415 lines
12 KiB
C
415 lines
12 KiB
C
|
/* mpn_mul -- Multiply two natural numbers.
|
||
|
|
||
|
Copyright (C) 1991, 1992 Free Software Foundation, Inc.
|
||
|
|
||
|
This file is part of the GNU MP Library.
|
||
|
|
||
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2, or (at your option)
|
||
|
any later version.
|
||
|
|
||
|
The GNU MP Library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with the GNU MP Library; see the file COPYING. If not, write to
|
||
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
|
||
|
#include "gmp.h"
|
||
|
#include "gmp-impl.h"
|
||
|
#include "longlong.h"
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
#define MPN_MUL_VERIFY(res_ptr,res_size,op1_ptr,op1_size,op2_ptr,op2_size) \
|
||
|
mpn_mul_verify (res_ptr, res_size, op1_ptr, op1_size, op2_ptr, op2_size)
|
||
|
|
||
|
#include <stdio.h>
|
||
|
static void
|
||
|
mpn_mul_verify (res_ptr, res_size, op1_ptr, op1_size, op2_ptr, op2_size)
|
||
|
mp_ptr res_ptr, op1_ptr, op2_ptr;
|
||
|
mp_size res_size, op1_size, op2_size;
|
||
|
{
|
||
|
mp_ptr tmp_ptr;
|
||
|
mp_size tmp_size;
|
||
|
tmp_ptr = alloca ((op1_size + op2_size) * BYTES_PER_MP_LIMB);
|
||
|
if (op1_size >= op2_size)
|
||
|
tmp_size = mpn_mul_classic (tmp_ptr,
|
||
|
op1_ptr, op1_size, op2_ptr, op2_size);
|
||
|
else
|
||
|
tmp_size = mpn_mul_classic (tmp_ptr,
|
||
|
op2_ptr, op2_size, op1_ptr, op1_size);
|
||
|
if (tmp_size != res_size
|
||
|
|| mpn_cmp (tmp_ptr, res_ptr, tmp_size) != 0)
|
||
|
{
|
||
|
fprintf (stderr, "GNU MP internal error: Wrong result in mpn_mul.\n");
|
||
|
fprintf (stderr, "op1{%d} = ", op1_size); mpn_dump (op1_ptr, op1_size);
|
||
|
fprintf (stderr, "op2{%d} = ", op2_size); mpn_dump (op2_ptr, op2_size);
|
||
|
abort ();
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
#define MPN_MUL_VERIFY(a,b,c,d,e,f)
|
||
|
#endif
|
||
|
|
||
|
/* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
|
||
|
and v (pointed to by VP, with VSIZE limbs), and store the result at
|
||
|
PRODP. USIZE + VSIZE limbs are always stored, but if the input
|
||
|
operands are normalized, the return value will reflect the true
|
||
|
result size (which is either USIZE + VSIZE, or USIZE + VSIZE -1).
|
||
|
|
||
|
NOTE: The space pointed to by PRODP is overwritten before finished
|
||
|
with U and V, so overlap is an error.
|
||
|
|
||
|
Argument constraints:
|
||
|
1. USIZE >= VSIZE.
|
||
|
2. PRODP != UP and PRODP != VP, i.e. the destination
|
||
|
must be distinct from the multiplier and the multiplicand. */
|
||
|
|
||
|
/* If KARATSUBA_THRESHOLD is not already defined, define it to a
|
||
|
value which is good on most machines. */
|
||
|
#ifndef KARATSUBA_THRESHOLD
|
||
|
#define KARATSUBA_THRESHOLD 8
|
||
|
#endif
|
||
|
|
||
|
/* The code can't handle KARATSUBA_THRESHOLD smaller than 4. */
|
||
|
#if KARATSUBA_THRESHOLD < 4
|
||
|
#undef KARATSUBA_THRESHOLD
|
||
|
#define KARATSUBA_THRESHOLD 4
|
||
|
#endif
|
||
|
|
||
|
mp_size
|
||
|
#ifdef __STDC__
|
||
|
mpn_mul (mp_ptr prodp,
|
||
|
mp_srcptr up, mp_size usize,
|
||
|
mp_srcptr vp, mp_size vsize)
|
||
|
#else
|
||
|
mpn_mul (prodp, up, usize, vp, vsize)
|
||
|
mp_ptr prodp;
|
||
|
mp_srcptr up;
|
||
|
mp_size usize;
|
||
|
mp_srcptr vp;
|
||
|
mp_size vsize;
|
||
|
#endif
|
||
|
{
|
||
|
mp_size n;
|
||
|
mp_size prod_size;
|
||
|
mp_limb cy;
|
||
|
|
||
|
if (vsize < KARATSUBA_THRESHOLD)
|
||
|
{
|
||
|
/* Handle simple cases with traditional multiplication.
|
||
|
|
||
|
This is the most critical code of the entire function. All
|
||
|
multiplies rely on this, both small and huge. Small ones arrive
|
||
|
here immediately. Huge ones arrive here as this is the base case
|
||
|
for the recursive algorithm below. */
|
||
|
mp_size i, j;
|
||
|
mp_limb prod_low, prod_high;
|
||
|
mp_limb cy_limb;
|
||
|
mp_limb v_limb;
|
||
|
|
||
|
if (vsize == 0)
|
||
|
return 0;
|
||
|
|
||
|
/* Offset UP and PRODP so that the inner loop can be faster. */
|
||
|
up += usize;
|
||
|
prodp += usize;
|
||
|
|
||
|
/* Multiply by the first limb in V separately, as the result can
|
||
|
be stored (not added) to PROD. We also avoid a loop for zeroing. */
|
||
|
v_limb = vp[0];
|
||
|
if (v_limb <= 1)
|
||
|
{
|
||
|
if (v_limb == 1)
|
||
|
MPN_COPY (prodp - usize, up - usize, usize);
|
||
|
else
|
||
|
MPN_ZERO (prodp - usize, usize);
|
||
|
cy_limb = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cy_limb = 0;
|
||
|
j = -usize;
|
||
|
do
|
||
|
{
|
||
|
umul_ppmm (prod_high, prod_low, up[j], v_limb);
|
||
|
add_ssaaaa (cy_limb, prodp[j], prod_high, prod_low, 0, cy_limb);
|
||
|
j++;
|
||
|
}
|
||
|
while (j < 0);
|
||
|
}
|
||
|
|
||
|
prodp[0] = cy_limb;
|
||
|
prodp++;
|
||
|
|
||
|
/* For each iteration in the outer loop, multiply one limb from
|
||
|
U with one limb from V, and add it to PROD. */
|
||
|
for (i = 1; i < vsize; i++)
|
||
|
{
|
||
|
v_limb = vp[i];
|
||
|
if (v_limb <= 1)
|
||
|
{
|
||
|
cy_limb = 0;
|
||
|
if (v_limb == 1)
|
||
|
cy_limb = mpn_add (prodp - usize,
|
||
|
prodp - usize, usize, up - usize, usize);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cy_limb = 0;
|
||
|
j = -usize;
|
||
|
|
||
|
do
|
||
|
{
|
||
|
umul_ppmm (prod_high, prod_low, up[j], v_limb);
|
||
|
add_ssaaaa (cy_limb, prod_low,
|
||
|
prod_high, prod_low, 0, cy_limb);
|
||
|
add_ssaaaa (cy_limb, prodp[j],
|
||
|
cy_limb, prod_low, 0, prodp[j]);
|
||
|
j++;
|
||
|
}
|
||
|
while (j < 0);
|
||
|
}
|
||
|
|
||
|
prodp[0] = cy_limb;
|
||
|
prodp++;
|
||
|
}
|
||
|
|
||
|
return usize + vsize - (cy_limb == 0);
|
||
|
}
|
||
|
|
||
|
n = (usize + 1) / 2;
|
||
|
|
||
|
/* Is USIZE larger than 1.5 times VSIZE? Avoid Karatsuba's algorithm. */
|
||
|
if (2 * usize > 3 * vsize)
|
||
|
{
|
||
|
/* If U has at least twice as many limbs as V. Split U in two
|
||
|
pieces, U1 and U0, such that U = U0 + U1*(2**BITS_PER_MP_LIMB)**N,
|
||
|
and recursively multiply the two pieces separately with V. */
|
||
|
|
||
|
mp_size u0_size;
|
||
|
mp_ptr tmp;
|
||
|
mp_size tmp_size;
|
||
|
|
||
|
/* V1 (the high part of V) is zero. */
|
||
|
|
||
|
/* Calculate the length of U0. It is normally equal to n, but
|
||
|
of course not for sure. */
|
||
|
for (u0_size = n; u0_size > 0 && up[u0_size - 1] == 0; u0_size--)
|
||
|
;
|
||
|
|
||
|
/* Perform (U0 * V). */
|
||
|
if (u0_size >= vsize)
|
||
|
prod_size = mpn_mul (prodp, up, u0_size, vp, vsize);
|
||
|
else
|
||
|
prod_size = mpn_mul (prodp, vp, vsize, up, u0_size);
|
||
|
MPN_MUL_VERIFY (prodp, prod_size, up, u0_size, vp, vsize);
|
||
|
|
||
|
/* We have to zero-extend the lower partial product to n limbs,
|
||
|
since the mpn_add some lines below expect the first n limbs
|
||
|
to be well defined. (This is normally a no-op. It may
|
||
|
do something when U1 has many leading 0 limbs.) */
|
||
|
while (prod_size < n)
|
||
|
prodp[prod_size++] = 0;
|
||
|
|
||
|
tmp = (mp_ptr) alloca ((usize + vsize - n) * BYTES_PER_MP_LIMB);
|
||
|
|
||
|
/* Perform (U1 * V). Make sure the first source argument to mpn_mul
|
||
|
is not less than the second source argument. */
|
||
|
if (vsize <= usize - n)
|
||
|
tmp_size = mpn_mul (tmp, up + n, usize - n, vp, vsize);
|
||
|
else
|
||
|
tmp_size = mpn_mul (tmp, vp, vsize, up + n, usize - n);
|
||
|
MPN_MUL_VERIFY (tmp, tmp_size, up + n, usize - n, vp, vsize);
|
||
|
|
||
|
/* In this addition hides a potentially large copying of TMP. */
|
||
|
if (prod_size - n >= tmp_size)
|
||
|
cy = mpn_add (prodp + n, prodp + n, prod_size - n, tmp, tmp_size);
|
||
|
else
|
||
|
cy = mpn_add (prodp + n, tmp, tmp_size, prodp + n, prod_size - n);
|
||
|
if (cy)
|
||
|
abort (); /* prodp[prod_size] = cy; */
|
||
|
|
||
|
alloca (0);
|
||
|
return tmp_size + n;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Karatsuba's divide-and-conquer algorithm.
|
||
|
|
||
|
Split U in two pieces, U1 and U0, such that
|
||
|
U = U0 + U1*(B**n),
|
||
|
and V in V1 and V0, such that
|
||
|
V = V0 + V1*(B**n).
|
||
|
|
||
|
UV is then computed recursively using the identity
|
||
|
|
||
|
2n n n n
|
||
|
UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V
|
||
|
1 1 1 0 0 1 0 0
|
||
|
|
||
|
Where B = 2**BITS_PER_MP_LIMB.
|
||
|
*/
|
||
|
|
||
|
/* It's possible to decrease the temporary allocation by using the
|
||
|
prodp area for temporary storage of the middle term, and doing
|
||
|
that recursive multiplication first. (Do this later.) */
|
||
|
|
||
|
mp_size u0_size;
|
||
|
mp_size v0_size;
|
||
|
mp_size u0v0_size;
|
||
|
mp_size u1v1_size;
|
||
|
mp_ptr temp;
|
||
|
mp_size temp_size;
|
||
|
mp_size utem_size;
|
||
|
mp_size vtem_size;
|
||
|
mp_ptr ptem;
|
||
|
mp_size ptem_size;
|
||
|
int negflg;
|
||
|
mp_ptr pp;
|
||
|
|
||
|
pp = (mp_ptr) alloca (4 * n * BYTES_PER_MP_LIMB);
|
||
|
|
||
|
/* Calculate the lengths of U0 and V0. They are normally equal
|
||
|
to n, but of course not for sure. */
|
||
|
for (u0_size = n; u0_size > 0 && up[u0_size - 1] == 0; u0_size--)
|
||
|
;
|
||
|
for (v0_size = n; v0_size > 0 && vp[v0_size - 1] == 0; v0_size--)
|
||
|
;
|
||
|
|
||
|
/*** 1. PROD]2n..0] := U0 x V0
|
||
|
(Recursive call to mpn_mul may NOT overwrite input operands.)
|
||
|
________________ ________________
|
||
|
|________________||____U0 x V0_____| */
|
||
|
|
||
|
if (u0_size >= v0_size)
|
||
|
u0v0_size = mpn_mul (pp, up, u0_size, vp, v0_size);
|
||
|
else
|
||
|
u0v0_size = mpn_mul (pp, vp, v0_size, up, u0_size);
|
||
|
MPN_MUL_VERIFY (pp, u0v0_size, up, u0_size, vp, v0_size);
|
||
|
|
||
|
/* Zero-extend to 2n limbs. */
|
||
|
while (u0v0_size < 2 * n)
|
||
|
pp[u0v0_size++] = 0;
|
||
|
|
||
|
|
||
|
/*** 2. PROD]4n..2n] := U1 x V1
|
||
|
(Recursive call to mpn_mul may NOT overwrite input operands.)
|
||
|
________________ ________________
|
||
|
|_____U1 x V1____||____U0 x V0_____| */
|
||
|
|
||
|
u1v1_size = mpn_mul (pp + 2*n,
|
||
|
up + n, usize - n,
|
||
|
vp + n, vsize - n);
|
||
|
MPN_MUL_VERIFY (pp + 2*n, u1v1_size,
|
||
|
up + n, usize - n, vp + n, vsize - n);
|
||
|
prod_size = 2 * n + u1v1_size;
|
||
|
|
||
|
|
||
|
/*** 3. PTEM]2n..0] := (U1-U0) x (V0-V1)
|
||
|
(Recursive call to mpn_mul may overwrite input operands.)
|
||
|
________________
|
||
|
|_(U1-U0)(V0-V1)_| */
|
||
|
|
||
|
temp = (mp_ptr) alloca ((2 * n + 1) * BYTES_PER_MP_LIMB);
|
||
|
if (usize - n > u0_size
|
||
|
|| (usize - n == u0_size
|
||
|
&& mpn_cmp (up + n, up, u0_size) >= 0))
|
||
|
{
|
||
|
utem_size = usize - n
|
||
|
+ mpn_sub (temp, up + n, usize - n, up, u0_size);
|
||
|
negflg = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
utem_size = u0_size
|
||
|
+ mpn_sub (temp, up, u0_size, up + n, usize - n);
|
||
|
negflg = 1;
|
||
|
}
|
||
|
if (vsize - n > v0_size
|
||
|
|| (vsize - n == v0_size
|
||
|
&& mpn_cmp (vp + n, vp, v0_size) >= 0))
|
||
|
{
|
||
|
vtem_size = vsize - n
|
||
|
+ mpn_sub (temp + n, vp + n, vsize - n, vp, v0_size);
|
||
|
negflg ^= 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
vtem_size = v0_size
|
||
|
+ mpn_sub (temp + n, vp, v0_size, vp + n, vsize - n);
|
||
|
/* No change of NEGFLG. */
|
||
|
}
|
||
|
ptem = (mp_ptr) alloca (2 * n * BYTES_PER_MP_LIMB);
|
||
|
if (utem_size >= vtem_size)
|
||
|
ptem_size = mpn_mul (ptem, temp, utem_size, temp + n, vtem_size);
|
||
|
else
|
||
|
ptem_size = mpn_mul (ptem, temp + n, vtem_size, temp, utem_size);
|
||
|
MPN_MUL_VERIFY (ptem, ptem_size, temp, utem_size, temp + n, vtem_size);
|
||
|
|
||
|
/*** 4. TEMP]2n..0] := PROD]2n..0] + PROD]4n..2n]
|
||
|
________________
|
||
|
|_____U1 x V1____|
|
||
|
________________
|
||
|
|_____U0_x_V0____| */
|
||
|
|
||
|
cy = mpn_add (temp, pp, 2*n, pp + 2*n, u1v1_size);
|
||
|
if (cy != 0)
|
||
|
{
|
||
|
temp[2*n] = cy;
|
||
|
temp_size = 2*n + 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Normalize temp. pp[2*n-1] might have been zero in the
|
||
|
mpn_add call above, and thus temp might be unnormalized. */
|
||
|
for (temp_size = 2*n; temp_size > 0 && temp[temp_size - 1] == 0;
|
||
|
temp_size--)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
if (prod_size - n >= temp_size)
|
||
|
cy = mpn_add (pp + n, pp + n, prod_size - n, temp, temp_size);
|
||
|
else
|
||
|
{
|
||
|
/* This is a weird special case that should not happen (often)! */
|
||
|
cy = mpn_add (pp + n, temp, temp_size, pp + n, prod_size - n);
|
||
|
prod_size = temp_size + n;
|
||
|
}
|
||
|
if (cy != 0)
|
||
|
{
|
||
|
pp[prod_size] = cy;
|
||
|
prod_size++;
|
||
|
}
|
||
|
#ifdef DEBUG
|
||
|
if (prod_size > 4 * n)
|
||
|
abort();
|
||
|
#endif
|
||
|
if (negflg)
|
||
|
prod_size = prod_size
|
||
|
+ mpn_sub (pp + n, pp + n, prod_size - n, ptem, ptem_size);
|
||
|
else
|
||
|
{
|
||
|
if (prod_size - n < ptem_size)
|
||
|
abort();
|
||
|
cy = mpn_add (pp + n, pp + n, prod_size - n, ptem, ptem_size);
|
||
|
if (cy != 0)
|
||
|
{
|
||
|
pp[prod_size] = cy;
|
||
|
prod_size++;
|
||
|
#ifdef DEBUG
|
||
|
if (prod_size > 4 * n)
|
||
|
abort();
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
MPN_COPY (prodp, pp, prod_size);
|
||
|
alloca (0);
|
||
|
return prod_size;
|
||
|
}
|
||
|
}
|