freebsd-dev/sys/dev/nvme/nvme.c

371 lines
9.3 KiB
C
Raw Normal View History

This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2012-2014 Intel Corporation
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/module.h>
#include <vm/uma.h>
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
#include "nvme_private.h"
struct nvme_consumer {
uint32_t id;
nvme_cons_ns_fn_t ns_fn;
nvme_cons_ctrlr_fn_t ctrlr_fn;
nvme_cons_async_fn_t async_fn;
nvme_cons_fail_fn_t fail_fn;
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
};
struct nvme_consumer nvme_consumer[NVME_MAX_CONSUMERS];
#define INVALID_CONSUMER_ID 0xFFFF
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
uma_zone_t nvme_request_zone;
int32_t nvme_retry_count;
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
MALLOC_DEFINE(M_NVME, "nvme", "nvme(4) memory allocations");
devclass_t nvme_devclass;
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
static void
nvme_init(void)
{
uint32_t i;
nvme_request_zone = uma_zcreate("nvme_request",
sizeof(struct nvme_request), NULL, NULL, NULL, NULL, 0, 0);
for (i = 0; i < NVME_MAX_CONSUMERS; i++)
nvme_consumer[i].id = INVALID_CONSUMER_ID;
}
SYSINIT(nvme_register, SI_SUB_DRIVERS, SI_ORDER_SECOND, nvme_init, NULL);
static void
nvme_uninit(void)
{
uma_zdestroy(nvme_request_zone);
}
SYSUNINIT(nvme_unregister, SI_SUB_DRIVERS, SI_ORDER_SECOND, nvme_uninit, NULL);
int
nvme_shutdown(device_t dev)
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
{
struct nvme_controller *ctrlr;
ctrlr = DEVICE2SOFTC(dev);
nvme_ctrlr_shutdown(ctrlr);
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
return (0);
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
}
void
nvme_dump_command(struct nvme_command *cmd)
{
printf(
"opc:%x f:%x cid:%x nsid:%x r2:%x r3:%x mptr:%jx prp1:%jx prp2:%jx cdw:%x %x %x %x %x %x\n",
cmd->opc, cmd->fuse, cmd->cid, le32toh(cmd->nsid),
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
cmd->rsvd2, cmd->rsvd3,
(uintmax_t)le64toh(cmd->mptr), (uintmax_t)le64toh(cmd->prp1), (uintmax_t)le64toh(cmd->prp2),
le32toh(cmd->cdw10), le32toh(cmd->cdw11), le32toh(cmd->cdw12),
le32toh(cmd->cdw13), le32toh(cmd->cdw14), le32toh(cmd->cdw15));
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
}
void
nvme_dump_completion(struct nvme_completion *cpl)
{
uint8_t p, sc, sct, m, dnr;
uint16_t status;
status = le16toh(cpl->status);
p = NVME_STATUS_GET_P(status);
sc = NVME_STATUS_GET_SC(status);
sct = NVME_STATUS_GET_SCT(status);
m = NVME_STATUS_GET_M(status);
dnr = NVME_STATUS_GET_DNR(status);
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
printf("cdw0:%08x sqhd:%04x sqid:%04x "
"cid:%04x p:%x sc:%02x sct:%x m:%x dnr:%x\n",
le32toh(cpl->cdw0), le16toh(cpl->sqhd), le16toh(cpl->sqid),
cpl->cid, p, sc, sct, m, dnr);
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
}
int
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
nvme_attach(device_t dev)
{
struct nvme_controller *ctrlr = DEVICE2SOFTC(dev);
int status;
status = nvme_ctrlr_construct(ctrlr, dev);
if (status != 0) {
nvme_ctrlr_destruct(ctrlr, dev);
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
return (status);
}
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
ctrlr->config_hook.ich_func = nvme_ctrlr_start_config_hook;
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
ctrlr->config_hook.ich_arg = ctrlr;
if (config_intrhook_establish(&ctrlr->config_hook) != 0)
return (ENOMEM);
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
return (0);
}
int
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
nvme_detach (device_t dev)
{
struct nvme_controller *ctrlr = DEVICE2SOFTC(dev);
nvme_ctrlr_destruct(ctrlr, dev);
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
return (0);
}
static void
nvme_notify(struct nvme_consumer *cons,
struct nvme_controller *ctrlr)
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
{
struct nvme_namespace *ns;
void *ctrlr_cookie;
int cmpset, ns_idx;
/*
* The consumer may register itself after the nvme devices
* have registered with the kernel, but before the
* driver has completed initialization. In that case,
* return here, and when initialization completes, the
* controller will make sure the consumer gets notified.
*/
if (!ctrlr->is_initialized)
return;
cmpset = atomic_cmpset_32(&ctrlr->notification_sent, 0, 1);
if (cmpset == 0)
return;
if (cons->ctrlr_fn != NULL)
ctrlr_cookie = (*cons->ctrlr_fn)(ctrlr);
else
ctrlr_cookie = (void *)(uintptr_t)0xdeadc0dedeadc0de;
ctrlr->cons_cookie[cons->id] = ctrlr_cookie;
/* ctrlr_fn has failed. Nothing to notify here any more. */
if (ctrlr_cookie == NULL)
return;
if (ctrlr->is_failed) {
ctrlr->cons_cookie[cons->id] = NULL;
if (cons->fail_fn != NULL)
(*cons->fail_fn)(ctrlr_cookie);
/*
* Do not notify consumers about the namespaces of a
* failed controller.
*/
return;
}
for (ns_idx = 0; ns_idx < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); ns_idx++) {
ns = &ctrlr->ns[ns_idx];
if (ns->data.nsze == 0)
continue;
if (cons->ns_fn != NULL)
ns->cons_cookie[cons->id] =
(*cons->ns_fn)(ns, ctrlr_cookie);
}
}
void
nvme_notify_new_controller(struct nvme_controller *ctrlr)
{
int i;
for (i = 0; i < NVME_MAX_CONSUMERS; i++) {
if (nvme_consumer[i].id != INVALID_CONSUMER_ID) {
nvme_notify(&nvme_consumer[i], ctrlr);
}
}
}
static void
nvme_notify_new_consumer(struct nvme_consumer *cons)
{
device_t *devlist;
struct nvme_controller *ctrlr;
int dev_idx, devcount;
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
if (devclass_get_devices(nvme_devclass, &devlist, &devcount))
return;
for (dev_idx = 0; dev_idx < devcount; dev_idx++) {
ctrlr = DEVICE2SOFTC(devlist[dev_idx]);
nvme_notify(cons, ctrlr);
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
}
free(devlist, M_TEMP);
}
void
nvme_notify_async_consumers(struct nvme_controller *ctrlr,
const struct nvme_completion *async_cpl,
uint32_t log_page_id, void *log_page_buffer,
uint32_t log_page_size)
{
struct nvme_consumer *cons;
void *ctrlr_cookie;
uint32_t i;
for (i = 0; i < NVME_MAX_CONSUMERS; i++) {
cons = &nvme_consumer[i];
if (cons->id != INVALID_CONSUMER_ID && cons->async_fn != NULL &&
(ctrlr_cookie = ctrlr->cons_cookie[i]) != NULL) {
(*cons->async_fn)(ctrlr_cookie, async_cpl,
log_page_id, log_page_buffer, log_page_size);
}
}
}
void
nvme_notify_fail_consumers(struct nvme_controller *ctrlr)
{
struct nvme_consumer *cons;
void *ctrlr_cookie;
uint32_t i;
/*
* This controller failed during initialization (i.e. IDENTIFY
* command failed or timed out). Do not notify any nvme
* consumers of the failure here, since the consumer does not
* even know about the controller yet.
*/
if (!ctrlr->is_initialized)
return;
for (i = 0; i < NVME_MAX_CONSUMERS; i++) {
cons = &nvme_consumer[i];
if (cons->id != INVALID_CONSUMER_ID &&
(ctrlr_cookie = ctrlr->cons_cookie[i]) != NULL) {
ctrlr->cons_cookie[i] = NULL;
if (cons->fail_fn != NULL)
cons->fail_fn(ctrlr_cookie);
}
}
}
void
nvme_notify_ns(struct nvme_controller *ctrlr, int nsid)
{
struct nvme_consumer *cons;
struct nvme_namespace *ns;
void *ctrlr_cookie;
uint32_t i;
KASSERT(nsid <= NVME_MAX_NAMESPACES,
("%s: Namespace notification to nsid %d exceeds range\n",
device_get_nameunit(ctrlr->dev), nsid));
if (!ctrlr->is_initialized)
return;
ns = &ctrlr->ns[nsid - 1];
for (i = 0; i < NVME_MAX_CONSUMERS; i++) {
cons = &nvme_consumer[i];
if (cons->id != INVALID_CONSUMER_ID && cons->ns_fn != NULL &&
(ctrlr_cookie = ctrlr->cons_cookie[i]) != NULL)
ns->cons_cookie[i] = (*cons->ns_fn)(ns, ctrlr_cookie);
}
}
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
struct nvme_consumer *
nvme_register_consumer(nvme_cons_ns_fn_t ns_fn, nvme_cons_ctrlr_fn_t ctrlr_fn,
nvme_cons_async_fn_t async_fn,
nvme_cons_fail_fn_t fail_fn)
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
{
int i;
/*
2019-07-17 20:43:14 +00:00
* TODO: add locking around consumer registration.
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
*/
for (i = 0; i < NVME_MAX_CONSUMERS; i++)
if (nvme_consumer[i].id == INVALID_CONSUMER_ID) {
nvme_consumer[i].id = i;
nvme_consumer[i].ns_fn = ns_fn;
nvme_consumer[i].ctrlr_fn = ctrlr_fn;
nvme_consumer[i].async_fn = async_fn;
nvme_consumer[i].fail_fn = fail_fn;
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
nvme_notify_new_consumer(&nvme_consumer[i]);
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
return (&nvme_consumer[i]);
}
printf("nvme(4): consumer not registered - no slots available\n");
return (NULL);
}
void
nvme_unregister_consumer(struct nvme_consumer *consumer)
{
consumer->id = INVALID_CONSUMER_ID;
This is the first of several commits which will add NVM Express (NVMe) support to FreeBSD. A full description of the overall functionality being added is below. nvmexpress.org defines NVM Express as "an optimized register interface, command set and feature set fo PCI Express (PCIe)-based Solid-State Drives (SSDs)." This commit adds nvme(4) and nvd(4) driver source code and Makefiles to the tree. Full NVMe functionality description: Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe) device support. There will continue to be ongoing work on NVM Express support, but there is more than enough to allow for evaluation of pre-production NVM Express devices as well as soliciting feedback. Questions and feedback are welcome. nvme(4) implements NVMe hardware abstraction and is a provider of NVMe namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN. nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks. nvmecontrol(8) is used for NVMe configuration and management. The following are currently supported: nvme(4) - full mandatory NVM command set support - per-CPU IO queues (enabled by default but configurable) - per-queue sysctls for statistics and full command/completion queue dumps for debugging - registration API for NVMe namespace consumers - I/O error handling (except for timeoutsee below) - compilation switches for support back to stable-7 nvd(4) - BIO_DELETE and BIO_FLUSH (if supported by controller) - proper BIO_ORDERED handling nvmecontrol(8) - devlist: list NVMe controllers and their namespaces - identify: display controller or namespace identify data in human-readable or hex format - perftest: quick and dirty performance test to measure raw performance of NVMe device without userspace/physio/GEOM overhead The following are still work in progress and will be completed over the next 3-6 months in rough priority order: - complete man pages - firmware download and activation - asynchronous error requests - command timeout error handling - controller resets - nvmecontrol(8) log page retrieval This has been primarily tested on amd64, with light testing on i386. I would be happy to provide assistance to anyone interested in porting this to other architectures, but am not currently planning to do this work myself. Big-endian and dmamap sync for command/completion queues are the main areas that would need to be addressed. The nvme(4) driver currently has references to Chatham, which is an Intel-developed prototype board which is not fully spec compliant. These references will all be removed over time. Sponsored by: Intel Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
2012-09-17 19:23:01 +00:00
}
void
nvme_completion_poll_cb(void *arg, const struct nvme_completion *cpl)
{
struct nvme_completion_poll_status *status = arg;
/*
* Copy status into the argument passed by the caller, so that
* the caller can check the status to determine if the
* the request passed or failed.
*/
memcpy(&status->cpl, cpl, sizeof(*cpl));
atomic_store_rel_int(&status->done, 1);
}
static int
nvme_modevent(module_t mod __unused, int type __unused, void *argp __unused)
{
return (0);
}
static moduledata_t nvme_mod = {
"nvme",
nvme_modevent,
0
};
DECLARE_MODULE(nvme, nvme_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
MODULE_VERSION(nvme, 1);
MODULE_DEPEND(nvme, cam, 1, 1, 1);