475 lines
13 KiB
C
475 lines
13 KiB
C
|
/*-
|
||
|
* Copyright (c) 2007-2008
|
||
|
* Swinburne University of Technology, Melbourne, Australia
|
||
|
* Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
|
||
|
* Copyright (c) 2014 Midori Kato <katoon@sfc.wide.ad.jp>
|
||
|
* Copyright (c) 2014 The FreeBSD Foundation
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* An implementation of the DCTCP algorithm for FreeBSD, based on
|
||
|
* "Data Center TCP (DCTCP)" by M. Alizadeh, A. Greenberg, D. A. Maltz,
|
||
|
* J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.,
|
||
|
* in ACM Conference on SIGCOMM 2010, New York, USA,
|
||
|
* Originally released as the contribution of Microsoft Research project.
|
||
|
*/
|
||
|
|
||
|
#include <sys/cdefs.h>
|
||
|
__FBSDID("$FreeBSD$");
|
||
|
|
||
|
#include <sys/param.h>
|
||
|
#include <sys/kernel.h>
|
||
|
#include <sys/malloc.h>
|
||
|
#include <sys/module.h>
|
||
|
#include <sys/socket.h>
|
||
|
#include <sys/socketvar.h>
|
||
|
#include <sys/sysctl.h>
|
||
|
#include <sys/systm.h>
|
||
|
|
||
|
#include <net/vnet.h>
|
||
|
|
||
|
#include <netinet/in.h>
|
||
|
#include <netinet/ip.h>
|
||
|
#include <netinet/cc.h>
|
||
|
#include <netinet/tcp_seq.h>
|
||
|
#include <netinet/tcp_var.h>
|
||
|
|
||
|
#include <netinet/cc/cc_module.h>
|
||
|
|
||
|
#define CAST_PTR_INT(X) (*((int*)(X)))
|
||
|
|
||
|
#define MAX_ALPHA_VALUE 1024
|
||
|
static VNET_DEFINE(uint32_t, dctcp_alpha) = 0;
|
||
|
#define V_dctcp_alpha VNET(dctcp_alpha)
|
||
|
static VNET_DEFINE(uint32_t, dctcp_shift_g) = 4;
|
||
|
#define V_dctcp_shift_g VNET(dctcp_shift_g)
|
||
|
static VNET_DEFINE(uint32_t, dctcp_slowstart) = 0;
|
||
|
#define V_dctcp_slowstart VNET(dctcp_slowstart)
|
||
|
|
||
|
struct dctcp {
|
||
|
int bytes_ecn; /* # of marked bytes during a RTT */
|
||
|
int bytes_total; /* # of acked bytes during a RTT */
|
||
|
int alpha; /* the fraction of marked bytes */
|
||
|
int ce_prev; /* CE state of the last segment */
|
||
|
int save_sndnxt; /* end sequence number of the current window */
|
||
|
int ece_curr; /* ECE flag in this segment */
|
||
|
int ece_prev; /* ECE flag in the last segment */
|
||
|
uint32_t num_cong_events; /* # of congestion events */
|
||
|
};
|
||
|
|
||
|
static MALLOC_DEFINE(M_dctcp, "dctcp data",
|
||
|
"Per connection data required for the dctcp algorithm");
|
||
|
|
||
|
static void dctcp_ack_received(struct cc_var *ccv, uint16_t type);
|
||
|
static void dctcp_after_idle(struct cc_var *ccv);
|
||
|
static void dctcp_cb_destroy(struct cc_var *ccv);
|
||
|
static int dctcp_cb_init(struct cc_var *ccv);
|
||
|
static void dctcp_cong_signal(struct cc_var *ccv, uint32_t type);
|
||
|
static void dctcp_conn_init(struct cc_var *ccv);
|
||
|
static void dctcp_post_recovery(struct cc_var *ccv);
|
||
|
static void dctcp_ecnpkt_handler(struct cc_var *ccv);
|
||
|
static void dctcp_update_alpha(struct cc_var *ccv);
|
||
|
|
||
|
struct cc_algo dctcp_cc_algo = {
|
||
|
.name = "dctcp",
|
||
|
.ack_received = dctcp_ack_received,
|
||
|
.cb_destroy = dctcp_cb_destroy,
|
||
|
.cb_init = dctcp_cb_init,
|
||
|
.cong_signal = dctcp_cong_signal,
|
||
|
.conn_init = dctcp_conn_init,
|
||
|
.post_recovery = dctcp_post_recovery,
|
||
|
.ecnpkt_handler = dctcp_ecnpkt_handler,
|
||
|
.after_idle = dctcp_after_idle,
|
||
|
};
|
||
|
|
||
|
static void
|
||
|
dctcp_ack_received(struct cc_var *ccv, uint16_t type)
|
||
|
{
|
||
|
struct dctcp *dctcp_data;
|
||
|
int bytes_acked = 0;
|
||
|
|
||
|
dctcp_data = ccv->cc_data;
|
||
|
|
||
|
if (CCV(ccv, t_flags) & TF_ECN_PERMIT) {
|
||
|
/*
|
||
|
* DCTCP doesn't treat receipt of ECN marked packet as a
|
||
|
* congestion event. Thus, DCTCP always executes the ACK
|
||
|
* processing out of congestion recovery.
|
||
|
*/
|
||
|
if (IN_CONGRECOVERY(CCV(ccv, t_flags))) {
|
||
|
EXIT_CONGRECOVERY(CCV(ccv, t_flags));
|
||
|
newreno_cc_algo.ack_received(ccv, type);
|
||
|
ENTER_CONGRECOVERY(CCV(ccv, t_flags));
|
||
|
} else
|
||
|
newreno_cc_algo.ack_received(ccv, type);
|
||
|
|
||
|
if (type == CC_DUPACK)
|
||
|
bytes_acked = CCV(ccv, t_maxseg);
|
||
|
|
||
|
if (type == CC_ACK)
|
||
|
bytes_acked = ccv->bytes_this_ack;
|
||
|
|
||
|
/* Update total bytes. */
|
||
|
dctcp_data->bytes_total += bytes_acked;
|
||
|
|
||
|
/* Update total marked bytes. */
|
||
|
if (dctcp_data->ece_curr) {
|
||
|
if (!dctcp_data->ece_prev
|
||
|
&& bytes_acked > CCV(ccv, t_maxseg)) {
|
||
|
dctcp_data->bytes_ecn +=
|
||
|
(bytes_acked - CCV(ccv, t_maxseg));
|
||
|
} else
|
||
|
dctcp_data->bytes_ecn += bytes_acked;
|
||
|
dctcp_data->ece_prev = 1;
|
||
|
} else {
|
||
|
if (dctcp_data->ece_prev
|
||
|
&& bytes_acked > CCV(ccv, t_maxseg))
|
||
|
dctcp_data->bytes_ecn += CCV(ccv, t_maxseg);
|
||
|
dctcp_data->ece_prev = 0;
|
||
|
}
|
||
|
dctcp_data->ece_curr = 0;
|
||
|
|
||
|
/*
|
||
|
* Update the fraction of marked bytes at the end of
|
||
|
* current window size.
|
||
|
*/
|
||
|
if ((IN_FASTRECOVERY(CCV(ccv, t_flags)) &&
|
||
|
SEQ_GEQ(ccv->curack, CCV(ccv, snd_recover))) ||
|
||
|
(!IN_FASTRECOVERY(CCV(ccv, t_flags)) &&
|
||
|
SEQ_GT(ccv->curack, dctcp_data->save_sndnxt)))
|
||
|
dctcp_update_alpha(ccv);
|
||
|
} else
|
||
|
newreno_cc_algo.ack_received(ccv, type);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dctcp_after_idle(struct cc_var *ccv)
|
||
|
{
|
||
|
struct dctcp *dctcp_data;
|
||
|
|
||
|
dctcp_data = ccv->cc_data;
|
||
|
|
||
|
/* Initialize internal parameters after idle time */
|
||
|
dctcp_data->bytes_ecn = 0;
|
||
|
dctcp_data->bytes_total = 0;
|
||
|
dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
|
||
|
dctcp_data->alpha = V_dctcp_alpha;
|
||
|
dctcp_data->ece_curr = 0;
|
||
|
dctcp_data->ece_prev = 0;
|
||
|
dctcp_data->num_cong_events = 0;
|
||
|
|
||
|
dctcp_cc_algo.after_idle = newreno_cc_algo.after_idle;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dctcp_cb_destroy(struct cc_var *ccv)
|
||
|
{
|
||
|
if (ccv->cc_data != NULL)
|
||
|
free(ccv->cc_data, M_dctcp);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
dctcp_cb_init(struct cc_var *ccv)
|
||
|
{
|
||
|
struct dctcp *dctcp_data;
|
||
|
|
||
|
dctcp_data = malloc(sizeof(struct dctcp), M_dctcp, M_NOWAIT|M_ZERO);
|
||
|
|
||
|
if (dctcp_data == NULL)
|
||
|
return (ENOMEM);
|
||
|
|
||
|
/* Initialize some key variables with sensible defaults. */
|
||
|
dctcp_data->bytes_ecn = 0;
|
||
|
dctcp_data->bytes_total = 0;
|
||
|
/*
|
||
|
* When alpha is set to 0 in the beggining, DCTCP sender transfers as
|
||
|
* much data as possible until the value converges which may expand the
|
||
|
* queueing delay at the switch. When alpha is set to 1, queueing delay
|
||
|
* is kept small.
|
||
|
* Throughput-sensitive applications should have alpha = 0
|
||
|
* Latency-sensitive applications should have alpha = 1
|
||
|
*
|
||
|
* Note: DCTCP draft suggests initial alpha to be 1 but we've decided to
|
||
|
* keep it 0 as default.
|
||
|
*/
|
||
|
dctcp_data->alpha = V_dctcp_alpha;
|
||
|
dctcp_data->save_sndnxt = 0;
|
||
|
dctcp_data->ce_prev = 0;
|
||
|
dctcp_data->ece_curr = 0;
|
||
|
dctcp_data->ece_prev = 0;
|
||
|
dctcp_data->num_cong_events = 0;
|
||
|
|
||
|
ccv->cc_data = dctcp_data;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Perform any necessary tasks before we enter congestion recovery.
|
||
|
*/
|
||
|
static void
|
||
|
dctcp_cong_signal(struct cc_var *ccv, uint32_t type)
|
||
|
{
|
||
|
struct dctcp *dctcp_data;
|
||
|
u_int win, mss;
|
||
|
|
||
|
dctcp_data = ccv->cc_data;
|
||
|
win = CCV(ccv, snd_cwnd);
|
||
|
mss = CCV(ccv, t_maxseg);
|
||
|
|
||
|
switch (type) {
|
||
|
case CC_NDUPACK:
|
||
|
if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
|
||
|
if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
|
||
|
CCV(ccv, snd_ssthresh) = mss *
|
||
|
max(win / 2 / mss, 2);
|
||
|
dctcp_data->num_cong_events++;
|
||
|
} else {
|
||
|
/* cwnd has already updated as congestion
|
||
|
* recovery. Reverse cwnd value using
|
||
|
* snd_cwnd_prev and recalculate snd_ssthresh
|
||
|
*/
|
||
|
win = CCV(ccv, snd_cwnd_prev);
|
||
|
CCV(ccv, snd_ssthresh) =
|
||
|
max(win / 2 / mss, 2) * mss;
|
||
|
}
|
||
|
ENTER_RECOVERY(CCV(ccv, t_flags));
|
||
|
}
|
||
|
break;
|
||
|
case CC_ECN:
|
||
|
/*
|
||
|
* Save current snd_cwnd when the host encounters both
|
||
|
* congestion recovery and fast recovery.
|
||
|
*/
|
||
|
CCV(ccv, snd_cwnd_prev) = win;
|
||
|
if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
|
||
|
if (V_dctcp_slowstart &&
|
||
|
dctcp_data->num_cong_events++ == 0) {
|
||
|
CCV(ccv, snd_ssthresh) =
|
||
|
mss * max(win / 2 / mss, 2);
|
||
|
dctcp_data->alpha = MAX_ALPHA_VALUE;
|
||
|
dctcp_data->bytes_ecn = 0;
|
||
|
dctcp_data->bytes_total = 0;
|
||
|
dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
|
||
|
} else
|
||
|
CCV(ccv, snd_ssthresh) = max((win - ((win *
|
||
|
dctcp_data->alpha) >> 11)) / mss, 2) * mss;
|
||
|
CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
|
||
|
ENTER_CONGRECOVERY(CCV(ccv, t_flags));
|
||
|
}
|
||
|
dctcp_data->ece_curr = 1;
|
||
|
break;
|
||
|
case CC_RTO:
|
||
|
if (CCV(ccv, t_flags) & TF_ECN_PERMIT) {
|
||
|
CCV(ccv, t_flags) |= TF_ECN_SND_CWR;
|
||
|
dctcp_update_alpha(ccv);
|
||
|
dctcp_data->save_sndnxt += CCV(ccv, t_maxseg);
|
||
|
dctcp_data->num_cong_events++;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dctcp_conn_init(struct cc_var *ccv)
|
||
|
{
|
||
|
struct dctcp *dctcp_data;
|
||
|
|
||
|
dctcp_data = ccv->cc_data;
|
||
|
|
||
|
if (CCV(ccv, t_flags) & TF_ECN_PERMIT)
|
||
|
dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Perform any necessary tasks before we exit congestion recovery.
|
||
|
*/
|
||
|
static void
|
||
|
dctcp_post_recovery(struct cc_var *ccv)
|
||
|
{
|
||
|
dctcp_cc_algo.post_recovery = newreno_cc_algo.post_recovery;
|
||
|
|
||
|
if (CCV(ccv, t_flags) & TF_ECN_PERMIT)
|
||
|
dctcp_update_alpha(ccv);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Execute an additional ECN processing using ECN field in IP header and the CWR
|
||
|
* bit in TCP header.
|
||
|
*
|
||
|
* delay_ack == 0 - Delayed ACK disabled
|
||
|
* delay_ack == 1 - Delayed ACK enabled
|
||
|
*/
|
||
|
|
||
|
static void
|
||
|
dctcp_ecnpkt_handler(struct cc_var *ccv)
|
||
|
{
|
||
|
struct dctcp *dctcp_data;
|
||
|
uint32_t ccflag;
|
||
|
int delay_ack;
|
||
|
|
||
|
dctcp_data = ccv->cc_data;
|
||
|
ccflag = ccv->flags;
|
||
|
delay_ack = 1;
|
||
|
|
||
|
/*
|
||
|
* DCTCP responses an ACK immediately when the CE state
|
||
|
* in between this segment and the last segment is not same.
|
||
|
*/
|
||
|
if (ccflag & CCF_IPHDR_CE) {
|
||
|
if (!dctcp_data->ce_prev && (ccflag & CCF_DELACK))
|
||
|
delay_ack = 0;
|
||
|
dctcp_data->ce_prev = 1;
|
||
|
CCV(ccv, t_flags) |= TF_ECN_SND_ECE;
|
||
|
} else {
|
||
|
if (dctcp_data->ce_prev && (ccflag & CCF_DELACK))
|
||
|
delay_ack = 0;
|
||
|
dctcp_data->ce_prev = 0;
|
||
|
CCV(ccv, t_flags) &= ~TF_ECN_SND_ECE;
|
||
|
}
|
||
|
|
||
|
/* DCTCP sets delayed ack when this segment sets the CWR flag. */
|
||
|
if ((ccflag & CCF_DELACK) && (ccflag & CCF_TCPHDR_CWR))
|
||
|
delay_ack = 1;
|
||
|
|
||
|
if (delay_ack == 0)
|
||
|
ccv->flags |= CCF_ACKNOW;
|
||
|
else
|
||
|
ccv->flags &= ~CCF_ACKNOW;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Update the fraction of marked bytes represented as 'alpha'.
|
||
|
* Also initialize several internal parameters at the end of this function.
|
||
|
*/
|
||
|
static void
|
||
|
dctcp_update_alpha(struct cc_var *ccv)
|
||
|
{
|
||
|
struct dctcp *dctcp_data;
|
||
|
int alpha_prev;
|
||
|
|
||
|
dctcp_data = ccv->cc_data;
|
||
|
alpha_prev = dctcp_data->alpha;
|
||
|
dctcp_data->bytes_total = max(dctcp_data->bytes_total, 1);
|
||
|
|
||
|
/*
|
||
|
* Update alpha: alpha = (1 - g) * alpha + g * F.
|
||
|
* Here:
|
||
|
* g is weight factor
|
||
|
* recommaded to be set to 1/16
|
||
|
* small g = slow convergence between competitive DCTCP flows
|
||
|
* large g = impacts low utilization of bandwidth at switches
|
||
|
* F is fraction of marked segments in last RTT
|
||
|
* updated every RTT
|
||
|
* Alpha must be round to 0 - MAX_ALPHA_VALUE.
|
||
|
*/
|
||
|
dctcp_data->alpha = min(alpha_prev - (alpha_prev >> V_dctcp_shift_g) +
|
||
|
(dctcp_data->bytes_ecn << (10 - V_dctcp_shift_g)) /
|
||
|
dctcp_data->bytes_total, MAX_ALPHA_VALUE);
|
||
|
|
||
|
/* Initialize internal parameters for next alpha calculation */
|
||
|
dctcp_data->bytes_ecn = 0;
|
||
|
dctcp_data->bytes_total = 0;
|
||
|
dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
dctcp_alpha_handler(SYSCTL_HANDLER_ARGS)
|
||
|
{
|
||
|
uint32_t new;
|
||
|
int error;
|
||
|
|
||
|
new = V_dctcp_alpha;
|
||
|
error = sysctl_handle_int(oidp, &new, 0, req);
|
||
|
if (error == 0 && req->newptr != NULL) {
|
||
|
if (CAST_PTR_INT(req->newptr) > 1)
|
||
|
error = EINVAL;
|
||
|
else {
|
||
|
if (new > MAX_ALPHA_VALUE)
|
||
|
V_dctcp_alpha = MAX_ALPHA_VALUE;
|
||
|
else
|
||
|
V_dctcp_alpha = new;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
dctcp_shift_g_handler(SYSCTL_HANDLER_ARGS)
|
||
|
{
|
||
|
uint32_t new;
|
||
|
int error;
|
||
|
|
||
|
new = V_dctcp_shift_g;
|
||
|
error = sysctl_handle_int(oidp, &new, 0, req);
|
||
|
if (error == 0 && req->newptr != NULL) {
|
||
|
if (CAST_PTR_INT(req->newptr) > 1)
|
||
|
error = EINVAL;
|
||
|
else
|
||
|
V_dctcp_shift_g = new;
|
||
|
}
|
||
|
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
dctcp_slowstart_handler(SYSCTL_HANDLER_ARGS)
|
||
|
{
|
||
|
uint32_t new;
|
||
|
int error;
|
||
|
|
||
|
new = V_dctcp_slowstart;
|
||
|
error = sysctl_handle_int(oidp, &new, 0, req);
|
||
|
if (error == 0 && req->newptr != NULL) {
|
||
|
if (CAST_PTR_INT(req->newptr) > 1)
|
||
|
error = EINVAL;
|
||
|
else
|
||
|
V_dctcp_slowstart = new;
|
||
|
}
|
||
|
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
SYSCTL_DECL(_net_inet_tcp_cc_dctcp);
|
||
|
SYSCTL_NODE(_net_inet_tcp_cc, OID_AUTO, dctcp, CTLFLAG_RW, NULL,
|
||
|
"dctcp congestion control related settings");
|
||
|
|
||
|
SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, alpha,
|
||
|
CTLFLAG_VNET|CTLTYPE_UINT|CTLFLAG_RW, &VNET_NAME(dctcp_alpha), 0,
|
||
|
&dctcp_alpha_handler,
|
||
|
"IU", "dctcp alpha parameter");
|
||
|
|
||
|
SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, shift_g,
|
||
|
CTLFLAG_VNET|CTLTYPE_UINT|CTLFLAG_RW, &VNET_NAME(dctcp_shift_g), 4,
|
||
|
&dctcp_shift_g_handler,
|
||
|
"IU", "dctcp shift parameter");
|
||
|
|
||
|
SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, slowstart,
|
||
|
CTLFLAG_VNET|CTLTYPE_UINT|CTLFLAG_RW, &VNET_NAME(dctcp_slowstart), 0,
|
||
|
&dctcp_slowstart_handler,
|
||
|
"IU", "half CWND reduction after the first slow start");
|
||
|
|
||
|
DECLARE_CC_MODULE(dctcp, &dctcp_cc_algo);
|