freebsd-dev/usr.sbin/ctladm/ctladm.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

4277 lines
105 KiB
C
Raw Normal View History

Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
* Copyright (c) 2003, 2004 Silicon Graphics International Corp.
* Copyright (c) 1997-2007 Kenneth D. Merry
* Copyright (c) 2012 The FreeBSD Foundation
* Copyright (c) 2018 Marcelo Araujo <araujo@FreeBSD.org>
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
* All rights reserved.
*
* Portions of this software were developed by Edward Tomasz Napierala
* under sponsorship from the FreeBSD Foundation.
*
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* $Id: //depot/users/kenm/FreeBSD-test2/usr.sbin/ctladm/ctladm.c#4 $
*/
/*
* CAM Target Layer exercise program.
*
* Author: Ken Merry <ken@FreeBSD.org>
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/callout.h>
#include <sys/ioctl.h>
#include <sys/linker.h>
#include <sys/module.h>
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/nv.h>
#include <sys/stat.h>
#include <bsdxml.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
#include <fcntl.h>
#include <getopt.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
#include <string.h>
#include <unistd.h>
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <cam/ctl/ctl.h>
#include <cam/ctl/ctl_io.h>
#include <cam/ctl/ctl_backend.h>
#include <cam/ctl/ctl_ioctl.h>
#include <cam/ctl/ctl_util.h>
#include <cam/ctl/ctl_scsi_all.h>
#include <camlib.h>
#include <libutil.h>
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
#include "ctladm.h"
#ifdef min
#undef min
#endif
#define min(x,y) (x < y) ? x : y
typedef enum {
CTLADM_CMD_TUR,
CTLADM_CMD_INQUIRY,
CTLADM_CMD_REQ_SENSE,
CTLADM_CMD_ARRAYLIST,
CTLADM_CMD_REPORT_LUNS,
CTLADM_CMD_HELP,
CTLADM_CMD_DEVLIST,
CTLADM_CMD_ADDDEV,
CTLADM_CMD_RM,
CTLADM_CMD_CREATE,
CTLADM_CMD_READ,
CTLADM_CMD_WRITE,
CTLADM_CMD_PORT,
CTLADM_CMD_PORTLIST,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
CTLADM_CMD_READCAPACITY,
CTLADM_CMD_MODESENSE,
CTLADM_CMD_DUMPOOA,
CTLADM_CMD_DUMPSTRUCTS,
CTLADM_CMD_START,
CTLADM_CMD_STOP,
CTLADM_CMD_SYNC_CACHE,
CTLADM_CMD_LUNLIST,
CTLADM_CMD_DELAY,
CTLADM_CMD_ERR_INJECT,
CTLADM_CMD_PRES_IN,
CTLADM_CMD_PRES_OUT,
CTLADM_CMD_INQ_VPD_DEVID,
CTLADM_CMD_RTPG,
CTLADM_CMD_MODIFY,
CTLADM_CMD_ISLIST,
CTLADM_CMD_ISLOGOUT,
CTLADM_CMD_ISTERMINATE,
CTLADM_CMD_LUNMAP
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
} ctladm_cmdfunction;
typedef enum {
CTLADM_ARG_NONE = 0x0000000,
CTLADM_ARG_AUTOSENSE = 0x0000001,
CTLADM_ARG_DEVICE = 0x0000002,
CTLADM_ARG_ARRAYSIZE = 0x0000004,
CTLADM_ARG_BACKEND = 0x0000008,
CTLADM_ARG_CDBSIZE = 0x0000010,
CTLADM_ARG_DATALEN = 0x0000020,
CTLADM_ARG_FILENAME = 0x0000040,
CTLADM_ARG_LBA = 0x0000080,
CTLADM_ARG_PC = 0x0000100,
CTLADM_ARG_PAGE_CODE = 0x0000200,
CTLADM_ARG_PAGE_LIST = 0x0000400,
CTLADM_ARG_SUBPAGE = 0x0000800,
CTLADM_ARG_PAGELIST = 0x0001000,
CTLADM_ARG_DBD = 0x0002000,
CTLADM_ARG_TARG_LUN = 0x0004000,
CTLADM_ARG_BLOCKSIZE = 0x0008000,
CTLADM_ARG_IMMED = 0x0010000,
CTLADM_ARG_RELADR = 0x0020000,
CTLADM_ARG_RETRIES = 0x0040000,
CTLADM_ARG_ONOFFLINE = 0x0080000,
CTLADM_ARG_ONESHOT = 0x0100000,
CTLADM_ARG_TIMEOUT = 0x0200000,
CTLADM_ARG_INITIATOR = 0x0400000,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
CTLADM_ARG_NOCOPY = 0x0800000,
CTLADM_ARG_NEED_TL = 0x1000000
} ctladm_cmdargs;
struct ctladm_opts {
const char *optname;
uint32_t cmdnum;
ctladm_cmdargs argnum;
const char *subopt;
};
typedef enum {
CC_OR_NOT_FOUND,
CC_OR_AMBIGUOUS,
CC_OR_FOUND
} ctladm_optret;
static const char rw_opts[] = "Nb:c:d:f:l:";
static const char startstop_opts[] = "i";
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
static struct ctladm_opts option_table[] = {
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{"adddev", CTLADM_CMD_ADDDEV, CTLADM_ARG_NONE, NULL},
{"create", CTLADM_CMD_CREATE, CTLADM_ARG_NONE, "b:B:d:l:o:s:S:t:"},
{"delay", CTLADM_CMD_DELAY, CTLADM_ARG_NEED_TL, "T:l:t:"},
{"devid", CTLADM_CMD_INQ_VPD_DEVID, CTLADM_ARG_NEED_TL, NULL},
{"devlist", CTLADM_CMD_DEVLIST, CTLADM_ARG_NONE, "b:vx"},
{"dumpooa", CTLADM_CMD_DUMPOOA, CTLADM_ARG_NONE, NULL},
{"dumpstructs", CTLADM_CMD_DUMPSTRUCTS, CTLADM_ARG_NONE, NULL},
{"help", CTLADM_CMD_HELP, CTLADM_ARG_NONE, NULL},
{"inject", CTLADM_CMD_ERR_INJECT, CTLADM_ARG_NEED_TL, "cd:i:p:r:s:"},
{"inquiry", CTLADM_CMD_INQUIRY, CTLADM_ARG_NEED_TL, NULL},
{"islist", CTLADM_CMD_ISLIST, CTLADM_ARG_NONE, "vx"},
{"islogout", CTLADM_CMD_ISLOGOUT, CTLADM_ARG_NONE, "ac:i:p:"},
{"isterminate", CTLADM_CMD_ISTERMINATE, CTLADM_ARG_NONE, "ac:i:p:"},
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{"lunlist", CTLADM_CMD_LUNLIST, CTLADM_ARG_NONE, NULL},
{"lunmap", CTLADM_CMD_LUNMAP, CTLADM_ARG_NONE, "p:l:L:"},
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{"modesense", CTLADM_CMD_MODESENSE, CTLADM_ARG_NEED_TL, "P:S:dlm:c:"},
{"modify", CTLADM_CMD_MODIFY, CTLADM_ARG_NONE, "b:l:o:s:"},
{"port", CTLADM_CMD_PORT, CTLADM_ARG_NONE, "lo:O:d:crp:qt:w:W:x"},
{"portlist", CTLADM_CMD_PORTLIST, CTLADM_ARG_NONE, "f:ilp:qvx"},
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{"prin", CTLADM_CMD_PRES_IN, CTLADM_ARG_NEED_TL, "a:"},
{"prout", CTLADM_CMD_PRES_OUT, CTLADM_ARG_NEED_TL, "a:k:r:s:"},
{"read", CTLADM_CMD_READ, CTLADM_ARG_NEED_TL, rw_opts},
{"readcapacity", CTLADM_CMD_READCAPACITY, CTLADM_ARG_NEED_TL, "c:"},
{"remove", CTLADM_CMD_RM, CTLADM_ARG_NONE, "b:l:o:"},
{"reportluns", CTLADM_CMD_REPORT_LUNS, CTLADM_ARG_NEED_TL, NULL},
{"reqsense", CTLADM_CMD_REQ_SENSE, CTLADM_ARG_NEED_TL, NULL},
{"rtpg", CTLADM_CMD_RTPG, CTLADM_ARG_NEED_TL, NULL},
{"start", CTLADM_CMD_START, CTLADM_ARG_NEED_TL, startstop_opts},
{"stop", CTLADM_CMD_STOP, CTLADM_ARG_NEED_TL, startstop_opts},
{"synccache", CTLADM_CMD_SYNC_CACHE, CTLADM_ARG_NEED_TL, "b:c:il:r"},
{"tur", CTLADM_CMD_TUR, CTLADM_ARG_NEED_TL, NULL},
{"write", CTLADM_CMD_WRITE, CTLADM_ARG_NEED_TL, rw_opts},
{"-?", CTLADM_CMD_HELP, CTLADM_ARG_NONE, NULL},
{"-h", CTLADM_CMD_HELP, CTLADM_ARG_NONE, NULL},
{NULL, 0, 0, NULL}
};
ctladm_optret getoption(struct ctladm_opts *table, char *arg, uint32_t *cmdnum,
ctladm_cmdargs *argnum, const char **subopt);
static int cctl_dump_ooa(int fd, int argc, char **argv);
static int cctl_port(int fd, int argc, char **argv, char *combinedopt);
static int cctl_do_io(int fd, int retries, union ctl_io *io, const char *func);
static int cctl_delay(int fd, int lun, int argc, char **argv,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
char *combinedopt);
static int cctl_lunlist(int fd);
static int cctl_sync_cache(int fd, int lun, int iid, int retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int argc, char **argv, char *combinedopt);
static int cctl_start_stop(int fd, int lun, int iid, int retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int start, int argc, char **argv, char *combinedopt);
static int cctl_mode_sense(int fd, int lun, int iid, int retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int argc, char **argv, char *combinedopt);
static int cctl_read_capacity(int fd, int lun, int iid,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int retries, int argc, char **argv,
char *combinedopt);
static int cctl_read_write(int fd, int lun, int iid, int retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int argc, char **argv, char *combinedopt,
ctladm_cmdfunction command);
static int cctl_get_luns(int fd, int lun, int iid, int retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
struct scsi_report_luns_data **lun_data,
uint32_t *num_luns);
static int cctl_report_luns(int fd, int lun, int iid, int retries);
static int cctl_tur(int fd, int lun, int iid, int retries);
static int cctl_get_inquiry(int fd, int lun, int iid, int retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
char *path_str, int path_len,
struct scsi_inquiry_data *inq_data);
static int cctl_inquiry(int fd, int lun, int iid, int retries);
static int cctl_req_sense(int fd, int lun, int iid, int retries);
static int cctl_persistent_reserve_in(int fd, int lun,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int initiator, int argc, char **argv,
char *combinedopt, int retry_count);
static int cctl_persistent_reserve_out(int fd, int lun,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int initiator, int argc, char **argv,
char *combinedopt, int retry_count);
static int cctl_create_lun(int fd, int argc, char **argv, char *combinedopt);
static int cctl_inquiry_vpd_devid(int fd, int lun, int initiator);
static int cctl_report_target_port_group(int fd, int lun, int initiator);
static int cctl_modify_lun(int fd, int argc, char **argv, char *combinedopt);
static int cctl_portlist(int fd, int argc, char **argv, char *combinedopt);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
ctladm_optret
getoption(struct ctladm_opts *table, char *arg, uint32_t *cmdnum,
ctladm_cmdargs *argnum, const char **subopt)
{
struct ctladm_opts *opts;
int num_matches = 0;
for (opts = table; (opts != NULL) && (opts->optname != NULL);
opts++) {
if (strncmp(opts->optname, arg, strlen(arg)) == 0) {
*cmdnum = opts->cmdnum;
*argnum = opts->argnum;
*subopt = opts->subopt;
if (strcmp(opts->optname, arg) == 0)
return (CC_OR_FOUND);
if (++num_matches > 1)
return(CC_OR_AMBIGUOUS);
}
}
if (num_matches > 0)
return(CC_OR_FOUND);
else
return(CC_OR_NOT_FOUND);
}
static int
cctl_dump_ooa(int fd, int argc, char **argv)
{
struct ctl_ooa ooa;
long double cmd_latency;
int num_entries, len, lun = -1, retval = 0;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
unsigned int i;
num_entries = 104;
if ((argc > 2) && (isdigit(argv[2][0])))
lun = strtol(argv[2], NULL, 0);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
retry:
len = num_entries * sizeof(struct ctl_ooa_entry);
bzero(&ooa, sizeof(ooa));
ooa.entries = malloc(len);
if (ooa.entries == NULL) {
warn("%s: error mallocing %d bytes", __func__, len);
return (1);
}
if (lun >= 0) {
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
ooa.lun_num = lun;
} else
ooa.flags |= CTL_OOA_FLAG_ALL_LUNS;
ooa.alloc_len = len;
ooa.alloc_num = num_entries;
if (ioctl(fd, CTL_GET_OOA, &ooa) == -1) {
warn("%s: CTL_GET_OOA ioctl failed", __func__);
retval = 1;
goto bailout;
}
if (ooa.status == CTL_OOA_NEED_MORE_SPACE) {
num_entries = num_entries * 2;
free(ooa.entries);
ooa.entries = NULL;
goto retry;
}
if (ooa.status != CTL_OOA_OK) {
warnx("%s: CTL_GET_OOA ioctl returned error %d", __func__,
ooa.status);
retval = 1;
goto bailout;
}
fprintf(stdout, "Dumping OOA queues\n");
for (i = 0; i < ooa.fill_num; i++) {
struct ctl_ooa_entry *entry;
char cdb_str[(SCSI_MAX_CDBLEN * 3) +1];
struct bintime delta_bt;
struct timespec ts;
entry = &ooa.entries[i];
delta_bt = ooa.cur_bt;
bintime_sub(&delta_bt, &entry->start_bt);
bintime2timespec(&delta_bt, &ts);
cmd_latency = ts.tv_sec * 1000;
if (ts.tv_nsec > 0)
cmd_latency += ts.tv_nsec / 1000000;
2022-12-03 16:26:22 +00:00
fprintf(stdout, "LUN %jd tag 0x%jx%s%s%s%s%s%s%s: %s. CDB: %s "
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
"(%0.0Lf ms)\n",
(intmax_t)entry->lun_num, entry->tag_num,
(entry->cmd_flags & CTL_OOACMD_FLAG_BLOCKED) ?
" BLOCKED" : "",
(entry->cmd_flags & CTL_OOACMD_FLAG_RTR) ? " RTR" :"",
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
(entry->cmd_flags & CTL_OOACMD_FLAG_DMA_QUEUED) ?
" DMAQUEUED" : "",
(entry->cmd_flags & CTL_OOACMD_FLAG_DMA) ? " DMA" : "",
(entry->cmd_flags & CTL_OOACMD_FLAG_STATUS_QUEUED) ?
" STATUSQUEUED" : "",
(entry->cmd_flags & CTL_OOACMD_FLAG_STATUS_SENT) ? " STATUS" : "",
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
(entry->cmd_flags & CTL_OOACMD_FLAG_ABORT) ?
" ABORT" : "",
scsi_op_desc(entry->cdb[0], NULL),
scsi_cdb_string(entry->cdb, cdb_str, sizeof(cdb_str)),
cmd_latency);
}
fprintf(stdout, "OOA queues dump done\n");
bailout:
free(ooa.entries);
return (retval);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
}
static int
cctl_dump_structs(int fd, ctladm_cmdargs cmdargs __unused)
{
if (ioctl(fd, CTL_DUMP_STRUCTS) == -1) {
warn(__func__);
return (1);
}
return (0);
}
typedef enum {
CCTL_PORT_MODE_NONE,
CCTL_PORT_MODE_LIST,
CCTL_PORT_MODE_SET,
CCTL_PORT_MODE_ON,
CCTL_PORT_MODE_OFF,
CCTL_PORT_MODE_CREATE,
CCTL_PORT_MODE_REMOVE
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
} cctl_port_mode;
static struct ctladm_opts cctl_fe_table[] = {
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{"fc", CTL_PORT_FC, CTLADM_ARG_NONE, NULL},
{"scsi", CTL_PORT_SCSI, CTLADM_ARG_NONE, NULL},
{"internal", CTL_PORT_INTERNAL, CTLADM_ARG_NONE, NULL},
{"iscsi", CTL_PORT_ISCSI, CTLADM_ARG_NONE, NULL},
{"sas", CTL_PORT_SAS, CTLADM_ARG_NONE, NULL},
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{"all", CTL_PORT_ALL, CTLADM_ARG_NONE, NULL},
{NULL, 0, 0, NULL}
};
static int
cctl_port(int fd, int argc, char **argv, char *combinedopt)
{
int c;
int32_t targ_port = -1;
int retval = 0;
int wwnn_set = 0, wwpn_set = 0;
uint64_t wwnn = 0, wwpn = 0;
cctl_port_mode port_mode = CCTL_PORT_MODE_NONE;
struct ctl_port_entry entry;
struct ctl_req req;
char *driver = NULL;
nvlist_t *option_list;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
ctl_port_type port_type = CTL_PORT_NONE;
int quiet = 0, xml = 0;
option_list = nvlist_create(0);
if (option_list == NULL)
err(1, "%s: unable to allocate nvlist", __func__);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'l':
if (port_mode != CCTL_PORT_MODE_NONE)
goto bailout_badarg;
port_mode = CCTL_PORT_MODE_LIST;
break;
case 'c':
port_mode = CCTL_PORT_MODE_CREATE;
break;
case 'r':
port_mode = CCTL_PORT_MODE_REMOVE;
break;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
case 'o':
if (port_mode != CCTL_PORT_MODE_NONE)
goto bailout_badarg;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (strcasecmp(optarg, "on") == 0)
port_mode = CCTL_PORT_MODE_ON;
else if (strcasecmp(optarg, "off") == 0)
port_mode = CCTL_PORT_MODE_OFF;
else {
warnx("Invalid -o argument %s, \"on\" or "
"\"off\" are the only valid args",
optarg);
retval = 1;
goto bailout;
}
break;
case 'O': {
char *tmpstr;
char *name, *value;
tmpstr = strdup(optarg);
name = strsep(&tmpstr, "=");
if (name == NULL) {
warnx("%s: option -O takes \"name=value\""
"argument", __func__);
retval = 1;
goto bailout;
}
value = strsep(&tmpstr, "=");
if (value == NULL) {
warnx("%s: option -O takes \"name=value\""
"argument", __func__);
retval = 1;
goto bailout;
}
free(tmpstr);
nvlist_add_string(option_list, name, value);
break;
}
case 'd':
if (driver != NULL) {
warnx("%s: option -d cannot be specified twice",
__func__);
retval = 1;
goto bailout;
}
driver = strdup(optarg);
break;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
case 'p':
targ_port = strtol(optarg, NULL, 0);
break;
case 'q':
quiet = 1;
break;
case 't': {
ctladm_optret optret;
ctladm_cmdargs argnum;
const char *subopt;
ctl_port_type tmp_port_type;
optret = getoption(cctl_fe_table, optarg, &tmp_port_type,
&argnum, &subopt);
if (optret == CC_OR_AMBIGUOUS) {
warnx("%s: ambiguous frontend type %s",
__func__, optarg);
retval = 1;
goto bailout;
} else if (optret == CC_OR_NOT_FOUND) {
warnx("%s: invalid frontend type %s",
__func__, optarg);
retval = 1;
goto bailout;
}
port_type |= tmp_port_type;
break;
}
case 'w':
if ((port_mode != CCTL_PORT_MODE_NONE)
&& (port_mode != CCTL_PORT_MODE_SET))
goto bailout_badarg;
port_mode = CCTL_PORT_MODE_SET;
wwnn = strtoull(optarg, NULL, 0);
wwnn_set = 1;
break;
case 'W':
if ((port_mode != CCTL_PORT_MODE_NONE)
&& (port_mode != CCTL_PORT_MODE_SET))
goto bailout_badarg;
port_mode = CCTL_PORT_MODE_SET;
wwpn = strtoull(optarg, NULL, 0);
wwpn_set = 1;
break;
case 'x':
xml = 1;
break;
}
}
if (driver == NULL)
driver = strdup("ioctl");
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
/*
* The user can specify either one or more frontend types (-t), or
* a specific frontend, but not both.
*
* If the user didn't specify a frontend type or number, set it to
* all. This is primarily needed for the enable/disable ioctls.
* This will be a no-op for the listing code. For the set ioctl,
* we'll throw an error, since that only works on one port at a time.
*/
if ((port_type != CTL_PORT_NONE) && (targ_port != -1)) {
warnx("%s: can only specify one of -t or -n", __func__);
retval = 1;
goto bailout;
} else if ((targ_port == -1) && (port_type == CTL_PORT_NONE))
port_type = CTL_PORT_ALL;
bzero(&entry, sizeof(entry));
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
/*
* These are needed for all but list/dump mode.
*/
entry.port_type = port_type;
entry.targ_port = targ_port;
switch (port_mode) {
case CCTL_PORT_MODE_LIST: {
char opts[] = "xq";
char argx[] = "-x";
char argq[] = "-q";
char *argvx[2];
int argcx = 0;
optind = 0;
optreset = 1;
if (xml)
argvx[argcx++] = argx;
if (quiet)
argvx[argcx++] = argq;
cctl_portlist(fd, argcx, argvx, opts);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
break;
}
case CCTL_PORT_MODE_REMOVE:
if (targ_port == -1) {
warnx("%s: -r require -p", __func__);
retval = 1;
goto bailout;
}
case CCTL_PORT_MODE_CREATE: {
bzero(&req, sizeof(req));
strlcpy(req.driver, driver, sizeof(req.driver));
if (port_mode == CCTL_PORT_MODE_REMOVE) {
req.reqtype = CTL_REQ_REMOVE;
nvlist_add_stringf(option_list, "port_id", "%d",
targ_port);
} else
req.reqtype = CTL_REQ_CREATE;
req.args = nvlist_pack(option_list, &req.args_len);
if (req.args == NULL) {
warn("%s: error packing nvlist", __func__);
retval = 1;
goto bailout;
}
retval = ioctl(fd, CTL_PORT_REQ, &req);
free(req.args);
if (retval == -1) {
warn("%s: CTL_PORT_REQ ioctl failed", __func__);
retval = 1;
goto bailout;
}
switch (req.status) {
case CTL_LUN_ERROR:
warnx("error: %s", req.error_str);
retval = 1;
goto bailout;
case CTL_LUN_WARNING:
warnx("warning: %s", req.error_str);
break;
case CTL_LUN_OK:
break;
default:
warnx("unknown status: %d", req.status);
retval = 1;
goto bailout;
}
break;
}
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
case CCTL_PORT_MODE_SET:
if (targ_port == -1) {
warnx("%s: -w and -W require -n", __func__);
retval = 1;
goto bailout;
}
if (wwnn_set) {
entry.flags |= CTL_PORT_WWNN_VALID;
entry.wwnn = wwnn;
}
if (wwpn_set) {
entry.flags |= CTL_PORT_WWPN_VALID;
entry.wwpn = wwpn;
}
if (ioctl(fd, CTL_SET_PORT_WWNS, &entry) == -1) {
warn("%s: CTL_SET_PORT_WWNS ioctl failed", __func__);
retval = 1;
goto bailout;
}
break;
case CCTL_PORT_MODE_ON:
if (ioctl(fd, CTL_ENABLE_PORT, &entry) == -1) {
warn("%s: CTL_ENABLE_PORT ioctl failed", __func__);
retval = 1;
goto bailout;
}
fprintf(stdout, "Front End Ports enabled\n");
break;
case CCTL_PORT_MODE_OFF:
if (ioctl(fd, CTL_DISABLE_PORT, &entry) == -1) {
warn("%s: CTL_DISABLE_PORT ioctl failed", __func__);
retval = 1;
goto bailout;
}
fprintf(stdout, "Front End Ports disabled\n");
break;
default:
warnx("%s: one of -l, -o or -w/-W must be specified", __func__);
retval = 1;
goto bailout;
break;
}
bailout:
nvlist_destroy(option_list);
free(driver);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
return (retval);
bailout_badarg:
warnx("%s: only one of -l, -o or -w/-W may be specified", __func__);
return (1);
}
static int
cctl_do_io(int fd, int retries, union ctl_io *io, const char *func)
{
do {
if (ioctl(fd, CTL_IO, io) == -1) {
warn("%s: error sending CTL_IO ioctl", func);
return (-1);
}
} while (((io->io_hdr.status & CTL_STATUS_MASK) != CTL_SUCCESS)
&& (retries-- > 0));
return (0);
}
static int
cctl_delay(int fd, int lun, int argc, char **argv,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
char *combinedopt)
{
struct ctl_io_delay_info delay_info;
char *delayloc = NULL;
char *delaytype = NULL;
int delaytime = -1;
int retval;
int c;
retval = 0;
memset(&delay_info, 0, sizeof(delay_info));
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'T':
delaytype = strdup(optarg);
break;
case 'l':
delayloc = strdup(optarg);
break;
case 't':
delaytime = strtoul(optarg, NULL, 0);
break;
}
}
if (delaytime == -1) {
warnx("%s: you must specify the delaytime with -t", __func__);
retval = 1;
goto bailout;
}
if (strcasecmp(delayloc, "datamove") == 0)
delay_info.delay_loc = CTL_DELAY_LOC_DATAMOVE;
else if (strcasecmp(delayloc, "done") == 0)
delay_info.delay_loc = CTL_DELAY_LOC_DONE;
else {
warnx("%s: invalid delay location %s", __func__, delayloc);
retval = 1;
goto bailout;
}
if ((delaytype == NULL)
|| (strcmp(delaytype, "oneshot") == 0))
delay_info.delay_type = CTL_DELAY_TYPE_ONESHOT;
else if (strcmp(delaytype, "cont") == 0)
delay_info.delay_type = CTL_DELAY_TYPE_CONT;
else {
warnx("%s: invalid delay type %s", __func__, delaytype);
retval = 1;
goto bailout;
}
delay_info.lun_id = lun;
delay_info.delay_secs = delaytime;
if (ioctl(fd, CTL_DELAY_IO, &delay_info) == -1) {
warn("%s: CTL_DELAY_IO ioctl failed", __func__);
retval = 1;
goto bailout;
}
switch (delay_info.status) {
case CTL_DELAY_STATUS_NONE:
warnx("%s: no delay status??", __func__);
retval = 1;
break;
case CTL_DELAY_STATUS_OK:
break;
case CTL_DELAY_STATUS_INVALID_LUN:
warnx("%s: invalid lun %d", __func__, lun);
retval = 1;
break;
case CTL_DELAY_STATUS_INVALID_TYPE:
warnx("%s: invalid delay type %d", __func__,
delay_info.delay_type);
retval = 1;
break;
case CTL_DELAY_STATUS_INVALID_LOC:
warnx("%s: delay location %s not implemented?", __func__,
delayloc);
retval = 1;
break;
case CTL_DELAY_STATUS_NOT_IMPLEMENTED:
warnx("%s: delay not implemented in the kernel", __func__);
warnx("%s: recompile with the CTL_IO_DELAY flag set", __func__);
retval = 1;
break;
default:
warnx("%s: unknown delay return status %d", __func__,
delay_info.status);
retval = 1;
break;
}
bailout:
free(delayloc);
free(delaytype);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
return (retval);
}
static struct ctladm_opts cctl_err_types[] = {
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{"aborted", CTL_LUN_INJ_ABORTED, CTLADM_ARG_NONE, NULL},
{"mediumerr", CTL_LUN_INJ_MEDIUM_ERR, CTLADM_ARG_NONE, NULL},
{"ua", CTL_LUN_INJ_UA, CTLADM_ARG_NONE, NULL},
{"custom", CTL_LUN_INJ_CUSTOM, CTLADM_ARG_NONE, NULL},
{NULL, 0, 0, NULL}
};
static struct ctladm_opts cctl_err_patterns[] = {
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{"read", CTL_LUN_PAT_READ, CTLADM_ARG_NONE, NULL},
{"write", CTL_LUN_PAT_WRITE, CTLADM_ARG_NONE, NULL},
{"rw", CTL_LUN_PAT_READWRITE, CTLADM_ARG_NONE, NULL},
{"readwrite", CTL_LUN_PAT_READWRITE, CTLADM_ARG_NONE, NULL},
{"readcap", CTL_LUN_PAT_READCAP, CTLADM_ARG_NONE, NULL},
{"tur", CTL_LUN_PAT_TUR, CTLADM_ARG_NONE, NULL},
{"any", CTL_LUN_PAT_ANY, CTLADM_ARG_NONE, NULL},
#if 0
{"cmd", CTL_LUN_PAT_CMD, CTLADM_ARG_NONE, NULL},
#endif
{NULL, 0, 0, NULL}
};
static int
cctl_error_inject(int fd, uint32_t lun, int argc, char **argv,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
char *combinedopt)
{
int retval = 0;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
struct ctl_error_desc err_desc;
uint64_t lba = 0;
uint32_t len = 0;
uint64_t delete_id = 0;
int delete_id_set = 0;
int continuous = 0;
int sense_len = 0;
int fd_sense = 0;
int c;
bzero(&err_desc, sizeof(err_desc));
err_desc.lun_id = lun;
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'c':
continuous = 1;
break;
case 'd':
delete_id = strtoull(optarg, NULL, 0);
delete_id_set = 1;
break;
case 'i':
case 'p': {
ctladm_optret optret;
ctladm_cmdargs argnum;
const char *subopt;
if (c == 'i') {
ctl_lun_error err_type;
if (err_desc.lun_error != CTL_LUN_INJ_NONE) {
warnx("%s: can't specify multiple -i "
"arguments", __func__);
retval = 1;
goto bailout;
}
optret = getoption(cctl_err_types, optarg,
&err_type, &argnum, &subopt);
err_desc.lun_error = err_type;
} else {
ctl_lun_error_pattern pattern;
optret = getoption(cctl_err_patterns, optarg,
&pattern, &argnum, &subopt);
err_desc.error_pattern |= pattern;
}
if (optret == CC_OR_AMBIGUOUS) {
warnx("%s: ambiguous argument %s", __func__,
optarg);
retval = 1;
goto bailout;
} else if (optret == CC_OR_NOT_FOUND) {
warnx("%s: argument %s not found", __func__,
optarg);
retval = 1;
goto bailout;
}
break;
}
case 'r': {
char *tmpstr, *tmpstr2;
tmpstr = strdup(optarg);
if (tmpstr == NULL) {
warn("%s: error duplicating string %s",
__func__, optarg);
retval = 1;
goto bailout;
}
tmpstr2 = strsep(&tmpstr, ",");
if (tmpstr2 == NULL) {
warnx("%s: invalid -r argument %s", __func__,
optarg);
retval = 1;
free(tmpstr);
goto bailout;
}
lba = strtoull(tmpstr2, NULL, 0);
tmpstr2 = strsep(&tmpstr, ",");
if (tmpstr2 == NULL) {
warnx("%s: no len argument for -r lba,len, got"
" %s", __func__, optarg);
retval = 1;
free(tmpstr);
goto bailout;
}
len = strtoul(tmpstr2, NULL, 0);
free(tmpstr);
break;
}
case 's': {
struct get_hook hook;
char *sensestr;
sense_len = strtol(optarg, NULL, 0);
if (sense_len <= 0) {
warnx("invalid number of sense bytes %d",
sense_len);
retval = 1;
goto bailout;
}
sense_len = MIN(sense_len, SSD_FULL_SIZE);
hook.argc = argc - optind;
hook.argv = argv + optind;
hook.got = 0;
sensestr = cget(&hook, NULL);
if ((sensestr != NULL)
&& (sensestr[0] == '-')) {
fd_sense = 1;
} else {
buff_encode_visit(
(uint8_t *)&err_desc.custom_sense,
sense_len, sensestr, iget, &hook);
}
optind += hook.got;
break;
}
default:
break;
}
}
if (delete_id_set != 0) {
err_desc.serial = delete_id;
if (ioctl(fd, CTL_ERROR_INJECT_DELETE, &err_desc) == -1) {
warn("%s: error issuing CTL_ERROR_INJECT_DELETE ioctl",
__func__);
retval = 1;
}
goto bailout;
}
if (err_desc.lun_error == CTL_LUN_INJ_NONE) {
warnx("%s: error injection command (-i) needed",
__func__);
retval = 1;
goto bailout;
} else if ((err_desc.lun_error == CTL_LUN_INJ_CUSTOM)
&& (sense_len == 0)) {
warnx("%s: custom error requires -s", __func__);
retval = 1;
goto bailout;
}
if (continuous != 0)
err_desc.lun_error |= CTL_LUN_INJ_CONTINUOUS;
/*
* If fd_sense is set, we need to read the sense data the user
* wants returned from stdin.
*/
if (fd_sense == 1) {
ssize_t amt_read;
int amt_to_read = sense_len;
u_int8_t *buf_ptr = (uint8_t *)&err_desc.custom_sense;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
for (amt_read = 0; amt_to_read > 0;
amt_read = read(STDIN_FILENO, buf_ptr, amt_to_read)) {
if (amt_read == -1) {
warn("error reading sense data from stdin");
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
retval = 1;
goto bailout;
}
amt_to_read -= amt_read;
buf_ptr += amt_read;
}
}
if (err_desc.error_pattern == CTL_LUN_PAT_NONE) {
warnx("%s: command pattern (-p) needed", __func__);
retval = 1;
goto bailout;
}
if (len != 0) {
err_desc.error_pattern |= CTL_LUN_PAT_RANGE;
/*
* We could check here to see whether it's a read/write
* command, but that will be pointless once we allow
* custom patterns. At that point, the user could specify
* a READ(6) CDB type, and we wouldn't have an easy way here
* to verify whether range checking is possible there. The
* user will just figure it out when his error never gets
* executed.
*/
#if 0
if ((err_desc.pattern & CTL_LUN_PAT_READWRITE) == 0) {
warnx("%s: need read and/or write pattern if range "
"is specified", __func__);
retval = 1;
goto bailout;
}
#endif
err_desc.lba_range.lba = lba;
err_desc.lba_range.len = len;
}
if (ioctl(fd, CTL_ERROR_INJECT, &err_desc) == -1) {
warn("%s: error issuing CTL_ERROR_INJECT ioctl", __func__);
retval = 1;
} else {
printf("Error injection succeeded, serial number is %ju\n",
(uintmax_t)err_desc.serial);
}
bailout:
return (retval);
}
static int
cctl_lunlist(int fd)
{
struct scsi_report_luns_data *lun_data;
struct scsi_inquiry_data *inq_data;
uint32_t num_luns;
int initid;
unsigned int i;
int retval;
inq_data = NULL;
initid = 7;
/*
* XXX KDM assuming LUN 0 is fine, but we may need to change this
* if we ever acquire the ability to have multiple targets.
*/
if ((retval = cctl_get_luns(fd, /*lun*/ 0, initid,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
/*retries*/ 2, &lun_data, &num_luns)) != 0)
goto bailout;
inq_data = malloc(sizeof(*inq_data));
if (inq_data == NULL) {
warn("%s: couldn't allocate memory for inquiry data\n",
__func__);
retval = 1;
goto bailout;
}
for (i = 0; i < num_luns; i++) {
char scsi_path[40];
int lun_val;
switch (lun_data->luns[i].lundata[0] & RPL_LUNDATA_ATYP_MASK) {
case RPL_LUNDATA_ATYP_PERIPH:
lun_val = lun_data->luns[i].lundata[1];
break;
case RPL_LUNDATA_ATYP_FLAT:
lun_val = (lun_data->luns[i].lundata[0] &
RPL_LUNDATA_FLAT_LUN_MASK) |
(lun_data->luns[i].lundata[1] <<
RPL_LUNDATA_FLAT_LUN_BITS);
break;
case RPL_LUNDATA_ATYP_LUN:
case RPL_LUNDATA_ATYP_EXTLUN:
default:
fprintf(stdout, "Unsupported LUN format %d\n",
lun_data->luns[i].lundata[0] &
RPL_LUNDATA_ATYP_MASK);
lun_val = -1;
break;
}
if (lun_val == -1)
continue;
if ((retval = cctl_get_inquiry(fd, lun_val, initid,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
/*retries*/ 2, scsi_path,
sizeof(scsi_path),
inq_data)) != 0) {
goto bailout;
}
printf("%s", scsi_path);
scsi_print_inquiry(inq_data);
}
bailout:
if (lun_data != NULL)
free(lun_data);
if (inq_data != NULL)
free(inq_data);
return (retval);
}
static int
cctl_sync_cache(int fd, int lun, int iid, int retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int argc, char **argv, char *combinedopt)
{
union ctl_io *io;
int cdb_size = -1;
int retval;
uint64_t our_lba = 0;
uint32_t our_block_count = 0;
int reladr = 0, immed = 0;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int c;
retval = 0;
io = ctl_scsi_alloc_io(iid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (io == NULL) {
warnx("%s: can't allocate memory", __func__);
return (1);
}
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'b':
our_block_count = strtoul(optarg, NULL, 0);
break;
case 'c':
cdb_size = strtol(optarg, NULL, 0);
break;
case 'i':
immed = 1;
break;
case 'l':
our_lba = strtoull(optarg, NULL, 0);
break;
case 'r':
reladr = 1;
break;
default:
break;
}
}
if (cdb_size != -1) {
switch (cdb_size) {
case 10:
case 16:
break;
default:
warnx("%s: invalid cdbsize %d, valid sizes are 10 "
"and 16", __func__, cdb_size);
retval = 1;
goto bailout;
break; /* NOTREACHED */
}
} else
cdb_size = 10;
ctl_scsi_sync_cache(/*io*/ io,
/*immed*/ immed,
/*reladr*/ reladr,
/*minimum_cdb_size*/ cdb_size,
/*starting_lba*/ our_lba,
/*block_count*/ our_block_count,
/*tag_type*/ CTL_TAG_SIMPLE,
/*control*/ 0);
io->io_hdr.nexus.targ_lun = lun;
io->io_hdr.nexus.initid = iid;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (cctl_do_io(fd, retries, io, __func__) != 0) {
retval = 1;
goto bailout;
}
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) {
fprintf(stdout, "Cache synchronized successfully\n");
} else
ctl_io_error_print(io, NULL, stderr);
bailout:
ctl_scsi_free_io(io);
return (retval);
}
static int
cctl_start_stop(int fd, int lun, int iid, int retries, int start,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int argc, char **argv, char *combinedopt)
{
union ctl_io *io;
char scsi_path[40];
int immed = 0;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int retval, c;
retval = 0;
io = ctl_scsi_alloc_io(iid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (io == NULL) {
warnx("%s: can't allocate memory", __func__);
return (1);
}
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'i':
immed = 1;
break;
default:
break;
}
}
/*
* Use an ordered tag for the stop command, to guarantee that any
* pending I/O will finish before the stop command executes. This
* would normally be the case anyway, since CTL will basically
* treat the start/stop command as an ordered command with respect
* to any other command except an INQUIRY. (See ctl_ser_table.c.)
*/
ctl_scsi_start_stop(/*io*/ io,
/*start*/ start,
/*load_eject*/ 0,
/*immediate*/ immed,
/*power_conditions*/ SSS_PC_START_VALID,
/*ctl_tag_type*/ start ? CTL_TAG_SIMPLE :
CTL_TAG_ORDERED,
/*control*/ 0);
io->io_hdr.nexus.targ_lun = lun;
io->io_hdr.nexus.initid = iid;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (cctl_do_io(fd, retries, io, __func__) != 0) {
retval = 1;
goto bailout;
}
ctl_scsi_path_string(io, scsi_path, sizeof(scsi_path));
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) {
fprintf(stdout, "%s LUN %s successfully\n", scsi_path,
(start) ? "started" : "stopped");
} else
ctl_io_error_print(io, NULL, stderr);
bailout:
ctl_scsi_free_io(io);
return (retval);
}
static int
cctl_mode_sense(int fd, int lun, int iid, int retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int argc, char **argv, char *combinedopt)
{
union ctl_io *io;
uint32_t datalen;
uint8_t *dataptr;
int pc = -1, cdbsize, retval, dbd = 0, subpage = -1;
int list = 0;
int page_code = -1;
int c;
cdbsize = 0;
retval = 0;
dataptr = NULL;
io = ctl_scsi_alloc_io(iid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (io == NULL) {
warn("%s: can't allocate memory", __func__);
return (1);
}
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'P':
pc = strtoul(optarg, NULL, 0);
break;
case 'S':
subpage = strtoul(optarg, NULL, 0);
break;
case 'd':
dbd = 1;
break;
case 'l':
list = 1;
break;
case 'm':
page_code = strtoul(optarg, NULL, 0);
break;
case 'c':
cdbsize = strtol(optarg, NULL, 0);
break;
default:
break;
}
}
if (((list == 0) && (page_code == -1))
|| ((list != 0) && (page_code != -1))) {
warnx("%s: you must specify either a page code (-m) or -l",
__func__);
retval = 1;
goto bailout;
}
if ((page_code != -1)
&& ((page_code > SMS_ALL_PAGES_PAGE)
|| (page_code < 0))) {
warnx("%s: page code %d is out of range", __func__,
page_code);
retval = 1;
goto bailout;
}
if (list == 1) {
page_code = SMS_ALL_PAGES_PAGE;
if (pc != -1) {
warnx("%s: arg -P makes no sense with -l",
__func__);
retval = 1;
goto bailout;
}
if (subpage != -1) {
warnx("%s: arg -S makes no sense with -l", __func__);
retval = 1;
goto bailout;
}
}
if (pc == -1)
pc = SMS_PAGE_CTRL_CURRENT;
else {
if ((pc > 3)
|| (pc < 0)) {
warnx("%s: page control value %d is out of range: 0-3",
__func__, pc);
retval = 1;
goto bailout;
}
}
if ((subpage != -1)
&& ((subpage > 255)
|| (subpage < 0))) {
warnx("%s: subpage code %d is out of range: 0-255", __func__,
subpage);
retval = 1;
goto bailout;
}
if (cdbsize != 0) {
switch (cdbsize) {
case 6:
case 10:
break;
default:
warnx("%s: invalid cdbsize %d, valid sizes are 6 "
"and 10", __func__, cdbsize);
retval = 1;
goto bailout;
break;
}
} else
cdbsize = 6;
if (subpage == -1)
subpage = 0;
if (cdbsize == 6)
datalen = 255;
else
datalen = 65535;
dataptr = (uint8_t *)malloc(datalen);
if (dataptr == NULL) {
warn("%s: can't allocate %d bytes", __func__, datalen);
retval = 1;
goto bailout;
}
memset(dataptr, 0, datalen);
ctl_scsi_mode_sense(io,
/*data_ptr*/ dataptr,
/*data_len*/ datalen,
/*dbd*/ dbd,
/*llbaa*/ 0,
/*page_code*/ page_code,
/*pc*/ pc << 6,
/*subpage*/ subpage,
/*minimum_cdb_size*/ cdbsize,
/*tag_type*/ CTL_TAG_SIMPLE,
/*control*/ 0);
io->io_hdr.nexus.targ_lun = lun;
io->io_hdr.nexus.initid = iid;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (cctl_do_io(fd, retries, io, __func__) != 0) {
retval = 1;
goto bailout;
}
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) {
int pages_len, used_len;
uint32_t returned_len;
uint8_t *ndataptr;
if (io->scsiio.cdb[0] == MODE_SENSE_6) {
struct scsi_mode_hdr_6 *hdr6;
int bdlen;
hdr6 = (struct scsi_mode_hdr_6 *)dataptr;
returned_len = hdr6->datalen + 1;
bdlen = hdr6->block_descr_len;
ndataptr = (uint8_t *)((uint8_t *)&hdr6[1] + bdlen);
} else {
struct scsi_mode_hdr_10 *hdr10;
int bdlen;
hdr10 = (struct scsi_mode_hdr_10 *)dataptr;
returned_len = scsi_2btoul(hdr10->datalen) + 2;
bdlen = scsi_2btoul(hdr10->block_descr_len);
ndataptr = (uint8_t *)((uint8_t *)&hdr10[1] + bdlen);
}
/* just in case they can give us more than we allocated for */
returned_len = min(returned_len, datalen);
pages_len = returned_len - (ndataptr - dataptr);
#if 0
fprintf(stdout, "returned_len = %d, pages_len = %d\n",
returned_len, pages_len);
#endif
if (list == 1) {
fprintf(stdout, "Supported mode pages:\n");
for (used_len = 0; used_len < pages_len;) {
struct scsi_mode_page_header *header;
header = (struct scsi_mode_page_header *)
&ndataptr[used_len];
fprintf(stdout, "%d\n", header->page_code);
used_len += header->page_length + 2;
}
} else {
for (used_len = 0; used_len < pages_len; used_len++) {
fprintf(stdout, "0x%x ", ndataptr[used_len]);
if (((used_len+1) % 16) == 0)
fprintf(stdout, "\n");
}
fprintf(stdout, "\n");
}
} else
ctl_io_error_print(io, NULL, stderr);
bailout:
ctl_scsi_free_io(io);
if (dataptr != NULL)
free(dataptr);
return (retval);
}
static int
cctl_read_capacity(int fd, int lun, int iid, int retries,
int argc, char **argv, char *combinedopt)
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{
union ctl_io *io;
struct scsi_read_capacity_data *data;
struct scsi_read_capacity_data_long *longdata;
int cdbsize = -1, retval;
uint8_t *dataptr;
int c;
cdbsize = 10;
dataptr = NULL;
retval = 0;
io = ctl_scsi_alloc_io(iid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (io == NULL) {
warn("%s: can't allocate memory\n", __func__);
return (1);
}
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'c':
cdbsize = strtol(optarg, NULL, 0);
break;
default:
break;
}
}
if (cdbsize != -1) {
switch (cdbsize) {
case 10:
case 16:
break;
default:
warnx("%s: invalid cdbsize %d, valid sizes are 10 "
"and 16", __func__, cdbsize);
retval = 1;
goto bailout;
break; /* NOTREACHED */
}
} else
cdbsize = 10;
dataptr = (uint8_t *)malloc(sizeof(*longdata));
if (dataptr == NULL) {
warn("%s: can't allocate %zd bytes\n", __func__,
sizeof(*longdata));
retval = 1;
goto bailout;
}
memset(dataptr, 0, sizeof(*longdata));
retry:
switch (cdbsize) {
case 10:
ctl_scsi_read_capacity(io,
/*data_ptr*/ dataptr,
/*data_len*/ sizeof(*longdata),
/*addr*/ 0,
/*reladr*/ 0,
/*pmi*/ 0,
/*tag_type*/ CTL_TAG_SIMPLE,
/*control*/ 0);
break;
case 16:
ctl_scsi_read_capacity_16(io,
/*data_ptr*/ dataptr,
/*data_len*/ sizeof(*longdata),
/*addr*/ 0,
/*reladr*/ 0,
/*pmi*/ 0,
/*tag_type*/ CTL_TAG_SIMPLE,
/*control*/ 0);
break;
}
io->io_hdr.nexus.initid = iid;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
io->io_hdr.nexus.targ_lun = lun;
if (cctl_do_io(fd, retries, io, __func__) != 0) {
retval = 1;
goto bailout;
}
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) {
uint64_t maxlba;
uint32_t blocksize;
if (cdbsize == 10) {
data = (struct scsi_read_capacity_data *)dataptr;
maxlba = scsi_4btoul(data->addr);
blocksize = scsi_4btoul(data->length);
if (maxlba == 0xffffffff) {
cdbsize = 16;
goto retry;
}
} else {
longdata=(struct scsi_read_capacity_data_long *)dataptr;
maxlba = scsi_8btou64(longdata->addr);
blocksize = scsi_4btoul(longdata->length);
}
fprintf(stdout, "Disk Capacity: %ju, Blocksize: %d\n",
(uintmax_t)maxlba, blocksize);
} else {
ctl_io_error_print(io, NULL, stderr);
}
bailout:
ctl_scsi_free_io(io);
if (dataptr != NULL)
free(dataptr);
return (retval);
}
static int
cctl_read_write(int fd, int lun, int iid, int retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int argc, char **argv, char *combinedopt,
ctladm_cmdfunction command)
{
union ctl_io *io;
int file_fd, do_stdio;
int cdbsize = -1, databytes;
uint8_t *dataptr;
char *filename = NULL;
int datalen = -1, blocksize = -1;
uint64_t lba = 0;
int lba_set = 0;
int retval;
int c;
retval = 0;
do_stdio = 0;
dataptr = NULL;
file_fd = -1;
io = ctl_scsi_alloc_io(iid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (io == NULL) {
warn("%s: can't allocate memory\n", __func__);
return (1);
}
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'N':
io->io_hdr.flags |= CTL_FLAG_NO_DATAMOVE;
break;
case 'b':
blocksize = strtoul(optarg, NULL, 0);
break;
case 'c':
cdbsize = strtoul(optarg, NULL, 0);
break;
case 'd':
datalen = strtoul(optarg, NULL, 0);
break;
case 'f':
filename = strdup(optarg);
break;
case 'l':
lba = strtoull(optarg, NULL, 0);
lba_set = 1;
break;
default:
break;
}
}
if (filename == NULL) {
warnx("%s: you must supply a filename using -f", __func__);
retval = 1;
goto bailout;
}
if (datalen == -1) {
warnx("%s: you must specify the data length with -d", __func__);
retval = 1;
goto bailout;
}
if (lba_set == 0) {
warnx("%s: you must specify the LBA with -l", __func__);
retval = 1;
goto bailout;
}
if (blocksize == -1) {
warnx("%s: you must specify the blocksize with -b", __func__);
retval = 1;
goto bailout;
}
if (cdbsize != -1) {
switch (cdbsize) {
case 6:
case 10:
case 12:
case 16:
break;
default:
warnx("%s: invalid cdbsize %d, valid sizes are 6, "
"10, 12 or 16", __func__, cdbsize);
retval = 1;
goto bailout;
break; /* NOTREACHED */
}
} else
cdbsize = 6;
databytes = datalen * blocksize;
dataptr = (uint8_t *)malloc(databytes);
if (dataptr == NULL) {
warn("%s: can't allocate %d bytes\n", __func__, databytes);
retval = 1;
goto bailout;
}
if (strcmp(filename, "-") == 0) {
if (command == CTLADM_CMD_READ)
file_fd = STDOUT_FILENO;
else
file_fd = STDIN_FILENO;
do_stdio = 1;
} else {
file_fd = open(filename, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
if (file_fd == -1) {
warn("%s: can't open file %s", __func__, filename);
retval = 1;
goto bailout;
}
}
memset(dataptr, 0, databytes);
if (command == CTLADM_CMD_WRITE) {
int bytes_read;
bytes_read = read(file_fd, dataptr, databytes);
if (bytes_read == -1) {
warn("%s: error reading file %s", __func__, filename);
retval = 1;
goto bailout;
}
if (bytes_read != databytes) {
warnx("%s: only read %d bytes from file %s",
__func__, bytes_read, filename);
retval = 1;
goto bailout;
}
}
ctl_scsi_read_write(io,
/*data_ptr*/ dataptr,
/*data_len*/ databytes,
/*read_op*/ (command == CTLADM_CMD_READ) ? 1 : 0,
/*byte2*/ 0,
/*minimum_cdb_size*/ cdbsize,
/*lba*/ lba,
/*num_blocks*/ datalen,
/*tag_type*/ CTL_TAG_SIMPLE,
/*control*/ 0);
io->io_hdr.nexus.targ_lun = lun;
io->io_hdr.nexus.initid = iid;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (cctl_do_io(fd, retries, io, __func__) != 0) {
retval = 1;
goto bailout;
}
if (((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS)
&& (command == CTLADM_CMD_READ)) {
int bytes_written;
bytes_written = write(file_fd, dataptr, databytes);
if (bytes_written == -1) {
warn("%s: can't write to %s", __func__, filename);
goto bailout;
}
} else if ((io->io_hdr.status & CTL_STATUS_MASK) != CTL_SUCCESS)
ctl_io_error_print(io, NULL, stderr);
bailout:
ctl_scsi_free_io(io);
if (dataptr != NULL)
free(dataptr);
if ((do_stdio == 0)
&& (file_fd != -1))
close(file_fd);
return (retval);
}
static int
cctl_get_luns(int fd, int lun, int iid, int retries, struct
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
scsi_report_luns_data **lun_data, uint32_t *num_luns)
{
union ctl_io *io;
uint32_t nluns;
int lun_datalen;
int retval;
retval = 0;
io = ctl_scsi_alloc_io(iid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (io == NULL) {
warnx("%s: can't allocate memory", __func__);
return (1);
}
/*
* lun_data includes space for 1 lun, allocate space for 4 initially.
* If that isn't enough, we'll allocate more.
*/
nluns = 4;
retry:
lun_datalen = sizeof(*lun_data) +
(nluns * sizeof(struct scsi_report_luns_lundata));
*lun_data = malloc(lun_datalen);
if (*lun_data == NULL) {
warnx("%s: can't allocate memory", __func__);
ctl_scsi_free_io(io);
return (1);
}
ctl_scsi_report_luns(io,
/*data_ptr*/ (uint8_t *)*lun_data,
/*data_len*/ lun_datalen,
/*select_report*/ RPL_REPORT_ALL,
/*tag_type*/ CTL_TAG_SIMPLE,
/*control*/ 0);
io->io_hdr.nexus.initid = iid;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
io->io_hdr.nexus.targ_lun = lun;
if (cctl_do_io(fd, retries, io, __func__) != 0) {
retval = 1;
goto bailout;
}
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) {
uint32_t returned_len, returned_luns;
returned_len = scsi_4btoul((*lun_data)->length);
returned_luns = returned_len / 8;
if (returned_luns > nluns) {
nluns = returned_luns;
free(*lun_data);
goto retry;
}
/* These should be the same */
*num_luns = MIN(returned_luns, nluns);
} else {
ctl_io_error_print(io, NULL, stderr);
retval = 1;
}
bailout:
ctl_scsi_free_io(io);
return (retval);
}
static int
cctl_report_luns(int fd, int lun, int iid, int retries)
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{
struct scsi_report_luns_data *lun_data;
uint32_t num_luns, i;
int retval;
lun_data = NULL;
if ((retval = cctl_get_luns(fd, lun, iid, retries, &lun_data,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
&num_luns)) != 0)
goto bailout;
fprintf(stdout, "%u LUNs returned\n", num_luns);
for (i = 0; i < num_luns; i++) {
int lun_val;
/*
* XXX KDM figure out a way to share this code with
* cctl_lunlist()?
*/
switch (lun_data->luns[i].lundata[0] & RPL_LUNDATA_ATYP_MASK) {
case RPL_LUNDATA_ATYP_PERIPH:
lun_val = lun_data->luns[i].lundata[1];
break;
case RPL_LUNDATA_ATYP_FLAT:
lun_val = (lun_data->luns[i].lundata[0] &
RPL_LUNDATA_FLAT_LUN_MASK) |
(lun_data->luns[i].lundata[1] <<
RPL_LUNDATA_FLAT_LUN_BITS);
break;
case RPL_LUNDATA_ATYP_LUN:
case RPL_LUNDATA_ATYP_EXTLUN:
default:
fprintf(stdout, "Unsupported LUN format %d\n",
lun_data->luns[i].lundata[0] &
RPL_LUNDATA_ATYP_MASK);
lun_val = -1;
break;
}
if (lun_val == -1)
continue;
fprintf(stdout, "%d\n", lun_val);
}
bailout:
if (lun_data != NULL)
free(lun_data);
return (retval);
}
static int
cctl_tur(int fd, int lun, int iid, int retries)
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{
union ctl_io *io;
io = ctl_scsi_alloc_io(iid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (io == NULL) {
fprintf(stderr, "can't allocate memory\n");
return (1);
}
ctl_scsi_tur(io,
/* tag_type */ CTL_TAG_SIMPLE,
/* control */ 0);
io->io_hdr.nexus.targ_lun = lun;
io->io_hdr.nexus.initid = iid;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (cctl_do_io(fd, retries, io, __func__) != 0) {
ctl_scsi_free_io(io);
return (1);
}
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS)
fprintf(stdout, "Unit is ready\n");
else
ctl_io_error_print(io, NULL, stderr);
return (0);
}
static int
cctl_get_inquiry(int fd, int lun, int iid, int retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
char *path_str, int path_len,
struct scsi_inquiry_data *inq_data)
{
union ctl_io *io;
int retval;
retval = 0;
io = ctl_scsi_alloc_io(iid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (io == NULL) {
warnx("cctl_inquiry: can't allocate memory\n");
return (1);
}
ctl_scsi_inquiry(/*io*/ io,
/*data_ptr*/ (uint8_t *)inq_data,
/*data_len*/ sizeof(*inq_data),
/*byte2*/ 0,
/*page_code*/ 0,
/*tag_type*/ CTL_TAG_SIMPLE,
/*control*/ 0);
io->io_hdr.nexus.targ_lun = lun;
io->io_hdr.nexus.initid = iid;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (cctl_do_io(fd, retries, io, __func__) != 0) {
retval = 1;
goto bailout;
}
if ((io->io_hdr.status & CTL_STATUS_MASK) != CTL_SUCCESS) {
retval = 1;
ctl_io_error_print(io, NULL, stderr);
} else if (path_str != NULL)
ctl_scsi_path_string(io, path_str, path_len);
bailout:
ctl_scsi_free_io(io);
return (retval);
}
static int
cctl_inquiry(int fd, int lun, int iid, int retries)
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{
struct scsi_inquiry_data *inq_data;
char scsi_path[40];
int retval;
inq_data = malloc(sizeof(*inq_data));
if (inq_data == NULL) {
warnx("%s: can't allocate inquiry data", __func__);
retval = 1;
goto bailout;
}
if ((retval = cctl_get_inquiry(fd, lun, iid, retries, scsi_path,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
sizeof(scsi_path), inq_data)) != 0)
goto bailout;
printf("%s", scsi_path);
scsi_print_inquiry(inq_data);
bailout:
if (inq_data != NULL)
free(inq_data);
return (retval);
}
static int
cctl_req_sense(int fd, int lun, int iid, int retries)
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{
union ctl_io *io;
struct scsi_sense_data *sense_data;
int retval;
retval = 0;
io = ctl_scsi_alloc_io(iid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (io == NULL) {
warnx("cctl_req_sense: can't allocate memory\n");
return (1);
}
sense_data = malloc(sizeof(*sense_data));
memset(sense_data, 0, sizeof(*sense_data));
ctl_scsi_request_sense(/*io*/ io,
/*data_ptr*/ (uint8_t *)sense_data,
/*data_len*/ sizeof(*sense_data),
/*byte2*/ 0,
/*tag_type*/ CTL_TAG_SIMPLE,
/*control*/ 0);
io->io_hdr.nexus.targ_lun = lun;
io->io_hdr.nexus.initid = iid;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (cctl_do_io(fd, retries, io, __func__) != 0) {
retval = 1;
goto bailout;
}
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) {
bcopy(sense_data, &io->scsiio.sense_data, sizeof(*sense_data));
io->scsiio.sense_len = sizeof(*sense_data);
ctl_scsi_sense_print(&io->scsiio, NULL, stdout);
} else
ctl_io_error_print(io, NULL, stderr);
bailout:
ctl_scsi_free_io(io);
free(sense_data);
return (retval);
}
static int
cctl_report_target_port_group(int fd, int lun, int iid)
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{
union ctl_io *io;
uint32_t datalen;
uint8_t *dataptr;
int retval;
dataptr = NULL;
retval = 0;
io = ctl_scsi_alloc_io(iid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (io == NULL) {
warn("%s: can't allocate memory", __func__);
return (1);
}
datalen = 64;
dataptr = (uint8_t *)malloc(datalen);
if (dataptr == NULL) {
warn("%s: can't allocate %d bytes", __func__, datalen);
retval = 1;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
goto bailout;
}
memset(dataptr, 0, datalen);
ctl_scsi_maintenance_in(/*io*/ io,
/*data_ptr*/ dataptr,
/*data_len*/ datalen,
/*action*/ SA_RPRT_TRGT_GRP,
/*tag_type*/ CTL_TAG_SIMPLE,
/*control*/ 0);
io->io_hdr.nexus.targ_lun = lun;
io->io_hdr.nexus.initid = iid;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (cctl_do_io(fd, 0, io, __func__) != 0) {
retval = 1;
goto bailout;
}
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) {
int returned_len, used_len;
returned_len = scsi_4btoul(&dataptr[0]) + 4;
for (used_len = 0; used_len < returned_len; used_len++) {
fprintf(stdout, "0x%02x ", dataptr[used_len]);
if (((used_len+1) % 8) == 0)
fprintf(stdout, "\n");
}
fprintf(stdout, "\n");
} else
ctl_io_error_print(io, NULL, stderr);
bailout:
ctl_scsi_free_io(io);
if (dataptr != NULL)
free(dataptr);
return (retval);
}
static int
cctl_inquiry_vpd_devid(int fd, int lun, int iid)
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
{
union ctl_io *io;
uint32_t datalen;
uint8_t *dataptr;
int retval;
retval = 0;
dataptr = NULL;
io = ctl_scsi_alloc_io(iid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (io == NULL) {
warn("%s: can't allocate memory", __func__);
return (1);
}
datalen = 256;
dataptr = (uint8_t *)malloc(datalen);
if (dataptr == NULL) {
warn("%s: can't allocate %d bytes", __func__, datalen);
retval = 1;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
goto bailout;
}
memset(dataptr, 0, datalen);
ctl_scsi_inquiry(/*io*/ io,
/*data_ptr*/ dataptr,
/*data_len*/ datalen,
/*byte2*/ SI_EVPD,
/*page_code*/ SVPD_DEVICE_ID,
/*tag_type*/ CTL_TAG_SIMPLE,
/*control*/ 0);
io->io_hdr.nexus.targ_lun = lun;
io->io_hdr.nexus.initid = iid;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (cctl_do_io(fd, 0, io, __func__) != 0) {
retval = 1;
goto bailout;
}
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) {
int returned_len, used_len;
returned_len = scsi_2btoul(&dataptr[2]) + 4;
for (used_len = 0; used_len < returned_len; used_len++) {
fprintf(stdout, "0x%02x ", dataptr[used_len]);
if (((used_len+1) % 8) == 0)
fprintf(stdout, "\n");
}
fprintf(stdout, "\n");
} else
ctl_io_error_print(io, NULL, stderr);
bailout:
ctl_scsi_free_io(io);
if (dataptr != NULL)
free(dataptr);
return (retval);
}
static int
cctl_persistent_reserve_in(int fd, int lun, int iid,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int argc, char **argv, char *combinedopt,
int retry_count)
{
union ctl_io *io;
uint32_t datalen;
uint8_t *dataptr;
int action = -1;
int retval;
int c;
retval = 0;
dataptr = NULL;
io = ctl_scsi_alloc_io(iid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (io == NULL) {
warn("%s: can't allocate memory", __func__);
return (1);
}
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'a':
action = strtol(optarg, NULL, 0);
break;
default:
break;
}
}
if (action < 0 || action > 2) {
warn("action must be specified and in the range: 0-2");
retval = 1;
goto bailout;
}
datalen = 256;
dataptr = (uint8_t *)malloc(datalen);
if (dataptr == NULL) {
warn("%s: can't allocate %d bytes", __func__, datalen);
retval = 1;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
goto bailout;
}
memset(dataptr, 0, datalen);
ctl_scsi_persistent_res_in(io,
/*data_ptr*/ dataptr,
/*data_len*/ datalen,
/*action*/ action,
/*tag_type*/ CTL_TAG_SIMPLE,
/*control*/ 0);
io->io_hdr.nexus.targ_lun = lun;
io->io_hdr.nexus.initid = iid;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (cctl_do_io(fd, retry_count, io, __func__) != 0) {
retval = 1;
goto bailout;
}
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) {
int returned_len, used_len;
switch (action) {
case 0:
returned_len = scsi_4btoul(&dataptr[4]) + 8;
returned_len = min(returned_len, 256);
break;
case 1:
returned_len = scsi_4btoul(&dataptr[4]) + 8;
break;
case 2:
returned_len = 8;
break;
default:
warnx("%s: invalid action %d", __func__, action);
goto bailout;
break; /* NOTREACHED */
}
for (used_len = 0; used_len < returned_len; used_len++) {
fprintf(stdout, "0x%02x ", dataptr[used_len]);
if (((used_len+1) % 8) == 0)
fprintf(stdout, "\n");
}
fprintf(stdout, "\n");
} else
ctl_io_error_print(io, NULL, stderr);
bailout:
ctl_scsi_free_io(io);
if (dataptr != NULL)
free(dataptr);
return (retval);
}
static int
cctl_persistent_reserve_out(int fd, int lun, int iid,
int argc, char **argv, char *combinedopt,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int retry_count)
{
union ctl_io *io;
uint32_t datalen;
uint64_t key = 0, sa_key = 0;
int action = -1, restype = -1;
uint8_t *dataptr;
int retval;
int c;
retval = 0;
dataptr = NULL;
io = ctl_scsi_alloc_io(iid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (io == NULL) {
warn("%s: can't allocate memory", __func__);
return (1);
}
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'a':
action = strtol(optarg, NULL, 0);
break;
case 'k':
key = strtoull(optarg, NULL, 0);
break;
case 'r':
restype = strtol(optarg, NULL, 0);
break;
case 's':
sa_key = strtoull(optarg, NULL, 0);
break;
default:
break;
}
}
if (action < 0 || action > 5) {
warn("action must be specified and in the range: 0-5");
retval = 1;
goto bailout;
}
if (restype < 0 || restype > 5) {
if (action != 0 && action != 5 && action != 3) {
warn("'restype' must specified and in the range: 0-5");
retval = 1;
goto bailout;
}
}
datalen = 24;
dataptr = (uint8_t *)malloc(datalen);
if (dataptr == NULL) {
warn("%s: can't allocate %d bytes", __func__, datalen);
retval = 1;
goto bailout;
}
memset(dataptr, 0, datalen);
ctl_scsi_persistent_res_out(io,
/*data_ptr*/ dataptr,
/*data_len*/ datalen,
/*action*/ action,
/*type*/ restype,
/*key*/ key,
/*sa key*/ sa_key,
/*tag_type*/ CTL_TAG_SIMPLE,
/*control*/ 0);
io->io_hdr.nexus.targ_lun = lun;
io->io_hdr.nexus.initid = iid;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (cctl_do_io(fd, retry_count, io, __func__) != 0) {
retval = 1;
goto bailout;
}
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) {
char scsi_path[40];
ctl_scsi_path_string(io, scsi_path, sizeof(scsi_path));
fprintf( stdout, "%sPERSISTENT RESERVE OUT executed "
"successfully\n", scsi_path);
} else
ctl_io_error_print(io, NULL, stderr);
bailout:
ctl_scsi_free_io(io);
if (dataptr != NULL)
free(dataptr);
return (retval);
}
static int
cctl_create_lun(int fd, int argc, char **argv, char *combinedopt)
{
struct ctl_lun_req req;
int device_type = -1;
uint64_t lun_size = 0;
uint32_t blocksize = 0, req_lun_id = 0;
char *serial_num = NULL;
char *device_id = NULL;
int lun_size_set = 0, blocksize_set = 0, lun_id_set = 0;
char *backend_name = NULL;
nvlist_t *option_list;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int retval = 0, c;
option_list = nvlist_create(0);
if (option_list == NULL)
err(1, "%s: unable to allocate nvlist", __func__);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'b':
backend_name = strdup(optarg);
break;
case 'B':
blocksize = strtoul(optarg, NULL, 0);
blocksize_set = 1;
break;
case 'd':
device_id = strdup(optarg);
break;
case 'l':
req_lun_id = strtoul(optarg, NULL, 0);
lun_id_set = 1;
break;
case 'o': {
char *tmpstr;
char *name, *value;
tmpstr = strdup(optarg);
name = strsep(&tmpstr, "=");
if (name == NULL) {
warnx("%s: option -o takes \"name=value\""
"argument", __func__);
retval = 1;
goto bailout;
}
value = strsep(&tmpstr, "=");
if (value == NULL) {
warnx("%s: option -o takes \"name=value\""
"argument", __func__);
retval = 1;
goto bailout;
}
free(tmpstr);
nvlist_add_string(option_list, name, value);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
break;
}
case 's':
if (strcasecmp(optarg, "auto") != 0) {
retval = expand_number(optarg, &lun_size);
if (retval != 0) {
warn("%s: invalid -s argument",
__func__);
retval = 1;
goto bailout;
}
}
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
lun_size_set = 1;
break;
case 'S':
serial_num = strdup(optarg);
break;
case 't':
device_type = strtoul(optarg, NULL, 0);
break;
default:
break;
}
}
if (backend_name == NULL) {
warnx("%s: backend name (-b) must be specified", __func__);
retval = 1;
goto bailout;
}
bzero(&req, sizeof(req));
strlcpy(req.backend, backend_name, sizeof(req.backend));
req.reqtype = CTL_LUNREQ_CREATE;
if (blocksize_set != 0)
req.reqdata.create.blocksize_bytes = blocksize;
if (lun_size_set != 0)
req.reqdata.create.lun_size_bytes = lun_size;
if (lun_id_set != 0) {
req.reqdata.create.flags |= CTL_LUN_FLAG_ID_REQ;
req.reqdata.create.req_lun_id = req_lun_id;
}
req.reqdata.create.flags |= CTL_LUN_FLAG_DEV_TYPE;
if (device_type != -1)
req.reqdata.create.device_type = device_type;
else
req.reqdata.create.device_type = T_DIRECT;
if (serial_num != NULL) {
strlcpy(req.reqdata.create.serial_num, serial_num,
sizeof(req.reqdata.create.serial_num));
req.reqdata.create.flags |= CTL_LUN_FLAG_SERIAL_NUM;
}
if (device_id != NULL) {
strlcpy(req.reqdata.create.device_id, device_id,
sizeof(req.reqdata.create.device_id));
req.reqdata.create.flags |= CTL_LUN_FLAG_DEVID;
}
req.args = nvlist_pack(option_list, &req.args_len);
if (req.args == NULL) {
warn("%s: error packing nvlist", __func__);
retval = 1;
goto bailout;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
}
retval = ioctl(fd, CTL_LUN_REQ, &req);
free(req.args);
if (retval == -1) {
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
warn("%s: error issuing CTL_LUN_REQ ioctl", __func__);
retval = 1;
goto bailout;
}
switch (req.status) {
case CTL_LUN_ERROR:
warnx("LUN creation error: %s", req.error_str);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
retval = 1;
goto bailout;
case CTL_LUN_WARNING:
warnx("LUN creation warning: %s", req.error_str);
break;
case CTL_LUN_OK:
break;
default:
warnx("unknown LUN creation status: %d", req.status);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
retval = 1;
goto bailout;
}
fprintf(stdout, "LUN created successfully\n");
fprintf(stdout, "backend: %s\n", req.backend);
fprintf(stdout, "device type: %d\n",req.reqdata.create.device_type);
fprintf(stdout, "LUN size: %ju bytes\n",
(uintmax_t)req.reqdata.create.lun_size_bytes);
fprintf(stdout, "blocksize %u bytes\n",
req.reqdata.create.blocksize_bytes);
fprintf(stdout, "LUN ID: %d\n", req.reqdata.create.req_lun_id);
fprintf(stdout, "Serial Number: %s\n", req.reqdata.create.serial_num);
fprintf(stdout, "Device ID: %s\n", req.reqdata.create.device_id);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
bailout:
nvlist_destroy(option_list);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
return (retval);
}
static int
cctl_rm_lun(int fd, int argc, char **argv, char *combinedopt)
{
struct ctl_lun_req req;
uint32_t lun_id = 0;
int lun_id_set = 0;
char *backend_name = NULL;
nvlist_t *option_list;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int retval = 0, c;
option_list = nvlist_create(0);
if (option_list == NULL)
err(1, "%s: unable to allocate nvlist", __func__);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'b':
backend_name = strdup(optarg);
break;
case 'l':
lun_id = strtoul(optarg, NULL, 0);
lun_id_set = 1;
break;
case 'o': {
char *tmpstr;
char *name, *value;
tmpstr = strdup(optarg);
name = strsep(&tmpstr, "=");
if (name == NULL) {
warnx("%s: option -o takes \"name=value\""
"argument", __func__);
retval = 1;
goto bailout;
}
value = strsep(&tmpstr, "=");
if (value == NULL) {
warnx("%s: option -o takes \"name=value\""
"argument", __func__);
retval = 1;
goto bailout;
}
free(tmpstr);
nvlist_add_string(option_list, name, value);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
break;
}
default:
break;
}
}
if (backend_name == NULL)
errx(1, "%s: backend name (-b) must be specified", __func__);
if (lun_id_set == 0)
errx(1, "%s: LUN id (-l) must be specified", __func__);
bzero(&req, sizeof(req));
strlcpy(req.backend, backend_name, sizeof(req.backend));
req.reqtype = CTL_LUNREQ_RM;
req.reqdata.rm.lun_id = lun_id;
req.args = nvlist_pack(option_list, &req.args_len);
if (req.args == NULL) {
warn("%s: error packing nvlist", __func__);
retval = 1;
goto bailout;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
}
retval = ioctl(fd, CTL_LUN_REQ, &req);
free(req.args);
if (retval == -1) {
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
warn("%s: error issuing CTL_LUN_REQ ioctl", __func__);
retval = 1;
goto bailout;
}
switch (req.status) {
case CTL_LUN_ERROR:
warnx("LUN removal error: %s", req.error_str);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
retval = 1;
goto bailout;
case CTL_LUN_WARNING:
warnx("LUN removal warning: %s", req.error_str);
break;
case CTL_LUN_OK:
break;
default:
warnx("unknown LUN removal status: %d", req.status);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
retval = 1;
goto bailout;
}
printf("LUN %d removed successfully\n", lun_id);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
bailout:
nvlist_destroy(option_list);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
return (retval);
}
static int
cctl_modify_lun(int fd, int argc, char **argv, char *combinedopt)
{
struct ctl_lun_req req;
uint64_t lun_size = 0;
uint32_t lun_id = 0;
int lun_id_set = 0, lun_size_set = 0;
char *backend_name = NULL;
nvlist_t *option_list;
int retval = 0, c;
option_list = nvlist_create(0);
if (option_list == NULL)
err(1, "%s: unable to allocate nvlist", __func__);
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'b':
backend_name = strdup(optarg);
break;
case 'l':
lun_id = strtoul(optarg, NULL, 0);
lun_id_set = 1;
break;
case 'o': {
char *tmpstr;
char *name, *value;
tmpstr = strdup(optarg);
name = strsep(&tmpstr, "=");
if (name == NULL) {
warnx("%s: option -o takes \"name=value\""
"argument", __func__);
retval = 1;
goto bailout;
}
value = strsep(&tmpstr, "=");
if (value == NULL) {
warnx("%s: option -o takes \"name=value\""
"argument", __func__);
retval = 1;
goto bailout;
}
free(tmpstr);
nvlist_add_string(option_list, name, value);
break;
}
case 's':
if (strcasecmp(optarg, "auto") != 0) {
retval = expand_number(optarg, &lun_size);
if (retval != 0) {
warn("%s: invalid -s argument",
__func__);
retval = 1;
goto bailout;
}
}
lun_size_set = 1;
break;
default:
break;
}
}
if (backend_name == NULL)
errx(1, "%s: backend name (-b) must be specified", __func__);
if (lun_id_set == 0)
errx(1, "%s: LUN id (-l) must be specified", __func__);
if (lun_size_set == 0 && nvlist_empty(option_list))
errx(1, "%s: size (-s) or options (-o) must be specified",
__func__);
bzero(&req, sizeof(req));
strlcpy(req.backend, backend_name, sizeof(req.backend));
req.reqtype = CTL_LUNREQ_MODIFY;
req.reqdata.modify.lun_id = lun_id;
req.reqdata.modify.lun_size_bytes = lun_size;
req.args = nvlist_pack(option_list, &req.args_len);
if (req.args == NULL) {
warn("%s: error packing nvlist", __func__);
retval = 1;
goto bailout;
}
retval = ioctl(fd, CTL_LUN_REQ, &req);
free(req.args);
if (retval == -1) {
warn("%s: error issuing CTL_LUN_REQ ioctl", __func__);
retval = 1;
goto bailout;
}
switch (req.status) {
case CTL_LUN_ERROR:
warnx("LUN modification error: %s", req.error_str);
retval = 1;
goto bailout;
case CTL_LUN_WARNING:
warnx("LUN modification warning: %s", req.error_str);
break;
case CTL_LUN_OK:
break;
default:
warnx("unknown LUN modification status: %d", req.status);
retval = 1;
goto bailout;
}
printf("LUN %d modified successfully\n", lun_id);
bailout:
nvlist_destroy(option_list);
return (retval);
}
struct cctl_islist_conn {
int connection_id;
char *initiator;
char *initiator_addr;
char *initiator_alias;
char *target;
char *target_alias;
char *header_digest;
char *data_digest;
char *max_recv_data_segment_length;
char *max_send_data_segment_length;
char *max_burst_length;
char *first_burst_length;
char *offload;
int immediate_data;
int iser;
STAILQ_ENTRY(cctl_islist_conn) links;
};
struct cctl_islist_data {
int num_conns;
STAILQ_HEAD(,cctl_islist_conn) conn_list;
struct cctl_islist_conn *cur_conn;
int level;
struct sbuf *cur_sb[32];
};
static void
cctl_islist_start_element(void *user_data, const char *name, const char **attr)
{
int i;
struct cctl_islist_data *islist;
struct cctl_islist_conn *cur_conn;
islist = (struct cctl_islist_data *)user_data;
cur_conn = islist->cur_conn;
islist->level++;
if ((u_int)islist->level >= (sizeof(islist->cur_sb) /
sizeof(islist->cur_sb[0])))
errx(1, "%s: too many nesting levels, %zd max", __func__,
sizeof(islist->cur_sb) / sizeof(islist->cur_sb[0]));
islist->cur_sb[islist->level] = sbuf_new_auto();
if (islist->cur_sb[islist->level] == NULL)
err(1, "%s: Unable to allocate sbuf", __func__);
if (strcmp(name, "connection") == 0) {
if (cur_conn != NULL)
errx(1, "%s: improper connection element nesting",
__func__);
cur_conn = calloc(1, sizeof(*cur_conn));
if (cur_conn == NULL)
err(1, "%s: cannot allocate %zd bytes", __func__,
sizeof(*cur_conn));
islist->num_conns++;
islist->cur_conn = cur_conn;
STAILQ_INSERT_TAIL(&islist->conn_list, cur_conn, links);
for (i = 0; attr[i] != NULL; i += 2) {
if (strcmp(attr[i], "id") == 0) {
cur_conn->connection_id =
strtoull(attr[i+1], NULL, 0);
} else {
errx(1,
"%s: invalid connection attribute %s = %s",
__func__, attr[i], attr[i+1]);
}
}
}
}
static void
cctl_islist_end_element(void *user_data, const char *name)
{
struct cctl_islist_data *islist;
struct cctl_islist_conn *cur_conn;
char *str;
islist = (struct cctl_islist_data *)user_data;
cur_conn = islist->cur_conn;
if ((cur_conn == NULL)
&& (strcmp(name, "ctlislist") != 0))
errx(1, "%s: cur_conn == NULL! (name = %s)", __func__, name);
if (islist->cur_sb[islist->level] == NULL)
errx(1, "%s: no valid sbuf at level %d (name %s)", __func__,
islist->level, name);
sbuf_finish(islist->cur_sb[islist->level]);
str = strdup(sbuf_data(islist->cur_sb[islist->level]));
if (str == NULL)
err(1, "%s can't allocate %zd bytes for string", __func__,
sbuf_len(islist->cur_sb[islist->level]));
sbuf_delete(islist->cur_sb[islist->level]);
islist->cur_sb[islist->level] = NULL;
islist->level--;
if (strcmp(name, "initiator") == 0) {
cur_conn->initiator = str;
str = NULL;
} else if (strcmp(name, "initiator_addr") == 0) {
cur_conn->initiator_addr = str;
str = NULL;
} else if (strcmp(name, "initiator_alias") == 0) {
cur_conn->initiator_alias = str;
str = NULL;
} else if (strcmp(name, "target") == 0) {
cur_conn->target = str;
str = NULL;
} else if (strcmp(name, "target_alias") == 0) {
cur_conn->target_alias = str;
str = NULL;
} else if (strcmp(name, "target_portal_group_tag") == 0) {
} else if (strcmp(name, "header_digest") == 0) {
cur_conn->header_digest = str;
str = NULL;
} else if (strcmp(name, "data_digest") == 0) {
cur_conn->data_digest = str;
str = NULL;
} else if (strcmp(name, "max_recv_data_segment_length") == 0) {
cur_conn->max_recv_data_segment_length = str;
str = NULL;
} else if (strcmp(name, "max_send_data_segment_length") == 0) {
cur_conn->max_send_data_segment_length = str;
str = NULL;
} else if (strcmp(name, "max_burst_length") == 0) {
cur_conn->max_burst_length = str;
str = NULL;
} else if (strcmp(name, "first_burst_length") == 0) {
cur_conn->first_burst_length = str;
str = NULL;
} else if (strcmp(name, "offload") == 0) {
cur_conn->offload = str;
str = NULL;
} else if (strcmp(name, "immediate_data") == 0) {
cur_conn->immediate_data = atoi(str);
} else if (strcmp(name, "iser") == 0) {
cur_conn->iser = atoi(str);
} else if (strcmp(name, "connection") == 0) {
islist->cur_conn = NULL;
} else if (strcmp(name, "ctlislist") == 0) {
/* Nothing. */
} else {
/*
* Unknown element; ignore it for forward compatibility.
*/
}
free(str);
}
static void
cctl_islist_char_handler(void *user_data, const XML_Char *str, int len)
{
struct cctl_islist_data *islist;
islist = (struct cctl_islist_data *)user_data;
sbuf_bcat(islist->cur_sb[islist->level], str, len);
}
static int
cctl_islist(int fd, int argc, char **argv, char *combinedopt)
{
struct ctl_iscsi req;
struct cctl_islist_data islist;
struct cctl_islist_conn *conn;
XML_Parser parser;
char *conn_str;
int conn_len;
int dump_xml = 0;
int c, retval, verbose = 0;
retval = 0;
conn_len = 4096;
bzero(&islist, sizeof(islist));
STAILQ_INIT(&islist.conn_list);
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'v':
verbose = 1;
break;
case 'x':
dump_xml = 1;
break;
default:
break;
}
}
retry:
conn_str = malloc(conn_len);
bzero(&req, sizeof(req));
req.type = CTL_ISCSI_LIST;
req.data.list.alloc_len = conn_len;
req.data.list.conn_xml = conn_str;
if (ioctl(fd, CTL_ISCSI, &req) == -1) {
warn("%s: error issuing CTL_ISCSI ioctl", __func__);
retval = 1;
goto bailout;
}
if (req.status == CTL_ISCSI_ERROR) {
warnx("%s: error returned from CTL_ISCSI ioctl:\n%s",
__func__, req.error_str);
} else if (req.status == CTL_ISCSI_LIST_NEED_MORE_SPACE) {
conn_len = conn_len << 1;
goto retry;
}
if (dump_xml != 0) {
printf("%s", conn_str);
goto bailout;
}
parser = XML_ParserCreate(NULL);
if (parser == NULL) {
warn("%s: Unable to create XML parser", __func__);
retval = 1;
goto bailout;
}
XML_SetUserData(parser, &islist);
XML_SetElementHandler(parser, cctl_islist_start_element,
cctl_islist_end_element);
XML_SetCharacterDataHandler(parser, cctl_islist_char_handler);
retval = XML_Parse(parser, conn_str, strlen(conn_str), 1);
if (retval != 1) {
warnx("%s: Unable to parse XML: Error %d", __func__,
XML_GetErrorCode(parser));
XML_ParserFree(parser);
retval = 1;
goto bailout;
}
retval = 0;
XML_ParserFree(parser);
if (verbose != 0) {
STAILQ_FOREACH(conn, &islist.conn_list, links) {
printf("%-25s %d\n", "Session ID:", conn->connection_id);
printf("%-25s %s\n", "Initiator name:", conn->initiator);
printf("%-25s %s\n", "Initiator portal:", conn->initiator_addr);
printf("%-25s %s\n", "Initiator alias:", conn->initiator_alias);
printf("%-25s %s\n", "Target name:", conn->target);
printf("%-25s %s\n", "Target alias:", conn->target_alias);
printf("%-25s %s\n", "Header digest:", conn->header_digest);
printf("%-25s %s\n", "Data digest:", conn->data_digest);
printf("%-25s %s\n", "MaxRecvDataSegmentLength:", conn->max_recv_data_segment_length);
printf("%-25s %s\n", "MaxSendDataSegmentLength:", conn->max_send_data_segment_length);
printf("%-25s %s\n", "MaxBurstLen:", conn->max_burst_length);
printf("%-25s %s\n", "FirstBurstLen:", conn->first_burst_length);
printf("%-25s %s\n", "ImmediateData:", conn->immediate_data ? "Yes" : "No");
printf("%-25s %s\n", "iSER (RDMA):", conn->iser ? "Yes" : "No");
printf("%-25s %s\n", "Offload driver:", conn->offload);
printf("\n");
}
} else {
printf("%4s %-16s %-36s %-36s\n", "ID", "Portal", "Initiator name",
"Target name");
STAILQ_FOREACH(conn, &islist.conn_list, links) {
printf("%4u %-16s %-36s %-36s\n",
conn->connection_id, conn->initiator_addr, conn->initiator,
conn->target);
}
}
bailout:
free(conn_str);
return (retval);
}
static int
cctl_islogout(int fd, int argc, char **argv, char *combinedopt)
{
struct ctl_iscsi req;
int retval = 0, c;
int all = 0, connection_id = -1, nargs = 0;
char *initiator_name = NULL, *initiator_addr = NULL;
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'a':
all = 1;
nargs++;
break;
case 'c':
connection_id = strtoul(optarg, NULL, 0);
nargs++;
break;
case 'i':
initiator_name = strdup(optarg);
if (initiator_name == NULL)
err(1, "%s: strdup", __func__);
nargs++;
break;
case 'p':
initiator_addr = strdup(optarg);
if (initiator_addr == NULL)
err(1, "%s: strdup", __func__);
nargs++;
break;
default:
break;
}
}
if (nargs == 0)
errx(1, "%s: either -a, -c, -i, or -p must be specified",
__func__);
if (nargs > 1)
errx(1, "%s: only one of -a, -c, -i, or -p may be specified",
__func__);
bzero(&req, sizeof(req));
req.type = CTL_ISCSI_LOGOUT;
req.data.logout.connection_id = connection_id;
if (initiator_addr != NULL)
strlcpy(req.data.logout.initiator_addr,
initiator_addr, sizeof(req.data.logout.initiator_addr));
if (initiator_name != NULL)
strlcpy(req.data.logout.initiator_name,
initiator_name, sizeof(req.data.logout.initiator_name));
if (all != 0)
req.data.logout.all = 1;
if (ioctl(fd, CTL_ISCSI, &req) == -1) {
warn("%s: error issuing CTL_ISCSI ioctl", __func__);
retval = 1;
goto bailout;
}
if (req.status != CTL_ISCSI_OK) {
warnx("%s: error returned from CTL iSCSI logout request:\n%s",
__func__, req.error_str);
retval = 1;
goto bailout;
}
printf("iSCSI logout requests submitted\n");
bailout:
return (retval);
}
static int
cctl_isterminate(int fd, int argc, char **argv, char *combinedopt)
{
struct ctl_iscsi req;
int retval = 0, c;
int all = 0, connection_id = -1, nargs = 0;
char *initiator_name = NULL, *initiator_addr = NULL;
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'a':
all = 1;
nargs++;
break;
case 'c':
connection_id = strtoul(optarg, NULL, 0);
nargs++;
break;
case 'i':
initiator_name = strdup(optarg);
if (initiator_name == NULL)
err(1, "%s: strdup", __func__);
nargs++;
break;
case 'p':
initiator_addr = strdup(optarg);
if (initiator_addr == NULL)
err(1, "%s: strdup", __func__);
nargs++;
break;
default:
break;
}
}
if (nargs == 0)
errx(1, "%s: either -a, -c, -i, or -p must be specified",
__func__);
if (nargs > 1)
errx(1, "%s: only one of -a, -c, -i, or -p may be specified",
__func__);
bzero(&req, sizeof(req));
req.type = CTL_ISCSI_TERMINATE;
req.data.terminate.connection_id = connection_id;
if (initiator_addr != NULL)
strlcpy(req.data.terminate.initiator_addr,
initiator_addr, sizeof(req.data.terminate.initiator_addr));
if (initiator_name != NULL)
strlcpy(req.data.terminate.initiator_name,
initiator_name, sizeof(req.data.terminate.initiator_name));
if (all != 0)
req.data.terminate.all = 1;
if (ioctl(fd, CTL_ISCSI, &req) == -1) {
warn("%s: error issuing CTL_ISCSI ioctl", __func__);
retval = 1;
goto bailout;
}
if (req.status != CTL_ISCSI_OK) {
warnx("%s: error returned from CTL iSCSI connection "
"termination request:\n%s", __func__, req.error_str);
retval = 1;
goto bailout;
}
printf("iSCSI connections terminated\n");
bailout:
return (retval);
}
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
/*
* Name/value pair used for per-LUN attributes.
*/
struct cctl_lun_nv {
char *name;
char *value;
STAILQ_ENTRY(cctl_lun_nv) links;
};
/*
* Backend LUN information.
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
*/
struct cctl_lun {
uint64_t lun_id;
char *backend_type;
uint64_t size_blocks;
uint32_t blocksize;
char *serial_number;
char *device_id;
STAILQ_HEAD(,cctl_lun_nv) attr_list;
STAILQ_ENTRY(cctl_lun) links;
};
struct cctl_devlist_data {
int num_luns;
STAILQ_HEAD(,cctl_lun) lun_list;
struct cctl_lun *cur_lun;
int level;
struct sbuf *cur_sb[32];
};
static void
cctl_start_element(void *user_data, const char *name, const char **attr)
{
int i;
struct cctl_devlist_data *devlist;
struct cctl_lun *cur_lun;
devlist = (struct cctl_devlist_data *)user_data;
cur_lun = devlist->cur_lun;
devlist->level++;
if ((u_int)devlist->level >= (sizeof(devlist->cur_sb) /
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
sizeof(devlist->cur_sb[0])))
errx(1, "%s: too many nesting levels, %zd max", __func__,
sizeof(devlist->cur_sb) / sizeof(devlist->cur_sb[0]));
devlist->cur_sb[devlist->level] = sbuf_new_auto();
if (devlist->cur_sb[devlist->level] == NULL)
err(1, "%s: Unable to allocate sbuf", __func__);
if (strcmp(name, "lun") == 0) {
if (cur_lun != NULL)
errx(1, "%s: improper lun element nesting", __func__);
cur_lun = calloc(1, sizeof(*cur_lun));
if (cur_lun == NULL)
err(1, "%s: cannot allocate %zd bytes", __func__,
sizeof(*cur_lun));
devlist->num_luns++;
devlist->cur_lun = cur_lun;
STAILQ_INIT(&cur_lun->attr_list);
STAILQ_INSERT_TAIL(&devlist->lun_list, cur_lun, links);
for (i = 0; attr[i] != NULL; i += 2) {
if (strcmp(attr[i], "id") == 0) {
cur_lun->lun_id = strtoull(attr[i+1], NULL, 0);
} else {
errx(1, "%s: invalid LUN attribute %s = %s",
__func__, attr[i], attr[i+1]);
}
}
}
}
static void
cctl_end_element(void *user_data, const char *name)
{
struct cctl_devlist_data *devlist;
struct cctl_lun *cur_lun;
char *str;
devlist = (struct cctl_devlist_data *)user_data;
cur_lun = devlist->cur_lun;
if ((cur_lun == NULL)
&& (strcmp(name, "ctllunlist") != 0))
errx(1, "%s: cur_lun == NULL! (name = %s)", __func__, name);
if (devlist->cur_sb[devlist->level] == NULL)
errx(1, "%s: no valid sbuf at level %d (name %s)", __func__,
devlist->level, name);
if (sbuf_finish(devlist->cur_sb[devlist->level]) != 0)
err(1, "%s: sbuf_finish", __func__);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
str = strdup(sbuf_data(devlist->cur_sb[devlist->level]));
if (str == NULL)
err(1, "%s can't allocate %zd bytes for string", __func__,
sbuf_len(devlist->cur_sb[devlist->level]));
if (strlen(str) == 0) {
free(str);
str = NULL;
}
sbuf_delete(devlist->cur_sb[devlist->level]);
devlist->cur_sb[devlist->level] = NULL;
devlist->level--;
if (strcmp(name, "backend_type") == 0) {
cur_lun->backend_type = str;
str = NULL;
} else if (strcmp(name, "size") == 0) {
cur_lun->size_blocks = strtoull(str, NULL, 0);
} else if (strcmp(name, "blocksize") == 0) {
cur_lun->blocksize = strtoul(str, NULL, 0);
} else if (strcmp(name, "serial_number") == 0) {
cur_lun->serial_number = str;
str = NULL;
} else if (strcmp(name, "device_id") == 0) {
cur_lun->device_id = str;
str = NULL;
} else if (strcmp(name, "lun") == 0) {
devlist->cur_lun = NULL;
} else if (strcmp(name, "ctllunlist") == 0) {
/* Nothing. */
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
} else {
struct cctl_lun_nv *nv;
nv = calloc(1, sizeof(*nv));
if (nv == NULL)
err(1, "%s: can't allocate %zd bytes for nv pair",
__func__, sizeof(*nv));
nv->name = strdup(name);
if (nv->name == NULL)
err(1, "%s: can't allocated %zd bytes for string",
__func__, strlen(name));
nv->value = str;
str = NULL;
STAILQ_INSERT_TAIL(&cur_lun->attr_list, nv, links);
}
free(str);
}
static void
cctl_char_handler(void *user_data, const XML_Char *str, int len)
{
struct cctl_devlist_data *devlist;
devlist = (struct cctl_devlist_data *)user_data;
sbuf_bcat(devlist->cur_sb[devlist->level], str, len);
}
static int
cctl_devlist(int fd, int argc, char **argv, char *combinedopt)
{
struct ctl_lun_list list;
struct cctl_devlist_data devlist;
struct cctl_lun *lun;
XML_Parser parser;
char *lun_str;
int lun_len;
int dump_xml = 0;
int retval, c;
char *backend = NULL;
int verbose = 0;
retval = 0;
lun_len = 4096;
bzero(&devlist, sizeof(devlist));
STAILQ_INIT(&devlist.lun_list);
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'b':
backend = strdup(optarg);
break;
case 'v':
verbose++;
break;
case 'x':
dump_xml = 1;
break;
default:
break;
}
}
retry:
lun_str = malloc(lun_len);
bzero(&list, sizeof(list));
list.alloc_len = lun_len;
list.status = CTL_LUN_LIST_NONE;
list.lun_xml = lun_str;
if (ioctl(fd, CTL_LUN_LIST, &list) == -1) {
warn("%s: error issuing CTL_LUN_LIST ioctl", __func__);
retval = 1;
goto bailout;
}
if (list.status == CTL_LUN_LIST_ERROR) {
warnx("%s: error returned from CTL_LUN_LIST ioctl:\n%s",
__func__, list.error_str);
} else if (list.status == CTL_LUN_LIST_NEED_MORE_SPACE) {
lun_len = lun_len << 1;
goto retry;
}
if (dump_xml != 0) {
printf("%s", lun_str);
goto bailout;
}
parser = XML_ParserCreate(NULL);
if (parser == NULL) {
warn("%s: Unable to create XML parser", __func__);
retval = 1;
goto bailout;
}
XML_SetUserData(parser, &devlist);
XML_SetElementHandler(parser, cctl_start_element, cctl_end_element);
XML_SetCharacterDataHandler(parser, cctl_char_handler);
retval = XML_Parse(parser, lun_str, strlen(lun_str), 1);
if (retval != 1) {
warnx("%s: Unable to parse XML: Error %d", __func__,
XML_GetErrorCode(parser));
XML_ParserFree(parser);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
retval = 1;
goto bailout;
}
retval = 0;
XML_ParserFree(parser);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
printf("LUN Backend %18s %4s %-16s %-16s\n", "Size (Blocks)", "BS",
"Serial Number", "Device ID");
STAILQ_FOREACH(lun, &devlist.lun_list, links) {
struct cctl_lun_nv *nv;
if ((backend != NULL)
&& (strcmp(lun->backend_type, backend) != 0))
continue;
printf("%3ju %-8s %18ju %4u %-16s %-16s\n",
(uintmax_t)lun->lun_id,
lun->backend_type, (uintmax_t)lun->size_blocks,
lun->blocksize, lun->serial_number, lun->device_id);
if (verbose == 0)
continue;
STAILQ_FOREACH(nv, &lun->attr_list, links) {
printf(" %s=%s\n", nv->name, nv->value);
}
}
bailout:
free(lun_str);
return (retval);
}
/*
* Port information.
*/
struct cctl_port {
uint64_t port_id;
char *online;
char *frontend_type;
char *name;
int pp, vp;
char *target, *port, *lun_map;
STAILQ_HEAD(,cctl_lun_nv) init_list;
STAILQ_HEAD(,cctl_lun_nv) lun_list;
STAILQ_HEAD(,cctl_lun_nv) attr_list;
STAILQ_ENTRY(cctl_port) links;
};
struct cctl_portlist_data {
int num_ports;
STAILQ_HEAD(,cctl_port) port_list;
struct cctl_port *cur_port;
int level;
uint64_t cur_id;
struct sbuf *cur_sb[32];
};
static void
cctl_start_pelement(void *user_data, const char *name, const char **attr)
{
int i;
struct cctl_portlist_data *portlist;
struct cctl_port *cur_port;
portlist = (struct cctl_portlist_data *)user_data;
cur_port = portlist->cur_port;
portlist->level++;
if ((u_int)portlist->level >= (sizeof(portlist->cur_sb) /
sizeof(portlist->cur_sb[0])))
errx(1, "%s: too many nesting levels, %zd max", __func__,
sizeof(portlist->cur_sb) / sizeof(portlist->cur_sb[0]));
portlist->cur_sb[portlist->level] = sbuf_new_auto();
if (portlist->cur_sb[portlist->level] == NULL)
err(1, "%s: Unable to allocate sbuf", __func__);
portlist->cur_id = 0;
for (i = 0; attr[i] != NULL; i += 2) {
if (strcmp(attr[i], "id") == 0) {
portlist->cur_id = strtoull(attr[i+1], NULL, 0);
break;
}
}
if (strcmp(name, "targ_port") == 0) {
if (cur_port != NULL)
errx(1, "%s: improper port element nesting", __func__);
cur_port = calloc(1, sizeof(*cur_port));
if (cur_port == NULL)
err(1, "%s: cannot allocate %zd bytes", __func__,
sizeof(*cur_port));
portlist->num_ports++;
portlist->cur_port = cur_port;
STAILQ_INIT(&cur_port->init_list);
STAILQ_INIT(&cur_port->lun_list);
STAILQ_INIT(&cur_port->attr_list);
cur_port->port_id = portlist->cur_id;
STAILQ_INSERT_TAIL(&portlist->port_list, cur_port, links);
}
}
static void
cctl_end_pelement(void *user_data, const char *name)
{
struct cctl_portlist_data *portlist;
struct cctl_port *cur_port;
char *str;
portlist = (struct cctl_portlist_data *)user_data;
cur_port = portlist->cur_port;
if ((cur_port == NULL)
&& (strcmp(name, "ctlportlist") != 0))
errx(1, "%s: cur_port == NULL! (name = %s)", __func__, name);
if (portlist->cur_sb[portlist->level] == NULL)
errx(1, "%s: no valid sbuf at level %d (name %s)", __func__,
portlist->level, name);
if (sbuf_finish(portlist->cur_sb[portlist->level]) != 0)
err(1, "%s: sbuf_finish", __func__);
str = strdup(sbuf_data(portlist->cur_sb[portlist->level]));
if (str == NULL)
err(1, "%s can't allocate %zd bytes for string", __func__,
sbuf_len(portlist->cur_sb[portlist->level]));
if (strlen(str) == 0) {
free(str);
str = NULL;
}
sbuf_delete(portlist->cur_sb[portlist->level]);
portlist->cur_sb[portlist->level] = NULL;
portlist->level--;
if (strcmp(name, "frontend_type") == 0) {
cur_port->frontend_type = str;
str = NULL;
} else if (strcmp(name, "port_name") == 0) {
cur_port->name = str;
str = NULL;
} else if (strcmp(name, "online") == 0) {
cur_port->online = str;
str = NULL;
} else if (strcmp(name, "physical_port") == 0) {
cur_port->pp = strtoull(str, NULL, 0);
} else if (strcmp(name, "virtual_port") == 0) {
2014-07-05 15:32:25 +00:00
cur_port->vp = strtoull(str, NULL, 0);
} else if (strcmp(name, "target") == 0) {
cur_port->target = str;
str = NULL;
} else if (strcmp(name, "port") == 0) {
cur_port->port = str;
str = NULL;
} else if (strcmp(name, "lun_map") == 0) {
cur_port->lun_map = str;
str = NULL;
} else if (strcmp(name, "targ_port") == 0) {
portlist->cur_port = NULL;
} else if (strcmp(name, "ctlportlist") == 0) {
/* Nothing. */
} else {
struct cctl_lun_nv *nv;
nv = calloc(1, sizeof(*nv));
if (nv == NULL)
err(1, "%s: can't allocate %zd bytes for nv pair",
__func__, sizeof(*nv));
if (strcmp(name, "initiator") == 0 ||
strcmp(name, "lun") == 0)
asprintf(&nv->name, "%ju", portlist->cur_id);
else
nv->name = strdup(name);
if (nv->name == NULL)
err(1, "%s: can't allocated %zd bytes for string",
__func__, strlen(name));
nv->value = str;
str = NULL;
if (strcmp(name, "initiator") == 0)
STAILQ_INSERT_TAIL(&cur_port->init_list, nv, links);
else if (strcmp(name, "lun") == 0)
STAILQ_INSERT_TAIL(&cur_port->lun_list, nv, links);
else
STAILQ_INSERT_TAIL(&cur_port->attr_list, nv, links);
}
free(str);
}
static void
cctl_char_phandler(void *user_data, const XML_Char *str, int len)
{
struct cctl_portlist_data *portlist;
portlist = (struct cctl_portlist_data *)user_data;
sbuf_bcat(portlist->cur_sb[portlist->level], str, len);
}
static int
cctl_portlist(int fd, int argc, char **argv, char *combinedopt)
{
struct ctl_lun_list list;
struct cctl_portlist_data portlist;
struct cctl_port *port;
XML_Parser parser;
char *port_str = NULL;
int port_len;
int dump_xml = 0;
int retval, c;
char *frontend = NULL;
uint64_t portarg = UINT64_MAX;
int verbose = 0, init = 0, lun = 0, quiet = 0;
retval = 0;
port_len = 4096;
bzero(&portlist, sizeof(portlist));
STAILQ_INIT(&portlist.port_list);
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'f':
frontend = strdup(optarg);
break;
case 'i':
init++;
break;
case 'l':
lun++;
break;
case 'p':
portarg = strtoll(optarg, NULL, 0);
break;
case 'q':
quiet++;
break;
case 'v':
verbose++;
break;
case 'x':
dump_xml = 1;
break;
default:
break;
}
}
retry:
port_str = (char *)realloc(port_str, port_len);
bzero(&list, sizeof(list));
list.alloc_len = port_len;
list.status = CTL_LUN_LIST_NONE;
list.lun_xml = port_str;
if (ioctl(fd, CTL_PORT_LIST, &list) == -1) {
warn("%s: error issuing CTL_PORT_LIST ioctl", __func__);
retval = 1;
goto bailout;
}
if (list.status == CTL_LUN_LIST_ERROR) {
warnx("%s: error returned from CTL_PORT_LIST ioctl:\n%s",
__func__, list.error_str);
} else if (list.status == CTL_LUN_LIST_NEED_MORE_SPACE) {
port_len = port_len << 1;
goto retry;
}
if (dump_xml != 0) {
printf("%s", port_str);
goto bailout;
}
parser = XML_ParserCreate(NULL);
if (parser == NULL) {
warn("%s: Unable to create XML parser", __func__);
retval = 1;
goto bailout;
}
XML_SetUserData(parser, &portlist);
XML_SetElementHandler(parser, cctl_start_pelement, cctl_end_pelement);
XML_SetCharacterDataHandler(parser, cctl_char_phandler);
retval = XML_Parse(parser, port_str, strlen(port_str), 1);
if (retval != 1) {
warnx("%s: Unable to parse XML: Error %d", __func__,
XML_GetErrorCode(parser));
XML_ParserFree(parser);
retval = 1;
goto bailout;
}
retval = 0;
XML_ParserFree(parser);
if (quiet == 0)
printf("Port Online Frontend Name pp vp\n");
STAILQ_FOREACH(port, &portlist.port_list, links) {
struct cctl_lun_nv *nv;
if ((frontend != NULL)
&& (strcmp(port->frontend_type, frontend) != 0))
continue;
if ((portarg != UINT64_MAX) && (portarg != port->port_id))
continue;
printf("%-4ju %-6s %-8s %-8s %-2d %-2d %s\n",
(uintmax_t)port->port_id, port->online,
port->frontend_type, port->name, port->pp, port->vp,
port->port ? port->port : "");
if (init || verbose) {
if (port->target)
printf(" Target: %s\n", port->target);
STAILQ_FOREACH(nv, &port->init_list, links) {
printf(" Initiator %s: %s\n",
nv->name, nv->value);
}
}
if (lun || verbose) {
if (port->lun_map) {
STAILQ_FOREACH(nv, &port->lun_list, links)
printf(" LUN %s: %s\n",
nv->name, nv->value);
if (STAILQ_EMPTY(&port->lun_list))
printf(" No LUNs mapped\n");
} else
printf(" All LUNs mapped\n");
}
if (verbose) {
STAILQ_FOREACH(nv, &port->attr_list, links) {
printf(" %s=%s\n", nv->name, nv->value);
}
}
}
bailout:
free(port_str);
return (retval);
}
static int
cctl_lunmap(int fd, int argc, char **argv, char *combinedopt)
{
struct ctl_lun_map lm;
int retval = 0, c;
retval = 0;
lm.port = UINT32_MAX;
lm.plun = UINT32_MAX;
lm.lun = UINT32_MAX;
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'p':
lm.port = strtoll(optarg, NULL, 0);
break;
case 'l':
lm.plun = strtoll(optarg, NULL, 0);
break;
case 'L':
lm.lun = strtoll(optarg, NULL, 0);
break;
default:
break;
}
}
if (ioctl(fd, CTL_LUN_MAP, &lm) == -1) {
warn("%s: error issuing CTL_LUN_MAP ioctl", __func__);
retval = 1;
}
return (retval);
}
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
void
usage(int error)
{
fprintf(error ? stderr : stdout,
"Usage:\n"
"Primary commands:\n"
" ctladm tur [dev_id][general options]\n"
" ctladm inquiry [dev_id][general options]\n"
" ctladm devid [dev_id][general options]\n"
" ctladm reqsense [dev_id][general options]\n"
" ctladm reportluns [dev_id][general options]\n"
" ctladm read [dev_id][general options] <-l lba> <-d len>\n"
" <-f file|-> <-b blocksize> [-c cdbsize][-N]\n"
" ctladm write [dev_id][general options] <-l lba> <-d len>\n"
" <-f file|-> <-b blocksize> [-c cdbsize][-N]\n"
" ctladm readcap [dev_id][general options] [-c cdbsize]\n"
" ctladm modesense [dev_id][general options] <-m page|-l> [-P pc]\n"
" [-d] [-S subpage] [-c cdbsize]\n"
" ctladm prin [dev_id][general options] <-a action>\n"
" ctladm prout [dev_id][general options] <-a action>\n"
" <-r restype] [-k key] [-s sa_key]\n"
" ctladm rtpg [dev_id][general options]\n"
" ctladm start [dev_id][general options] [-i] [-o]\n"
" ctladm stop [dev_id][general options] [-i] [-o]\n"
" ctladm synccache [dev_id][general options] [-l lba]\n"
" [-b blockcount] [-r] [-i] [-c cdbsize]\n"
" ctladm create <-b backend> [-B blocksize] [-d device_id]\n"
" [-l lun_id] [-o name=value] [-s size_bytes]\n"
" [-S serial_num] [-t dev_type]\n"
" ctladm remove <-b backend> <-l lun_id> [-o name=value]\n"
" ctladm modify <-b backend> <-l lun_id> <-s size_bytes>\n"
" ctladm devlist [-b backend] [-v] [-x]\n"
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
" ctladm lunlist\n"
" ctladm lunmap -p targ_port [-l pLUN] [-L cLUN]\n"
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
" ctladm delay [dev_id] <-l datamove|done> [-T oneshot|cont]\n"
" [-t secs]\n"
" ctladm inject [dev_id] <-i action> <-p pattern> [-r lba,len]\n"
" [-s len fmt [args]] [-c] [-d delete_id]\n"
" ctladm port <-o <on|off> | [-w wwnn][-W wwpn]>\n"
" [-p targ_port] [-t port_type]\n"
" <-c> [-d driver] [-O name=value]\n"
" <-r> <-p targ_port>\n"
" ctladm portlist [-f frontend] [-i] [-p targ_port] [-q] [-v] [-x]\n"
" ctladm islist [-v | -x]\n"
" ctladm islogout <-a | -c connection-id | -i name | -p portal>\n"
" ctladm isterminate <-a | -c connection-id | -i name | -p portal>\n"
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
" ctladm dumpooa\n"
" ctladm dumpstructs\n"
" ctladm help\n"
"General Options:\n"
"-I intiator_id : defaults to 7, used to change the initiator id\n"
"-C retries : specify the number of times to retry this command\n"
"-D devicename : specify the device to operate on\n"
" : (default is %s)\n"
"read/write options:\n"
"-l lba : logical block address\n"
"-d len : read/write length, in blocks\n"
"-f file|- : write/read data to/from file or stdout/stdin\n"
"-b blocksize : block size, in bytes\n"
"-c cdbsize : specify minimum cdb size: 6, 10, 12 or 16\n"
"-N : do not copy data to/from userland\n"
"readcapacity options:\n"
"-c cdbsize : specify minimum cdb size: 10 or 16\n"
"modesense options:\n"
"-m page : specify the mode page to view\n"
"-l : request a list of supported pages\n"
"-P pc : specify the page control value: 0-3 (current,\n"
" changeable, default, saved, respectively)\n"
"-d : disable block descriptors for mode sense\n"
"-S subpage : specify a subpage\n"
"-c cdbsize : specify minimum cdb size: 6 or 10\n"
"persistent reserve in options:\n"
"-a action : specify the action value: 0-2 (read key, read\n"
" reservation, read capabilities, respectively)\n"
"persistent reserve out options:\n"
"-a action : specify the action value: 0-5 (register, reserve,\n"
" release, clear, preempt, register and ignore)\n"
"-k key : key value\n"
"-s sa_key : service action value\n"
"-r restype : specify the reservation type: 0-5(wr ex, ex ac,\n"
" wr ex ro, ex ac ro, wr ex ar, ex ac ar)\n"
"start/stop options:\n"
"-i : set the immediate bit (CTL does not support this)\n"
"-o : set the on/offline bit\n"
"synccache options:\n"
"-l lba : set the starting LBA\n"
"-b blockcount : set the length to sync in blocks\n"
"-r : set the relative addressing bit\n"
"-i : set the immediate bit\n"
"-c cdbsize : specify minimum cdb size: 10 or 16\n"
"create options:\n"
"-b backend : backend name (\"block\", \"ramdisk\", etc.)\n"
"-B blocksize : LUN blocksize in bytes (some backends)\n"
"-d device_id : SCSI VPD page 0x83 ID\n"
"-l lun_id : requested LUN number\n"
"-o name=value : backend-specific options, multiple allowed\n"
"-s size_bytes : LUN size in bytes (some backends)\n"
"-S serial_num : SCSI VPD page 0x80 serial number\n"
"-t dev_type : SCSI device type (0=disk, 3=processor)\n"
"remove options:\n"
"-b backend : backend name (\"block\", \"ramdisk\", etc.)\n"
"-l lun_id : LUN number to delete\n"
"-o name=value : backend-specific options, multiple allowed\n"
"devlist options:\n"
"-b backend : list devices from specified backend only\n"
"-v : be verbose, show backend attributes\n"
"-x : dump raw XML\n"
"delay options:\n"
"-l datamove|done : delay command at datamove or done phase\n"
"-T oneshot : delay one command, then resume normal completion\n"
"-T cont : delay all commands\n"
"-t secs : number of seconds to delay\n"
"inject options:\n"
"-i error_action : action to perform\n"
"-p pattern : command pattern to look for\n"
"-r lba,len : LBA range for pattern\n"
"-s len fmt [args] : sense data for custom sense action\n"
"-c : continuous operation\n"
"-d delete_id : error id to delete\n"
"port options:\n"
"-c : create new ioctl or iscsi frontend port\n"
"-d : specify ioctl or iscsi frontend type\n"
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
"-l : list frontend ports\n"
"-o on|off : turn frontend ports on or off\n"
"-O pp|vp : create new frontend port using pp and/or vp\n"
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
"-w wwnn : set WWNN for one frontend\n"
"-W wwpn : set WWPN for one frontend\n"
"-t port_type : specify fc, scsi, ioctl, internal frontend type\n"
"-p targ_port : specify target port number\n"
"-r : remove frontend port\n"
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
"-q : omit header in list output\n"
"-x : output port list in XML format\n"
"portlist options:\n"
"-f frontend : specify frontend type\n"
"-i : report target and initiators addresses\n"
"-l : report LUN mapping\n"
"-p targ_port : specify target port number\n"
"-q : omit header in list output\n"
"-v : verbose output (report all port options)\n"
"-x : output port list in XML format\n"
"lunmap options:\n"
"-p targ_port : specify target port number\n"
"-l pLUN : specify port-visible LUN\n"
"-L cLUN : specify CTL LUN\n",
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
CTL_DEFAULT_DEV);
}
int
main(int argc, char **argv)
{
int c;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
ctladm_cmdfunction command;
ctladm_cmdargs cmdargs;
ctladm_optret optreturn;
char *device;
const char *mainopt = "C:D:I:";
const char *subopt = NULL;
char combinedopt[256];
int lun;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int optstart = 2;
int retval, fd;
int retries;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
int initid;
int saved_errno;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
retval = 0;
cmdargs = CTLADM_ARG_NONE;
command = CTLADM_CMD_HELP;
device = NULL;
fd = -1;
retries = 0;
lun = 0;
initid = 7;
if (argc < 2) {
usage(1);
retval = 1;
goto bailout;
}
/*
* Get the base option.
*/
optreturn = getoption(option_table,argv[1], &command, &cmdargs,&subopt);
if (optreturn == CC_OR_AMBIGUOUS) {
warnx("ambiguous option %s", argv[1]);
usage(0);
exit(1);
} else if (optreturn == CC_OR_NOT_FOUND) {
warnx("option %s not found", argv[1]);
usage(0);
exit(1);
}
if (cmdargs & CTLADM_ARG_NEED_TL) {
if ((argc < 3) || (!isdigit(argv[2][0]))) {
warnx("option %s requires a lun argument",
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
argv[1]);
usage(0);
exit(1);
}
lun = strtol(argv[2], NULL, 0);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
cmdargs |= CTLADM_ARG_TARG_LUN;
optstart++;
}
/*
* Ahh, getopt(3) is a pain.
*
* This is a gross hack. There really aren't many other good
* options (excuse the pun) for parsing options in a situation like
* this. getopt is kinda braindead, so you end up having to run
* through the options twice, and give each invocation of getopt
* the option string for the other invocation.
*
* You would think that you could just have two groups of options.
* The first group would get parsed by the first invocation of
* getopt, and the second group would get parsed by the second
* invocation of getopt. It doesn't quite work out that way. When
* the first invocation of getopt finishes, it leaves optind pointing
* to the argument _after_ the first argument in the second group.
* So when the second invocation of getopt comes around, it doesn't
* recognize the first argument it gets and then bails out.
*
* A nice alternative would be to have a flag for getopt that says
* "just keep parsing arguments even when you encounter an unknown
* argument", but there isn't one. So there's no real clean way to
* easily parse two sets of arguments without having one invocation
* of getopt know about the other.
*
* Without this hack, the first invocation of getopt would work as
* long as the generic arguments are first, but the second invocation
* (in the subfunction) would fail in one of two ways. In the case
* where you don't set optreset, it would fail because optind may be
* pointing to the argument after the one it should be pointing at.
* In the case where you do set optreset, and reset optind, it would
* fail because getopt would run into the first set of options, which
* it doesn't understand.
*
* All of this would "sort of" work if you could somehow figure out
* whether optind had been incremented one option too far. The
* mechanics of that, however, are more daunting than just giving
* both invocations all of the expect options for either invocation.
*
* Needless to say, I wouldn't mind if someone invented a better
* (non-GPL!) command line parsing interface than getopt. I
* wouldn't mind if someone added more knobs to getopt to make it
* work better. Who knows, I may talk myself into doing it someday,
* if the standards weenies let me. As it is, it just leads to
* hackery like this and causes people to avoid it in some cases.
*
* KDM, September 8th, 1998
*/
if (subopt != NULL)
sprintf(combinedopt, "%s%s", mainopt, subopt);
else
sprintf(combinedopt, "%s", mainopt);
/*
* Start getopt processing at argv[2/3], since we've already
* accepted argv[1..2] as the command name, and as a possible
* device name.
*/
optind = optstart;
/*
* Now we run through the argument list looking for generic
* options, and ignoring options that possibly belong to
* subfunctions.
*/
while ((c = getopt(argc, argv, combinedopt))!= -1){
switch (c) {
case 'C':
cmdargs |= CTLADM_ARG_RETRIES;
retries = strtol(optarg, NULL, 0);
break;
case 'D':
device = strdup(optarg);
cmdargs |= CTLADM_ARG_DEVICE;
break;
case 'I':
cmdargs |= CTLADM_ARG_INITIATOR;
initid = strtol(optarg, NULL, 0);
break;
default:
break;
}
}
if ((cmdargs & CTLADM_ARG_INITIATOR) == 0)
initid = 7;
optind = optstart;
optreset = 1;
/*
* Default to opening the CTL device for now.
*/
if (((cmdargs & CTLADM_ARG_DEVICE) == 0)
&& (command != CTLADM_CMD_HELP)) {
device = strdup(CTL_DEFAULT_DEV);
cmdargs |= CTLADM_ARG_DEVICE;
}
if ((cmdargs & CTLADM_ARG_DEVICE)
&& (command != CTLADM_CMD_HELP)) {
fd = open(device, O_RDWR);
if (fd == -1 && errno == ENOENT) {
saved_errno = errno;
retval = kldload("ctl");
if (retval != -1)
fd = open(device, O_RDWR);
else
errno = saved_errno;
}
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
if (fd == -1) {
fprintf(stderr, "%s: error opening %s: %s\n",
argv[0], device, strerror(errno));
retval = 1;
goto bailout;
}
#ifdef WANT_ISCSI
else {
if (modfind("cfiscsi") == -1 &&
kldload("cfiscsi") == -1)
warn("couldn't load cfiscsi");
}
#endif
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
} else if ((command != CTLADM_CMD_HELP)
&& ((cmdargs & CTLADM_ARG_DEVICE) == 0)) {
fprintf(stderr, "%s: you must specify a device with the "
"--device argument for this command\n", argv[0]);
command = CTLADM_CMD_HELP;
retval = 1;
}
switch (command) {
case CTLADM_CMD_TUR:
retval = cctl_tur(fd, lun, initid, retries);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
break;
case CTLADM_CMD_INQUIRY:
retval = cctl_inquiry(fd, lun, initid, retries);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
break;
case CTLADM_CMD_REQ_SENSE:
retval = cctl_req_sense(fd, lun, initid, retries);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
break;
case CTLADM_CMD_REPORT_LUNS:
retval = cctl_report_luns(fd, lun, initid, retries);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
break;
case CTLADM_CMD_CREATE:
retval = cctl_create_lun(fd, argc, argv, combinedopt);
break;
case CTLADM_CMD_RM:
retval = cctl_rm_lun(fd, argc, argv, combinedopt);
break;
case CTLADM_CMD_DEVLIST:
retval = cctl_devlist(fd, argc, argv, combinedopt);
break;
case CTLADM_CMD_READ:
case CTLADM_CMD_WRITE:
retval = cctl_read_write(fd, lun, initid, retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
argc, argv, combinedopt, command);
break;
case CTLADM_CMD_PORT:
retval = cctl_port(fd, argc, argv, combinedopt);
break;
case CTLADM_CMD_PORTLIST:
retval = cctl_portlist(fd, argc, argv, combinedopt);
break;
case CTLADM_CMD_LUNMAP:
retval = cctl_lunmap(fd, argc, argv, combinedopt);
break;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
case CTLADM_CMD_READCAPACITY:
retval = cctl_read_capacity(fd, lun, initid, retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
argc, argv, combinedopt);
break;
case CTLADM_CMD_MODESENSE:
retval = cctl_mode_sense(fd, lun, initid, retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
argc, argv, combinedopt);
break;
case CTLADM_CMD_START:
case CTLADM_CMD_STOP:
retval = cctl_start_stop(fd, lun, initid, retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
(command == CTLADM_CMD_START) ? 1 : 0,
argc, argv, combinedopt);
break;
case CTLADM_CMD_SYNC_CACHE:
retval = cctl_sync_cache(fd, lun, initid, retries,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
argc, argv, combinedopt);
break;
case CTLADM_CMD_LUNLIST:
retval = cctl_lunlist(fd);
break;
case CTLADM_CMD_DELAY:
retval = cctl_delay(fd, lun, argc, argv, combinedopt);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
break;
case CTLADM_CMD_ERR_INJECT:
retval = cctl_error_inject(fd, lun, argc, argv,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
combinedopt);
break;
case CTLADM_CMD_DUMPOOA:
retval = cctl_dump_ooa(fd, argc, argv);
break;
case CTLADM_CMD_DUMPSTRUCTS:
retval = cctl_dump_structs(fd, cmdargs);
break;
case CTLADM_CMD_PRES_IN:
retval = cctl_persistent_reserve_in(fd, lun, initid,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
argc, argv, combinedopt,
retries);
break;
case CTLADM_CMD_PRES_OUT:
retval = cctl_persistent_reserve_out(fd, lun, initid,
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
argc, argv, combinedopt,
retries);
break;
case CTLADM_CMD_INQ_VPD_DEVID:
retval = cctl_inquiry_vpd_devid(fd, lun, initid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
break;
case CTLADM_CMD_RTPG:
retval = cctl_report_target_port_group(fd, lun, initid);
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
break;
case CTLADM_CMD_MODIFY:
retval = cctl_modify_lun(fd, argc, argv, combinedopt);
break;
case CTLADM_CMD_ISLIST:
retval = cctl_islist(fd, argc, argv, combinedopt);
break;
case CTLADM_CMD_ISLOGOUT:
retval = cctl_islogout(fd, argc, argv, combinedopt);
break;
case CTLADM_CMD_ISTERMINATE:
retval = cctl_isterminate(fd, argc, argv, combinedopt);
break;
Add the CAM Target Layer (CTL). CTL is a disk and processor device emulation subsystem originally written for Copan Systems under Linux starting in 2003. It has been shipping in Copan (now SGI) products since 2005. It was ported to FreeBSD in 2008, and thanks to an agreement between SGI (who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is available under a BSD-style license. The intent behind the agreement was that Spectra would work to get CTL into the FreeBSD tree. Some CTL features: - Disk and processor device emulation. - Tagged queueing - SCSI task attribute support (ordered, head of queue, simple tags) - SCSI implicit command ordering support. (e.g. if a read follows a mode select, the read will be blocked until the mode select completes.) - Full task management support (abort, LUN reset, target reset, etc.) - Support for multiple ports - Support for multiple simultaneous initiators - Support for multiple simultaneous backing stores - Persistent reservation support - Mode sense/select support - Error injection support - High Availability support (1) - All I/O handled in-kernel, no userland context switch overhead. (1) HA Support is just an API stub, and needs much more to be fully functional. ctl.c: The core of CTL. Command handlers and processing, character driver, and HA support are here. ctl.h: Basic function declarations and data structures. ctl_backend.c, ctl_backend.h: The basic CTL backend API. ctl_backend_block.c, ctl_backend_block.h: The block and file backend. This allows for using a disk or a file as the backing store for a LUN. Multiple threads are started to do I/O to the backing device, primarily because the VFS API requires that to get any concurrency. ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a small amount of memory to act as a source and sink for reads and writes from an initiator. Therefore it cannot be used for any real data, but it can be used to test for throughput. It can also be used to test initiators' support for extremely large LUNs. ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes, and command handler functions defined for supported opcodes. ctl_debug.h: Debugging support. ctl_error.c, ctl_error.h: CTL-specific wrappers around the CAM sense building functions. ctl_frontend.c, ctl_frontend.h: These files define the basic CTL frontend port API. ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM. This frontend allows for using CTL without any target-capable hardware. So any LUNs you create in CTL are visible in CAM via this port. ctl_frontend_internal.c, ctl_frontend_internal.h: This is a frontend port written for Copan to do some system-specific tasks that required sending commands into CTL from inside the kernel. This isn't entirely relevant to FreeBSD in general, but can perhaps be repurposed. ctl_ha.h: This is a stubbed-out High Availability API. Much more is needed for full HA support. See the comments in the header and the description of what is needed in the README.ctl.txt file for more details. ctl_io.h: This defines most of the core CTL I/O structures. union ctl_io is conceptually very similar to CAM's union ccb. ctl_ioctl.h: This defines all ioctls available through the CTL character device, and the data structures needed for those ioctls. ctl_mem_pool.c, ctl_mem_pool.h: Generic memory pool implementation used by the internal frontend. ctl_private.h: Private data structres (e.g. CTL softc) and function prototypes. This also includes the SCSI vendor and product names used by CTL. ctl_scsi_all.c, ctl_scsi_all.h: CTL wrappers around CAM sense printing functions. ctl_ser_table.c: Command serialization table. This defines what happens when one type of command is followed by another type of command. ctl_util.c, ctl_util.h: CTL utility functions, primarily designed to be used from userland. See ctladm for the primary consumer of these functions. These include CDB building functions. scsi_ctl.c: CAM target peripheral driver and CTL frontend port. This is the path into CTL for commands from target-capable hardware/SIMs. README.ctl.txt: CTL code features, roadmap, to-do list. usr.sbin/Makefile: Add ctladm. ctladm/Makefile, ctladm/ctladm.8, ctladm/ctladm.c, ctladm/ctladm.h, ctladm/util.c: ctladm(8) is the CTL management utility. It fills a role similar to camcontrol(8). It allow configuring LUNs, issuing commands, injecting errors and various other control functions. usr.bin/Makefile: Add ctlstat. ctlstat/Makefile ctlstat/ctlstat.8, ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8). It reports I/O statistics for CTL. sys/conf/files: Add CTL files. sys/conf/NOTES: Add device ctl. sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB length field is now 2 bytes long. Add several mode page definitions for CTL. sys/cam/scsi_all.c: Handle the new 2 byte inquiry length. sys/dev/ciss/ciss.c, sys/dev/ata/atapi-cam.c, sys/cam/scsi/scsi_targ_bh.c, scsi_target/scsi_cmds.c, mlxcontrol/interface.c: Update for 2 byte inquiry length field. scsi_da.h: Add versions of the format and rigid disk pages that are in a more reasonable format for CTL. amd64/conf/GENERIC, i386/conf/GENERIC, ia64/conf/GENERIC, sparc64/conf/GENERIC: Add device ctl. i386/conf/PAE: The CTL frontend SIM at least does not compile cleanly on PAE. Sponsored by: Copan Systems, SGI and Spectra Logic MFC after: 1 month
2012-01-12 00:34:33 +00:00
case CTLADM_CMD_HELP:
default:
usage(retval);
break;
}
bailout:
if (fd != -1)
close(fd);
exit (retval);
}
/*
* vim: ts=8
*/