freebsd-dev/sys/net80211/ieee80211_proto.c

2769 lines
81 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2012 IEEE
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* IEEE 802.11 protocol support.
*/
#include "opt_inet.h"
#include "opt_wlan.h"
#include <sys/param.h>
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
#include <sys/socket.h>
#include <sys/sockio.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <net/ethernet.h> /* XXX for ether_sprintf */
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_adhoc.h>
#include <net80211/ieee80211_sta.h>
#include <net80211/ieee80211_hostap.h>
#include <net80211/ieee80211_wds.h>
Implementation of the upcoming Wireless Mesh standard, 802.11s, on the net80211 wireless stack. This work is based on the March 2009 D3.0 draft standard. This standard is expected to become final next year. This includes two main net80211 modules, ieee80211_mesh.c which deals with peer link management, link metric calculation, routing table control and mesh configuration and ieee80211_hwmp.c which deals with the actually routing process on the mesh network. HWMP is the mandatory routing protocol on by the mesh standard, but others, such as RA-OLSR, can be implemented. Authentication and encryption are not implemented. There are several scripts under tools/tools/net80211/scripts that can be used to test different mesh network topologies and they also teach you how to setup a mesh vap (for the impatient: ifconfig wlan0 create wlandev ... wlanmode mesh). A new build option is available: IEEE80211_SUPPORT_MESH and it's enabled by default on GENERIC kernels for i386, amd64, sparc64 and pc98. Drivers that support mesh networks right now are: ath, ral and mwl. More information at: http://wiki.freebsd.org/WifiMesh Please note that this work is experimental. Also, please note that bridging a mesh vap with another network interface is not yet supported. Many thanks to the FreeBSD Foundation for sponsoring this project and to Sam Leffler for his support. Also, I would like to thank Gateworks Corporation for sending me a Cambria board which was used during the development of this project. Reviewed by: sam Approved by: re (kensmith) Obtained from: projects/mesh11s
2009-07-11 15:02:45 +00:00
#ifdef IEEE80211_SUPPORT_MESH
#include <net80211/ieee80211_mesh.h>
#endif
#include <net80211/ieee80211_monitor.h>
#include <net80211/ieee80211_input.h>
/* XXX tunables */
#define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */
#define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */
const char *mgt_subtype_name[] = {
"assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp",
"probe_req", "probe_resp", "timing_adv", "reserved#7",
"beacon", "atim", "disassoc", "auth",
"deauth", "action", "action_noack", "reserved#15"
};
const char *ctl_subtype_name[] = {
"reserved#0", "reserved#1", "reserved#2", "reserved#3",
"reserved#4", "reserved#5", "reserved#6", "control_wrap",
"bar", "ba", "ps_poll", "rts",
"cts", "ack", "cf_end", "cf_end_ack"
};
const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
"IBSS", /* IEEE80211_M_IBSS */
"STA", /* IEEE80211_M_STA */
"WDS", /* IEEE80211_M_WDS */
"AHDEMO", /* IEEE80211_M_AHDEMO */
"HOSTAP", /* IEEE80211_M_HOSTAP */
Implementation of the upcoming Wireless Mesh standard, 802.11s, on the net80211 wireless stack. This work is based on the March 2009 D3.0 draft standard. This standard is expected to become final next year. This includes two main net80211 modules, ieee80211_mesh.c which deals with peer link management, link metric calculation, routing table control and mesh configuration and ieee80211_hwmp.c which deals with the actually routing process on the mesh network. HWMP is the mandatory routing protocol on by the mesh standard, but others, such as RA-OLSR, can be implemented. Authentication and encryption are not implemented. There are several scripts under tools/tools/net80211/scripts that can be used to test different mesh network topologies and they also teach you how to setup a mesh vap (for the impatient: ifconfig wlan0 create wlandev ... wlanmode mesh). A new build option is available: IEEE80211_SUPPORT_MESH and it's enabled by default on GENERIC kernels for i386, amd64, sparc64 and pc98. Drivers that support mesh networks right now are: ath, ral and mwl. More information at: http://wiki.freebsd.org/WifiMesh Please note that this work is experimental. Also, please note that bridging a mesh vap with another network interface is not yet supported. Many thanks to the FreeBSD Foundation for sponsoring this project and to Sam Leffler for his support. Also, I would like to thank Gateworks Corporation for sending me a Cambria board which was used during the development of this project. Reviewed by: sam Approved by: re (kensmith) Obtained from: projects/mesh11s
2009-07-11 15:02:45 +00:00
"MONITOR", /* IEEE80211_M_MONITOR */
"MBSS" /* IEEE80211_M_MBSS */
};
const char *ieee80211_state_name[IEEE80211_S_MAX] = {
"INIT", /* IEEE80211_S_INIT */
"SCAN", /* IEEE80211_S_SCAN */
"AUTH", /* IEEE80211_S_AUTH */
"ASSOC", /* IEEE80211_S_ASSOC */
"CAC", /* IEEE80211_S_CAC */
"RUN", /* IEEE80211_S_RUN */
"CSA", /* IEEE80211_S_CSA */
"SLEEP", /* IEEE80211_S_SLEEP */
};
const char *ieee80211_wme_acnames[] = {
"WME_AC_BE",
"WME_AC_BK",
"WME_AC_VI",
"WME_AC_VO",
"WME_UPSD",
};
/*
* Reason code descriptions were (mostly) obtained from
* IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
*/
const char *
ieee80211_reason_to_string(uint16_t reason)
{
switch (reason) {
case IEEE80211_REASON_UNSPECIFIED:
return ("unspecified");
case IEEE80211_REASON_AUTH_EXPIRE:
return ("previous authentication is expired");
case IEEE80211_REASON_AUTH_LEAVE:
return ("sending STA is leaving/has left IBSS or ESS");
case IEEE80211_REASON_ASSOC_EXPIRE:
return ("disassociated due to inactivity");
case IEEE80211_REASON_ASSOC_TOOMANY:
return ("too many associated STAs");
case IEEE80211_REASON_NOT_AUTHED:
return ("class 2 frame received from nonauthenticated STA");
case IEEE80211_REASON_NOT_ASSOCED:
return ("class 3 frame received from nonassociated STA");
case IEEE80211_REASON_ASSOC_LEAVE:
return ("sending STA is leaving/has left BSS");
case IEEE80211_REASON_ASSOC_NOT_AUTHED:
return ("STA requesting (re)association is not authenticated");
case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
return ("information in the Power Capability element is "
"unacceptable");
case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
return ("information in the Supported Channels element is "
"unacceptable");
case IEEE80211_REASON_IE_INVALID:
return ("invalid element");
case IEEE80211_REASON_MIC_FAILURE:
return ("MIC failure");
case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
return ("4-Way handshake timeout");
case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
return ("group key update timeout");
case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
return ("element in 4-Way handshake different from "
"(re)association request/probe response/beacon frame");
case IEEE80211_REASON_GROUP_CIPHER_INVALID:
return ("invalid group cipher");
case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
return ("invalid pairwise cipher");
case IEEE80211_REASON_AKMP_INVALID:
return ("invalid AKMP");
case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
return ("unsupported version in RSN IE");
case IEEE80211_REASON_INVALID_RSN_IE_CAP:
return ("invalid capabilities in RSN IE");
case IEEE80211_REASON_802_1X_AUTH_FAILED:
return ("IEEE 802.1X authentication failed");
case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
return ("cipher suite rejected because of the security "
"policy");
case IEEE80211_REASON_UNSPECIFIED_QOS:
return ("unspecified (QoS-related)");
case IEEE80211_REASON_INSUFFICIENT_BW:
return ("QoS AP lacks sufficient bandwidth for this QoS STA");
case IEEE80211_REASON_TOOMANY_FRAMES:
return ("too many frames need to be acknowledged");
case IEEE80211_REASON_OUTSIDE_TXOP:
return ("STA is transmitting outside the limits of its TXOPs");
case IEEE80211_REASON_LEAVING_QBSS:
return ("requested from peer STA (the STA is "
"resetting/leaving the BSS)");
case IEEE80211_REASON_BAD_MECHANISM:
return ("requested from peer STA (it does not want to use "
"the mechanism)");
case IEEE80211_REASON_SETUP_NEEDED:
return ("requested from peer STA (setup is required for the "
"used mechanism)");
case IEEE80211_REASON_TIMEOUT:
return ("requested from peer STA (timeout)");
case IEEE80211_REASON_PEER_LINK_CANCELED:
return ("SME cancels the mesh peering instance (not related "
"to the maximum number of peer mesh STAs)");
case IEEE80211_REASON_MESH_MAX_PEERS:
return ("maximum number of peer mesh STAs was reached");
case IEEE80211_REASON_MESH_CPVIOLATION:
return ("the received information violates the Mesh "
"Configuration policy configured in the mesh STA "
"profile");
case IEEE80211_REASON_MESH_CLOSE_RCVD:
return ("the mesh STA has received a Mesh Peering Close "
"message requesting to close the mesh peering");
case IEEE80211_REASON_MESH_MAX_RETRIES:
return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
"Peering Open messages, without receiving a Mesh "
"Peering Confirm message");
case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
return ("the confirmTimer for the mesh peering instance times "
"out");
case IEEE80211_REASON_MESH_INVALID_GTK:
return ("the mesh STA fails to unwrap the GTK or the values "
"in the wrapped contents do not match");
case IEEE80211_REASON_MESH_INCONS_PARAMS:
return ("the mesh STA receives inconsistent information about "
"the mesh parameters between Mesh Peering Management "
"frames");
case IEEE80211_REASON_MESH_INVALID_SECURITY:
return ("the mesh STA fails the authenticated mesh peering "
"exchange because due to failure in selecting "
"pairwise/group ciphersuite");
case IEEE80211_REASON_MESH_PERR_NO_PROXY:
return ("the mesh STA does not have proxy information for "
"this external destination");
case IEEE80211_REASON_MESH_PERR_NO_FI:
return ("the mesh STA does not have forwarding information "
"for this destination");
case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
return ("the mesh STA determines that the link to the next "
"hop of an active path in its forwarding information "
"is no longer usable");
case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
return ("the MAC address of the STA already exists in the "
"mesh BSS");
case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
return ("the mesh STA performs channel switch to meet "
"regulatory requirements");
case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
return ("the mesh STA performs channel switch with "
"unspecified reason");
default:
return ("reserved/unknown");
}
}
static void beacon_miss(void *, int);
static void beacon_swmiss(void *, int);
static void parent_updown(void *, int);
static void update_mcast(void *, int);
static void update_promisc(void *, int);
static void update_channel(void *, int);
static void update_chw(void *, int);
static void vap_update_wme(void *, int);
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
static void vap_update_slot(void *, int);
static void restart_vaps(void *, int);
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
static void vap_update_erp_protmode(void *, int);
static void vap_update_preamble(void *, int);
static void vap_update_ht_protmode(void *, int);
static void ieee80211_newstate_cb(void *, int);
static int
null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
m_freem(m);
return ENETDOWN;
}
void
ieee80211_proto_attach(struct ieee80211com *ic)
{
Replay r286410. Change KPI of how device drivers that provide wireless connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
2015-08-27 08:56:39 +00:00
uint8_t hdrlen;
/* override the 802.3 setting */
Replay r286410. Change KPI of how device drivers that provide wireless connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
2015-08-27 08:56:39 +00:00
hdrlen = ic->ic_headroom
+ sizeof(struct ieee80211_qosframe_addr4)
+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
+ IEEE80211_WEP_EXTIVLEN;
/* XXX no way to recalculate on ifdetach */
Replay r286410. Change KPI of how device drivers that provide wireless connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
2015-08-27 08:56:39 +00:00
if (ALIGN(hdrlen) > max_linkhdr) {
/* XXX sanity check... */
Replay r286410. Change KPI of how device drivers that provide wireless connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
2015-08-27 08:56:39 +00:00
max_linkhdr = ALIGN(hdrlen);
max_hdr = max_linkhdr + max_protohdr;
max_datalen = MHLEN - max_hdr;
}
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
//ic->ic_protmode = IEEE80211_PROT_CTSONLY;
Replay r286410. Change KPI of how device drivers that provide wireless connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
2015-08-27 08:56:39 +00:00
TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
ic->ic_wme.wme_hipri_switch_hysteresis =
AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
/* initialize management frame handlers */
ic->ic_send_mgmt = ieee80211_send_mgmt;
ic->ic_raw_xmit = null_raw_xmit;
ieee80211_adhoc_attach(ic);
ieee80211_sta_attach(ic);
ieee80211_wds_attach(ic);
ieee80211_hostap_attach(ic);
Implementation of the upcoming Wireless Mesh standard, 802.11s, on the net80211 wireless stack. This work is based on the March 2009 D3.0 draft standard. This standard is expected to become final next year. This includes two main net80211 modules, ieee80211_mesh.c which deals with peer link management, link metric calculation, routing table control and mesh configuration and ieee80211_hwmp.c which deals with the actually routing process on the mesh network. HWMP is the mandatory routing protocol on by the mesh standard, but others, such as RA-OLSR, can be implemented. Authentication and encryption are not implemented. There are several scripts under tools/tools/net80211/scripts that can be used to test different mesh network topologies and they also teach you how to setup a mesh vap (for the impatient: ifconfig wlan0 create wlandev ... wlanmode mesh). A new build option is available: IEEE80211_SUPPORT_MESH and it's enabled by default on GENERIC kernels for i386, amd64, sparc64 and pc98. Drivers that support mesh networks right now are: ath, ral and mwl. More information at: http://wiki.freebsd.org/WifiMesh Please note that this work is experimental. Also, please note that bridging a mesh vap with another network interface is not yet supported. Many thanks to the FreeBSD Foundation for sponsoring this project and to Sam Leffler for his support. Also, I would like to thank Gateworks Corporation for sending me a Cambria board which was used during the development of this project. Reviewed by: sam Approved by: re (kensmith) Obtained from: projects/mesh11s
2009-07-11 15:02:45 +00:00
#ifdef IEEE80211_SUPPORT_MESH
ieee80211_mesh_attach(ic);
#endif
ieee80211_monitor_attach(ic);
}
void
ieee80211_proto_detach(struct ieee80211com *ic)
{
ieee80211_monitor_detach(ic);
Implementation of the upcoming Wireless Mesh standard, 802.11s, on the net80211 wireless stack. This work is based on the March 2009 D3.0 draft standard. This standard is expected to become final next year. This includes two main net80211 modules, ieee80211_mesh.c which deals with peer link management, link metric calculation, routing table control and mesh configuration and ieee80211_hwmp.c which deals with the actually routing process on the mesh network. HWMP is the mandatory routing protocol on by the mesh standard, but others, such as RA-OLSR, can be implemented. Authentication and encryption are not implemented. There are several scripts under tools/tools/net80211/scripts that can be used to test different mesh network topologies and they also teach you how to setup a mesh vap (for the impatient: ifconfig wlan0 create wlandev ... wlanmode mesh). A new build option is available: IEEE80211_SUPPORT_MESH and it's enabled by default on GENERIC kernels for i386, amd64, sparc64 and pc98. Drivers that support mesh networks right now are: ath, ral and mwl. More information at: http://wiki.freebsd.org/WifiMesh Please note that this work is experimental. Also, please note that bridging a mesh vap with another network interface is not yet supported. Many thanks to the FreeBSD Foundation for sponsoring this project and to Sam Leffler for his support. Also, I would like to thank Gateworks Corporation for sending me a Cambria board which was used during the development of this project. Reviewed by: sam Approved by: re (kensmith) Obtained from: projects/mesh11s
2009-07-11 15:02:45 +00:00
#ifdef IEEE80211_SUPPORT_MESH
ieee80211_mesh_detach(ic);
#endif
ieee80211_hostap_detach(ic);
ieee80211_wds_detach(ic);
ieee80211_adhoc_detach(ic);
ieee80211_sta_detach(ic);
}
static void
null_update_beacon(struct ieee80211vap *vap, int item)
{
}
void
ieee80211_proto_vattach(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = vap->iv_ifp;
int i;
/* override the 802.3 setting */
Replay r286410. Change KPI of how device drivers that provide wireless connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
2015-08-27 08:56:39 +00:00
ifp->if_hdrlen = ic->ic_headroom
+ sizeof(struct ieee80211_qosframe_addr4)
+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
+ IEEE80211_WEP_EXTIVLEN;
vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
callout_init(&vap->iv_mgtsend, 1);
TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap);
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap);
TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap);
TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap);
/*
* Install default tx rate handling: no fixed rate, lowest
* supported rate for mgmt and multicast frames. Default
* max retry count. These settings can be changed by the
* driver and/or user applications.
*/
for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
if (isclr(ic->ic_modecaps, i))
continue;
const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
/*
* Setting the management rate to MCS 0 assumes that the
* BSS Basic rate set is empty and the BSS Basic MCS set
* is not.
*
* Since we're not checking this, default to the lowest
* defined rate for this mode.
*
* At least one 11n AP (DLINK DIR-825) is reported to drop
* some MCS management traffic (eg BA response frames.)
*
* See also: 9.6.0 of the 802.11n-2009 specification.
*/
#ifdef NOTYET
if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
} else {
vap->iv_txparms[i].mgmtrate =
rs->rs_rates[0] & IEEE80211_RATE_VAL;
vap->iv_txparms[i].mcastrate =
rs->rs_rates[0] & IEEE80211_RATE_VAL;
}
#endif
vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
}
vap->iv_roaming = IEEE80211_ROAMING_AUTO;
vap->iv_update_beacon = null_update_beacon;
vap->iv_deliver_data = ieee80211_deliver_data;
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
vap->iv_protmode = IEEE80211_PROT_CTSONLY;
/* attach support for operating mode */
ic->ic_vattach[vap->iv_opmode](vap);
}
void
ieee80211_proto_vdetach(struct ieee80211vap *vap)
{
#define FREEAPPIE(ie) do { \
if (ie != NULL) \
IEEE80211_FREE(ie, M_80211_NODE_IE); \
} while (0)
/*
* Detach operating mode module.
*/
if (vap->iv_opdetach != NULL)
vap->iv_opdetach(vap);
/*
* This should not be needed as we detach when reseting
* the state but be conservative here since the
* authenticator may do things like spawn kernel threads.
*/
if (vap->iv_auth->ia_detach != NULL)
vap->iv_auth->ia_detach(vap);
/*
* Detach any ACL'ator.
*/
if (vap->iv_acl != NULL)
vap->iv_acl->iac_detach(vap);
FREEAPPIE(vap->iv_appie_beacon);
FREEAPPIE(vap->iv_appie_probereq);
FREEAPPIE(vap->iv_appie_proberesp);
FREEAPPIE(vap->iv_appie_assocreq);
FREEAPPIE(vap->iv_appie_assocresp);
FREEAPPIE(vap->iv_appie_wpa);
#undef FREEAPPIE
}
/*
* Simple-minded authenticator module support.
*/
#define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1)
/* XXX well-known names */
static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
"wlan_internal", /* IEEE80211_AUTH_NONE */
"wlan_internal", /* IEEE80211_AUTH_OPEN */
"wlan_internal", /* IEEE80211_AUTH_SHARED */
"wlan_xauth", /* IEEE80211_AUTH_8021X */
"wlan_internal", /* IEEE80211_AUTH_AUTO */
"wlan_xauth", /* IEEE80211_AUTH_WPA */
};
static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
static const struct ieee80211_authenticator auth_internal = {
.ia_name = "wlan_internal",
.ia_attach = NULL,
.ia_detach = NULL,
.ia_node_join = NULL,
.ia_node_leave = NULL,
};
/*
* Setup internal authenticators once; they are never unregistered.
*/
static void
ieee80211_auth_setup(void)
{
ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
}
SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
const struct ieee80211_authenticator *
ieee80211_authenticator_get(int auth)
{
if (auth >= IEEE80211_AUTH_MAX)
return NULL;
if (authenticators[auth] == NULL)
ieee80211_load_module(auth_modnames[auth]);
return authenticators[auth];
}
void
ieee80211_authenticator_register(int type,
const struct ieee80211_authenticator *auth)
{
if (type >= IEEE80211_AUTH_MAX)
return;
authenticators[type] = auth;
}
void
ieee80211_authenticator_unregister(int type)
{
if (type >= IEEE80211_AUTH_MAX)
return;
authenticators[type] = NULL;
}
/*
* Very simple-minded ACL module support.
*/
/* XXX just one for now */
static const struct ieee80211_aclator *acl = NULL;
void
ieee80211_aclator_register(const struct ieee80211_aclator *iac)
{
printf("wlan: %s acl policy registered\n", iac->iac_name);
acl = iac;
}
void
ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
{
if (acl == iac)
acl = NULL;
printf("wlan: %s acl policy unregistered\n", iac->iac_name);
}
const struct ieee80211_aclator *
ieee80211_aclator_get(const char *name)
{
if (acl == NULL)
ieee80211_load_module("wlan_acl");
return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
}
void
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
ieee80211_print_essid(const uint8_t *essid, int len)
{
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
const uint8_t *p;
int i;
if (len > IEEE80211_NWID_LEN)
len = IEEE80211_NWID_LEN;
/* determine printable or not */
for (i = 0, p = essid; i < len; i++, p++) {
if (*p < ' ' || *p > 0x7e)
break;
}
if (i == len) {
printf("\"");
for (i = 0, p = essid; i < len; i++, p++)
printf("%c", *p);
printf("\"");
} else {
printf("0x");
for (i = 0, p = essid; i < len; i++, p++)
printf("%02x", *p);
}
}
void
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
ieee80211_dump_pkt(struct ieee80211com *ic,
const uint8_t *buf, int len, int rate, int rssi)
{
const struct ieee80211_frame *wh;
int i;
wh = (const struct ieee80211_frame *)buf;
switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
case IEEE80211_FC1_DIR_NODS:
printf("NODS %s", ether_sprintf(wh->i_addr2));
printf("->%s", ether_sprintf(wh->i_addr1));
printf("(%s)", ether_sprintf(wh->i_addr3));
break;
case IEEE80211_FC1_DIR_TODS:
printf("TODS %s", ether_sprintf(wh->i_addr2));
printf("->%s", ether_sprintf(wh->i_addr3));
printf("(%s)", ether_sprintf(wh->i_addr1));
break;
case IEEE80211_FC1_DIR_FROMDS:
printf("FRDS %s", ether_sprintf(wh->i_addr3));
printf("->%s", ether_sprintf(wh->i_addr1));
printf("(%s)", ether_sprintf(wh->i_addr2));
break;
case IEEE80211_FC1_DIR_DSTODS:
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
printf("->%s", ether_sprintf(wh->i_addr3));
printf("(%s", ether_sprintf(wh->i_addr2));
printf("->%s)", ether_sprintf(wh->i_addr1));
break;
}
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
case IEEE80211_FC0_TYPE_DATA:
printf(" data");
break;
case IEEE80211_FC0_TYPE_MGT:
printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
break;
default:
printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
break;
}
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
if (IEEE80211_QOS_HAS_SEQ(wh)) {
const struct ieee80211_qosframe *qwh =
(const struct ieee80211_qosframe *)buf;
printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
}
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
int off;
off = ieee80211_anyhdrspace(ic, wh);
printf(" WEP [IV %.02x %.02x %.02x",
buf[off+0], buf[off+1], buf[off+2]);
if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
printf(" %.02x %.02x %.02x",
buf[off+4], buf[off+5], buf[off+6]);
printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
}
if (rate >= 0)
printf(" %dM", rate / 2);
if (rssi >= 0)
printf(" +%d", rssi);
printf("\n");
if (len > 0) {
for (i = 0; i < len; i++) {
if ((i & 1) == 0)
printf(" ");
printf("%02x", buf[i]);
}
printf("\n");
}
}
static __inline int
findrix(const struct ieee80211_rateset *rs, int r)
{
int i;
for (i = 0; i < rs->rs_nrates; i++)
if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
return i;
return -1;
}
int
ieee80211_fix_rate(struct ieee80211_node *ni,
struct ieee80211_rateset *nrs, int flags)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
int i, j, rix, error;
int okrate, badrate, fixedrate, ucastrate;
const struct ieee80211_rateset *srs;
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
uint8_t r;
error = 0;
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
okrate = badrate = 0;
ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
/*
* Workaround awkwardness with fixed rate. We are called
* to check both the legacy rate set and the HT rate set
* but we must apply any legacy fixed rate check only to the
* legacy rate set and vice versa. We cannot tell what type
* of rate set we've been given (legacy or HT) but we can
* distinguish the fixed rate type (MCS have 0x80 set).
* So to deal with this the caller communicates whether to
* check MCS or legacy rate using the flags and we use the
* type of any fixed rate to avoid applying an MCS to a
* legacy rate and vice versa.
*/
if (ucastrate & 0x80) {
if (flags & IEEE80211_F_DOFRATE)
flags &= ~IEEE80211_F_DOFRATE;
} else if ((ucastrate & 0x80) == 0) {
if (flags & IEEE80211_F_DOFMCS)
flags &= ~IEEE80211_F_DOFMCS;
}
/* NB: required to make MCS match below work */
ucastrate &= IEEE80211_RATE_VAL;
}
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
fixedrate = IEEE80211_FIXED_RATE_NONE;
/*
* XXX we are called to process both MCS and legacy rates;
* we must use the appropriate basic rate set or chaos will
* ensue; for now callers that want MCS must supply
* IEEE80211_F_DOBRS; at some point we'll need to split this
* function so there are two variants, one for MCS and one
* for legacy rates.
*/
if (flags & IEEE80211_F_DOBRS)
srs = (const struct ieee80211_rateset *)
ieee80211_get_suphtrates(ic, ni->ni_chan);
else
srs = ieee80211_get_suprates(ic, ni->ni_chan);
for (i = 0; i < nrs->rs_nrates; ) {
if (flags & IEEE80211_F_DOSORT) {
/*
* Sort rates.
*/
for (j = i + 1; j < nrs->rs_nrates; j++) {
if (IEEE80211_RV(nrs->rs_rates[i]) >
IEEE80211_RV(nrs->rs_rates[j])) {
r = nrs->rs_rates[i];
nrs->rs_rates[i] = nrs->rs_rates[j];
nrs->rs_rates[j] = r;
}
}
}
r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
badrate = r;
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
/*
* Check for fixed rate.
*/
if (r == ucastrate)
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
fixedrate = r;
/*
* Check against supported rates.
*/
rix = findrix(srs, r);
if (flags & IEEE80211_F_DONEGO) {
if (rix < 0) {
/*
* A rate in the node's rate set is not
* supported. If this is a basic rate and we
* are operating as a STA then this is an error.
* Otherwise we just discard/ignore the rate.
*/
if ((flags & IEEE80211_F_JOIN) &&
(nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
error++;
} else if ((flags & IEEE80211_F_JOIN) == 0) {
/*
* Overwrite with the supported rate
* value so any basic rate bit is set.
*/
nrs->rs_rates[i] = srs->rs_rates[rix];
}
}
if ((flags & IEEE80211_F_DODEL) && rix < 0) {
/*
* Delete unacceptable rates.
*/
nrs->rs_nrates--;
for (j = i; j < nrs->rs_nrates; j++)
nrs->rs_rates[j] = nrs->rs_rates[j + 1];
nrs->rs_rates[j] = 0;
continue;
}
if (rix >= 0)
okrate = nrs->rs_rates[i];
i++;
}
if (okrate == 0 || error != 0 ||
((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
fixedrate != ucastrate)) {
IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
"%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
"ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
return badrate | IEEE80211_RATE_BASIC;
} else
return IEEE80211_RV(okrate);
}
/*
* Reset 11g-related state.
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
*
* This is for per-VAP ERP/11g state.
*
* Eventually everything in ieee80211_reset_erp() will be
* per-VAP and in here.
*/
void
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
ieee80211_vap_reset_erp(struct ieee80211vap *vap)
{
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
struct ieee80211com *ic = vap->iv_ic;
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
vap->iv_nonerpsta = 0;
vap->iv_longslotsta = 0;
vap->iv_flags &= ~IEEE80211_F_USEPROT;
/*
* Set short preamble and ERP barker-preamble flags.
*/
if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
(vap->iv_caps & IEEE80211_C_SHPREAMBLE)) {
vap->iv_flags |= IEEE80211_F_SHPREAMBLE;
vap->iv_flags &= ~IEEE80211_F_USEBARKER;
} else {
vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE;
vap->iv_flags |= IEEE80211_F_USEBARKER;
}
/*
* Short slot time is enabled only when operating in 11g
* and not in an IBSS. We must also honor whether or not
* the driver is capable of doing it.
*/
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
ieee80211_vap_set_shortslottime(vap,
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
vap->iv_opmode == IEEE80211_M_HOSTAP &&
(ic->ic_caps & IEEE80211_C_SHSLOT)));
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
}
/*
* Reset 11g-related state.
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
*
* Note this resets the global state and a caller should schedule
* a re-check of all the VAPs after setup to update said state.
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
*/
void
ieee80211_reset_erp(struct ieee80211com *ic)
{
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
#if 0
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
ic->ic_flags &= ~IEEE80211_F_USEPROT;
/*
* Set short preamble and ERP barker-preamble flags.
*/
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
(ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
ic->ic_flags &= ~IEEE80211_F_USEBARKER;
} else {
ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
ic->ic_flags |= IEEE80211_F_USEBARKER;
}
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
#endif
/* XXX TODO: schedule a new per-VAP ERP calculation */
}
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
/*
* Deferred slot time update.
*
* For per-VAP slot time configuration, call the VAP
* method if the VAP requires it. Otherwise, just call the
* older global method.
*
* If the per-VAP method is called then it's expected that
* the driver/firmware will take care of turning the per-VAP
* flags into slot time configuration.
*
* If the per-VAP method is not called then the global flags will be
* flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will
* be set only if all of the vaps will have it set.
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
*
* Look at the comments for vap_update_erp_protmode() for more
* background; this assumes all VAPs are on the same channel.
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
*/
static void
vap_update_slot(void *arg, int npending)
{
struct ieee80211vap *vap = arg;
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211vap *iv;
int num_shslot = 0, num_lgslot = 0;
/*
* Per-VAP path - we've already had the flags updated;
* so just notify the driver and move on.
*/
if (vap->iv_updateslot != NULL) {
vap->iv_updateslot(vap);
return;
}
/*
* Iterate over all of the VAP flags to update the
* global flag.
*
* If all vaps have short slot enabled then flip on
* short slot. If any vap has it disabled then
* we leave it globally disabled. This should provide
* correct behaviour in a multi-BSS scenario where
* at least one VAP has short slot disabled for some
* reason.
*/
IEEE80211_LOCK(ic);
TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
if (iv->iv_flags & IEEE80211_F_SHSLOT)
num_shslot++;
else
num_lgslot++;
}
/*
* It looks backwards but - if the number of short slot VAPs
* is zero then we're not short slot. Else, we have one
* or more short slot VAPs and we're checking to see if ANY
* of them have short slot disabled.
*/
if (num_shslot == 0)
ic->ic_flags &= ~IEEE80211_F_SHSLOT;
else if (num_lgslot == 0)
ic->ic_flags |= IEEE80211_F_SHSLOT;
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
IEEE80211_UNLOCK(ic);
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
/*
* Call the driver with our new global slot time flags.
*/
if (ic->ic_updateslot != NULL)
ic->ic_updateslot(ic);
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
}
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
/*
* Deferred ERP protmode update.
*
* This currently calculates the global ERP protection mode flag
* based on each of the VAPs. Any VAP with it enabled is enough
* for the global flag to be enabled. All VAPs with it disabled
* is enough for it to be disabled.
*
* This may make sense right now for the supported hardware where
* net80211 is controlling the single channel configuration, but
* offload firmware that's doing channel changes (eg off-channel
* TDLS, off-channel STA, off-channel P2P STA/AP) may get some
* silly looking flag updates.
*
* Ideally the protection mode calculation is done based on the
* channel, and all VAPs using that channel will inherit it.
* But until that's what net80211 does, this wil have to do.
*/
static void
vap_update_erp_protmode(void *arg, int npending)
{
struct ieee80211vap *vap = arg;
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211vap *iv;
int enable_protmode = 0;
int non_erp_present = 0;
/*
* Iterate over all of the VAPs to calculate the overlapping
* ERP protection mode configuration and ERP present math.
*
* For now we assume that if a driver can handle this per-VAP
* then it'll ignore the ic->ic_protmode variant and instead
* will look at the vap related flags.
*/
IEEE80211_LOCK(ic);
TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
if (iv->iv_flags & IEEE80211_F_USEPROT)
enable_protmode = 1;
if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR)
non_erp_present = 1;
}
if (enable_protmode)
ic->ic_flags |= IEEE80211_F_USEPROT;
else
ic->ic_flags &= ~IEEE80211_F_USEPROT;
if (non_erp_present)
ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR;
else
ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR;
/* Beacon update on all VAPs */
ieee80211_notify_erp_locked(ic);
IEEE80211_UNLOCK(ic);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: called; enable_protmode=%d, non_erp_present=%d\n",
__func__, enable_protmode, non_erp_present);
/*
* Now that the global configuration flags are calculated,
* notify the VAP about its configuration.
*
* The global flags will be used when assembling ERP IEs
* for multi-VAP operation, even if it's on a different
* channel. Yes, that's going to need fixing in the
* future.
*/
if (vap->iv_erp_protmode_update != NULL)
vap->iv_erp_protmode_update(vap);
}
/*
* Deferred ERP short preamble/barker update.
*
* All VAPs need to use short preamble for it to be globally
* enabled or not.
*
* Look at the comments for vap_update_erp_protmode() for more
* background; this assumes all VAPs are on the same channel.
*/
static void
vap_update_preamble(void *arg, int npending)
{
struct ieee80211vap *vap = arg;
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211vap *iv;
int barker_count = 0, short_preamble_count = 0, count = 0;
/*
* Iterate over all of the VAPs to calculate the overlapping
* short or long preamble configuration.
*
* For now we assume that if a driver can handle this per-VAP
* then it'll ignore the ic->ic_flags variant and instead
* will look at the vap related flags.
*/
IEEE80211_LOCK(ic);
TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
if (iv->iv_flags & IEEE80211_F_USEBARKER)
barker_count++;
if (iv->iv_flags & IEEE80211_F_SHPREAMBLE)
short_preamble_count++;
count++;
}
/*
* As with vap_update_erp_protmode(), the global flags are
* currently used for beacon IEs.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: called; barker_count=%d, short_preamble_count=%d\n",
__func__, barker_count, short_preamble_count);
/*
* Only flip on short preamble if all of the VAPs support
* it.
*/
if (barker_count == 0 && short_preamble_count == count) {
ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
ic->ic_flags &= ~IEEE80211_F_USEBARKER;
} else {
ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
ic->ic_flags |= IEEE80211_F_USEBARKER;
}
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: global barker=%d preamble=%d\n",
__func__,
!! (ic->ic_flags & IEEE80211_F_USEBARKER),
!! (ic->ic_flags & IEEE80211_F_SHPREAMBLE));
/* Beacon update on all VAPs */
ieee80211_notify_erp_locked(ic);
IEEE80211_UNLOCK(ic);
/* Driver notification */
if (vap->iv_erp_protmode_update != NULL)
vap->iv_preamble_update(vap);
}
/*
* Deferred HT protmode update and beacon update.
*
* Look at the comments for vap_update_erp_protmode() for more
* background; this assumes all VAPs are on the same channel.
*/
static void
vap_update_ht_protmode(void *arg, int npending)
{
struct ieee80211vap *vap = arg;
struct ieee80211vap *iv;
struct ieee80211com *ic = vap->iv_ic;
int num_vaps = 0, num_pure = 0, num_mixed = 0;
int num_optional = 0, num_ht2040 = 0, num_nonht = 0;
int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0;
int num_nonhtpr = 0;
/*
* Iterate over all of the VAPs to calculate everything.
*
* There are a few different flags to calculate:
*
* + whether there's HT only or HT+legacy stations;
* + whether there's HT20, HT40, or HT20+HT40 stations;
* + whether the desired protection mode is mixed, pure or
* one of the two above.
*
* For now we assume that if a driver can handle this per-VAP
* then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode
* variant and instead will look at the vap related variables.
*
* XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) !
*/
IEEE80211_LOCK(ic);
TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
num_vaps++;
/* overlapping BSSes advertising non-HT status present */
if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR)
num_nonht++;
/* Operating mode flags */
if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT)
num_nonhtpr++;
switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) {
case IEEE80211_HTINFO_OPMODE_PURE:
num_pure++;
break;
case IEEE80211_HTINFO_OPMODE_PROTOPT:
num_optional++;
break;
case IEEE80211_HTINFO_OPMODE_HT20PR:
num_ht2040++;
break;
case IEEE80211_HTINFO_OPMODE_MIXED:
num_mixed++;
break;
}
IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
"%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n",
__func__,
ieee80211_get_vap_ifname(iv),
!! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR),
iv->iv_curhtprotmode);
num_ht_sta += iv->iv_ht_sta_assoc;
num_ht40_sta += iv->iv_ht40_sta_assoc;
num_sta += iv->iv_sta_assoc;
}
/*
* Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS
* non-HT present), set it here. This shouldn't be used by
* anything but the old overlapping BSS logic so if any drivers
* consume it, it's up to date.
*/
if (num_nonht > 0)
ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
else
ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
/*
* Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.)
*
* + If all VAPs are PURE, we can stay PURE.
* + If all VAPs are PROTOPT, we can go to PROTOPT.
* + If any VAP has HT20PR then it sees at least a HT40+HT20 station.
* Note that we may have a VAP with one HT20 and a VAP with one HT40;
* So we look at the sum ht and sum ht40 sta counts; if we have a
* HT station and the HT20 != HT40 count, we have to do HT20PR here.
* Note all stations need to be HT for this to be an option.
* + The fall-through is MIXED, because it means we have some odd
* non HT40-involved combination of opmode and this is the most
* sensible default.
*/
ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
if (num_pure == num_vaps)
ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
if (num_optional == num_vaps)
ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT;
/*
* Note: we need /a/ HT40 station somewhere for this to
* be a possibility.
*/
if ((num_ht2040 > 0) ||
((num_ht_sta > 0) && (num_ht40_sta > 0) &&
(num_ht_sta != num_ht40_sta)))
ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR;
/*
* Step 3 - if any of the stations across the VAPs are
* non-HT then this needs to be flipped back to MIXED.
*/
if (num_ht_sta != num_sta)
ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
/*
* Step 4 - If we see any overlapping BSS non-HT stations
* via beacons then flip on NONHT_PRESENT.
*/
if (num_nonhtpr > 0)
ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT;
/* Notify all VAPs to potentially update their beacons */
TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next)
ieee80211_htinfo_notify(iv);
IEEE80211_UNLOCK(ic);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
"%s: global: nonht_pr=%d ht_opmode=0x%02x\n",
__func__,
!! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR),
ic->ic_curhtprotmode);
/* Driver update */
if (vap->iv_erp_protmode_update != NULL)
vap->iv_ht_protmode_update(vap);
}
/*
* Set the short slot time state and notify the driver.
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
*
* This is the per-VAP slot time state.
*/
void
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff)
{
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
struct ieee80211com *ic = vap->iv_ic;
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
/* XXX lock? */
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
/*
* Only modify the per-VAP slot time.
*/
if (onoff)
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
vap->iv_flags |= IEEE80211_F_SHSLOT;
else
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
vap->iv_flags &= ~IEEE80211_F_SHSLOT;
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: called; onoff=%d\n", __func__, onoff);
[net80211] Migrate short slot time configuration into per-vap and deferred taskqueue updates. The 11b/11g ERP and slot time update handling are two things which weren't migrated into the per-VAP state when Sam did the initial VAP work. That makes sense for a lot of setups where net80211 is driving radio state and the radio only cares about the shared state. However, as noted by a now deleted comment, the ERP and slot time updates aren't EXACTLY correct/accurate - they only take into account the most RECENTLY created VAP, and the state updates when one creates/destroys VAPs isn't exactly great. So: * track the short slot logic per VAP; * whenever the slot time configuration changes, just push it into a deferred task queue update so drivers don't have to serialise it themselves; * if a driver registers a per-VAP slot time handler then it'll just get the per VAP one; * .. if a driver registers a global one then the legacy behaviour is maintained - a single slot time is calculated and pushed out. Note that the calculated slot time is better than the existing logic - if ANY of the VAPs require long slot then it's disabled for all VAPs rather than whatever the last configured VAP did. Now, this isn't entirely complete - the rest of ERP tracking around short/long slot capable station tracking needs to be converted into per-VAP, as well as the preamble/barker flags. Luckily those also can be done in a similar fashion - keep per-VAP counters/flags and unify them before doing the driver update. I'll defer that work until later. All the existing drivers can keep doing what they're doing with the global slot time flags as that is maintained. One driver (iwi) used the per-VAP flags instead of the ic flags, so now that driver will work properly. This unblocks some ath10k porting work as the firmware takes the slot time configuration per-VAP rather than globally, and some firmware handles STA+AP and STA+STA (on same/different channels) configurations where the firmware will switch slot time as appropriate. Tested: * AR9380, STA/AP mode * AR9880 (ath10k), STA mode
2020-06-05 06:21:23 +00:00
/* schedule the deferred slot flag update and update */
ieee80211_runtask(ic, &vap->iv_slot_task);
}
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
/*
* Update the VAP short /long / barker preamble state and
* update beacon state if needed.
*
* For now it simply copies the global flags into the per-vap
* flags and schedules the callback. Later this will support
* both global and per-VAP flags, especially useful for
* and STA+STA multi-channel operation (eg p2p).
*/
void
ieee80211_vap_update_preamble(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
/* XXX lock? */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: called\n", __func__);
/* schedule the deferred slot flag update and update */
ieee80211_runtask(ic, &vap->iv_preamble_task);
}
/*
* Update the VAP 11g protection mode and update beacon state
* if needed.
*/
void
ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
/* XXX lock? */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: called\n", __func__);
/* schedule the deferred slot flag update and update */
ieee80211_runtask(ic, &vap->iv_erp_protmode_task);
}
/*
* Update the VAP 11n protection mode and update beacon state
* if needed.
*/
void
ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
/* XXX lock? */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: called\n", __func__);
/* schedule the deferred protmode update */
ieee80211_runtask(ic, &vap->iv_ht_protmode_task);
}
/*
* Check if the specified rate set supports ERP.
* NB: the rate set is assumed to be sorted.
*/
int
ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
{
static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
int i, j;
if (rs->rs_nrates < nitems(rates))
return 0;
for (i = 0; i < nitems(rates); i++) {
for (j = 0; j < rs->rs_nrates; j++) {
int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
if (rates[i] == r)
goto next;
if (r > rates[i])
return 0;
}
return 0;
next:
;
}
return 1;
}
/*
* Mark the basic rates for the rate table based on the
* operating mode. For real 11g we mark all the 11b rates
* and 6, 12, and 24 OFDM. For 11b compatibility we mark only
* 11b rates. There's also a pseudo 11a-mode used to mark only
* the basic OFDM rates.
*/
static void
setbasicrates(struct ieee80211_rateset *rs,
enum ieee80211_phymode mode, int add)
{
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } },
[IEEE80211_MODE_11B] = { 2, { 2, 4 } },
/* NB: mixed b/g */
[IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } },
[IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } },
[IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } },
[IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } },
[IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } },
[IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } },
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } },
/* NB: mixed b/g */
[IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } },
/* NB: mixed b/g */
[IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } },
[IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } },
};
int i, j;
for (i = 0; i < rs->rs_nrates; i++) {
if (!add)
rs->rs_rates[i] &= IEEE80211_RATE_VAL;
for (j = 0; j < basic[mode].rs_nrates; j++)
if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
break;
}
}
}
/*
* Set the basic rates in a rate set.
*/
void
ieee80211_setbasicrates(struct ieee80211_rateset *rs,
enum ieee80211_phymode mode)
{
setbasicrates(rs, mode, 0);
}
/*
* Add basic rates to a rate set.
*/
void
ieee80211_addbasicrates(struct ieee80211_rateset *rs,
enum ieee80211_phymode mode)
{
setbasicrates(rs, mode, 1);
}
/*
* WME protocol support.
*
* The default 11a/b/g/n parameters come from the WiFi Alliance WMM
* System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
* Draft 2.0 Test Plan (Appendix D).
*
* Static/Dynamic Turbo mode settings come from Atheros.
*/
typedef struct phyParamType {
uint8_t aifsn;
uint8_t logcwmin;
uint8_t logcwmax;
uint16_t txopLimit;
uint8_t acm;
} paramType;
static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 },
[IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 },
[IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 },
[IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 },
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 },
};
static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 },
[IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 },
[IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 },
[IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 },
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 },
};
static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 },
[IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 },
[IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 },
[IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 },
[IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 },
[IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 },
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 },
};
static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 },
[IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 },
[IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
[IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
[IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
[IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 },
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 },
};
static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 },
[IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 },
[IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 },
[IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 },
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 },
};
static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 },
[IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 },
[IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 },
[IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 },
[IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 },
[IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 },
[IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 },
[IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 },
[IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 },
[IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 },
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 },
[IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 },
};
static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 },
[IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 },
[IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 },
[IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 },
[IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 },
[IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
[IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
[IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
[IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 },
[IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 },
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 },
[IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 },
};
2009-02-20 21:55:23 +00:00
static void
_setifsparams(struct wmeParams *wmep, const paramType *phy)
{
wmep->wmep_aifsn = phy->aifsn;
wmep->wmep_logcwmin = phy->logcwmin;
wmep->wmep_logcwmax = phy->logcwmax;
wmep->wmep_txopLimit = phy->txopLimit;
}
static void
setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
struct wmeParams *wmep, const paramType *phy)
{
wmep->wmep_acm = phy->acm;
_setifsparams(wmep, phy);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
"set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
ieee80211_wme_acnames[ac], type,
wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
wmep->wmep_logcwmax, wmep->wmep_txopLimit);
}
static void
ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_wme_state *wme = &ic->ic_wme;
const paramType *pPhyParam, *pBssPhyParam;
struct wmeParams *wmep;
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
enum ieee80211_phymode mode;
int i;
IEEE80211_LOCK_ASSERT(ic);
if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
return;
Fix a WME corner case found by the FreeBSD 802.11n testing crew. The symptom: sometimes 11n (and non-11n) throughput is great. Sometimes it isn't. Much teeth gnashing occured, and much kernel bisecting happened, until someone figured out it was the order of which things were rebooted, not the kernel versions. (Which was great news to me, it meant that I hadn't broken if_ath.) What we found was that sometimes the WME parameters for the best-effort queue had a burst window ("txop") in which the station would be allowed to TX as many packets as it could fit inside that particular burst window. This improved throughput. After initially thinking it was a bug - the WME parameters for the best-effort queue -should- have a txop of 0, Bernard and I discovered "aggressive mode" in net80211 - where the WME BE queue parameters are changed if there's not a lot of high priority traffic going on. The WME parameters announced in the association response and beacon frames just "change" based on what the current traffic levels are. So in fact yes, the STA was acutally supposed to be doing this higher throughput stuff as it's just meant to be configuring things based on the WME parameters - but it wasn't. What was eventually happening was this: * at startup, the wme qosinfo count field would be 0; * it'd be parsed in ieee80211_parse_wmeparams(); * and it would be bumped (to say 10); * .. and the WME queue parameters would be correctly parsed and set. But then, when you restarted the assocation (eg hostap goes away and comes back with the same qosinfo count field of 10, or if you destroy the sta VIF and re-create it), the WME qosinfo count field - which is associated not to the VIF, but to the main interface - wouldn't be cleared, so the queue default parameters would be used (which include no burst setting for the BE queue) and would remain that way until the hostap qosinfo count field changed, or the STA was actually rebooted. This fix simply cleares the wme capability field (which has the count field) to 0, forcing it to be reset by the next received beacon. Thanks go to Milu for finding it and helping me track down what was going on, and Bernard Schmidt for working through the net80211 and WME specific magic.
2011-03-24 15:27:15 +00:00
/*
* Clear the wme cap_info field so a qoscount from a previous
* vap doesn't confuse later code which only parses the beacon
* field and updates hardware when said field changes.
* Otherwise the hardware is programmed with defaults, not what
* the beacon actually announces.
*
* Note that we can't ever have 0xff as an actual value;
* the only valid values are 0..15.
Fix a WME corner case found by the FreeBSD 802.11n testing crew. The symptom: sometimes 11n (and non-11n) throughput is great. Sometimes it isn't. Much teeth gnashing occured, and much kernel bisecting happened, until someone figured out it was the order of which things were rebooted, not the kernel versions. (Which was great news to me, it meant that I hadn't broken if_ath.) What we found was that sometimes the WME parameters for the best-effort queue had a burst window ("txop") in which the station would be allowed to TX as many packets as it could fit inside that particular burst window. This improved throughput. After initially thinking it was a bug - the WME parameters for the best-effort queue -should- have a txop of 0, Bernard and I discovered "aggressive mode" in net80211 - where the WME BE queue parameters are changed if there's not a lot of high priority traffic going on. The WME parameters announced in the association response and beacon frames just "change" based on what the current traffic levels are. So in fact yes, the STA was acutally supposed to be doing this higher throughput stuff as it's just meant to be configuring things based on the WME parameters - but it wasn't. What was eventually happening was this: * at startup, the wme qosinfo count field would be 0; * it'd be parsed in ieee80211_parse_wmeparams(); * and it would be bumped (to say 10); * .. and the WME queue parameters would be correctly parsed and set. But then, when you restarted the assocation (eg hostap goes away and comes back with the same qosinfo count field of 10, or if you destroy the sta VIF and re-create it), the WME qosinfo count field - which is associated not to the VIF, but to the main interface - wouldn't be cleared, so the queue default parameters would be used (which include no burst setting for the BE queue) and would remain that way until the hostap qosinfo count field changed, or the STA was actually rebooted. This fix simply cleares the wme capability field (which has the count field) to 0, forcing it to be reset by the next received beacon. Thanks go to Milu for finding it and helping me track down what was going on, and Bernard Schmidt for working through the net80211 and WME specific magic.
2011-03-24 15:27:15 +00:00
*/
wme->wme_wmeChanParams.cap_info = 0xfe;
Fix a WME corner case found by the FreeBSD 802.11n testing crew. The symptom: sometimes 11n (and non-11n) throughput is great. Sometimes it isn't. Much teeth gnashing occured, and much kernel bisecting happened, until someone figured out it was the order of which things were rebooted, not the kernel versions. (Which was great news to me, it meant that I hadn't broken if_ath.) What we found was that sometimes the WME parameters for the best-effort queue had a burst window ("txop") in which the station would be allowed to TX as many packets as it could fit inside that particular burst window. This improved throughput. After initially thinking it was a bug - the WME parameters for the best-effort queue -should- have a txop of 0, Bernard and I discovered "aggressive mode" in net80211 - where the WME BE queue parameters are changed if there's not a lot of high priority traffic going on. The WME parameters announced in the association response and beacon frames just "change" based on what the current traffic levels are. So in fact yes, the STA was acutally supposed to be doing this higher throughput stuff as it's just meant to be configuring things based on the WME parameters - but it wasn't. What was eventually happening was this: * at startup, the wme qosinfo count field would be 0; * it'd be parsed in ieee80211_parse_wmeparams(); * and it would be bumped (to say 10); * .. and the WME queue parameters would be correctly parsed and set. But then, when you restarted the assocation (eg hostap goes away and comes back with the same qosinfo count field of 10, or if you destroy the sta VIF and re-create it), the WME qosinfo count field - which is associated not to the VIF, but to the main interface - wouldn't be cleared, so the queue default parameters would be used (which include no burst setting for the BE queue) and would remain that way until the hostap qosinfo count field changed, or the STA was actually rebooted. This fix simply cleares the wme capability field (which has the count field) to 0, forcing it to be reset by the next received beacon. Thanks go to Milu for finding it and helping me track down what was going on, and Bernard Schmidt for working through the net80211 and WME specific magic.
2011-03-24 15:27:15 +00:00
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
/*
* Select mode; we can be called early in which case we
* always use auto mode. We know we'll be called when
* entering the RUN state with bsschan setup properly
* so state will eventually get set correctly
*/
if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
mode = ieee80211_chan2mode(ic->ic_bsschan);
else
mode = IEEE80211_MODE_AUTO;
for (i = 0; i < WME_NUM_AC; i++) {
switch (i) {
case WME_AC_BK:
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
pPhyParam = &phyParamForAC_BK[mode];
pBssPhyParam = &phyParamForAC_BK[mode];
break;
case WME_AC_VI:
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
pPhyParam = &phyParamForAC_VI[mode];
pBssPhyParam = &bssPhyParamForAC_VI[mode];
break;
case WME_AC_VO:
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
pPhyParam = &phyParamForAC_VO[mode];
pBssPhyParam = &bssPhyParamForAC_VO[mode];
break;
case WME_AC_BE:
default:
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
pPhyParam = &phyParamForAC_BE[mode];
pBssPhyParam = &bssPhyParamForAC_BE[mode];
break;
}
wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2009-02-20 21:55:23 +00:00
setwmeparams(vap, "chan", i, wmep, pPhyParam);
} else {
2009-02-20 21:55:23 +00:00
setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
}
wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
2009-02-20 21:55:23 +00:00
setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
}
/* NB: check ic_bss to avoid NULL deref on initial attach */
if (vap->iv_bss != NULL) {
/*
* Calculate aggressive mode switching threshold based
* on beacon interval. This doesn't need locking since
* we're only called before entering the RUN state at
* which point we start sending beacon frames.
*/
wme->wme_hipri_switch_thresh =
(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
wme->wme_flags &= ~WME_F_AGGRMODE;
ieee80211_wme_updateparams(vap);
}
}
void
ieee80211_wme_initparams(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK(ic);
ieee80211_wme_initparams_locked(vap);
IEEE80211_UNLOCK(ic);
}
/*
* Update WME parameters for ourself and the BSS.
*/
void
ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
{
2009-02-20 21:55:23 +00:00
static const paramType aggrParam[IEEE80211_MODE_MAX] = {
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 },
[IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 },
[IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 },
[IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 },
[IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 },
[IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 },
[IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 },
[IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 },
[IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 },
[IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 },
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
[IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
[IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
[IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
};
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_wme_state *wme = &ic->ic_wme;
const struct wmeParams *wmep;
struct wmeParams *chanp, *bssp;
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
enum ieee80211_phymode mode;
int i;
int do_aggrmode = 0;
2009-02-20 21:55:23 +00:00
/*
* Set up the channel access parameters for the physical
* device. First populate the configured settings.
*/
for (i = 0; i < WME_NUM_AC; i++) {
chanp = &wme->wme_chanParams.cap_wmeParams[i];
wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
chanp->wmep_aifsn = wmep->wmep_aifsn;
chanp->wmep_logcwmin = wmep->wmep_logcwmin;
chanp->wmep_logcwmax = wmep->wmep_logcwmax;
chanp->wmep_txopLimit = wmep->wmep_txopLimit;
chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
chanp->wmep_aifsn = wmep->wmep_aifsn;
chanp->wmep_logcwmin = wmep->wmep_logcwmin;
chanp->wmep_logcwmax = wmep->wmep_logcwmax;
chanp->wmep_txopLimit = wmep->wmep_txopLimit;
}
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
/*
* Select mode; we can be called early in which case we
* always use auto mode. We know we'll be called when
* entering the RUN state with bsschan setup properly
* so state will eventually get set correctly
*/
if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
mode = ieee80211_chan2mode(ic->ic_bsschan);
else
mode = IEEE80211_MODE_AUTO;
/*
* This implements aggressive mode as found in certain
* vendors' AP's. When there is significant high
* priority (VI/VO) traffic in the BSS throttle back BE
* traffic by using conservative parameters. Otherwise
* BE uses aggressive params to optimize performance of
* legacy/non-QoS traffic.
*/
/* Hostap? Only if aggressive mode is enabled */
if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
(wme->wme_flags & WME_F_AGGRMODE) != 0)
do_aggrmode = 1;
/*
* Station? Only if we're in a non-QoS BSS.
*/
else if ((vap->iv_opmode == IEEE80211_M_STA &&
(vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
do_aggrmode = 1;
/*
* IBSS? Only if we we have WME enabled.
*/
else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
(vap->iv_flags & IEEE80211_F_WME))
do_aggrmode = 1;
/*
* If WME is disabled on this VAP, default to aggressive mode
* regardless of the configuration.
*/
if ((vap->iv_flags & IEEE80211_F_WME) == 0)
do_aggrmode = 1;
/* XXX WDS? */
/* XXX MBSS? */
if (do_aggrmode) {
chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
2009-02-20 21:55:23 +00:00
chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
chanp->wmep_logcwmin = bssp->wmep_logcwmin =
2009-02-20 21:55:23 +00:00
aggrParam[mode].logcwmin;
chanp->wmep_logcwmax = bssp->wmep_logcwmax =
2009-02-20 21:55:23 +00:00
aggrParam[mode].logcwmax;
chanp->wmep_txopLimit = bssp->wmep_txopLimit =
2009-02-20 21:55:23 +00:00
(vap->iv_flags & IEEE80211_F_BURST) ?
aggrParam[mode].txopLimit : 0;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2009-02-20 21:55:23 +00:00
"update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
"logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
chanp->wmep_logcwmax, chanp->wmep_txopLimit);
}
/*
* Change the contention window based on the number of associated
* stations. If the number of associated stations is 1 and
* aggressive mode is enabled, lower the contention window even
* further.
*/
if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
2009-02-19 04:52:03 +00:00
static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
[IEEE80211_MODE_AUTO] = 3,
[IEEE80211_MODE_11A] = 3,
[IEEE80211_MODE_11B] = 4,
[IEEE80211_MODE_11G] = 3,
[IEEE80211_MODE_FH] = 4,
[IEEE80211_MODE_TURBO_A] = 3,
[IEEE80211_MODE_TURBO_G] = 3,
[IEEE80211_MODE_STURBO_A] = 3,
[IEEE80211_MODE_HALF] = 3,
[IEEE80211_MODE_QUARTER] = 3,
2009-02-19 04:52:03 +00:00
[IEEE80211_MODE_11NA] = 3,
[IEEE80211_MODE_11NG] = 3,
[IEEE80211_MODE_VHT_2GHZ] = 3,
[IEEE80211_MODE_VHT_5GHZ] = 3,
};
chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2009-02-20 21:55:23 +00:00
"update %s (chan+bss) logcwmin %u\n",
ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
}
/* schedule the deferred WME update */
ieee80211_runtask(ic, &vap->iv_wme_task);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2009-02-20 21:55:23 +00:00
"%s: WME params updated, cap_info 0x%x\n", __func__,
vap->iv_opmode == IEEE80211_M_STA ?
wme->wme_wmeChanParams.cap_info :
wme->wme_bssChanParams.cap_info);
}
void
ieee80211_wme_updateparams(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
if (ic->ic_caps & IEEE80211_C_WME) {
IEEE80211_LOCK(ic);
ieee80211_wme_updateparams_locked(vap);
IEEE80211_UNLOCK(ic);
}
}
/*
* Fetch the WME parameters for the given VAP.
*
* When net80211 grows p2p, etc support, this may return different
* parameters for each VAP.
*/
void
ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
{
memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
}
/*
* For NICs which only support one set of WME paramaters (ie, softmac NICs)
* there may be different VAP WME parameters but only one is "active".
* This returns the "NIC" WME parameters for the currently active
* context.
*/
void
ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
{
memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
}
/*
* Return whether to use QoS on a given WME queue.
*
* This is intended to be called from the transmit path of softmac drivers
* which are setting NoAck bits in transmit descriptors.
*
* Ideally this would be set in some transmit field before the packet is
* queued to the driver but net80211 isn't quite there yet.
*/
int
ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
{
/* Bounds/sanity check */
if (ac < 0 || ac >= WME_NUM_AC)
return (0);
/* Again, there's only one global context for now */
return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
}
static void
parent_updown(void *arg, int npending)
{
Replay r286410. Change KPI of how device drivers that provide wireless connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
2015-08-27 08:56:39 +00:00
struct ieee80211com *ic = arg;
Replay r286410. Change KPI of how device drivers that provide wireless connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
2015-08-27 08:56:39 +00:00
ic->ic_parent(ic);
}
static void
update_mcast(void *arg, int npending)
{
struct ieee80211com *ic = arg;
ic->ic_update_mcast(ic);
}
static void
update_promisc(void *arg, int npending)
{
struct ieee80211com *ic = arg;
ic->ic_update_promisc(ic);
}
static void
update_channel(void *arg, int npending)
{
struct ieee80211com *ic = arg;
ic->ic_set_channel(ic);
ieee80211_radiotap_chan_change(ic);
}
static void
update_chw(void *arg, int npending)
{
struct ieee80211com *ic = arg;
/*
* XXX should we defer the channel width _config_ update until now?
*/
ic->ic_update_chw(ic);
}
/*
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
* Deferred WME parameter and beacon update.
*
* In preparation for per-VAP WME configuration, call the VAP
* method if the VAP requires it. Otherwise, just call the
* older global method. There isn't a per-VAP WME configuration
* just yet so for now just use the global configuration.
*/
static void
vap_update_wme(void *arg, int npending)
{
struct ieee80211vap *vap = arg;
struct ieee80211com *ic = vap->iv_ic;
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
struct ieee80211_wme_state *wme = &ic->ic_wme;
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
/* Driver update */
if (vap->iv_wme_update != NULL)
vap->iv_wme_update(vap,
ic->ic_wme.wme_chanParams.cap_wmeParams);
else
ic->ic_wme.wme_update(ic);
[net80211] Migrate HT/legacy protection mode and preamble calculation to per-VAP flags The later firmware devices (including iwn!) support multiple configuration contexts for a lot of things, leaving it up to the firmware to decide which channel and vap is active. This allows for things like off-channel p2p sta/ap operation and other weird things. However, net80211 is still focused on a "net80211 drives all" when it comes to driving the NIC, and as part of this history a lot of these options are global and not per-VAP. This is fine when net80211 drives things and all VAPs share a single channel - these parameters importantly really reflect the state of the channel! - but it will increasingly be not fine when we start supporting more weird configurations and more recent NICs. Yeah, recent like iwn/iwm. Anyway - so, migrate all of the HT protection, legacy protection and preamble stuff to be per-VAP. The global flags are still there; they're now calculated in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers which have per-VAP configuration of these parameters can now just listen to the per-VAP options. What do I mean by per-channel? Well, the above configuration parameters really are about interoperation with other devices on the same channel. Eg, HT protection mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or indicates it has non-HT stations associated. So, these flags really should be per-channel rather than per-VAP, and then for things like "do i need short preamble or long preamble?" turn into a "do I need it for this current operating channel". Then any VAP using it can query the channel that it's on, reflecting the real required state. This patch does none of the above paragraph just yet. I'm also cheating a bit - I'm currently not using separate taskqueues for the beacon updates and the per-VAP configuration updates. I can always further split it later if I need to but I didn't think it was SUPER important here. So: * Create vap taskqueue entries for ERP/protection, HT protection and short/long preamble; * Migrate the HT station count, short/long slot station count, etc - into per-VAP variables rather than global; * Fix a bug with my WME work from a while ago which made it per-VAP - do the WME beacon update /after/ the WME update taskqueue runs, not before; * Any time the HT protmode configuration changes or the ERP protection mode config changes - schedule the task, which will call the driver without the net80211 lock held and all correctly serialised; * Use the global flags for beacon IEs and VAP flags for probe responses and other IE situations. The primary consumer of this is ath10k. iwn could use it when sending RXON, but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether it's required in STA mode (ie whether the firmware parses beacons to change protection mode or whether we need to.) Tested: * AR9280, STA/AP * AR9380, DWDS STA+STA/AP * ath10k work, STA/AP * Intel 6235, STA * Various rtwn / run NICs, DWDS STA and STA configurations
2020-07-01 00:23:49 +00:00
IEEE80211_LOCK(ic);
/*
* Arrange for the beacon update.
*
* XXX what about MBSS, WDS?
*/
if (vap->iv_opmode == IEEE80211_M_HOSTAP
|| vap->iv_opmode == IEEE80211_M_IBSS) {
/*
* Arrange for a beacon update and bump the parameter
* set number so associated stations load the new values.
*/
wme->wme_bssChanParams.cap_info =
(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
}
IEEE80211_UNLOCK(ic);
}
static void
restart_vaps(void *arg, int npending)
{
struct ieee80211com *ic = arg;
ieee80211_suspend_all(ic);
ieee80211_resume_all(ic);
}
/*
* Block until the parent is in a known state. This is
* used after any operations that dispatch a task (e.g.
* to auto-configure the parent device up/down).
*/
void
ieee80211_waitfor_parent(struct ieee80211com *ic)
{
taskqueue_block(ic->ic_tq);
ieee80211_draintask(ic, &ic->ic_parent_task);
ieee80211_draintask(ic, &ic->ic_mcast_task);
ieee80211_draintask(ic, &ic->ic_promisc_task);
ieee80211_draintask(ic, &ic->ic_chan_task);
ieee80211_draintask(ic, &ic->ic_bmiss_task);
ieee80211_draintask(ic, &ic->ic_chw_task);
taskqueue_unblock(ic->ic_tq);
}
/*
* Check to see whether the current channel needs reset.
*
* Some devices don't handle being given an invalid channel
* in their operating mode very well (eg wpi(4) will throw a
* firmware exception.)
*
* Return 0 if we're ok, 1 if the channel needs to be reset.
*
* See PR kern/202502.
*/
static int
ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
if ((vap->iv_opmode == IEEE80211_M_IBSS &&
IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
(vap->iv_opmode == IEEE80211_M_HOSTAP &&
IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
return (1);
return (0);
}
/*
* Reset the curchan to a known good state.
*/
static void
ieee80211_start_reset_chan(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
ic->ic_curchan = &ic->ic_channels[0];
}
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
/*
* Start a vap running. If this is the first vap to be
* set running on the underlying device then we
* automatically bring the device up.
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
*/
void
ieee80211_start_locked(struct ieee80211vap *vap)
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
{
struct ifnet *ifp = vap->iv_ifp;
struct ieee80211com *ic = vap->iv_ic;
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
IEEE80211_LOCK_ASSERT(ic);
IEEE80211_DPRINTF(vap,
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
"start running, %d vaps running\n", ic->ic_nrunning);
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
/*
* Mark us running. Note that it's ok to do this first;
* if we need to bring the parent device up we defer that
* to avoid dropping the com lock. We expect the device
* to respond to being marked up by calling back into us
* through ieee80211_start_all at which point we'll come
* back in here and complete the work.
*/
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ieee80211_notify_ifnet_change(vap);
/*
* We are not running; if this we are the first vap
* to be brought up auto-up the parent if necessary.
*/
Replay r286410. Change KPI of how device drivers that provide wireless connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
2015-08-27 08:56:39 +00:00
if (ic->ic_nrunning++ == 0) {
/* reset the channel to a known good channel */
if (ieee80211_start_check_reset_chan(vap))
ieee80211_start_reset_chan(vap);
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
Replay r286410. Change KPI of how device drivers that provide wireless connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
2015-08-27 08:56:39 +00:00
"%s: up parent %s\n", __func__, ic->ic_name);
ieee80211_runtask(ic, &ic->ic_parent_task);
return;
}
}
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
/*
* If the parent is up and running, then kick the
* 802.11 state machine as appropriate.
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
*/
Replay r286410. Change KPI of how device drivers that provide wireless connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
2015-08-27 08:56:39 +00:00
if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
if (vap->iv_opmode == IEEE80211_M_STA) {
#if 0
/* XXX bypasses scan too easily; disable for now */
/*
* Try to be intelligent about clocking the state
* machine. If we're currently in RUN state then
* we should be able to apply any new state/parameters
* simply by re-associating. Otherwise we need to
* re-scan to select an appropriate ap.
*/
if (vap->iv_state >= IEEE80211_S_RUN)
ieee80211_new_state_locked(vap,
IEEE80211_S_ASSOC, 1);
else
#endif
ieee80211_new_state_locked(vap,
IEEE80211_S_SCAN, 0);
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
} else {
/*
* For monitor+wds mode there's nothing to do but
* start running. Otherwise if this is the first
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
* vap to be brought up, start a scan which may be
* preempted if the station is locked to a particular
* channel.
*/
vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
if (vap->iv_opmode == IEEE80211_M_MONITOR ||
vap->iv_opmode == IEEE80211_M_WDS)
ieee80211_new_state_locked(vap,
IEEE80211_S_RUN, -1);
else
ieee80211_new_state_locked(vap,
IEEE80211_S_SCAN, 0);
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
}
}
}
/*
* Start a single vap.
*/
void
ieee80211_init(void *arg)
{
struct ieee80211vap *vap = arg;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
"%s\n", __func__);
IEEE80211_LOCK(vap->iv_ic);
ieee80211_start_locked(vap);
IEEE80211_UNLOCK(vap->iv_ic);
}
/*
* Start all runnable vap's on a device.
*/
void
ieee80211_start_all(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
IEEE80211_LOCK(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
struct ifnet *ifp = vap->iv_ifp;
if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
ieee80211_start_locked(vap);
}
IEEE80211_UNLOCK(ic);
}
/*
* Stop a vap. We force it down using the state machine
* then mark it's ifnet not running. If this is the last
* vap running on the underlying device then we close it
* too to insure it will be properly initialized when the
* next vap is brought up.
*/
void
ieee80211_stop_locked(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = vap->iv_ifp;
IEEE80211_LOCK_ASSERT(ic);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
"stop running, %d vaps running\n", ic->ic_nrunning);
ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */
ieee80211_notify_ifnet_change(vap);
Replay r286410. Change KPI of how device drivers that provide wireless connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
2015-08-27 08:56:39 +00:00
if (--ic->ic_nrunning == 0) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
Replay r286410. Change KPI of how device drivers that provide wireless connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
2015-08-27 08:56:39 +00:00
"down parent %s\n", ic->ic_name);
ieee80211_runtask(ic, &ic->ic_parent_task);
}
}
}
void
ieee80211_stop(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK(ic);
ieee80211_stop_locked(vap);
IEEE80211_UNLOCK(ic);
}
/*
* Stop all vap's running on a device.
*/
void
ieee80211_stop_all(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
IEEE80211_LOCK(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
struct ifnet *ifp = vap->iv_ifp;
if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
ieee80211_stop_locked(vap);
}
IEEE80211_UNLOCK(ic);
ieee80211_waitfor_parent(ic);
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
}
/*
* Stop all vap's running on a device and arrange
* for those that were running to be resumed.
*/
void
ieee80211_suspend_all(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
IEEE80211_LOCK(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
struct ifnet *ifp = vap->iv_ifp;
if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */
vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
ieee80211_stop_locked(vap);
}
}
IEEE80211_UNLOCK(ic);
ieee80211_waitfor_parent(ic);
}
/*
* Start all vap's marked for resume.
*/
void
ieee80211_resume_all(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
IEEE80211_LOCK(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
struct ifnet *ifp = vap->iv_ifp;
if (!IFNET_IS_UP_RUNNING(ifp) &&
(vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
ieee80211_start_locked(vap);
}
}
IEEE80211_UNLOCK(ic);
}
/*
* Restart all vap's running on a device.
*/
void
ieee80211_restart_all(struct ieee80211com *ic)
{
/*
* NB: do not use ieee80211_runtask here, we will
* block & drain net80211 taskqueue.
*/
taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
}
void
ieee80211_beacon_miss(struct ieee80211com *ic)
{
IEEE80211_LOCK(ic);
if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
/* Process in a taskq, the handler may reenter the driver */
ieee80211_runtask(ic, &ic->ic_bmiss_task);
}
IEEE80211_UNLOCK(ic);
}
static void
beacon_miss(void *arg, int npending)
{
struct ieee80211com *ic = arg;
struct ieee80211vap *vap;
IEEE80211_LOCK(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
/*
* We only pass events through for sta vap's in RUN+ state;
* may be too restrictive but for now this saves all the
* handlers duplicating these checks.
*/
if (vap->iv_opmode == IEEE80211_M_STA &&
vap->iv_state >= IEEE80211_S_RUN &&
vap->iv_bmiss != NULL)
vap->iv_bmiss(vap);
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
}
IEEE80211_UNLOCK(ic);
}
static void
beacon_swmiss(void *arg, int npending)
{
struct ieee80211vap *vap = arg;
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK(ic);
if (vap->iv_state >= IEEE80211_S_RUN) {
/* XXX Call multiple times if npending > zero? */
vap->iv_bmiss(vap);
}
IEEE80211_UNLOCK(ic);
}
/*
* Software beacon miss handling. Check if any beacons
* were received in the last period. If not post a
* beacon miss; otherwise reset the counter.
*/
void
ieee80211_swbmiss(void *arg)
{
struct ieee80211vap *vap = arg;
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK_ASSERT(ic);
KASSERT(vap->iv_state >= IEEE80211_S_RUN,
("wrong state %d", vap->iv_state));
if (ic->ic_flags & IEEE80211_F_SCAN) {
/*
* If scanning just ignore and reset state. If we get a
* bmiss after coming out of scan because we haven't had
* time to receive a beacon then we should probe the AP
* before posting a real bmiss (unless iv_bmiss_max has
* been artifiically lowered). A cleaner solution might
* be to disable the timer on scan start/end but to handle
* case of multiple sta vap's we'd need to disable the
* timers of all affected vap's.
*/
vap->iv_swbmiss_count = 0;
} else if (vap->iv_swbmiss_count == 0) {
if (vap->iv_bmiss != NULL)
ieee80211_runtask(ic, &vap->iv_swbmiss_task);
} else
vap->iv_swbmiss_count = 0;
callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
ieee80211_swbmiss, vap);
}
/*
* Start an 802.11h channel switch. We record the parameters,
* mark the operation pending, notify each vap through the
* beacon update mechanism so it can update the beacon frame
* contents, and then switch vap's to CSA state to block outbound
* traffic. Devices that handle CSA directly can use the state
* switch to do the right thing so long as they call
* ieee80211_csa_completeswitch when it's time to complete the
* channel change. Devices that depend on the net80211 layer can
* use ieee80211_beacon_update to handle the countdown and the
* channel switch.
*/
void
ieee80211_csa_startswitch(struct ieee80211com *ic,
struct ieee80211_channel *c, int mode, int count)
{
struct ieee80211vap *vap;
IEEE80211_LOCK_ASSERT(ic);
ic->ic_csa_newchan = c;
ic->ic_csa_mode = mode;
ic->ic_csa_count = count;
ic->ic_flags |= IEEE80211_F_CSAPENDING;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
Implementation of the upcoming Wireless Mesh standard, 802.11s, on the net80211 wireless stack. This work is based on the March 2009 D3.0 draft standard. This standard is expected to become final next year. This includes two main net80211 modules, ieee80211_mesh.c which deals with peer link management, link metric calculation, routing table control and mesh configuration and ieee80211_hwmp.c which deals with the actually routing process on the mesh network. HWMP is the mandatory routing protocol on by the mesh standard, but others, such as RA-OLSR, can be implemented. Authentication and encryption are not implemented. There are several scripts under tools/tools/net80211/scripts that can be used to test different mesh network topologies and they also teach you how to setup a mesh vap (for the impatient: ifconfig wlan0 create wlandev ... wlanmode mesh). A new build option is available: IEEE80211_SUPPORT_MESH and it's enabled by default on GENERIC kernels for i386, amd64, sparc64 and pc98. Drivers that support mesh networks right now are: ath, ral and mwl. More information at: http://wiki.freebsd.org/WifiMesh Please note that this work is experimental. Also, please note that bridging a mesh vap with another network interface is not yet supported. Many thanks to the FreeBSD Foundation for sponsoring this project and to Sam Leffler for his support. Also, I would like to thank Gateworks Corporation for sending me a Cambria board which was used during the development of this project. Reviewed by: sam Approved by: re (kensmith) Obtained from: projects/mesh11s
2009-07-11 15:02:45 +00:00
vap->iv_opmode == IEEE80211_M_IBSS ||
vap->iv_opmode == IEEE80211_M_MBSS)
ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
/* switch to CSA state to block outbound traffic */
if (vap->iv_state == IEEE80211_S_RUN)
ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
}
ieee80211_notify_csa(ic, c, mode, count);
}
/*
* Complete the channel switch by transitioning all CSA VAPs to RUN.
* This is called by both the completion and cancellation functions
* so each VAP is placed back in the RUN state and can thus transmit.
*/
static void
csa_completeswitch(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
ic->ic_csa_newchan = NULL;
ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
if (vap->iv_state == IEEE80211_S_CSA)
ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
}
/*
* Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
* We clear state and move all vap's in CSA state to RUN state
* so they can again transmit.
*
* Although this may not be completely correct, update the BSS channel
* for each VAP to the newly configured channel. The setcurchan sets
* the current operating channel for the interface (so the radio does
* switch over) but the VAP BSS isn't updated, leading to incorrectly
* reported information via ioctl.
*/
void
ieee80211_csa_completeswitch(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
IEEE80211_LOCK_ASSERT(ic);
KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
ieee80211_setcurchan(ic, ic->ic_csa_newchan);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
if (vap->iv_state == IEEE80211_S_CSA)
vap->iv_bss->ni_chan = ic->ic_curchan;
csa_completeswitch(ic);
}
/*
* Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
* We clear state and move all vap's in CSA state to RUN state
* so they can again transmit.
*/
void
ieee80211_csa_cancelswitch(struct ieee80211com *ic)
{
IEEE80211_LOCK_ASSERT(ic);
csa_completeswitch(ic);
}
/*
* Complete a DFS CAC started by ieee80211_dfs_cac_start.
* We clear state and move all vap's in CAC state to RUN state.
*/
void
ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
{
struct ieee80211com *ic = vap0->iv_ic;
struct ieee80211vap *vap;
IEEE80211_LOCK(ic);
/*
* Complete CAC state change for lead vap first; then
* clock all the other vap's waiting.
*/
KASSERT(vap0->iv_state == IEEE80211_S_CAC,
("wrong state %d", vap0->iv_state));
ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
IEEE80211_UNLOCK(ic);
}
/*
* Force all vap's other than the specified vap to the INIT state
* and mark them as waiting for a scan to complete. These vaps
* will be brought up when the scan completes and the scanning vap
* reaches RUN state by wakeupwaiting.
*/
static void
markwaiting(struct ieee80211vap *vap0)
{
struct ieee80211com *ic = vap0->iv_ic;
struct ieee80211vap *vap;
IEEE80211_LOCK_ASSERT(ic);
/*
* A vap list entry can not disappear since we are running on the
* taskqueue and a vap destroy will queue and drain another state
* change task.
*/
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
if (vap == vap0)
continue;
if (vap->iv_state != IEEE80211_S_INIT) {
/* NB: iv_newstate may drop the lock */
vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
IEEE80211_LOCK_ASSERT(ic);
vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
}
}
}
/*
* Wakeup all vap's waiting for a scan to complete. This is the
* companion to markwaiting (above) and is used to coordinate
* multiple vaps scanning.
* This is called from the state taskqueue.
*/
static void
wakeupwaiting(struct ieee80211vap *vap0)
{
struct ieee80211com *ic = vap0->iv_ic;
struct ieee80211vap *vap;
IEEE80211_LOCK_ASSERT(ic);
/*
* A vap list entry can not disappear since we are running on the
* taskqueue and a vap destroy will queue and drain another state
* change task.
*/
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
if (vap == vap0)
continue;
if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
/* NB: sta's cannot go INIT->RUN */
/* NB: iv_newstate may drop the lock */
vap->iv_newstate(vap,
vap->iv_opmode == IEEE80211_M_STA ?
IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
IEEE80211_LOCK_ASSERT(ic);
}
}
}
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
/*
* Handle post state change work common to all operating modes.
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
*/
static void
ieee80211_newstate_cb(void *xvap, int npending)
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
{
struct ieee80211vap *vap = xvap;
struct ieee80211com *ic = vap->iv_ic;
enum ieee80211_state nstate, ostate;
int arg, rc;
IEEE80211_LOCK(ic);
nstate = vap->iv_nstate;
arg = vap->iv_nstate_arg;
if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
/*
* We have been requested to drop back to the INIT before
* proceeding to the new state.
*/
/* Deny any state changes while we are here. */
vap->iv_nstate = IEEE80211_S_INIT;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: %s -> %s arg %d\n", __func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[vap->iv_nstate], arg);
vap->iv_newstate(vap, vap->iv_nstate, 0);
IEEE80211_LOCK_ASSERT(ic);
vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
IEEE80211_FEXT_STATEWAIT);
/* enqueue new state transition after cancel_scan() task */
ieee80211_new_state_locked(vap, nstate, arg);
goto done;
}
ostate = vap->iv_state;
if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
/*
* SCAN was forced; e.g. on beacon miss. Force other running
* vap's to INIT state and mark them as waiting for the scan to
* complete. This insures they don't interfere with our
* scanning. Since we are single threaded the vaps can not
* transition again while we are executing.
*
* XXX not always right, assumes ap follows sta
*/
markwaiting(vap);
}
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: %s -> %s arg %d\n", __func__,
ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
rc = vap->iv_newstate(vap, nstate, arg);
IEEE80211_LOCK_ASSERT(ic);
vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
if (rc != 0) {
/* State transition failed */
KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
KASSERT(nstate != IEEE80211_S_INIT,
("INIT state change failed"));
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: %s returned error %d\n", __func__,
ieee80211_state_name[nstate], rc);
goto done;
}
/* No actual transition, skip post processing */
if (ostate == nstate)
goto done;
if (nstate == IEEE80211_S_RUN) {
/*
* OACTIVE may be set on the vap if the upper layer
* tried to transmit (e.g. IPv6 NDP) before we reach
* RUN state. Clear it and restart xmit.
*
* Note this can also happen as a result of SLEEP->RUN
* (i.e. coming out of power save mode).
*/
vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/*
* XXX TODO Kick-start a VAP queue - this should be a method!
*/
/* bring up any vaps waiting on us */
wakeupwaiting(vap);
} else if (nstate == IEEE80211_S_INIT) {
/*
* Flush the scan cache if we did the last scan (XXX?)
* and flush any frames on send queues from this vap.
* Note the mgt q is used only for legacy drivers and
* will go away shortly.
*/
ieee80211_scan_flush(vap);
/*
* XXX TODO: ic/vap queue flush
*/
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
}
done:
IEEE80211_UNLOCK(ic);
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
}
/*
* Public interface for initiating a state machine change.
* This routine single-threads the request and coordinates
* the scheduling of multiple vaps for the purpose of selecting
* an operating channel. Specifically the following scenarios
* are handled:
* o only one vap can be selecting a channel so on transition to
* SCAN state if another vap is already scanning then
* mark the caller for later processing and return without
* doing anything (XXX? expectations by caller of synchronous operation)
* o only one vap can be doing CAC of a channel so on transition to
* CAC state if another vap is already scanning for radar then
* mark the caller for later processing and return without
* doing anything (XXX? expectations by caller of synchronous operation)
* o if another vap is already running when a request is made
* to SCAN then an operating channel has been chosen; bypass
* the scan and just join the channel
*
* Note that the state change call is done through the iv_newstate
* method pointer so any driver routine gets invoked. The driver
* will normally call back into operating mode-specific
* ieee80211_newstate routines (below) unless it needs to completely
* bypass the state machine (e.g. because the firmware has it's
* own idea how things should work). Bypassing the net80211 layer
* is usually a mistake and indicates lack of proper integration
* with the net80211 layer.
*/
Fix a use-after-free node reference issue when waiting for a return from a management frame transmission. This bug is a bit loopy, so here goes. The underlying cause is pretty easy to understand - the node isn't referenced before passing into the callout, so if the node is deleted before the callout fires, it'll dereference free'd memory. The code path however is slightly more convoluted. The functions _say_ mgt_tx - ie management transmit - which is partially true. Yes, that callback is attached to the mbuf for some management frames. However, it's only for frames relating to scanning and authentication attempts. It helpfully drives the VAP state back to "SCAN" if the transmission fails _OR_ (as I subsequently found out!) if the transmission succeeds but the state machine doesn't make progress towards being authenticated and active. Now, the code itself isn't terribly clear about this. It _looks_ like it's just handling the transmit failure case. However, when you look at what goes on in the transmit success case, it's moving the VAP state back to SCAN if it hasn't changed state since the time the callback was scheduled. Ie, if it's in ASSOC or AUTH still, it'll go back to SCAN. But if it has transitioned to the RUN state, the comparison will fail and it'll not transition things back to the SCAN state. So, to fix this, I decided to leave everything the way it is and merely fix the locking and remove the node reference. The _better_ fix would be to turn this callout into a "assoc/auth request" timeout callback and make the callout locked, thus eliminating all races. However, until all the drivers have been fixed so that transmit completions occur outside of any locking that's going on, it's going to be impossible to do this without introducing LORs. So, I leave some of the evilness in there. Tested: * AR5212, ath(4), STA mode * 5100 and 4965 wifi, iwn(4), STA mode
2013-10-24 17:04:16 +00:00
int
ieee80211_new_state_locked(struct ieee80211vap *vap,
enum ieee80211_state nstate, int arg)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211vap *vp;
enum ieee80211_state ostate;
int nrunning, nscanning;
IEEE80211_LOCK_ASSERT(ic);
if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
if (vap->iv_nstate == IEEE80211_S_INIT ||
((vap->iv_state == IEEE80211_S_INIT ||
(vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
vap->iv_nstate == IEEE80211_S_SCAN &&
nstate > IEEE80211_S_SCAN)) {
/*
* XXX The vap is being stopped/started,
* do not allow any other state changes
* until this is completed.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: %s -> %s (%s) transition discarded\n",
__func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[nstate],
ieee80211_state_name[vap->iv_nstate]);
return -1;
} else if (vap->iv_state != vap->iv_nstate) {
#if 0
/* Warn if the previous state hasn't completed. */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: pending %s -> %s transition lost\n", __func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[vap->iv_nstate]);
#else
/* XXX temporarily enable to identify issues */
if_printf(vap->iv_ifp,
"%s: pending %s -> %s transition lost\n",
__func__, ieee80211_state_name[vap->iv_state],
ieee80211_state_name[vap->iv_nstate]);
#endif
}
}
nrunning = nscanning = 0;
/* XXX can track this state instead of calculating */
TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
if (vp != vap) {
if (vp->iv_state >= IEEE80211_S_RUN)
nrunning++;
/* XXX doesn't handle bg scan */
/* NB: CAC+AUTH+ASSOC treated like SCAN */
else if (vp->iv_state > IEEE80211_S_INIT)
nscanning++;
}
}
ostate = vap->iv_state;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
ieee80211_state_name[ostate], ieee80211_state_name[nstate],
nrunning, nscanning);
switch (nstate) {
case IEEE80211_S_SCAN:
if (ostate == IEEE80211_S_INIT) {
/*
* INIT -> SCAN happens on initial bringup.
*/
KASSERT(!(nscanning && nrunning),
("%d scanning and %d running", nscanning, nrunning));
if (nscanning) {
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
/*
* Someone is scanning, defer our state
* change until the work has completed.
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: defer %s -> %s\n",
__func__, ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
return 0;
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
}
if (nrunning) {
/*
* Someone is operating; just join the channel
* they have chosen.
*/
/* XXX kill arg? */
/* XXX check each opmode, adhoc? */
if (vap->iv_opmode == IEEE80211_M_STA)
nstate = IEEE80211_S_SCAN;
else
nstate = IEEE80211_S_RUN;
#ifdef IEEE80211_DEBUG
if (nstate != IEEE80211_S_SCAN) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE,
"%s: override, now %s -> %s\n",
__func__,
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
}
#endif
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
}
}
break;
case IEEE80211_S_RUN:
if (vap->iv_opmode == IEEE80211_M_WDS &&
(vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
nscanning) {
/*
* Legacy WDS with someone else scanning; don't
* go online until that completes as we should
* follow the other vap to the channel they choose.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: defer %s -> %s (legacy WDS)\n", __func__,
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
return 0;
}
if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
(vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
!IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
/*
* This is a DFS channel, transition to CAC state
* instead of RUN. This allows us to initiate
* Channel Availability Check (CAC) as specified
* by 11h/DFS.
*/
nstate = IEEE80211_S_CAC;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: override %s -> %s (DFS)\n", __func__,
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
}
break;
case IEEE80211_S_INIT:
/* cancel any scan in progress */
ieee80211_cancel_scan(vap);
if (ostate == IEEE80211_S_INIT ) {
/* XXX don't believe this */
/* INIT -> INIT. nothing to do */
vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
}
/* fall thru... */
default:
break;
}
/* defer the state change to a thread */
vap->iv_nstate = nstate;
vap->iv_nstate_arg = arg;
vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
ieee80211_runtask(ic, &vap->iv_nstate_task);
return EINPROGRESS;
}
int
ieee80211_new_state(struct ieee80211vap *vap,
enum ieee80211_state nstate, int arg)
{
struct ieee80211com *ic = vap->iv_ic;
int rc;
IEEE80211_LOCK(ic);
rc = ieee80211_new_state_locked(vap, nstate, arg);
IEEE80211_UNLOCK(ic);
return rc;
}