
("bad state 0x%x on reply to buffer post\n", tgt->state));
mpt_assign_serno(mpt, req);
tgt->state = TGT_STATE_LOADED;
break;
}
case MPI_FUNCTION_TARGET_ASSIST:
#ifdef INVARIANTS
mpt_req_not_spcl(mpt, req, "tgt reply TARGET ASSIST", __LINE__);
#endif
mpt_prt(mpt, "target assist completion\n");
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
mpt_free_request(mpt, req);
break;
case MPI_FUNCTION_TARGET_STATUS_SEND:
#ifdef INVARIANTS
mpt_req_not_spcl(mpt, req, "tgt reply STATUS SEND", __LINE__);
#endif
mpt_prt(mpt, "status send completion\n");
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
mpt_free_request(mpt, req);
break;
case MPI_FUNCTION_TARGET_MODE_ABORT:
{
PTR_MSG_TARGET_MODE_ABORT_REPLY abtrp =
(PTR_MSG_TARGET_MODE_ABORT_REPLY) reply_frame;
PTR_MSG_TARGET_MODE_ABORT abtp =
(PTR_MSG_TARGET_MODE_ABORT) req->req_vbuf;
uint32_t cc = GET_IO_INDEX(le32toh(abtp->ReplyWord));
#ifdef INVARIANTS
mpt_req_not_spcl(mpt, req, "tgt reply TMODE ABORT", __LINE__);
#endif
mpt_prt(mpt, "ABORT RX_ID 0x%x Complete; status 0x%x cnt %u\n",
cc, le16toh(abtrp->IOCStatus), le32toh(abtrp->AbortCount));
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
mpt_free_request(mpt, req);
break;
}
default:
mpt_prt(mpt, "Unknown Target Address Reply Function code: "
"0x%x\n", reply_frame->Function);
break;
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}
return (TRUE);
Massive overhaul of MPT Fusion driver: o Add timeout error recovery (from a thread context to avoid the deferral of other critical interrupts). o Properly recover commands across controller reset events. o Update the driver to handle events and status codes that have been added to the MPI spec since the driver was originally written. o Make the driver more modular to improve maintainability and support dynamic "personality" registration (e.g. SCSI Initiator, RAID, SAS, FC, etc). o Shorten and simplify the common I/O path to improve driver performance. o Add RAID volume and RAID member state/settings reporting. o Add periodic volume resynchronization status reporting. o Add support for sysctl tunable resync rate, member write cache enable, and volume transaction queue depth. Sponsored by ---------------- Avid Technologies Inc: SCSI error recovery, driver re-organization, update of MPI library headers, portions of dynamic personality registration, and misc bug fixes. Wheel Open Technologies: RAID event notification, RAID member pass-thru support, firmware upload/download support, enhanced RAID resync speed, portions of dynamic personality registration, and misc bug fixes. Detailed Changes ================ mpt.c mpt_cam.c mpt_raid.c mpt_pci.c: o Add support for personality modules. Each module exports load, and unload module scope methods as well as probe, attach, event, reset, shutdown, and detach per-device instance methods mpt.c mpt.h mpt_pci.c: o The driver now associates a callback function (via an index) with every transaction submitted to the controller. This allows the main interrupt handler to absolve itself of any knowledge of individual transaction/response types by simply calling the callback function "registered" for the transaction. We use a callback index instead of a callback function pointer in each requests so we can properly handle responses (e.g. event notifications) that are not associated with a transaction. Personality modules dynamically register their callbacks with the driver core to receive the callback index to use for their handlers. o Move the interrupt handler into mpt.c. The ISR algorithm is bus transport and OS independent and thus had no reason to be in mpt_pci.c. o Simplify configuration message reply handling by copying reply frame data for the requester and storing completion status in the original request structure. o Add the mpt_complete_request_chain() helper method and use it to implement reset handlers that must abort transactions. o Keep track of all pending requests on the new requests_pending_list in the softc. o Add default handlers to mpt.c to handle generic event notifications and controller reset activities. The event handler code is largely the same as in the original driver. The reset handler is new and terminates any pending transactions with a status code indicating the controller needs to be re-initialized. o Add some endian support to the driver. A complete audit is still required for this driver to have any hope of operating in a big-endian environment. o Use inttypes.h and __inline. Come closer to being style(9) compliant. o Remove extraneous use of typedefs. o Convert request state from a strict enumeration to a series of flags. This allows us to, for example, tag transactions that have timed-out while retaining the state that the transaction is still in-flight on the controller. o Add mpt_wait_req() which allows a caller to poll or sleep for the completion of a request. Use this to simplify and factor code out from many initialization routines. We also use this to sleep for task management request completions in our CAM timeout handler. mpt.c: o Correct a bug in the event handler where request structures were freed even if the request reply was marked as a continuation reply. Continuation replies indicate that the controller still owns the request and freeing these replies prematurely corrupted controller state. o Implement firmware upload and download. On controllers that do not have dedicated NVRAM (as in the Sun v20/v40z), the firmware image is downloaded to the controller by the system BIOS. This image occupies precious controller RAM space until the host driver fetches the image, reducing the number of concurrent I/Os the controller can processes. The uploaded image is used to re-program the controller during hard reset events since the controller cannot fetch the firmware on its own. Implementing this feature allows much higher queue depths when RAID volumes are configured. o Changed configuration page accessors to allow threads to sleep rather than busy wait for completion. o Removed hard coded data transfer sizes from configuration page routines so that RAID configuration page processing is possible. mpt_reg.h: o Move controller register definitions into a separate file. mpt.h: o Re-arrange includes to allow inlined functions to be defined in mpt.h. o Add reply, event, and reset handler definitions. o Add softc fields for handling timeout and controller reset recovery. mpt_cam.c: o Move mpt_freebsd.c to mpt_cam.c. Move all core functionality, such as event handling, into mpt.c leaving only CAM SCSI support here. o Revamp completion handler to provide correct CAM status for all currently defined SCSI MPI message result codes. o Register event and reset handlers with the MPT core. Modify the event handler to notify CAM of bus reset events. The controller reset handler will abort any transactions that have timed out. All other pending CAM transactions are correctly aborted by the core driver's reset handler. o Allocate a single request up front to perform task management operations. This guarantees that we can always perform a TMF operation even when the controller is saturated with other operations. The single request also serves as a perfect mechanism of guaranteeing that only a single TMF is in flight at a time - something that is required according to the MPT Fusion documentation. o Add a helper function for issuing task management requests to the controller. This is used to abort individual requests or perform a bus reset. o Modify the CAM XPT_BUS_RESET ccb handler to wait for and properly handle the status of the bus reset task management frame used to reset the bus. The previous code assumed that the reset request would always succeed. o Add timeout recovery support. When a timeout occurs, the timed-out request is added to a queue to be processed by our recovery thread and the thread is woken up. The recovery thread processes timed-out command serially, attempting first to abort them and then falling back to a bus reset if an abort fails. o Add calls to mpt_reset() to reset the controller if any handshake command, bus reset attempt or abort attempt fails due to a timeout. o Export a secondary "bus" to CAM that exposes all volume drive members as pass-thru devices, allowing CAM to perform proper speed negotiation to hidden devices. o Add a CAM async event handler tracking the AC_FOUND_DEVICE event. Use this to trigger calls to set the per-volume queue depth once the volume is fully registered with CAM. This is required to avoid hitting firmware limits on volume queue depth. Exceeding the limit causes the firmware to hang. mpt_cam.h: o Add several helper functions for interfacing to CAM and performing timeout recovery. mpt_pci.c: o Disable interrupts on the controller before registering and enabling interrupt delivery to the OS. Otherwise we risk receiving interrupts before the driver is ready to receive them. o Make use of compatibility macros that allow the driver to be compiled under 4.x and 5.x. mpt_raid.c: o Add a per-controller instance RAID thread to perform settings changes and query status (minimizes CPU busy wait loops). o Use a shutdown handler to disable "Member Write Cache Enable" (MWCE) setting for RAID arrays set to enable MWCE During Rebuild. o Change reply handler function signature to allow handlers to defer the deletion of reply frames. Use this to allow the event reply handler to queue up events that need to be acked if no resources are available to immediately ack an event. Queued events are processed in mpt_free_request() where resources are freed. This avoids a panic on resource shortage. o Parse and print out RAID controller capabilities during driver probe. o Define, allocate, and maintain RAID data structures for volumes, hidden member physical disks and spare disks. o Add dynamic sysctls for per-instance setting of the log level, array resync rate, array member cache enable, and volume queue depth. mpt_debug.c: o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on a particular log level to aid in tracking down driver issues. o Add mpt_decode_value() which parses the bits in an integer value based on a parsing table (mask, value, name string, tuples). mpilib/*: o Update mpi library header files to latest distribution from LSI. Submitted by: gibbs Approved by: re
2005-07-10 15:05:39 +00:00
}