202 lines
3.3 KiB
Plaintext
202 lines
3.3 KiB
Plaintext
|
/*
|
||
|
* *****************************************************************************
|
||
|
*
|
||
|
* Copyright (c) 2018-2020 Gavin D. Howard and contributors.
|
||
|
*
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
*
|
||
|
* * Redistributions of source code must retain the above copyright notice, this
|
||
|
* list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer in the documentation
|
||
|
* and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
* *****************************************************************************
|
||
|
*
|
||
|
* The bc math library.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
scale=20
|
||
|
define e(x){
|
||
|
auto b,s,n,r,d,i,p,f,v
|
||
|
b=ibase
|
||
|
ibase=A
|
||
|
if(x<0){
|
||
|
n=1
|
||
|
x=-x
|
||
|
}
|
||
|
s=scale
|
||
|
r=6+s+.44*x
|
||
|
scale=scale(x)+1
|
||
|
while(x>1){
|
||
|
d+=1
|
||
|
x/=2
|
||
|
scale+=1
|
||
|
}
|
||
|
scale=r
|
||
|
r=x+1
|
||
|
p=x
|
||
|
f=v=1
|
||
|
for(i=2;v;++i){
|
||
|
p*=x
|
||
|
f*=i
|
||
|
v=p/f
|
||
|
r+=v
|
||
|
}
|
||
|
while(d--)r*=r
|
||
|
scale=s
|
||
|
ibase=b
|
||
|
if(n)return(1/r)
|
||
|
return(r/1)
|
||
|
}
|
||
|
define l(x){
|
||
|
auto b,s,r,p,a,q,i,v
|
||
|
if(x<=0)return((1-A^scale)/1)
|
||
|
b=ibase
|
||
|
ibase=A
|
||
|
s=scale
|
||
|
scale+=6
|
||
|
p=2
|
||
|
while(x>=2){
|
||
|
p*=2
|
||
|
x=sqrt(x)
|
||
|
}
|
||
|
while(x<=.5){
|
||
|
p*=2
|
||
|
x=sqrt(x)
|
||
|
}
|
||
|
r=a=(x-1)/(x+1)
|
||
|
q=a*a
|
||
|
v=1
|
||
|
for(i=3;v;i+=2){
|
||
|
a*=q
|
||
|
v=a/i
|
||
|
r+=v
|
||
|
}
|
||
|
r*=p
|
||
|
scale=s
|
||
|
ibase=b
|
||
|
return(r/1)
|
||
|
}
|
||
|
define s(x){
|
||
|
auto b,s,r,a,q,i
|
||
|
if(x<0)return(-s(-x))
|
||
|
b=ibase
|
||
|
ibase=A
|
||
|
s=scale
|
||
|
scale=1.1*s+2
|
||
|
a=a(1)
|
||
|
scale=0
|
||
|
q=(x/a+2)/4
|
||
|
x-=4*q*a
|
||
|
if(q%2)x=-x
|
||
|
scale=s+2
|
||
|
r=a=x
|
||
|
q=-x*x
|
||
|
for(i=3;a;i+=2){
|
||
|
a*=q/(i*(i-1))
|
||
|
r+=a
|
||
|
}
|
||
|
scale=s
|
||
|
ibase=b
|
||
|
return(r/1)
|
||
|
}
|
||
|
define c(x){
|
||
|
auto b,s
|
||
|
b=ibase
|
||
|
ibase=A
|
||
|
s=scale
|
||
|
scale*=1.2
|
||
|
x=s(2*a(1)+x)
|
||
|
scale=s
|
||
|
ibase=b
|
||
|
return(x/1)
|
||
|
}
|
||
|
define a(x){
|
||
|
auto b,s,r,n,a,m,t,f,i,u
|
||
|
b=ibase
|
||
|
ibase=A
|
||
|
n=1
|
||
|
if(x<0){
|
||
|
n=-1
|
||
|
x=-x
|
||
|
}
|
||
|
if(scale<65){
|
||
|
if(x==1){
|
||
|
r=.7853981633974483096156608458198757210492923498437764552437361480/n
|
||
|
ibase=b
|
||
|
return(r)
|
||
|
}
|
||
|
if(x==.2){
|
||
|
r=.1973955598498807583700497651947902934475851037878521015176889402/n
|
||
|
ibase=b
|
||
|
return(r)
|
||
|
}
|
||
|
}
|
||
|
s=scale
|
||
|
if(x>.2){
|
||
|
scale+=5
|
||
|
a=a(.2)
|
||
|
}
|
||
|
scale=s+3
|
||
|
while(x>.2){
|
||
|
m+=1
|
||
|
x=(x-.2)/(1+.2*x)
|
||
|
}
|
||
|
r=u=x
|
||
|
f=-x*x
|
||
|
t=1
|
||
|
for(i=3;t;i+=2){
|
||
|
u*=f
|
||
|
t=u/i
|
||
|
r+=t
|
||
|
}
|
||
|
scale=s
|
||
|
ibase=b
|
||
|
return((m*a+r)/n)
|
||
|
}
|
||
|
define j(n,x){
|
||
|
auto b,s,o,a,i,v,f
|
||
|
b=ibase
|
||
|
ibase=A
|
||
|
s=scale
|
||
|
scale=0
|
||
|
n/=1
|
||
|
if(n<0){
|
||
|
n=-n
|
||
|
o=n%2
|
||
|
}
|
||
|
a=1
|
||
|
for(i=2;i<=n;++i)a*=i
|
||
|
scale=1.5*s
|
||
|
a=(x^n)/2^n/a
|
||
|
r=v=1
|
||
|
f=-x*x/4
|
||
|
scale+=length(a)-scale(a)
|
||
|
for(i=1;v;++i){
|
||
|
v=v*f/i/(n+i)
|
||
|
r+=v
|
||
|
}
|
||
|
scale=s
|
||
|
ibase=b
|
||
|
if(o)a=-a
|
||
|
return(a*r/1)
|
||
|
}
|