freebsd-dev/sys/nlm/nlm_prot_xdr.c

455 lines
8.6 KiB
C
Raw Normal View History

Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/*
* Please do not edit this file.
* It was generated using rpcgen.
*/
#include <nlm/nlm_prot.h>
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
#include <sys/cdefs.h>
#ifndef lint
/*static char sccsid[] = "from: @(#)nlm_prot.x 1.8 87/09/21 Copyr 1987 Sun Micro";*/
/*static char sccsid[] = "from: * @(#)nlm_prot.x 2.1 88/08/01 4.0 RPCSRC";*/
__RCSID("$NetBSD: nlm_prot.x,v 1.6 2000/06/07 14:30:15 bouyer Exp $");
#endif /* not lint */
__FBSDID("$FreeBSD$");
bool_t
xdr_nlm_stats(XDR *xdrs, nlm_stats *objp)
{
if (!xdr_enum(xdrs, (enum_t *)objp))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_holder(XDR *xdrs, nlm_holder *objp)
{
if (!xdr_bool(xdrs, &objp->exclusive))
return (FALSE);
if (!xdr_int(xdrs, &objp->svid))
return (FALSE);
if (!xdr_netobj(xdrs, &objp->oh))
return (FALSE);
if (!xdr_u_int(xdrs, &objp->l_offset))
return (FALSE);
if (!xdr_u_int(xdrs, &objp->l_len))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_testrply(XDR *xdrs, nlm_testrply *objp)
{
if (!xdr_nlm_stats(xdrs, &objp->stat))
return (FALSE);
switch (objp->stat) {
case nlm_denied:
if (!xdr_nlm_holder(xdrs, &objp->nlm_testrply_u.holder))
return (FALSE);
break;
default:
break;
}
return (TRUE);
}
bool_t
xdr_nlm_stat(XDR *xdrs, nlm_stat *objp)
{
if (!xdr_nlm_stats(xdrs, &objp->stat))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_res(XDR *xdrs, nlm_res *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_nlm_stat(xdrs, &objp->stat))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_testres(XDR *xdrs, nlm_testres *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_nlm_testrply(xdrs, &objp->stat))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_lock(XDR *xdrs, nlm_lock *objp)
{
if (!xdr_string(xdrs, &objp->caller_name, LM_MAXSTRLEN))
return (FALSE);
if (!xdr_netobj(xdrs, &objp->fh))
return (FALSE);
if (!xdr_netobj(xdrs, &objp->oh))
return (FALSE);
if (!xdr_int(xdrs, &objp->svid))
return (FALSE);
if (!xdr_u_int(xdrs, &objp->l_offset))
return (FALSE);
if (!xdr_u_int(xdrs, &objp->l_len))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_lockargs(XDR *xdrs, nlm_lockargs *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_bool(xdrs, &objp->block))
return (FALSE);
if (!xdr_bool(xdrs, &objp->exclusive))
return (FALSE);
if (!xdr_nlm_lock(xdrs, &objp->alock))
return (FALSE);
if (!xdr_bool(xdrs, &objp->reclaim))
return (FALSE);
if (!xdr_int(xdrs, &objp->state))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_cancargs(XDR *xdrs, nlm_cancargs *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_bool(xdrs, &objp->block))
return (FALSE);
if (!xdr_bool(xdrs, &objp->exclusive))
return (FALSE);
if (!xdr_nlm_lock(xdrs, &objp->alock))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_testargs(XDR *xdrs, nlm_testargs *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_bool(xdrs, &objp->exclusive))
return (FALSE);
if (!xdr_nlm_lock(xdrs, &objp->alock))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_unlockargs(XDR *xdrs, nlm_unlockargs *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_nlm_lock(xdrs, &objp->alock))
return (FALSE);
return (TRUE);
}
bool_t
xdr_fsh_mode(XDR *xdrs, fsh_mode *objp)
{
if (!xdr_enum(xdrs, (enum_t *)objp))
return (FALSE);
return (TRUE);
}
bool_t
xdr_fsh_access(XDR *xdrs, fsh_access *objp)
{
if (!xdr_enum(xdrs, (enum_t *)objp))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_share(XDR *xdrs, nlm_share *objp)
{
if (!xdr_string(xdrs, &objp->caller_name, LM_MAXSTRLEN))
return (FALSE);
if (!xdr_netobj(xdrs, &objp->fh))
return (FALSE);
if (!xdr_netobj(xdrs, &objp->oh))
return (FALSE);
if (!xdr_fsh_mode(xdrs, &objp->mode))
return (FALSE);
if (!xdr_fsh_access(xdrs, &objp->access))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_shareargs(XDR *xdrs, nlm_shareargs *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_nlm_share(xdrs, &objp->share))
return (FALSE);
if (!xdr_bool(xdrs, &objp->reclaim))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_shareres(XDR *xdrs, nlm_shareres *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_nlm_stats(xdrs, &objp->stat))
return (FALSE);
if (!xdr_int(xdrs, &objp->sequence))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_notify(XDR *xdrs, nlm_notify *objp)
{
if (!xdr_string(xdrs, &objp->name, MAXNAMELEN))
return (FALSE);
if (!xdr_long(xdrs, &objp->state))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_stats(XDR *xdrs, nlm4_stats *objp)
{
if (!xdr_enum(xdrs, (enum_t *)objp))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_stat(XDR *xdrs, nlm4_stat *objp)
{
if (!xdr_nlm4_stats(xdrs, &objp->stat))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_holder(XDR *xdrs, nlm4_holder *objp)
{
if (!xdr_bool(xdrs, &objp->exclusive))
return (FALSE);
if (!xdr_uint32_t(xdrs, &objp->svid))
return (FALSE);
if (!xdr_netobj(xdrs, &objp->oh))
return (FALSE);
if (!xdr_uint64_t(xdrs, &objp->l_offset))
return (FALSE);
if (!xdr_uint64_t(xdrs, &objp->l_len))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_lock(XDR *xdrs, nlm4_lock *objp)
{
if (!xdr_string(xdrs, &objp->caller_name, MAXNAMELEN))
return (FALSE);
if (!xdr_netobj(xdrs, &objp->fh))
return (FALSE);
if (!xdr_netobj(xdrs, &objp->oh))
return (FALSE);
if (!xdr_uint32_t(xdrs, &objp->svid))
return (FALSE);
if (!xdr_uint64_t(xdrs, &objp->l_offset))
return (FALSE);
if (!xdr_uint64_t(xdrs, &objp->l_len))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_share(XDR *xdrs, nlm4_share *objp)
{
if (!xdr_string(xdrs, &objp->caller_name, MAXNAMELEN))
return (FALSE);
if (!xdr_netobj(xdrs, &objp->fh))
return (FALSE);
if (!xdr_netobj(xdrs, &objp->oh))
return (FALSE);
if (!xdr_fsh_mode(xdrs, &objp->mode))
return (FALSE);
if (!xdr_fsh_access(xdrs, &objp->access))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_testrply(XDR *xdrs, nlm4_testrply *objp)
{
if (!xdr_nlm4_stats(xdrs, &objp->stat))
return (FALSE);
switch (objp->stat) {
case nlm_denied:
if (!xdr_nlm4_holder(xdrs, &objp->nlm4_testrply_u.holder))
return (FALSE);
break;
default:
break;
}
return (TRUE);
}
bool_t
xdr_nlm4_testres(XDR *xdrs, nlm4_testres *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_nlm4_testrply(xdrs, &objp->stat))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_testargs(XDR *xdrs, nlm4_testargs *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_bool(xdrs, &objp->exclusive))
return (FALSE);
if (!xdr_nlm4_lock(xdrs, &objp->alock))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_res(XDR *xdrs, nlm4_res *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_nlm4_stat(xdrs, &objp->stat))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_lockargs(XDR *xdrs, nlm4_lockargs *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_bool(xdrs, &objp->block))
return (FALSE);
if (!xdr_bool(xdrs, &objp->exclusive))
return (FALSE);
if (!xdr_nlm4_lock(xdrs, &objp->alock))
return (FALSE);
if (!xdr_bool(xdrs, &objp->reclaim))
return (FALSE);
if (!xdr_int(xdrs, &objp->state))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_cancargs(XDR *xdrs, nlm4_cancargs *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_bool(xdrs, &objp->block))
return (FALSE);
if (!xdr_bool(xdrs, &objp->exclusive))
return (FALSE);
if (!xdr_nlm4_lock(xdrs, &objp->alock))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_unlockargs(XDR *xdrs, nlm4_unlockargs *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_nlm4_lock(xdrs, &objp->alock))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_shareargs(XDR *xdrs, nlm4_shareargs *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_nlm4_share(xdrs, &objp->share))
return (FALSE);
if (!xdr_bool(xdrs, &objp->reclaim))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_shareres(XDR *xdrs, nlm4_shareres *objp)
{
if (!xdr_netobj(xdrs, &objp->cookie))
return (FALSE);
if (!xdr_nlm4_stats(xdrs, &objp->stat))
return (FALSE);
if (!xdr_int(xdrs, &objp->sequence))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm_sm_status(XDR *xdrs, nlm_sm_status *objp)
{
if (!xdr_string(xdrs, &objp->mon_name, LM_MAXSTRLEN))
return (FALSE);
if (!xdr_int(xdrs, &objp->state))
return (FALSE);
if (!xdr_opaque(xdrs, objp->priv, 16))
return (FALSE);
return (TRUE);
}
bool_t
xdr_nlm4_notify(XDR *xdrs, nlm4_notify *objp)
{
if (!xdr_string(xdrs, &objp->name, MAXNAMELEN))
return (FALSE);
if (!xdr_int32_t(xdrs, &objp->state))
return (FALSE);
return (TRUE);
}