freebsd-dev/sys/kern/kern_event.c

2319 lines
53 KiB
C
Raw Normal View History

/*-
* Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
* Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
* Copyright (c) 2009 Apple, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
2003-06-11 00:56:59 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ktrace.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/capability.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/rwlock.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/unistd.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/filio.h>
#include <sys/fcntl.h>
#include <sys/kthread.h>
#include <sys/selinfo.h>
#include <sys/stdatomic.h>
#include <sys/queue.h>
#include <sys/event.h>
#include <sys/eventvar.h>
#include <sys/poll.h>
#include <sys/protosw.h>
#include <sys/resourcevar.h>
#include <sys/sigio.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/syscallsubr.h>
#include <sys/taskqueue.h>
#include <sys/uio.h>
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
#include <vm/uma.h>
static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
/*
* This lock is used if multiple kq locks are required. This possibly
* should be made into a per proc lock.
*/
static struct mtx kq_global;
MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
#define KQ_GLOBAL_LOCK(lck, haslck) do { \
if (!haslck) \
mtx_lock(lck); \
haslck = 1; \
} while (0)
#define KQ_GLOBAL_UNLOCK(lck, haslck) do { \
if (haslck) \
mtx_unlock(lck); \
haslck = 0; \
} while (0)
TASKQUEUE_DEFINE_THREAD(kqueue);
static int kevent_copyout(void *arg, struct kevent *kevp, int count);
static int kevent_copyin(void *arg, struct kevent *kevp, int count);
static int kqueue_register(struct kqueue *kq, struct kevent *kev,
struct thread *td, int waitok);
static int kqueue_acquire(struct file *fp, struct kqueue **kqp);
static void kqueue_release(struct kqueue *kq, int locked);
static int kqueue_expand(struct kqueue *kq, struct filterops *fops,
uintptr_t ident, int waitok);
static void kqueue_task(void *arg, int pending);
static int kqueue_scan(struct kqueue *kq, int maxevents,
struct kevent_copyops *k_ops,
const struct timespec *timeout,
struct kevent *keva, struct thread *td);
static void kqueue_wakeup(struct kqueue *kq);
static struct filterops *kqueue_fo_find(int filt);
static void kqueue_fo_release(int filt);
static fo_rdwr_t kqueue_read;
static fo_rdwr_t kqueue_write;
static fo_truncate_t kqueue_truncate;
static fo_ioctl_t kqueue_ioctl;
static fo_poll_t kqueue_poll;
static fo_kqfilter_t kqueue_kqfilter;
static fo_stat_t kqueue_stat;
static fo_close_t kqueue_close;
static struct fileops kqueueops = {
.fo_read = kqueue_read,
.fo_write = kqueue_write,
.fo_truncate = kqueue_truncate,
.fo_ioctl = kqueue_ioctl,
.fo_poll = kqueue_poll,
.fo_kqfilter = kqueue_kqfilter,
.fo_stat = kqueue_stat,
.fo_close = kqueue_close,
.fo_chmod = invfo_chmod,
.fo_chown = invfo_chown,
.fo_sendfile = invfo_sendfile,
};
static int knote_attach(struct knote *kn, struct kqueue *kq);
static void knote_drop(struct knote *kn, struct thread *td);
static void knote_enqueue(struct knote *kn);
static void knote_dequeue(struct knote *kn);
static void knote_init(void);
static struct knote *knote_alloc(int waitok);
static void knote_free(struct knote *kn);
static void filt_kqdetach(struct knote *kn);
static int filt_kqueue(struct knote *kn, long hint);
static int filt_procattach(struct knote *kn);
static void filt_procdetach(struct knote *kn);
static int filt_proc(struct knote *kn, long hint);
static int filt_fileattach(struct knote *kn);
static void filt_timerexpire(void *knx);
static int filt_timerattach(struct knote *kn);
static void filt_timerdetach(struct knote *kn);
static int filt_timer(struct knote *kn, long hint);
static int filt_userattach(struct knote *kn);
static void filt_userdetach(struct knote *kn);
static int filt_user(struct knote *kn, long hint);
static void filt_usertouch(struct knote *kn, struct kevent *kev,
u_long type);
static struct filterops file_filtops = {
.f_isfd = 1,
.f_attach = filt_fileattach,
};
static struct filterops kqread_filtops = {
.f_isfd = 1,
.f_detach = filt_kqdetach,
.f_event = filt_kqueue,
};
/* XXX - move to kern_proc.c? */
static struct filterops proc_filtops = {
.f_isfd = 0,
.f_attach = filt_procattach,
.f_detach = filt_procdetach,
.f_event = filt_proc,
};
static struct filterops timer_filtops = {
.f_isfd = 0,
.f_attach = filt_timerattach,
.f_detach = filt_timerdetach,
.f_event = filt_timer,
};
static struct filterops user_filtops = {
.f_attach = filt_userattach,
.f_detach = filt_userdetach,
.f_event = filt_user,
.f_touch = filt_usertouch,
};
static uma_zone_t knote_zone;
static atomic_uint kq_ncallouts = ATOMIC_VAR_INIT(0);
static unsigned int kq_calloutmax = 4 * 1024;
SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
&kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
/* XXX - ensure not KN_INFLUX?? */
#define KNOTE_ACTIVATE(kn, islock) do { \
if ((islock)) \
mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED); \
else \
KQ_LOCK((kn)->kn_kq); \
(kn)->kn_status |= KN_ACTIVE; \
if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
knote_enqueue((kn)); \
if (!(islock)) \
KQ_UNLOCK((kn)->kn_kq); \
} while(0)
#define KQ_LOCK(kq) do { \
mtx_lock(&(kq)->kq_lock); \
} while (0)
#define KQ_FLUX_WAKEUP(kq) do { \
if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) { \
(kq)->kq_state &= ~KQ_FLUXWAIT; \
wakeup((kq)); \
} \
} while (0)
#define KQ_UNLOCK_FLUX(kq) do { \
KQ_FLUX_WAKEUP(kq); \
mtx_unlock(&(kq)->kq_lock); \
} while (0)
#define KQ_UNLOCK(kq) do { \
mtx_unlock(&(kq)->kq_lock); \
} while (0)
#define KQ_OWNED(kq) do { \
mtx_assert(&(kq)->kq_lock, MA_OWNED); \
} while (0)
#define KQ_NOTOWNED(kq) do { \
mtx_assert(&(kq)->kq_lock, MA_NOTOWNED); \
} while (0)
#define KN_LIST_LOCK(kn) do { \
if (kn->kn_knlist != NULL) \
kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg); \
} while (0)
#define KN_LIST_UNLOCK(kn) do { \
if (kn->kn_knlist != NULL) \
kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg); \
} while (0)
#define KNL_ASSERT_LOCK(knl, islocked) do { \
if (islocked) \
KNL_ASSERT_LOCKED(knl); \
else \
KNL_ASSERT_UNLOCKED(knl); \
} while (0)
#ifdef INVARIANTS
#define KNL_ASSERT_LOCKED(knl) do { \
knl->kl_assert_locked((knl)->kl_lockarg); \
} while (0)
#define KNL_ASSERT_UNLOCKED(knl) do { \
knl->kl_assert_unlocked((knl)->kl_lockarg); \
} while (0)
#else /* !INVARIANTS */
#define KNL_ASSERT_LOCKED(knl) do {} while(0)
#define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
#endif /* INVARIANTS */
#define KN_HASHSIZE 64 /* XXX should be tunable */
#define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
static int
filt_nullattach(struct knote *kn)
{
return (ENXIO);
};
struct filterops null_filtops = {
.f_isfd = 0,
.f_attach = filt_nullattach,
};
/* XXX - make SYSINIT to add these, and move into respective modules. */
extern struct filterops sig_filtops;
extern struct filterops fs_filtops;
/*
* Table for for all system-defined filters.
*/
static struct mtx filterops_lock;
MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
MTX_DEF);
static struct {
struct filterops *for_fop;
int for_refcnt;
} sysfilt_ops[EVFILT_SYSCOUNT] = {
{ &file_filtops }, /* EVFILT_READ */
{ &file_filtops }, /* EVFILT_WRITE */
{ &null_filtops }, /* EVFILT_AIO */
{ &file_filtops }, /* EVFILT_VNODE */
{ &proc_filtops }, /* EVFILT_PROC */
{ &sig_filtops }, /* EVFILT_SIGNAL */
{ &timer_filtops }, /* EVFILT_TIMER */
{ &null_filtops }, /* former EVFILT_NETDEV */
{ &fs_filtops }, /* EVFILT_FS */
{ &null_filtops }, /* EVFILT_LIO */
{ &user_filtops }, /* EVFILT_USER */
};
/*
* Simple redirection for all cdevsw style objects to call their fo_kqfilter
* method.
*/
static int
filt_fileattach(struct knote *kn)
{
2004-08-13 07:38:58 +00:00
return (fo_kqfilter(kn->kn_fp, kn));
}
/*ARGSUSED*/
static int
kqueue_kqfilter(struct file *fp, struct knote *kn)
{
struct kqueue *kq = kn->kn_fp->f_data;
if (kn->kn_filter != EVFILT_READ)
return (EINVAL);
kn->kn_status |= KN_KQUEUE;
kn->kn_fop = &kqread_filtops;
knlist_add(&kq->kq_sel.si_note, kn, 0);
return (0);
}
static void
filt_kqdetach(struct knote *kn)
{
struct kqueue *kq = kn->kn_fp->f_data;
knlist_remove(&kq->kq_sel.si_note, kn, 0);
}
/*ARGSUSED*/
static int
filt_kqueue(struct knote *kn, long hint)
{
struct kqueue *kq = kn->kn_fp->f_data;
kn->kn_data = kq->kq_count;
return (kn->kn_data > 0);
}
/* XXX - move to kern_proc.c? */
static int
filt_procattach(struct knote *kn)
{
struct proc *p;
int immediate;
int error;
immediate = 0;
p = pfind(kn->kn_id);
if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
p = zpfind(kn->kn_id);
immediate = 1;
} else if (p != NULL && (p->p_flag & P_WEXIT)) {
immediate = 1;
}
if (p == NULL)
return (ESRCH);
if ((error = p_cansee(curthread, p))) {
PROC_UNLOCK(p);
return (error);
}
kn->kn_ptr.p_proc = p;
kn->kn_flags |= EV_CLEAR; /* automatically set */
/*
* internal flag indicating registration done by kernel
*/
if (kn->kn_flags & EV_FLAG1) {
kn->kn_data = kn->kn_sdata; /* ppid */
kn->kn_fflags = NOTE_CHILD;
kn->kn_flags &= ~EV_FLAG1;
}
if (immediate == 0)
knlist_add(&p->p_klist, kn, 1);
/*
* Immediately activate any exit notes if the target process is a
* zombie. This is necessary to handle the case where the target
* process, e.g. a child, dies before the kevent is registered.
*/
if (immediate && filt_proc(kn, NOTE_EXIT))
KNOTE_ACTIVATE(kn, 0);
2001-01-24 00:35:12 +00:00
PROC_UNLOCK(p);
return (0);
}
/*
* The knote may be attached to a different process, which may exit,
* leaving nothing for the knote to be attached to. So when the process
* exits, the knote is marked as DETACHED and also flagged as ONESHOT so
* it will be deleted when read out. However, as part of the knote deletion,
* this routine is called, so a check is needed to avoid actually performing
* a detach, because the original process does not exist any more.
*/
/* XXX - move to kern_proc.c? */
static void
filt_procdetach(struct knote *kn)
{
struct proc *p;
p = kn->kn_ptr.p_proc;
knlist_remove(&p->p_klist, kn, 0);
kn->kn_ptr.p_proc = NULL;
}
/* XXX - move to kern_proc.c? */
static int
filt_proc(struct knote *kn, long hint)
{
struct proc *p = kn->kn_ptr.p_proc;
u_int event;
/*
* mask off extra data
*/
event = (u_int)hint & NOTE_PCTRLMASK;
/*
* if the user is interested in this event, record it.
*/
if (kn->kn_sfflags & event)
kn->kn_fflags |= event;
/*
* process is gone, so flag the event as finished.
*/
if (event == NOTE_EXIT) {
if (!(kn->kn_status & KN_DETACHED))
knlist_remove_inevent(&p->p_klist, kn);
2004-08-12 18:06:21 +00:00
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
kn->kn_ptr.p_proc = NULL;
if (kn->kn_fflags & NOTE_EXIT)
kn->kn_data = p->p_xstat;
if (kn->kn_fflags == 0)
kn->kn_flags |= EV_DROP;
return (1);
}
return (kn->kn_fflags != 0);
}
/*
* Called when the process forked. It mostly does the same as the
* knote(), activating all knotes registered to be activated when the
* process forked. Additionally, for each knote attached to the
* parent, check whether user wants to track the new process. If so
* attach a new knote to it, and immediately report an event with the
* child's pid.
*/
void
knote_fork(struct knlist *list, int pid)
{
struct kqueue *kq;
struct knote *kn;
struct kevent kev;
int error;
if (list == NULL)
return;
list->kl_lock(list->kl_lockarg);
SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
if ((kn->kn_status & KN_INFLUX) == KN_INFLUX)
continue;
kq = kn->kn_kq;
KQ_LOCK(kq);
if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
KQ_UNLOCK(kq);
continue;
}
/*
* The same as knote(), activate the event.
*/
if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
kn->kn_status |= KN_HASKQLOCK;
if (kn->kn_fop->f_event(kn, NOTE_FORK))
KNOTE_ACTIVATE(kn, 1);
kn->kn_status &= ~KN_HASKQLOCK;
KQ_UNLOCK(kq);
continue;
}
/*
* The NOTE_TRACK case. In addition to the activation
* of the event, we need to register new event to
* track the child. Drop the locks in preparation for
* the call to kqueue_register().
*/
kn->kn_status |= KN_INFLUX;
KQ_UNLOCK(kq);
list->kl_unlock(list->kl_lockarg);
/*
* Activate existing knote and register a knote with
* new process.
*/
kev.ident = pid;
kev.filter = kn->kn_filter;
kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
kev.fflags = kn->kn_sfflags;
kev.data = kn->kn_id; /* parent */
kev.udata = kn->kn_kevent.udata;/* preserve udata */
error = kqueue_register(kq, &kev, NULL, 0);
if (error)
kn->kn_fflags |= NOTE_TRACKERR;
if (kn->kn_fop->f_event(kn, NOTE_FORK))
KNOTE_ACTIVATE(kn, 0);
KQ_LOCK(kq);
kn->kn_status &= ~KN_INFLUX;
KQ_UNLOCK_FLUX(kq);
list->kl_lock(list->kl_lockarg);
}
list->kl_unlock(list->kl_lockarg);
}
/*
* XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
* interval timer support code.
*/
static __inline sbintime_t
timer2sbintime(intptr_t data)
{
return (SBT_1MS * data);
}
static void
filt_timerexpire(void *knx)
{
struct callout *calloutp;
struct knote *kn;
kn = knx;
kn->kn_data++;
KNOTE_ACTIVATE(kn, 0); /* XXX - handle locking */
if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
calloutp = (struct callout *)kn->kn_hook;
callout_reset_sbt_on(calloutp,
timer2sbintime(kn->kn_sdata), 0 /* 1ms? */,
filt_timerexpire, kn, PCPU_GET(cpuid), 0);
}
}
/*
* data contains amount of time to sleep, in milliseconds
2004-08-12 18:06:21 +00:00
*/
static int
filt_timerattach(struct knote *kn)
{
struct callout *calloutp;
sbintime_t to;
unsigned int ncallouts;
if ((intptr_t)kn->kn_sdata < 0)
return (EINVAL);
if ((intptr_t)kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
kn->kn_sdata = 1;
to = timer2sbintime(kn->kn_sdata);
if (to < 0)
return (EINVAL);
ncallouts = atomic_load_explicit(&kq_ncallouts, memory_order_relaxed);
do {
if (ncallouts >= kq_calloutmax)
return (ENOMEM);
} while (!atomic_compare_exchange_weak_explicit(&kq_ncallouts,
&ncallouts, ncallouts + 1, memory_order_relaxed,
memory_order_relaxed));
kn->kn_flags |= EV_CLEAR; /* automatically set */
kn->kn_status &= ~KN_DETACHED; /* knlist_add clears it */
calloutp = malloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
callout_init(calloutp, CALLOUT_MPSAFE);
kn->kn_hook = calloutp;
callout_reset_sbt_on(calloutp, to, 0 /* 1ms? */,
filt_timerexpire, kn, PCPU_GET(cpuid), 0);
return (0);
}
static void
filt_timerdetach(struct knote *kn)
{
struct callout *calloutp;
unsigned int old;
calloutp = (struct callout *)kn->kn_hook;
callout_drain(calloutp);
free(calloutp, M_KQUEUE);
old = atomic_fetch_sub_explicit(&kq_ncallouts, 1, memory_order_relaxed);
KASSERT(old > 0, ("Number of callouts cannot become negative"));
kn->kn_status |= KN_DETACHED; /* knlist_remove sets it */
}
static int
filt_timer(struct knote *kn, long hint)
{
return (kn->kn_data != 0);
}
static int
filt_userattach(struct knote *kn)
{
/*
* EVFILT_USER knotes are not attached to anything in the kernel.
*/
kn->kn_hook = NULL;
if (kn->kn_fflags & NOTE_TRIGGER)
kn->kn_hookid = 1;
else
kn->kn_hookid = 0;
return (0);
}
static void
filt_userdetach(__unused struct knote *kn)
{
/*
* EVFILT_USER knotes are not attached to anything in the kernel.
*/
}
static int
filt_user(struct knote *kn, __unused long hint)
{
return (kn->kn_hookid);
}
static void
filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
{
u_int ffctrl;
switch (type) {
case EVENT_REGISTER:
if (kev->fflags & NOTE_TRIGGER)
kn->kn_hookid = 1;
ffctrl = kev->fflags & NOTE_FFCTRLMASK;
kev->fflags &= NOTE_FFLAGSMASK;
switch (ffctrl) {
case NOTE_FFNOP:
break;
case NOTE_FFAND:
kn->kn_sfflags &= kev->fflags;
break;
case NOTE_FFOR:
kn->kn_sfflags |= kev->fflags;
break;
case NOTE_FFCOPY:
kn->kn_sfflags = kev->fflags;
break;
default:
/* XXX Return error? */
break;
}
kn->kn_sdata = kev->data;
if (kev->flags & EV_CLEAR) {
kn->kn_hookid = 0;
kn->kn_data = 0;
kn->kn_fflags = 0;
}
break;
case EVENT_PROCESS:
*kev = kn->kn_kevent;
kev->fflags = kn->kn_sfflags;
kev->data = kn->kn_sdata;
if (kn->kn_flags & EV_CLEAR) {
kn->kn_hookid = 0;
kn->kn_data = 0;
kn->kn_fflags = 0;
}
break;
default:
panic("filt_usertouch() - invalid type (%ld)", type);
break;
}
}
int
sys_kqueue(struct thread *td, struct kqueue_args *uap)
{
struct filedesc *fdp;
struct kqueue *kq;
struct file *fp;
struct proc *p;
struct ucred *cred;
int fd, error;
p = td->td_proc;
cred = td->td_ucred;
crhold(cred);
PROC_LOCK(p);
if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td->td_proc,
RLIMIT_KQUEUES))) {
PROC_UNLOCK(p);
crfree(cred);
return (ENOMEM);
}
PROC_UNLOCK(p);
fdp = p->p_fd;
error = falloc(td, &fp, &fd, 0);
if (error)
goto done2;
/* An extra reference on `fp' has been held for us by falloc(). */
kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
TAILQ_INIT(&kq->kq_head);
kq->kq_fdp = fdp;
kq->kq_cred = cred;
knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
FILEDESC_XLOCK(fdp);
TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
FILEDESC_XUNLOCK(fdp);
finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
fdrop(fp, td);
td->td_retval[0] = fd;
done2:
if (error != 0) {
chgkqcnt(cred->cr_ruidinfo, -1, 0);
crfree(cred);
}
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct kevent_args {
int fd;
const struct kevent *changelist;
int nchanges;
struct kevent *eventlist;
int nevents;
const struct timespec *timeout;
};
#endif
int
sys_kevent(struct thread *td, struct kevent_args *uap)
{
struct timespec ts, *tsp;
struct kevent_copyops k_ops = { uap,
kevent_copyout,
kevent_copyin};
int error;
#ifdef KTRACE
struct uio ktruio;
struct iovec ktriov;
struct uio *ktruioin = NULL;
struct uio *ktruioout = NULL;
#endif
if (uap->timeout != NULL) {
error = copyin(uap->timeout, &ts, sizeof(ts));
if (error)
return (error);
tsp = &ts;
} else
tsp = NULL;
#ifdef KTRACE
if (KTRPOINT(td, KTR_GENIO)) {
ktriov.iov_base = uap->changelist;
ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
.uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
.uio_td = td };
ktruioin = cloneuio(&ktruio);
ktriov.iov_base = uap->eventlist;
ktriov.iov_len = uap->nevents * sizeof(struct kevent);
ktruioout = cloneuio(&ktruio);
}
#endif
error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
&k_ops, tsp);
#ifdef KTRACE
if (ktruioin != NULL) {
ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
ktrgenio(uap->fd, UIO_READ, ktruioout, error);
}
#endif
return (error);
}
/*
* Copy 'count' items into the destination list pointed to by uap->eventlist.
*/
static int
kevent_copyout(void *arg, struct kevent *kevp, int count)
{
struct kevent_args *uap;
int error;
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
uap = (struct kevent_args *)arg;
error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
if (error == 0)
uap->eventlist += count;
return (error);
}
/*
* Copy 'count' items from the list pointed to by uap->changelist.
*/
static int
kevent_copyin(void *arg, struct kevent *kevp, int count)
{
struct kevent_args *uap;
int error;
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
uap = (struct kevent_args *)arg;
error = copyin(uap->changelist, kevp, count * sizeof *kevp);
if (error == 0)
uap->changelist += count;
return (error);
}
int
kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
struct kevent_copyops *k_ops, const struct timespec *timeout)
{
struct kevent keva[KQ_NEVENTS];
struct kevent *kevp, *changes;
struct kqueue *kq;
struct file *fp;
cap_rights_t rights;
int i, n, nerrors, error;
error = fget(td, fd, cap_rights_init(&rights, CAP_POST_EVENT), &fp);
if (error != 0)
return (error);
if ((error = kqueue_acquire(fp, &kq)) != 0)
goto done_norel;
nerrors = 0;
while (nchanges > 0) {
n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
error = k_ops->k_copyin(k_ops->arg, keva, n);
if (error)
goto done;
changes = keva;
for (i = 0; i < n; i++) {
kevp = &changes[i];
if (!kevp->filter)
continue;
kevp->flags &= ~EV_SYSFLAGS;
error = kqueue_register(kq, kevp, td, 1);
if (error || (kevp->flags & EV_RECEIPT)) {
if (nevents != 0) {
kevp->flags = EV_ERROR;
kevp->data = error;
(void) k_ops->k_copyout(k_ops->arg,
kevp, 1);
nevents--;
nerrors++;
} else {
goto done;
}
}
}
nchanges -= n;
}
if (nerrors) {
td->td_retval[0] = nerrors;
error = 0;
goto done;
}
error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
done:
kqueue_release(kq, 0);
done_norel:
fdrop(fp, td);
return (error);
}
int
kqueue_add_filteropts(int filt, struct filterops *filtops)
{
int error;
error = 0;
if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
printf(
"trying to add a filterop that is out of range: %d is beyond %d\n",
~filt, EVFILT_SYSCOUNT);
return EINVAL;
}
mtx_lock(&filterops_lock);
if (sysfilt_ops[~filt].for_fop != &null_filtops &&
sysfilt_ops[~filt].for_fop != NULL)
error = EEXIST;
else {
sysfilt_ops[~filt].for_fop = filtops;
sysfilt_ops[~filt].for_refcnt = 0;
}
mtx_unlock(&filterops_lock);
return (error);
}
int
kqueue_del_filteropts(int filt)
{
int error;
error = 0;
if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
return EINVAL;
mtx_lock(&filterops_lock);
if (sysfilt_ops[~filt].for_fop == &null_filtops ||
sysfilt_ops[~filt].for_fop == NULL)
error = EINVAL;
else if (sysfilt_ops[~filt].for_refcnt != 0)
error = EBUSY;
else {
sysfilt_ops[~filt].for_fop = &null_filtops;
sysfilt_ops[~filt].for_refcnt = 0;
}
mtx_unlock(&filterops_lock);
return error;
}
static struct filterops *
kqueue_fo_find(int filt)
{
if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
return NULL;
mtx_lock(&filterops_lock);
sysfilt_ops[~filt].for_refcnt++;
if (sysfilt_ops[~filt].for_fop == NULL)
sysfilt_ops[~filt].for_fop = &null_filtops;
mtx_unlock(&filterops_lock);
return sysfilt_ops[~filt].for_fop;
}
static void
kqueue_fo_release(int filt)
{
if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
return;
mtx_lock(&filterops_lock);
KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
("filter object refcount not valid on release"));
sysfilt_ops[~filt].for_refcnt--;
mtx_unlock(&filterops_lock);
}
/*
* A ref to kq (obtained via kqueue_acquire) must be held. waitok will
* influence if memory allocation should wait. Make sure it is 0 if you
* hold any mutexes.
*/
static int
kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
{
struct filterops *fops;
struct file *fp;
struct knote *kn, *tkn;
Change the cap_rights_t type from uint64_t to a structure that we can extend in the future in a backward compatible (API and ABI) way. The cap_rights_t represents capability rights. We used to use one bit to represent one right, but we are running out of spare bits. Currently the new structure provides place for 114 rights (so 50 more than the previous cap_rights_t), but it is possible to grow the structure to hold at least 285 rights, although we can make it even larger if 285 rights won't be enough. The structure definition looks like this: struct cap_rights { uint64_t cr_rights[CAP_RIGHTS_VERSION + 2]; }; The initial CAP_RIGHTS_VERSION is 0. The top two bits in the first element of the cr_rights[] array contain total number of elements in the array - 2. This means if those two bits are equal to 0, we have 2 array elements. The top two bits in all remaining array elements should be 0. The next five bits in all array elements contain array index. Only one bit is used and bit position in this five-bits range defines array index. This means there can be at most five array elements in the future. To define new right the CAPRIGHT() macro must be used. The macro takes two arguments - an array index and a bit to set, eg. #define CAP_PDKILL CAPRIGHT(1, 0x0000000000000800ULL) We still support aliases that combine few rights, but the rights have to belong to the same array element, eg: #define CAP_LOOKUP CAPRIGHT(0, 0x0000000000000400ULL) #define CAP_FCHMOD CAPRIGHT(0, 0x0000000000002000ULL) #define CAP_FCHMODAT (CAP_FCHMOD | CAP_LOOKUP) There is new API to manage the new cap_rights_t structure: cap_rights_t *cap_rights_init(cap_rights_t *rights, ...); void cap_rights_set(cap_rights_t *rights, ...); void cap_rights_clear(cap_rights_t *rights, ...); bool cap_rights_is_set(const cap_rights_t *rights, ...); bool cap_rights_is_valid(const cap_rights_t *rights); void cap_rights_merge(cap_rights_t *dst, const cap_rights_t *src); void cap_rights_remove(cap_rights_t *dst, const cap_rights_t *src); bool cap_rights_contains(const cap_rights_t *big, const cap_rights_t *little); Capability rights to the cap_rights_init(), cap_rights_set(), cap_rights_clear() and cap_rights_is_set() functions are provided by separating them with commas, eg: cap_rights_t rights; cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT); There is no need to terminate the list of rights, as those functions are actually macros that take care of the termination, eg: #define cap_rights_set(rights, ...) \ __cap_rights_set((rights), __VA_ARGS__, 0ULL) void __cap_rights_set(cap_rights_t *rights, ...); Thanks to using one bit as an array index we can assert in those functions that there are no two rights belonging to different array elements provided together. For example this is illegal and will be detected, because CAP_LOOKUP belongs to element 0 and CAP_PDKILL to element 1: cap_rights_init(&rights, CAP_LOOKUP | CAP_PDKILL); Providing several rights that belongs to the same array's element this way is correct, but is not advised. It should only be used for aliases definition. This commit also breaks compatibility with some existing Capsicum system calls, but I see no other way to do that. This should be fine as Capsicum is still experimental and this change is not going to 9.x. Sponsored by: The FreeBSD Foundation
2013-09-05 00:09:56 +00:00
cap_rights_t rights;
int error, filt, event;
int haskqglobal, filedesc_unlock;
fp = NULL;
kn = NULL;
error = 0;
haskqglobal = 0;
filedesc_unlock = 0;
filt = kev->filter;
fops = kqueue_fo_find(filt);
if (fops == NULL)
return EINVAL;
tkn = knote_alloc(waitok); /* prevent waiting with locks */
findkn:
if (fops->f_isfd) {
KASSERT(td != NULL, ("td is NULL"));
Change the cap_rights_t type from uint64_t to a structure that we can extend in the future in a backward compatible (API and ABI) way. The cap_rights_t represents capability rights. We used to use one bit to represent one right, but we are running out of spare bits. Currently the new structure provides place for 114 rights (so 50 more than the previous cap_rights_t), but it is possible to grow the structure to hold at least 285 rights, although we can make it even larger if 285 rights won't be enough. The structure definition looks like this: struct cap_rights { uint64_t cr_rights[CAP_RIGHTS_VERSION + 2]; }; The initial CAP_RIGHTS_VERSION is 0. The top two bits in the first element of the cr_rights[] array contain total number of elements in the array - 2. This means if those two bits are equal to 0, we have 2 array elements. The top two bits in all remaining array elements should be 0. The next five bits in all array elements contain array index. Only one bit is used and bit position in this five-bits range defines array index. This means there can be at most five array elements in the future. To define new right the CAPRIGHT() macro must be used. The macro takes two arguments - an array index and a bit to set, eg. #define CAP_PDKILL CAPRIGHT(1, 0x0000000000000800ULL) We still support aliases that combine few rights, but the rights have to belong to the same array element, eg: #define CAP_LOOKUP CAPRIGHT(0, 0x0000000000000400ULL) #define CAP_FCHMOD CAPRIGHT(0, 0x0000000000002000ULL) #define CAP_FCHMODAT (CAP_FCHMOD | CAP_LOOKUP) There is new API to manage the new cap_rights_t structure: cap_rights_t *cap_rights_init(cap_rights_t *rights, ...); void cap_rights_set(cap_rights_t *rights, ...); void cap_rights_clear(cap_rights_t *rights, ...); bool cap_rights_is_set(const cap_rights_t *rights, ...); bool cap_rights_is_valid(const cap_rights_t *rights); void cap_rights_merge(cap_rights_t *dst, const cap_rights_t *src); void cap_rights_remove(cap_rights_t *dst, const cap_rights_t *src); bool cap_rights_contains(const cap_rights_t *big, const cap_rights_t *little); Capability rights to the cap_rights_init(), cap_rights_set(), cap_rights_clear() and cap_rights_is_set() functions are provided by separating them with commas, eg: cap_rights_t rights; cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT); There is no need to terminate the list of rights, as those functions are actually macros that take care of the termination, eg: #define cap_rights_set(rights, ...) \ __cap_rights_set((rights), __VA_ARGS__, 0ULL) void __cap_rights_set(cap_rights_t *rights, ...); Thanks to using one bit as an array index we can assert in those functions that there are no two rights belonging to different array elements provided together. For example this is illegal and will be detected, because CAP_LOOKUP belongs to element 0 and CAP_PDKILL to element 1: cap_rights_init(&rights, CAP_LOOKUP | CAP_PDKILL); Providing several rights that belongs to the same array's element this way is correct, but is not advised. It should only be used for aliases definition. This commit also breaks compatibility with some existing Capsicum system calls, but I see no other way to do that. This should be fine as Capsicum is still experimental and this change is not going to 9.x. Sponsored by: The FreeBSD Foundation
2013-09-05 00:09:56 +00:00
error = fget(td, kev->ident,
cap_rights_init(&rights, CAP_POLL_EVENT), &fp);
if (error)
goto done;
if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
kev->ident, 0) != 0) {
/* try again */
fdrop(fp, td);
fp = NULL;
error = kqueue_expand(kq, fops, kev->ident, waitok);
if (error)
goto done;
goto findkn;
}
if (fp->f_type == DTYPE_KQUEUE) {
/*
* if we add some inteligence about what we are doing,
* we should be able to support events on ourselves.
* We need to know when we are doing this to prevent
* getting both the knlist lock and the kq lock since
* they are the same thing.
*/
if (fp->f_data == kq) {
error = EINVAL;
goto done;
}
/*
* Pre-lock the filedesc before the global
* lock mutex, see the comment in
* kqueue_close().
*/
FILEDESC_XLOCK(td->td_proc->p_fd);
filedesc_unlock = 1;
KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
}
KQ_LOCK(kq);
if (kev->ident < kq->kq_knlistsize) {
SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
if (kev->filter == kn->kn_filter)
break;
}
} else {
if ((kev->flags & EV_ADD) == EV_ADD)
kqueue_expand(kq, fops, kev->ident, waitok);
KQ_LOCK(kq);
if (kq->kq_knhashmask != 0) {
struct klist *list;
2004-08-13 07:38:58 +00:00
list = &kq->kq_knhash[
KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
SLIST_FOREACH(kn, list, kn_link)
if (kev->ident == kn->kn_id &&
kev->filter == kn->kn_filter)
break;
}
}
/* knote is in the process of changing, wait for it to stablize. */
if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
if (filedesc_unlock) {
FILEDESC_XUNLOCK(td->td_proc->p_fd);
filedesc_unlock = 0;
}
kq->kq_state |= KQ_FLUXWAIT;
msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
if (fp != NULL) {
fdrop(fp, td);
fp = NULL;
}
goto findkn;
}
/*
* kn now contains the matching knote, or NULL if no match
*/
if (kn == NULL) {
if (kev->flags & EV_ADD) {
kn = tkn;
tkn = NULL;
if (kn == NULL) {
KQ_UNLOCK(kq);
error = ENOMEM;
goto done;
}
kn->kn_fp = fp;
kn->kn_kq = kq;
kn->kn_fop = fops;
/*
* apply reference counts to knote structure, and
* do not release it at the end of this routine.
*/
fops = NULL;
fp = NULL;
kn->kn_sfflags = kev->fflags;
kn->kn_sdata = kev->data;
kev->fflags = 0;
kev->data = 0;
kn->kn_kevent = *kev;
kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
EV_ENABLE | EV_DISABLE);
kn->kn_status = KN_INFLUX|KN_DETACHED;
error = knote_attach(kn, kq);
KQ_UNLOCK(kq);
if (error != 0) {
tkn = kn;
goto done;
}
if ((error = kn->kn_fop->f_attach(kn)) != 0) {
knote_drop(kn, td);
goto done;
}
KN_LIST_LOCK(kn);
goto done_ev_add;
} else {
/* No matching knote and the EV_ADD flag is not set. */
KQ_UNLOCK(kq);
error = ENOENT;
goto done;
}
}
if (kev->flags & EV_DELETE) {
kn->kn_status |= KN_INFLUX;
KQ_UNLOCK(kq);
if (!(kn->kn_status & KN_DETACHED))
kn->kn_fop->f_detach(kn);
knote_drop(kn, td);
goto done;
}
/*
* The user may change some filter values after the initial EV_ADD,
* but doing so will not reset any filter which has already been
* triggered.
*/
kn->kn_status |= KN_INFLUX;
KQ_UNLOCK(kq);
KN_LIST_LOCK(kn);
kn->kn_kevent.udata = kev->udata;
if (!fops->f_isfd && fops->f_touch != NULL) {
fops->f_touch(kn, kev, EVENT_REGISTER);
} else {
kn->kn_sfflags = kev->fflags;
kn->kn_sdata = kev->data;
}
/*
* We can get here with kn->kn_knlist == NULL. This can happen when
* the initial attach event decides that the event is "completed"
* already. i.e. filt_procattach is called on a zombie process. It
* will call filt_proc which will remove it from the list, and NULL
* kn_knlist.
*/
done_ev_add:
event = kn->kn_fop->f_event(kn, 0);
KQ_LOCK(kq);
if (event)
KNOTE_ACTIVATE(kn, 1);
kn->kn_status &= ~KN_INFLUX;
KN_LIST_UNLOCK(kn);
if ((kev->flags & EV_DISABLE) &&
((kn->kn_status & KN_DISABLED) == 0)) {
kn->kn_status |= KN_DISABLED;
}
if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
kn->kn_status &= ~KN_DISABLED;
if ((kn->kn_status & KN_ACTIVE) &&
((kn->kn_status & KN_QUEUED) == 0))
knote_enqueue(kn);
}
KQ_UNLOCK_FLUX(kq);
done:
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
if (filedesc_unlock)
FILEDESC_XUNLOCK(td->td_proc->p_fd);
if (fp != NULL)
fdrop(fp, td);
if (tkn != NULL)
knote_free(tkn);
if (fops != NULL)
kqueue_fo_release(filt);
return (error);
}
static int
kqueue_acquire(struct file *fp, struct kqueue **kqp)
{
int error;
struct kqueue *kq;
error = 0;
kq = fp->f_data;
if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
return (EBADF);
*kqp = kq;
KQ_LOCK(kq);
if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
KQ_UNLOCK(kq);
return (EBADF);
}
kq->kq_refcnt++;
KQ_UNLOCK(kq);
return error;
}
static void
kqueue_release(struct kqueue *kq, int locked)
{
if (locked)
KQ_OWNED(kq);
else
KQ_LOCK(kq);
kq->kq_refcnt--;
if (kq->kq_refcnt == 1)
wakeup(&kq->kq_refcnt);
if (!locked)
KQ_UNLOCK(kq);
}
static void
kqueue_schedtask(struct kqueue *kq)
{
KQ_OWNED(kq);
KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
("scheduling kqueue task while draining"));
if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
kq->kq_state |= KQ_TASKSCHED;
}
}
/*
* Expand the kq to make sure we have storage for fops/ident pair.
*
* Return 0 on success (or no work necessary), return errno on failure.
*
* Not calling hashinit w/ waitok (proper malloc flag) should be safe.
* If kqueue_register is called from a non-fd context, there usually/should
* be no locks held.
*/
static int
kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
int waitok)
{
struct klist *list, *tmp_knhash, *to_free;
u_long tmp_knhashmask;
int size;
int fd;
int mflag = waitok ? M_WAITOK : M_NOWAIT;
KQ_NOTOWNED(kq);
to_free = NULL;
if (fops->f_isfd) {
fd = ident;
if (kq->kq_knlistsize <= fd) {
size = kq->kq_knlistsize;
while (size <= fd)
size += KQEXTENT;
list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
if (list == NULL)
return ENOMEM;
KQ_LOCK(kq);
if (kq->kq_knlistsize > fd) {
to_free = list;
list = NULL;
} else {
if (kq->kq_knlist != NULL) {
bcopy(kq->kq_knlist, list,
kq->kq_knlistsize * sizeof(*list));
to_free = kq->kq_knlist;
kq->kq_knlist = NULL;
}
bzero((caddr_t)list +
kq->kq_knlistsize * sizeof(*list),
(size - kq->kq_knlistsize) * sizeof(*list));
kq->kq_knlistsize = size;
kq->kq_knlist = list;
}
KQ_UNLOCK(kq);
}
} else {
if (kq->kq_knhashmask == 0) {
tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
&tmp_knhashmask);
if (tmp_knhash == NULL)
return ENOMEM;
KQ_LOCK(kq);
if (kq->kq_knhashmask == 0) {
kq->kq_knhash = tmp_knhash;
kq->kq_knhashmask = tmp_knhashmask;
} else {
to_free = tmp_knhash;
}
KQ_UNLOCK(kq);
}
}
free(to_free, M_KQUEUE);
KQ_NOTOWNED(kq);
return 0;
}
static void
kqueue_task(void *arg, int pending)
{
struct kqueue *kq;
int haskqglobal;
haskqglobal = 0;
kq = arg;
KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
KQ_LOCK(kq);
KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
kq->kq_state &= ~KQ_TASKSCHED;
if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
wakeup(&kq->kq_state);
}
KQ_UNLOCK(kq);
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
}
/*
* Scan, update kn_data (if not ONESHOT), and copyout triggered events.
* We treat KN_MARKER knotes as if they are INFLUX.
*/
static int
kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
const struct timespec *tsp, struct kevent *keva, struct thread *td)
{
struct kevent *kevp;
struct knote *kn, *marker;
sbintime_t asbt, rsbt;
int count, error, haskqglobal, influx, nkev, touch;
count = maxevents;
nkev = 0;
error = 0;
haskqglobal = 0;
if (maxevents == 0)
goto done_nl;
rsbt = 0;
if (tsp != NULL) {
if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
tsp->tv_nsec >= 1000000000) {
error = EINVAL;
goto done_nl;
}
if (timespecisset(tsp)) {
if (tsp->tv_sec <= INT32_MAX) {
rsbt = tstosbt(*tsp);
if (TIMESEL(&asbt, rsbt))
asbt += tc_tick_sbt;
if (asbt <= INT64_MAX - rsbt)
asbt += rsbt;
else
asbt = 0;
rsbt >>= tc_precexp;
} else
asbt = 0;
} else
asbt = -1;
} else
asbt = 0;
marker = knote_alloc(1);
if (marker == NULL) {
error = ENOMEM;
goto done_nl;
}
marker->kn_status = KN_MARKER;
KQ_LOCK(kq);
retry:
kevp = keva;
if (kq->kq_count == 0) {
if (asbt == -1) {
error = EWOULDBLOCK;
} else {
kq->kq_state |= KQ_SLEEP;
error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
"kqread", asbt, rsbt, C_ABSOLUTE);
}
if (error == 0)
goto retry;
/* don't restart after signals... */
if (error == ERESTART)
error = EINTR;
else if (error == EWOULDBLOCK)
error = 0;
goto done;
}
TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
influx = 0;
while (count) {
KQ_OWNED(kq);
kn = TAILQ_FIRST(&kq->kq_head);
if ((kn->kn_status == KN_MARKER && kn != marker) ||
(kn->kn_status & KN_INFLUX) == KN_INFLUX) {
if (influx) {
influx = 0;
KQ_FLUX_WAKEUP(kq);
}
kq->kq_state |= KQ_FLUXWAIT;
error = msleep(kq, &kq->kq_lock, PSOCK,
"kqflxwt", 0);
continue;
}
TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
kn->kn_status &= ~KN_QUEUED;
kq->kq_count--;
continue;
}
if (kn == marker) {
KQ_FLUX_WAKEUP(kq);
if (count == maxevents)
goto retry;
goto done;
}
KASSERT((kn->kn_status & KN_INFLUX) == 0,
("KN_INFLUX set when not suppose to be"));
if ((kn->kn_flags & EV_DROP) == EV_DROP) {
kn->kn_status &= ~KN_QUEUED;
kn->kn_status |= KN_INFLUX;
kq->kq_count--;
KQ_UNLOCK(kq);
/*
* We don't need to lock the list since we've marked
* it _INFLUX.
*/
if (!(kn->kn_status & KN_DETACHED))
kn->kn_fop->f_detach(kn);
knote_drop(kn, td);
KQ_LOCK(kq);
continue;
} else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
kn->kn_status &= ~KN_QUEUED;
kn->kn_status |= KN_INFLUX;
kq->kq_count--;
KQ_UNLOCK(kq);
/*
* We don't need to lock the list since we've marked
* it _INFLUX.
*/
*kevp = kn->kn_kevent;
if (!(kn->kn_status & KN_DETACHED))
kn->kn_fop->f_detach(kn);
knote_drop(kn, td);
KQ_LOCK(kq);
kn = NULL;
} else {
kn->kn_status |= KN_INFLUX;
KQ_UNLOCK(kq);
if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
KN_LIST_LOCK(kn);
if (kn->kn_fop->f_event(kn, 0) == 0) {
KQ_LOCK(kq);
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
kn->kn_status &=
~(KN_QUEUED | KN_ACTIVE | KN_INFLUX);
kq->kq_count--;
KN_LIST_UNLOCK(kn);
influx = 1;
continue;
}
touch = (!kn->kn_fop->f_isfd &&
kn->kn_fop->f_touch != NULL);
if (touch)
kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
else
*kevp = kn->kn_kevent;
KQ_LOCK(kq);
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
/*
* Manually clear knotes who weren't
* 'touch'ed.
*/
if (touch == 0 && kn->kn_flags & EV_CLEAR) {
kn->kn_data = 0;
kn->kn_fflags = 0;
}
if (kn->kn_flags & EV_DISPATCH)
kn->kn_status |= KN_DISABLED;
kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
kq->kq_count--;
} else
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
kn->kn_status &= ~(KN_INFLUX);
KN_LIST_UNLOCK(kn);
influx = 1;
}
/* we are returning a copy to the user */
kevp++;
nkev++;
count--;
if (nkev == KQ_NEVENTS) {
influx = 0;
KQ_UNLOCK_FLUX(kq);
error = k_ops->k_copyout(k_ops->arg, keva, nkev);
nkev = 0;
kevp = keva;
KQ_LOCK(kq);
if (error)
break;
}
}
TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
done:
KQ_OWNED(kq);
KQ_UNLOCK_FLUX(kq);
knote_free(marker);
done_nl:
KQ_NOTOWNED(kq);
if (nkev != 0)
error = k_ops->k_copyout(k_ops->arg, keva, nkev);
td->td_retval[0] = maxevents - count;
return (error);
}
/*
* XXX
* This could be expanded to call kqueue_scan, if desired.
*/
/*ARGSUSED*/
static int
In order to better support flexible and extensible access control, make a series of modifications to the credential arguments relating to file read and write operations to cliarfy which credential is used for what: - Change fo_read() and fo_write() to accept "active_cred" instead of "cred", and change the semantics of consumers of fo_read() and fo_write() to pass the active credential of the thread requesting an operation rather than the cached file cred. The cached file cred is still available in fo_read() and fo_write() consumers via fp->f_cred. These changes largely in sys_generic.c. For each implementation of fo_read() and fo_write(), update cred usage to reflect this change and maintain current semantics: - badfo_readwrite() unchanged - kqueue_read/write() unchanged pipe_read/write() now authorize MAC using active_cred rather than td->td_ucred - soo_read/write() unchanged - vn_read/write() now authorize MAC using active_cred but VOP_READ/WRITE() with fp->f_cred Modify vn_rdwr() to accept two credential arguments instead of a single credential: active_cred and file_cred. Use active_cred for MAC authorization, and select a credential for use in VOP_READ/WRITE() based on whether file_cred is NULL or not. If file_cred is provided, authorize the VOP using that cred, otherwise the active credential, matching current semantics. Modify current vn_rdwr() consumers to pass a file_cred if used in the context of a struct file, and to always pass active_cred. When vn_rdwr() is used without a file_cred, pass NOCRED. These changes should maintain current semantics for read/write, but avoid a redundant passing of fp->f_cred, as well as making it more clear what the origin of each credential is in file descriptor read/write operations. Follow-up commits will make similar changes to other file descriptor operations, and modify the MAC framework to pass both credentials to MAC policy modules so they can implement either semantic for revocation. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-08-15 20:55:08 +00:00
kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
int flags, struct thread *td)
{
return (ENXIO);
}
/*ARGSUSED*/
static int
In order to better support flexible and extensible access control, make a series of modifications to the credential arguments relating to file read and write operations to cliarfy which credential is used for what: - Change fo_read() and fo_write() to accept "active_cred" instead of "cred", and change the semantics of consumers of fo_read() and fo_write() to pass the active credential of the thread requesting an operation rather than the cached file cred. The cached file cred is still available in fo_read() and fo_write() consumers via fp->f_cred. These changes largely in sys_generic.c. For each implementation of fo_read() and fo_write(), update cred usage to reflect this change and maintain current semantics: - badfo_readwrite() unchanged - kqueue_read/write() unchanged pipe_read/write() now authorize MAC using active_cred rather than td->td_ucred - soo_read/write() unchanged - vn_read/write() now authorize MAC using active_cred but VOP_READ/WRITE() with fp->f_cred Modify vn_rdwr() to accept two credential arguments instead of a single credential: active_cred and file_cred. Use active_cred for MAC authorization, and select a credential for use in VOP_READ/WRITE() based on whether file_cred is NULL or not. If file_cred is provided, authorize the VOP using that cred, otherwise the active credential, matching current semantics. Modify current vn_rdwr() consumers to pass a file_cred if used in the context of a struct file, and to always pass active_cred. When vn_rdwr() is used without a file_cred, pass NOCRED. These changes should maintain current semantics for read/write, but avoid a redundant passing of fp->f_cred, as well as making it more clear what the origin of each credential is in file descriptor read/write operations. Follow-up commits will make similar changes to other file descriptor operations, and modify the MAC framework to pass both credentials to MAC policy modules so they can implement either semantic for revocation. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-08-15 20:55:08 +00:00
kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
int flags, struct thread *td)
{
return (ENXIO);
}
/*ARGSUSED*/
static int
kqueue_truncate(struct file *fp, off_t length, struct ucred *active_cred,
struct thread *td)
{
return (EINVAL);
}
/*ARGSUSED*/
static int
kqueue_ioctl(struct file *fp, u_long cmd, void *data,
struct ucred *active_cred, struct thread *td)
{
/*
* Enabling sigio causes two major problems:
* 1) infinite recursion:
* Synopsys: kevent is being used to track signals and have FIOASYNC
* set. On receipt of a signal this will cause a kqueue to recurse
* into itself over and over. Sending the sigio causes the kqueue
* to become ready, which in turn posts sigio again, forever.
* Solution: this can be solved by setting a flag in the kqueue that
* we have a SIGIO in progress.
* 2) locking problems:
* Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
* us above the proc and pgrp locks.
* Solution: Post a signal using an async mechanism, being sure to
* record a generation count in the delivery so that we do not deliver
* a signal to the wrong process.
*
* Note, these two mechanisms are somewhat mutually exclusive!
*/
#if 0
struct kqueue *kq;
kq = fp->f_data;
switch (cmd) {
case FIOASYNC:
if (*(int *)data) {
kq->kq_state |= KQ_ASYNC;
} else {
kq->kq_state &= ~KQ_ASYNC;
}
return (0);
case FIOSETOWN:
return (fsetown(*(int *)data, &kq->kq_sigio));
case FIOGETOWN:
*(int *)data = fgetown(&kq->kq_sigio);
return (0);
}
#endif
return (ENOTTY);
}
/*ARGSUSED*/
static int
Make similar changes to fo_stat() and fo_poll() as made earlier to fo_read() and fo_write(): explicitly use the cred argument to fo_poll() as "active_cred" using the passed file descriptor's f_cred reference to provide access to the file credential. Add an active_cred argument to fo_stat() so that implementers have access to the active credential as well as the file credential. Generally modify callers of fo_stat() to pass in td->td_ucred rather than fp->f_cred, which was redundantly provided via the fp argument. This set of modifications also permits threads to perform these operations on behalf of another thread without modifying their credential. Trickle this change down into fo_stat/poll() implementations: - badfo_poll(), badfo_stat(): modify/add arguments. - kqueue_poll(), kqueue_stat(): modify arguments. - pipe_poll(), pipe_stat(): modify/add arguments, pass active_cred to MAC checks rather than td->td_ucred. - soo_poll(), soo_stat(): modify/add arguments, pass fp->f_cred rather than cred to pru_sopoll() to maintain current semantics. - sopoll(): moidfy arguments. - vn_poll(), vn_statfile(): modify/add arguments, pass new arguments to vn_stat(). Pass active_cred to MAC and fp->f_cred to VOP_POLL() to maintian current semantics. - vn_close(): rename cred to file_cred to reflect reality while I'm here. - vn_stat(): Add active_cred and file_cred arguments to vn_stat() and consumers so that this distinction is maintained at the VFS as well as 'struct file' layer. Pass active_cred instead of td->td_ucred to MAC and to VOP_GETATTR() to maintain current semantics. - fifofs: modify the creation of a "filetemp" so that the file credential is properly initialized and can be used in the socket code if desired. Pass ap->a_td->td_ucred as the active credential to soo_poll(). If we teach the vnop interface about the distinction between file and active credentials, we would use the active credential here. Note that current inconsistent passing of active_cred vs. file_cred to VOP's is maintained. It's not clear why GETATTR would be authorized using active_cred while POLL would be authorized using file_cred at the file system level. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-08-16 12:52:03 +00:00
kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
struct thread *td)
{
struct kqueue *kq;
int revents = 0;
int error;
if ((error = kqueue_acquire(fp, &kq)))
return POLLERR;
KQ_LOCK(kq);
if (events & (POLLIN | POLLRDNORM)) {
if (kq->kq_count) {
revents |= events & (POLLIN | POLLRDNORM);
} else {
selrecord(td, &kq->kq_sel);
if (SEL_WAITING(&kq->kq_sel))
kq->kq_state |= KQ_SEL;
}
}
kqueue_release(kq, 1);
KQ_UNLOCK(kq);
return (revents);
}
/*ARGSUSED*/
static int
Make similar changes to fo_stat() and fo_poll() as made earlier to fo_read() and fo_write(): explicitly use the cred argument to fo_poll() as "active_cred" using the passed file descriptor's f_cred reference to provide access to the file credential. Add an active_cred argument to fo_stat() so that implementers have access to the active credential as well as the file credential. Generally modify callers of fo_stat() to pass in td->td_ucred rather than fp->f_cred, which was redundantly provided via the fp argument. This set of modifications also permits threads to perform these operations on behalf of another thread without modifying their credential. Trickle this change down into fo_stat/poll() implementations: - badfo_poll(), badfo_stat(): modify/add arguments. - kqueue_poll(), kqueue_stat(): modify arguments. - pipe_poll(), pipe_stat(): modify/add arguments, pass active_cred to MAC checks rather than td->td_ucred. - soo_poll(), soo_stat(): modify/add arguments, pass fp->f_cred rather than cred to pru_sopoll() to maintain current semantics. - sopoll(): moidfy arguments. - vn_poll(), vn_statfile(): modify/add arguments, pass new arguments to vn_stat(). Pass active_cred to MAC and fp->f_cred to VOP_POLL() to maintian current semantics. - vn_close(): rename cred to file_cred to reflect reality while I'm here. - vn_stat(): Add active_cred and file_cred arguments to vn_stat() and consumers so that this distinction is maintained at the VFS as well as 'struct file' layer. Pass active_cred instead of td->td_ucred to MAC and to VOP_GETATTR() to maintain current semantics. - fifofs: modify the creation of a "filetemp" so that the file credential is properly initialized and can be used in the socket code if desired. Pass ap->a_td->td_ucred as the active credential to soo_poll(). If we teach the vnop interface about the distinction between file and active credentials, we would use the active credential here. Note that current inconsistent passing of active_cred vs. file_cred to VOP's is maintained. It's not clear why GETATTR would be authorized using active_cred while POLL would be authorized using file_cred at the file system level. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-08-16 12:52:03 +00:00
kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
struct thread *td)
{
bzero((void *)st, sizeof *st);
/*
* We no longer return kq_count because the unlocked value is useless.
* If you spent all this time getting the count, why not spend your
* syscall better by calling kevent?
*
* XXX - This is needed for libc_r.
*/
st->st_mode = S_IFIFO;
return (0);
}
/*ARGSUSED*/
static int
kqueue_close(struct file *fp, struct thread *td)
{
struct kqueue *kq = fp->f_data;
struct filedesc *fdp;
struct knote *kn;
int i;
int error;
int filedesc_unlock;
if ((error = kqueue_acquire(fp, &kq)))
return error;
filedesc_unlock = 0;
KQ_LOCK(kq);
KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
("kqueue already closing"));
kq->kq_state |= KQ_CLOSING;
if (kq->kq_refcnt > 1)
msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
fdp = kq->kq_fdp;
KASSERT(knlist_empty(&kq->kq_sel.si_note),
("kqueue's knlist not empty"));
for (i = 0; i < kq->kq_knlistsize; i++) {
while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
kq->kq_state |= KQ_FLUXWAIT;
msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
continue;
}
kn->kn_status |= KN_INFLUX;
KQ_UNLOCK(kq);
if (!(kn->kn_status & KN_DETACHED))
kn->kn_fop->f_detach(kn);
knote_drop(kn, td);
KQ_LOCK(kq);
}
}
if (kq->kq_knhashmask != 0) {
for (i = 0; i <= kq->kq_knhashmask; i++) {
while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
kq->kq_state |= KQ_FLUXWAIT;
msleep(kq, &kq->kq_lock, PSOCK,
"kqclo2", 0);
continue;
}
kn->kn_status |= KN_INFLUX;
KQ_UNLOCK(kq);
if (!(kn->kn_status & KN_DETACHED))
kn->kn_fop->f_detach(kn);
knote_drop(kn, td);
KQ_LOCK(kq);
}
}
}
if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
kq->kq_state |= KQ_TASKDRAIN;
msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
}
if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
selwakeuppri(&kq->kq_sel, PSOCK);
if (!SEL_WAITING(&kq->kq_sel))
kq->kq_state &= ~KQ_SEL;
}
KQ_UNLOCK(kq);
/*
* We could be called due to the knote_drop() doing fdrop(),
* called from kqueue_register(). In this case the global
* lock is owned, and filedesc sx is locked before, to not
* take the sleepable lock after non-sleepable.
*/
if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
FILEDESC_XLOCK(fdp);
filedesc_unlock = 1;
} else
filedesc_unlock = 0;
TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
if (filedesc_unlock)
FILEDESC_XUNLOCK(fdp);
seldrain(&kq->kq_sel);
knlist_destroy(&kq->kq_sel.si_note);
mtx_destroy(&kq->kq_lock);
kq->kq_fdp = NULL;
if (kq->kq_knhash != NULL)
free(kq->kq_knhash, M_KQUEUE);
if (kq->kq_knlist != NULL)
free(kq->kq_knlist, M_KQUEUE);
funsetown(&kq->kq_sigio);
chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
crfree(kq->kq_cred);
free(kq, M_KQUEUE);
fp->f_data = NULL;
return (0);
}
static void
kqueue_wakeup(struct kqueue *kq)
{
KQ_OWNED(kq);
if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
kq->kq_state &= ~KQ_SLEEP;
wakeup(kq);
}
if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
selwakeuppri(&kq->kq_sel, PSOCK);
if (!SEL_WAITING(&kq->kq_sel))
kq->kq_state &= ~KQ_SEL;
}
if (!knlist_empty(&kq->kq_sel.si_note))
kqueue_schedtask(kq);
if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
pgsigio(&kq->kq_sigio, SIGIO, 0);
}
}
/*
* Walk down a list of knotes, activating them if their event has triggered.
*
* There is a possibility to optimize in the case of one kq watching another.
* Instead of scheduling a task to wake it up, you could pass enough state
* down the chain to make up the parent kqueue. Make this code functional
* first.
*/
void
knote(struct knlist *list, long hint, int lockflags)
{
struct kqueue *kq;
struct knote *kn;
int error;
if (list == NULL)
return;
KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
if ((lockflags & KNF_LISTLOCKED) == 0)
list->kl_lock(list->kl_lockarg);
/*
* If we unlock the list lock (and set KN_INFLUX), we can eliminate
* the kqueue scheduling, but this will introduce four
* lock/unlock's for each knote to test. If we do, continue to use
* SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
* only safe if you want to remove the current item, which we are
* not doing.
*/
SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
kq = kn->kn_kq;
if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
KQ_LOCK(kq);
if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
KQ_UNLOCK(kq);
} else if ((lockflags & KNF_NOKQLOCK) != 0) {
kn->kn_status |= KN_INFLUX;
KQ_UNLOCK(kq);
error = kn->kn_fop->f_event(kn, hint);
KQ_LOCK(kq);
kn->kn_status &= ~KN_INFLUX;
if (error)
KNOTE_ACTIVATE(kn, 1);
KQ_UNLOCK_FLUX(kq);
} else {
kn->kn_status |= KN_HASKQLOCK;
if (kn->kn_fop->f_event(kn, hint))
KNOTE_ACTIVATE(kn, 1);
kn->kn_status &= ~KN_HASKQLOCK;
KQ_UNLOCK(kq);
}
}
kq = NULL;
}
if ((lockflags & KNF_LISTLOCKED) == 0)
list->kl_unlock(list->kl_lockarg);
}
/*
* add a knote to a knlist
*/
void
knlist_add(struct knlist *knl, struct knote *kn, int islocked)
{
KNL_ASSERT_LOCK(knl, islocked);
KQ_NOTOWNED(kn->kn_kq);
KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
(KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
if (!islocked)
knl->kl_lock(knl->kl_lockarg);
SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
if (!islocked)
knl->kl_unlock(knl->kl_lockarg);
KQ_LOCK(kn->kn_kq);
kn->kn_knlist = knl;
kn->kn_status &= ~KN_DETACHED;
KQ_UNLOCK(kn->kn_kq);
}
static void
knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
{
KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
KNL_ASSERT_LOCK(knl, knlislocked);
mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
if (!kqislocked)
KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
("knlist_remove called w/o knote being KN_INFLUX or already removed"));
if (!knlislocked)
knl->kl_lock(knl->kl_lockarg);
SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
kn->kn_knlist = NULL;
if (!knlislocked)
knl->kl_unlock(knl->kl_lockarg);
if (!kqislocked)
KQ_LOCK(kn->kn_kq);
kn->kn_status |= KN_DETACHED;
if (!kqislocked)
KQ_UNLOCK(kn->kn_kq);
}
/*
* remove knote from the specified knlist
*/
void
knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
{
knlist_remove_kq(knl, kn, islocked, 0);
}
/*
* remove knote from the specified knlist while in f_event handler.
*/
void
knlist_remove_inevent(struct knlist *knl, struct knote *kn)
{
knlist_remove_kq(knl, kn, 1,
(kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
}
int
knlist_empty(struct knlist *knl)
{
KNL_ASSERT_LOCKED(knl);
return SLIST_EMPTY(&knl->kl_list);
}
static struct mtx knlist_lock;
MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
MTX_DEF);
static void knlist_mtx_lock(void *arg);
static void knlist_mtx_unlock(void *arg);
static void
knlist_mtx_lock(void *arg)
{
mtx_lock((struct mtx *)arg);
}
static void
knlist_mtx_unlock(void *arg)
{
mtx_unlock((struct mtx *)arg);
}
static void
knlist_mtx_assert_locked(void *arg)
{
mtx_assert((struct mtx *)arg, MA_OWNED);
}
static void
knlist_mtx_assert_unlocked(void *arg)
{
mtx_assert((struct mtx *)arg, MA_NOTOWNED);
}
static void
knlist_rw_rlock(void *arg)
{
rw_rlock((struct rwlock *)arg);
}
static void
knlist_rw_runlock(void *arg)
{
rw_runlock((struct rwlock *)arg);
}
static void
knlist_rw_assert_locked(void *arg)
{
rw_assert((struct rwlock *)arg, RA_LOCKED);
}
static void
knlist_rw_assert_unlocked(void *arg)
{
rw_assert((struct rwlock *)arg, RA_UNLOCKED);
}
void
knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
void (*kl_unlock)(void *),
void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
{
if (lock == NULL)
knl->kl_lockarg = &knlist_lock;
else
knl->kl_lockarg = lock;
if (kl_lock == NULL)
knl->kl_lock = knlist_mtx_lock;
else
knl->kl_lock = kl_lock;
if (kl_unlock == NULL)
knl->kl_unlock = knlist_mtx_unlock;
else
knl->kl_unlock = kl_unlock;
if (kl_assert_locked == NULL)
knl->kl_assert_locked = knlist_mtx_assert_locked;
else
knl->kl_assert_locked = kl_assert_locked;
if (kl_assert_unlocked == NULL)
knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
else
knl->kl_assert_unlocked = kl_assert_unlocked;
SLIST_INIT(&knl->kl_list);
}
void
knlist_init_mtx(struct knlist *knl, struct mtx *lock)
{
knlist_init(knl, lock, NULL, NULL, NULL, NULL);
}
void
knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
{
knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
knlist_rw_assert_locked, knlist_rw_assert_unlocked);
}
void
knlist_destroy(struct knlist *knl)
{
#ifdef INVARIANTS
/*
* if we run across this error, we need to find the offending
* driver and have it call knlist_clear or knlist_delete.
*/
if (!SLIST_EMPTY(&knl->kl_list))
printf("WARNING: destroying knlist w/ knotes on it!\n");
#endif
knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
SLIST_INIT(&knl->kl_list);
}
/*
* Even if we are locked, we may need to drop the lock to allow any influx
* knotes time to "settle".
*/
void
knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
{
struct knote *kn, *kn2;
struct kqueue *kq;
if (islocked)
KNL_ASSERT_LOCKED(knl);
else {
KNL_ASSERT_UNLOCKED(knl);
again: /* need to reacquire lock since we have dropped it */
knl->kl_lock(knl->kl_lockarg);
}
SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
kq = kn->kn_kq;
KQ_LOCK(kq);
if ((kn->kn_status & KN_INFLUX)) {
KQ_UNLOCK(kq);
continue;
}
knlist_remove_kq(knl, kn, 1, 1);
if (killkn) {
kn->kn_status |= KN_INFLUX | KN_DETACHED;
KQ_UNLOCK(kq);
knote_drop(kn, td);
} else {
/* Make sure cleared knotes disappear soon */
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
KQ_UNLOCK(kq);
}
kq = NULL;
}
if (!SLIST_EMPTY(&knl->kl_list)) {
/* there are still KN_INFLUX remaining */
kn = SLIST_FIRST(&knl->kl_list);
kq = kn->kn_kq;
KQ_LOCK(kq);
KASSERT(kn->kn_status & KN_INFLUX,
("knote removed w/o list lock"));
knl->kl_unlock(knl->kl_lockarg);
kq->kq_state |= KQ_FLUXWAIT;
msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
kq = NULL;
goto again;
}
if (islocked)
KNL_ASSERT_LOCKED(knl);
else {
knl->kl_unlock(knl->kl_lockarg);
KNL_ASSERT_UNLOCKED(knl);
}
}
/*
Replace custom file descriptor array sleep lock constructed using a mutex and flags with an sxlock. This leads to a significant and measurable performance improvement as a result of access to shared locking for frequent lookup operations, reduced general overhead, and reduced overhead in the event of contention. All of these are imported for threaded applications where simultaneous access to a shared file descriptor array occurs frequently. Kris has reported 2x-4x transaction rate improvements on 8-core MySQL benchmarks; smaller improvements can be expected for many workloads as a result of reduced overhead. - Generally eliminate the distinction between "fast" and regular acquisisition of the filedesc lock; the plan is that they will now all be fast. Change all locking instances to either shared or exclusive locks. - Correct a bug (pointed out by kib) in fdfree() where previously msleep() was called without the mutex held; sx_sleep() is now always called with the sxlock held exclusively. - Universally hold the struct file lock over changes to struct file, rather than the filedesc lock or no lock. Always update the f_ops field last. A further memory barrier is required here in the future (discussed with jhb). - Improve locking and reference management in linux_at(), which fails to properly acquire vnode references before using vnode pointers. Annotate improper use of vn_fullpath(), which will be replaced at a future date. In fcntl(), we conservatively acquire an exclusive lock, even though in some cases a shared lock may be sufficient, which should be revisited. The dropping of the filedesc lock in fdgrowtable() is no longer required as the sxlock can be held over the sleep operation; we should consider removing that (pointed out by attilio). Tested by: kris Discussed with: jhb, kris, attilio, jeff
2007-04-04 09:11:34 +00:00
* Remove all knotes referencing a specified fd must be called with FILEDESC
* lock. This prevents a race where a new fd comes along and occupies the
* entry and we attach a knote to the fd.
*/
void
knote_fdclose(struct thread *td, int fd)
{
struct filedesc *fdp = td->td_proc->p_fd;
struct kqueue *kq;
struct knote *kn;
int influx;
Replace custom file descriptor array sleep lock constructed using a mutex and flags with an sxlock. This leads to a significant and measurable performance improvement as a result of access to shared locking for frequent lookup operations, reduced general overhead, and reduced overhead in the event of contention. All of these are imported for threaded applications where simultaneous access to a shared file descriptor array occurs frequently. Kris has reported 2x-4x transaction rate improvements on 8-core MySQL benchmarks; smaller improvements can be expected for many workloads as a result of reduced overhead. - Generally eliminate the distinction between "fast" and regular acquisisition of the filedesc lock; the plan is that they will now all be fast. Change all locking instances to either shared or exclusive locks. - Correct a bug (pointed out by kib) in fdfree() where previously msleep() was called without the mutex held; sx_sleep() is now always called with the sxlock held exclusively. - Universally hold the struct file lock over changes to struct file, rather than the filedesc lock or no lock. Always update the f_ops field last. A further memory barrier is required here in the future (discussed with jhb). - Improve locking and reference management in linux_at(), which fails to properly acquire vnode references before using vnode pointers. Annotate improper use of vn_fullpath(), which will be replaced at a future date. In fcntl(), we conservatively acquire an exclusive lock, even though in some cases a shared lock may be sufficient, which should be revisited. The dropping of the filedesc lock in fdgrowtable() is no longer required as the sxlock can be held over the sleep operation; we should consider removing that (pointed out by attilio). Tested by: kris Discussed with: jhb, kris, attilio, jeff
2007-04-04 09:11:34 +00:00
FILEDESC_XLOCK_ASSERT(fdp);
/*
* We shouldn't have to worry about new kevents appearing on fd
* since filedesc is locked.
*/
TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
KQ_LOCK(kq);
again:
influx = 0;
while (kq->kq_knlistsize > fd &&
(kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
if (kn->kn_status & KN_INFLUX) {
/* someone else might be waiting on our knote */
if (influx)
wakeup(kq);
kq->kq_state |= KQ_FLUXWAIT;
msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
goto again;
}
kn->kn_status |= KN_INFLUX;
KQ_UNLOCK(kq);
if (!(kn->kn_status & KN_DETACHED))
kn->kn_fop->f_detach(kn);
knote_drop(kn, td);
influx = 1;
KQ_LOCK(kq);
}
KQ_UNLOCK_FLUX(kq);
}
}
static int
knote_attach(struct knote *kn, struct kqueue *kq)
{
struct klist *list;
KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
KQ_OWNED(kq);
if (kn->kn_fop->f_isfd) {
if (kn->kn_id >= kq->kq_knlistsize)
return ENOMEM;
list = &kq->kq_knlist[kn->kn_id];
} else {
if (kq->kq_knhash == NULL)
return ENOMEM;
list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
}
SLIST_INSERT_HEAD(list, kn, kn_link);
return 0;
}
/*
* knote must already have been detached using the f_detach method.
* no lock need to be held, it is assumed that the KN_INFLUX flag is set
* to prevent other removal.
*/
static void
knote_drop(struct knote *kn, struct thread *td)
{
struct kqueue *kq;
struct klist *list;
kq = kn->kn_kq;
KQ_NOTOWNED(kq);
KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
("knote_drop called without KN_INFLUX set in kn_status"));
KQ_LOCK(kq);
if (kn->kn_fop->f_isfd)
list = &kq->kq_knlist[kn->kn_id];
else
list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
if (!SLIST_EMPTY(list))
SLIST_REMOVE(list, kn, knote, kn_link);
if (kn->kn_status & KN_QUEUED)
knote_dequeue(kn);
KQ_UNLOCK_FLUX(kq);
if (kn->kn_fop->f_isfd) {
fdrop(kn->kn_fp, td);
kn->kn_fp = NULL;
}
kqueue_fo_release(kn->kn_kevent.filter);
kn->kn_fop = NULL;
knote_free(kn);
}
static void
knote_enqueue(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
KQ_OWNED(kn->kn_kq);
KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
2004-08-12 18:06:21 +00:00
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
kn->kn_status |= KN_QUEUED;
kq->kq_count++;
kqueue_wakeup(kq);
}
static void
knote_dequeue(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
KQ_OWNED(kn->kn_kq);
KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
2004-08-12 18:06:21 +00:00
TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
kn->kn_status &= ~KN_QUEUED;
kq->kq_count--;
}
static void
knote_init(void)
{
knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, 0);
}
SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
static struct knote *
knote_alloc(int waitok)
{
return ((struct knote *)uma_zalloc(knote_zone,
(waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
}
static void
knote_free(struct knote *kn)
{
if (kn != NULL)
uma_zfree(knote_zone, kn);
}
/*
* Register the kev w/ the kq specified by fd.
*/
int
kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
{
struct kqueue *kq;
struct file *fp;
Change the cap_rights_t type from uint64_t to a structure that we can extend in the future in a backward compatible (API and ABI) way. The cap_rights_t represents capability rights. We used to use one bit to represent one right, but we are running out of spare bits. Currently the new structure provides place for 114 rights (so 50 more than the previous cap_rights_t), but it is possible to grow the structure to hold at least 285 rights, although we can make it even larger if 285 rights won't be enough. The structure definition looks like this: struct cap_rights { uint64_t cr_rights[CAP_RIGHTS_VERSION + 2]; }; The initial CAP_RIGHTS_VERSION is 0. The top two bits in the first element of the cr_rights[] array contain total number of elements in the array - 2. This means if those two bits are equal to 0, we have 2 array elements. The top two bits in all remaining array elements should be 0. The next five bits in all array elements contain array index. Only one bit is used and bit position in this five-bits range defines array index. This means there can be at most five array elements in the future. To define new right the CAPRIGHT() macro must be used. The macro takes two arguments - an array index and a bit to set, eg. #define CAP_PDKILL CAPRIGHT(1, 0x0000000000000800ULL) We still support aliases that combine few rights, but the rights have to belong to the same array element, eg: #define CAP_LOOKUP CAPRIGHT(0, 0x0000000000000400ULL) #define CAP_FCHMOD CAPRIGHT(0, 0x0000000000002000ULL) #define CAP_FCHMODAT (CAP_FCHMOD | CAP_LOOKUP) There is new API to manage the new cap_rights_t structure: cap_rights_t *cap_rights_init(cap_rights_t *rights, ...); void cap_rights_set(cap_rights_t *rights, ...); void cap_rights_clear(cap_rights_t *rights, ...); bool cap_rights_is_set(const cap_rights_t *rights, ...); bool cap_rights_is_valid(const cap_rights_t *rights); void cap_rights_merge(cap_rights_t *dst, const cap_rights_t *src); void cap_rights_remove(cap_rights_t *dst, const cap_rights_t *src); bool cap_rights_contains(const cap_rights_t *big, const cap_rights_t *little); Capability rights to the cap_rights_init(), cap_rights_set(), cap_rights_clear() and cap_rights_is_set() functions are provided by separating them with commas, eg: cap_rights_t rights; cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT); There is no need to terminate the list of rights, as those functions are actually macros that take care of the termination, eg: #define cap_rights_set(rights, ...) \ __cap_rights_set((rights), __VA_ARGS__, 0ULL) void __cap_rights_set(cap_rights_t *rights, ...); Thanks to using one bit as an array index we can assert in those functions that there are no two rights belonging to different array elements provided together. For example this is illegal and will be detected, because CAP_LOOKUP belongs to element 0 and CAP_PDKILL to element 1: cap_rights_init(&rights, CAP_LOOKUP | CAP_PDKILL); Providing several rights that belongs to the same array's element this way is correct, but is not advised. It should only be used for aliases definition. This commit also breaks compatibility with some existing Capsicum system calls, but I see no other way to do that. This should be fine as Capsicum is still experimental and this change is not going to 9.x. Sponsored by: The FreeBSD Foundation
2013-09-05 00:09:56 +00:00
cap_rights_t rights;
int error;
Change the cap_rights_t type from uint64_t to a structure that we can extend in the future in a backward compatible (API and ABI) way. The cap_rights_t represents capability rights. We used to use one bit to represent one right, but we are running out of spare bits. Currently the new structure provides place for 114 rights (so 50 more than the previous cap_rights_t), but it is possible to grow the structure to hold at least 285 rights, although we can make it even larger if 285 rights won't be enough. The structure definition looks like this: struct cap_rights { uint64_t cr_rights[CAP_RIGHTS_VERSION + 2]; }; The initial CAP_RIGHTS_VERSION is 0. The top two bits in the first element of the cr_rights[] array contain total number of elements in the array - 2. This means if those two bits are equal to 0, we have 2 array elements. The top two bits in all remaining array elements should be 0. The next five bits in all array elements contain array index. Only one bit is used and bit position in this five-bits range defines array index. This means there can be at most five array elements in the future. To define new right the CAPRIGHT() macro must be used. The macro takes two arguments - an array index and a bit to set, eg. #define CAP_PDKILL CAPRIGHT(1, 0x0000000000000800ULL) We still support aliases that combine few rights, but the rights have to belong to the same array element, eg: #define CAP_LOOKUP CAPRIGHT(0, 0x0000000000000400ULL) #define CAP_FCHMOD CAPRIGHT(0, 0x0000000000002000ULL) #define CAP_FCHMODAT (CAP_FCHMOD | CAP_LOOKUP) There is new API to manage the new cap_rights_t structure: cap_rights_t *cap_rights_init(cap_rights_t *rights, ...); void cap_rights_set(cap_rights_t *rights, ...); void cap_rights_clear(cap_rights_t *rights, ...); bool cap_rights_is_set(const cap_rights_t *rights, ...); bool cap_rights_is_valid(const cap_rights_t *rights); void cap_rights_merge(cap_rights_t *dst, const cap_rights_t *src); void cap_rights_remove(cap_rights_t *dst, const cap_rights_t *src); bool cap_rights_contains(const cap_rights_t *big, const cap_rights_t *little); Capability rights to the cap_rights_init(), cap_rights_set(), cap_rights_clear() and cap_rights_is_set() functions are provided by separating them with commas, eg: cap_rights_t rights; cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT); There is no need to terminate the list of rights, as those functions are actually macros that take care of the termination, eg: #define cap_rights_set(rights, ...) \ __cap_rights_set((rights), __VA_ARGS__, 0ULL) void __cap_rights_set(cap_rights_t *rights, ...); Thanks to using one bit as an array index we can assert in those functions that there are no two rights belonging to different array elements provided together. For example this is illegal and will be detected, because CAP_LOOKUP belongs to element 0 and CAP_PDKILL to element 1: cap_rights_init(&rights, CAP_LOOKUP | CAP_PDKILL); Providing several rights that belongs to the same array's element this way is correct, but is not advised. It should only be used for aliases definition. This commit also breaks compatibility with some existing Capsicum system calls, but I see no other way to do that. This should be fine as Capsicum is still experimental and this change is not going to 9.x. Sponsored by: The FreeBSD Foundation
2013-09-05 00:09:56 +00:00
error = fget(td, fd, cap_rights_init(&rights, CAP_POST_EVENT), &fp);
if (error != 0)
return (error);
if ((error = kqueue_acquire(fp, &kq)) != 0)
goto noacquire;
error = kqueue_register(kq, kev, td, waitok);
kqueue_release(kq, 0);
noacquire:
fdrop(fp, td);
return error;
}