freebsd-dev/sys/rpc/svc_auth.c

134 lines
3.8 KiB
C
Raw Normal View History

Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/* $NetBSD: svc_auth.c,v 1.12 2000/07/06 03:10:35 christos Exp $ */
/*
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
* unrestricted use provided that this legend is included on all tape
* media and as a part of the software program in whole or part. Users
* may copy or modify Sun RPC without charge, but are not authorized
* to license or distribute it to anyone else except as part of a product or
* program developed by the user.
*
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun RPC is provided with no support and without any obligation on the
* part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* Copyright (c) 1986-1991 by Sun Microsystems Inc.
*/
#if defined(LIBC_SCCS) && !defined(lint)
#ident "@(#)svc_auth.c 1.16 94/04/24 SMI"
static char sccsid[] = "@(#)svc_auth.c 1.26 89/02/07 Copyr 1984 Sun Micro";
#endif
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* svc_auth.c, Server-side rpc authenticator interface.
*
*/
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/systm.h>
#include <sys/ucred.h>
#include <rpc/rpc.h>
/*
* The call rpc message, msg has been obtained from the wire. The msg contains
* the raw form of credentials and verifiers. authenticate returns AUTH_OK
* if the msg is successfully authenticated. If AUTH_OK then the routine also
* does the following things:
* set rqst->rq_xprt->verf to the appropriate response verifier;
* sets rqst->rq_client_cred to the "cooked" form of the credentials.
*
* NB: rqst->rq_cxprt->verf must be pre-alloctaed;
* its length is set appropriately.
*
* The caller still owns and is responsible for msg->u.cmb.cred and
* msg->u.cmb.verf. The authentication system retains ownership of
* rqst->rq_client_cred, the cooked credentials.
*
* There is an assumption that any flavour less than AUTH_NULL is
* invalid.
*/
enum auth_stat
_authenticate(struct svc_req *rqst, struct rpc_msg *msg)
{
int cred_flavor;
enum auth_stat dummy;
rqst->rq_cred = msg->rm_call.cb_cred;
rqst->rq_xprt->xp_verf.oa_flavor = _null_auth.oa_flavor;
rqst->rq_xprt->xp_verf.oa_length = 0;
cred_flavor = rqst->rq_cred.oa_flavor;
switch (cred_flavor) {
case AUTH_NULL:
dummy = _svcauth_null(rqst, msg);
return (dummy);
case AUTH_SYS:
dummy = _svcauth_unix(rqst, msg);
return (dummy);
case AUTH_SHORT:
dummy = _svcauth_short(rqst, msg);
return (dummy);
default:
break;
}
return (AUTH_REJECTEDCRED);
}
/*ARGSUSED*/
enum auth_stat
_svcauth_null(struct svc_req *rqst, struct rpc_msg *msg)
{
return (AUTH_OK);
}
int
svc_getcred(struct svc_req *rqst, struct ucred *cr, int *flavorp)
{
int flavor, i;
struct xucred *xcr;
KASSERT(!crshared(cr), ("svc_getcred with shared cred"));
flavor = rqst->rq_cred.oa_flavor;
if (flavorp)
*flavorp = flavor;
switch (flavor) {
case AUTH_UNIX:
xcr = (struct xucred *) rqst->rq_clntcred;
cr->cr_uid = cr->cr_ruid = cr->cr_svuid = xcr->cr_uid;
cr->cr_ngroups = xcr->cr_ngroups;
for (i = 0; i < xcr->cr_ngroups; i++)
cr->cr_groups[i] = xcr->cr_groups[i];
cr->cr_rgid = cr->cr_groups[0];
return (TRUE);
default:
return (FALSE);
}
}