freebsd-dev/sys/kern/kern_synch.c

1077 lines
28 KiB
C
Raw Normal View History

1994-05-24 10:09:53 +00:00
/*-
* Copyright (c) 1982, 1986, 1990, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
1999-08-28 01:08:13 +00:00
* $FreeBSD$
1994-05-24 10:09:53 +00:00
*/
#include "opt_ktrace.h"
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/ipl.h>
1994-05-24 10:09:53 +00:00
#include <sys/kernel.h>
#include <sys/ktr.h>
2001-01-16 01:00:43 +00:00
#include <sys/condvar.h>
#include <sys/lock.h>
#include <sys/mutex.h>
1994-05-24 10:09:53 +00:00
#include <sys/signalvar.h>
#include <sys/resourcevar.h>
#include <sys/vmmeter.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
1994-05-24 10:09:53 +00:00
#ifdef KTRACE
#include <sys/uio.h>
1994-05-24 10:09:53 +00:00
#include <sys/ktrace.h>
#endif
#include <machine/cpu.h>
#include <machine/smp.h>
1994-05-24 10:09:53 +00:00
static void sched_setup __P((void *dummy));
SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
int hogticks;
int lbolt;
int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
1994-05-24 10:09:53 +00:00
static struct callout schedcpu_callout;
static struct callout roundrobin_callout;
1997-11-22 08:35:46 +00:00
static void endtsleep __P((void *));
1997-12-29 08:54:52 +00:00
static void roundrobin __P((void *arg));
static void schedcpu __P((void *arg));
static int
sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
{
int error, new_val;
new_val = sched_quantum * tick;
error = sysctl_handle_int(oidp, &new_val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (new_val < tick)
return (EINVAL);
sched_quantum = new_val / tick;
hogticks = 2 * sched_quantum;
return (0);
}
SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
/*
* Arrange to reschedule if necessary, taking the priorities and
* schedulers into account.
*/
2001-01-16 01:00:43 +00:00
void
Implement a unified run queue and adjust priority levels accordingly. - All processes go into the same array of queues, with different scheduling classes using different portions of the array. This allows user processes to have their priorities propogated up into interrupt thread range if need be. - I chose 64 run queues as an arbitrary number that is greater than 32. We used to have 4 separate arrays of 32 queues each, so this may not be optimal. The new run queue code was written with this in mind; changing the number of run queues only requires changing constants in runq.h and adjusting the priority levels. - The new run queue code takes the run queue as a parameter. This is intended to be used to create per-cpu run queues. Implement wrappers for compatibility with the old interface which pass in the global run queue structure. - Group the priority level, user priority, native priority (before propogation) and the scheduling class into a struct priority. - Change any hard coded priority levels that I found to use symbolic constants (TTIPRI and TTOPRI). - Remove the curpriority global variable and use that of curproc. This was used to detect when a process' priority had lowered and it should yield. We now effectively yield on every interrupt. - Activate propogate_priority(). It should now have the desired effect without needing to also propogate the scheduling class. - Temporarily comment out the call to vm_page_zero_idle() in the idle loop. It interfered with propogate_priority() because the idle process needed to do a non-blocking acquire of Giant and then other processes would try to propogate their priority onto it. The idle process should not do anything except idle. vm_page_zero_idle() will return in the form of an idle priority kernel thread which is woken up at apprioriate times by the vm system. - Update struct kinfo_proc to the new priority interface. Deliberately change its size by adjusting the spare fields. It remained the same size, but the layout has changed, so userland processes that use it would parse the data incorrectly. The size constraint should really be changed to an arbitrary version number. Also add a debug.sizeof sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
maybe_resched(p)
struct proc *p;
{
Implement a unified run queue and adjust priority levels accordingly. - All processes go into the same array of queues, with different scheduling classes using different portions of the array. This allows user processes to have their priorities propogated up into interrupt thread range if need be. - I chose 64 run queues as an arbitrary number that is greater than 32. We used to have 4 separate arrays of 32 queues each, so this may not be optimal. The new run queue code was written with this in mind; changing the number of run queues only requires changing constants in runq.h and adjusting the priority levels. - The new run queue code takes the run queue as a parameter. This is intended to be used to create per-cpu run queues. Implement wrappers for compatibility with the old interface which pass in the global run queue structure. - Group the priority level, user priority, native priority (before propogation) and the scheduling class into a struct priority. - Change any hard coded priority levels that I found to use symbolic constants (TTIPRI and TTOPRI). - Remove the curpriority global variable and use that of curproc. This was used to detect when a process' priority had lowered and it should yield. We now effectively yield on every interrupt. - Activate propogate_priority(). It should now have the desired effect without needing to also propogate the scheduling class. - Temporarily comment out the call to vm_page_zero_idle() in the idle loop. It interfered with propogate_priority() because the idle process needed to do a non-blocking acquire of Giant and then other processes would try to propogate their priority onto it. The idle process should not do anything except idle. vm_page_zero_idle() will return in the form of an idle priority kernel thread which is woken up at apprioriate times by the vm system. - Update struct kinfo_proc to the new priority interface. Deliberately change its size by adjusting the spare fields. It remained the same size, but the layout has changed, so userland processes that use it would parse the data incorrectly. The size constraint should really be changed to an arbitrary version number. Also add a debug.sizeof sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
if (p->p_pri.pri_level < curproc->p_pri.pri_level)
need_resched();
}
int
roundrobin_interval(void)
{
return (sched_quantum);
}
1994-05-24 10:09:53 +00:00
/*
* Force switch among equal priority processes every 100ms.
*/
/* ARGSUSED */
static void
1994-05-24 10:09:53 +00:00
roundrobin(arg)
void *arg;
{
mtx_lock_spin(&sched_lock);
need_resched();
mtx_unlock_spin(&sched_lock);
#ifdef SMP
forward_roundrobin();
#endif
1994-05-24 10:09:53 +00:00
callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
1994-05-24 10:09:53 +00:00
}
/*
* Constants for digital decay and forget:
* 90% of (p_estcpu) usage in 5 * loadav time
* 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
* Note that, as ps(1) mentions, this can let percentages
* total over 100% (I've seen 137.9% for 3 processes).
*
* Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
1994-05-24 10:09:53 +00:00
*
* We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
* That is, the system wants to compute a value of decay such
* that the following for loop:
* for (i = 0; i < (5 * loadavg); i++)
* p_estcpu *= decay;
* will compute
* p_estcpu *= 0.1;
* for all values of loadavg:
*
* Mathematically this loop can be expressed by saying:
* decay ** (5 * loadavg) ~= .1
*
* The system computes decay as:
* decay = (2 * loadavg) / (2 * loadavg + 1)
*
* We wish to prove that the system's computation of decay
* will always fulfill the equation:
* decay ** (5 * loadavg) ~= .1
*
* If we compute b as:
* b = 2 * loadavg
* then
* decay = b / (b + 1)
*
* We now need to prove two things:
* 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
* 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
1995-05-30 08:16:23 +00:00
*
1994-05-24 10:09:53 +00:00
* Facts:
* For x close to zero, exp(x) =~ 1 + x, since
* exp(x) = 0! + x**1/1! + x**2/2! + ... .
* therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
* For x close to zero, ln(1+x) =~ x, since
* ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
* therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
* ln(.1) =~ -2.30
*
* Proof of (1):
* Solve (factor)**(power) =~ .1 given power (5*loadav):
* solving for factor,
* ln(factor) =~ (-2.30/5*loadav), or
* factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
* exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
*
* Proof of (2):
* Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
* solving for power,
* power*ln(b/(b+1)) =~ -2.30, or
* power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
*
* Actual power values for the implemented algorithm are as follows:
* loadav: 1 2 3 4
* power: 5.68 10.32 14.94 19.55
*/
/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
#define loadfactor(loadav) (2 * (loadav))
#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
1997-11-22 08:35:46 +00:00
static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
1994-05-24 10:09:53 +00:00
/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
static int fscale __unused = FSCALE;
SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
1994-05-24 10:09:53 +00:00
/*
* If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
* faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
* and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
*
* To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
* 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
*
* If you don't want to bother with the faster/more-accurate formula, you
1994-05-24 10:09:53 +00:00
* can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
* (more general) method of calculating the %age of CPU used by a process.
*/
#define CCPU_SHIFT 11
/*
* Recompute process priorities, every hz ticks.
2000-12-01 04:55:52 +00:00
* MP-safe, called without the Giant mutex.
1994-05-24 10:09:53 +00:00
*/
/* ARGSUSED */
static void
1994-05-24 10:09:53 +00:00
schedcpu(arg)
void *arg;
{
register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
register struct proc *p;
register int realstathz, s;
1994-05-24 10:09:53 +00:00
realstathz = stathz ? stathz : hz;
ALLPROC_LOCK(AP_SHARED);
LIST_FOREACH(p, &allproc, p_list) {
1994-05-24 10:09:53 +00:00
/*
* Increment time in/out of memory and sleep time
* (if sleeping). We ignore overflow; with 16-bit int's
* (remember them?) overflow takes 45 days.
if (p->p_stat == SWAIT)
continue;
1994-05-24 10:09:53 +00:00
*/
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
p->p_swtime++;
if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
p->p_slptime++;
p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
/*
* If the process has slept the entire second,
* stop recalculating its priority until it wakes up.
*/
- Change fast interrupts on x86 to push a full interrupt frame and to return through doreti to handle ast's. This is necessary for the clock interrupts to work properly. - Change the clock interrupts on the x86 to be fast instead of threaded. This is needed because both hardclock() and statclock() need to run in the context of the current process, not in a separate thread context. - Kill the prevproc hack as it is no longer needed. - We really need Giant when we call psignal(), but we don't want to block during the clock interrupt. Instead, use two p_flag's in the proc struct to mark the current process as having a pending SIGVTALRM or a SIGPROF and let them be delivered during ast() when hardclock() has finished running. - Remove CLKF_BASEPRI, which was #ifdef'd out on the x86 anyways. It was broken on the x86 if it was turned on since cpl is gone. It's only use was to bogusly run softclock() directly during hardclock() rather than scheduling an SWI. - Remove the COM_LOCK simplelock and replace it with a clock_lock spin mutex. Since the spin mutex already handles disabling/restoring interrupts appropriately, this also lets us axe all the *_intr() fu. - Back out the hacks in the APIC_IO x86 cpu_initclocks() code to use temporary fast interrupts for the APIC trial. - Add two new process flags P_ALRMPEND and P_PROFPEND to mark the pending signals in hardclock() that are to be delivered in ast(). Submitted by: jakeb (making statclock safe in a fast interrupt) Submitted by: cp (concept of delaying signals until ast())
2000-10-06 02:20:21 +00:00
if (p->p_slptime > 1) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
continue;
- Change fast interrupts on x86 to push a full interrupt frame and to return through doreti to handle ast's. This is necessary for the clock interrupts to work properly. - Change the clock interrupts on the x86 to be fast instead of threaded. This is needed because both hardclock() and statclock() need to run in the context of the current process, not in a separate thread context. - Kill the prevproc hack as it is no longer needed. - We really need Giant when we call psignal(), but we don't want to block during the clock interrupt. Instead, use two p_flag's in the proc struct to mark the current process as having a pending SIGVTALRM or a SIGPROF and let them be delivered during ast() when hardclock() has finished running. - Remove CLKF_BASEPRI, which was #ifdef'd out on the x86 anyways. It was broken on the x86 if it was turned on since cpl is gone. It's only use was to bogusly run softclock() directly during hardclock() rather than scheduling an SWI. - Remove the COM_LOCK simplelock and replace it with a clock_lock spin mutex. Since the spin mutex already handles disabling/restoring interrupts appropriately, this also lets us axe all the *_intr() fu. - Back out the hacks in the APIC_IO x86 cpu_initclocks() code to use temporary fast interrupts for the APIC trial. - Add two new process flags P_ALRMPEND and P_PROFPEND to mark the pending signals in hardclock() that are to be delivered in ast(). Submitted by: jakeb (making statclock safe in a fast interrupt) Submitted by: cp (concept of delaying signals until ast())
2000-10-06 02:20:21 +00:00
}
/*
* prevent state changes and protect run queue
*/
s = splhigh();
1994-05-24 10:09:53 +00:00
/*
* p_pctcpu is only for ps.
*/
#if (FSHIFT >= CCPU_SHIFT)
p->p_pctcpu += (realstathz == 100)?
1994-05-24 10:09:53 +00:00
((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
100 * (((fixpt_t) p->p_cpticks)
<< (FSHIFT - CCPU_SHIFT)) / realstathz;
1994-05-24 10:09:53 +00:00
#else
p->p_pctcpu += ((FSCALE - ccpu) *
(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
1994-05-24 10:09:53 +00:00
#endif
p->p_cpticks = 0;
Scheduler fixes equivalent to the ones logged in the following NetBSD commit to kern_synch.c: ---------------------------- revision 1.55 date: 1999/02/23 02:56:03; author: ross; state: Exp; lines: +39 -10 Scheduler bug fixes and reorganization * fix the ancient nice(1) bug, where nice +20 processes incorrectly steal 10 - 20% of the CPU, (or even more depending on load average) * provide a new schedclk() mechanism at a new clock at schedhz, so high platform hz values don't cause nice +0 processes to look like they are niced * change the algorithm slightly, and reorganize the code a lot * fix percent-CPU calculation bugs, and eliminate some no-op code === nice bug === Correctly divide the scheduler queues between niced and compute-bound processes. The current nice weight of two (sort of, see `algorithm change' below) neatly divides the USRPRI queues in half; this should have been used to clip p_estcpu, instead of UCHAR_MAX. Besides being the wrong amount, clipping an unsigned char to UCHAR_MAX is a no-op, and it was done after decay_cpu() which can only _reduce_ the value. It has to be kept <= NICE_WEIGHT * PRIO_MAX - PPQ or processes can scheduler-penalize themselves onto the same queue as nice +20 processes. (Or even a higher one.) === New schedclk() mechansism === Some platforms should be cutting down stathz before hitting the scheduler, since the scheduler algorithm only works right in the vicinity of 64 Hz. Rather than prescale hz, then scale back and forth by 4 every time p_estcpu is touched (each occurance an abstraction violation), use p_estcpu without scaling and require schedhz to be generated directly at the right frequency. Use a default stathz (well, actually, profhz) / 4, so nothing changes unless a platform defines schedhz and a new clock. Define these for alpha, where hz==1024, and nice was totally broke. === Algorithm change === The nice value used to be added to the exponentially-decayed scheduler history value p_estcpu, in _addition_ to be incorporated directly (with greater wieght) into the priority calculation. At first glance, it appears to be a pointless increase of 1/8 the nice effect (pri = p_estcpu/4 + nice*2), but it's actually at least 3x that because it will ramp up linearly but be decayed only exponentially, thus converging to an additional .75 nice for a loadaverage of one. I killed this, it makes the behavior hard to control, almost impossible to analyze, and the effect (~~nothing at for the first second, then somewhat increased niceness after three seconds or more, depending on load average) pointless. === Other bugs === hz -> profhz in the p_pctcpu = f(p_cpticks) calcuation. Collect scheduler functionality. Try to put each abstraction in just one place. ---------------------------- The details are a little different in FreeBSD: === nice bug === Fixing this is the main point of this commit. We use essentially the same clipping rule as NetBSD (our limit on p_estcpu differs by a scale factor). However, clipping at all is fundamentally bad. It gives free CPU the hoggiest hogs once they reach the limit, and reaching the limit is normal for long-running hogs. This will be fixed later. === New schedclk() mechanism === We don't use the NetBSD schedclk() (now schedclock()) mechanism. We require (real)stathz to be about 128 and scale by an extra factor of 2 compared with NetBSD's statclock(). We scale p_estcpu instead of scaling the clock. This is more accurate and flexible. === Algorithm change === Same change. === Other bugs === The p_pctcpu bug was fixed long ago. We don't try as hard to abstract functionality yet. Related changes: the new limit on p_estcpu must be exported to kern_exit.c for clipping in wait1(). Agreed with by: dufault
1999-11-28 12:12:13 +00:00
p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
1994-05-24 10:09:53 +00:00
resetpriority(p);
Implement a unified run queue and adjust priority levels accordingly. - All processes go into the same array of queues, with different scheduling classes using different portions of the array. This allows user processes to have their priorities propogated up into interrupt thread range if need be. - I chose 64 run queues as an arbitrary number that is greater than 32. We used to have 4 separate arrays of 32 queues each, so this may not be optimal. The new run queue code was written with this in mind; changing the number of run queues only requires changing constants in runq.h and adjusting the priority levels. - The new run queue code takes the run queue as a parameter. This is intended to be used to create per-cpu run queues. Implement wrappers for compatibility with the old interface which pass in the global run queue structure. - Group the priority level, user priority, native priority (before propogation) and the scheduling class into a struct priority. - Change any hard coded priority levels that I found to use symbolic constants (TTIPRI and TTOPRI). - Remove the curpriority global variable and use that of curproc. This was used to detect when a process' priority had lowered and it should yield. We now effectively yield on every interrupt. - Activate propogate_priority(). It should now have the desired effect without needing to also propogate the scheduling class. - Temporarily comment out the call to vm_page_zero_idle() in the idle loop. It interfered with propogate_priority() because the idle process needed to do a non-blocking acquire of Giant and then other processes would try to propogate their priority onto it. The idle process should not do anything except idle. vm_page_zero_idle() will return in the form of an idle priority kernel thread which is woken up at apprioriate times by the vm system. - Update struct kinfo_proc to the new priority interface. Deliberately change its size by adjusting the spare fields. It remained the same size, but the layout has changed, so userland processes that use it would parse the data incorrectly. The size constraint should really be changed to an arbitrary version number. Also add a debug.sizeof sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
if (p->p_pri.pri_level >= PUSER) {
1994-05-24 10:09:53 +00:00
if ((p != curproc) &&
#ifdef SMP
p->p_oncpu == NOCPU && /* idle */
#endif
1994-05-24 10:09:53 +00:00
p->p_stat == SRUN &&
(p->p_sflag & PS_INMEM) &&
Implement a unified run queue and adjust priority levels accordingly. - All processes go into the same array of queues, with different scheduling classes using different portions of the array. This allows user processes to have their priorities propogated up into interrupt thread range if need be. - I chose 64 run queues as an arbitrary number that is greater than 32. We used to have 4 separate arrays of 32 queues each, so this may not be optimal. The new run queue code was written with this in mind; changing the number of run queues only requires changing constants in runq.h and adjusting the priority levels. - The new run queue code takes the run queue as a parameter. This is intended to be used to create per-cpu run queues. Implement wrappers for compatibility with the old interface which pass in the global run queue structure. - Group the priority level, user priority, native priority (before propogation) and the scheduling class into a struct priority. - Change any hard coded priority levels that I found to use symbolic constants (TTIPRI and TTOPRI). - Remove the curpriority global variable and use that of curproc. This was used to detect when a process' priority had lowered and it should yield. We now effectively yield on every interrupt. - Activate propogate_priority(). It should now have the desired effect without needing to also propogate the scheduling class. - Temporarily comment out the call to vm_page_zero_idle() in the idle loop. It interfered with propogate_priority() because the idle process needed to do a non-blocking acquire of Giant and then other processes would try to propogate their priority onto it. The idle process should not do anything except idle. vm_page_zero_idle() will return in the form of an idle priority kernel thread which is woken up at apprioriate times by the vm system. - Update struct kinfo_proc to the new priority interface. Deliberately change its size by adjusting the spare fields. It remained the same size, but the layout has changed, so userland processes that use it would parse the data incorrectly. The size constraint should really be changed to an arbitrary version number. Also add a debug.sizeof sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
(p->p_pri.pri_level / RQ_PPQ) !=
(p->p_pri.pri_user / RQ_PPQ)) {
remrunqueue(p);
Implement a unified run queue and adjust priority levels accordingly. - All processes go into the same array of queues, with different scheduling classes using different portions of the array. This allows user processes to have their priorities propogated up into interrupt thread range if need be. - I chose 64 run queues as an arbitrary number that is greater than 32. We used to have 4 separate arrays of 32 queues each, so this may not be optimal. The new run queue code was written with this in mind; changing the number of run queues only requires changing constants in runq.h and adjusting the priority levels. - The new run queue code takes the run queue as a parameter. This is intended to be used to create per-cpu run queues. Implement wrappers for compatibility with the old interface which pass in the global run queue structure. - Group the priority level, user priority, native priority (before propogation) and the scheduling class into a struct priority. - Change any hard coded priority levels that I found to use symbolic constants (TTIPRI and TTOPRI). - Remove the curpriority global variable and use that of curproc. This was used to detect when a process' priority had lowered and it should yield. We now effectively yield on every interrupt. - Activate propogate_priority(). It should now have the desired effect without needing to also propogate the scheduling class. - Temporarily comment out the call to vm_page_zero_idle() in the idle loop. It interfered with propogate_priority() because the idle process needed to do a non-blocking acquire of Giant and then other processes would try to propogate their priority onto it. The idle process should not do anything except idle. vm_page_zero_idle() will return in the form of an idle priority kernel thread which is woken up at apprioriate times by the vm system. - Update struct kinfo_proc to the new priority interface. Deliberately change its size by adjusting the spare fields. It remained the same size, but the layout has changed, so userland processes that use it would parse the data incorrectly. The size constraint should really be changed to an arbitrary version number. Also add a debug.sizeof sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
p->p_pri.pri_level = p->p_pri.pri_user;
1994-05-24 10:09:53 +00:00
setrunqueue(p);
} else
Implement a unified run queue and adjust priority levels accordingly. - All processes go into the same array of queues, with different scheduling classes using different portions of the array. This allows user processes to have their priorities propogated up into interrupt thread range if need be. - I chose 64 run queues as an arbitrary number that is greater than 32. We used to have 4 separate arrays of 32 queues each, so this may not be optimal. The new run queue code was written with this in mind; changing the number of run queues only requires changing constants in runq.h and adjusting the priority levels. - The new run queue code takes the run queue as a parameter. This is intended to be used to create per-cpu run queues. Implement wrappers for compatibility with the old interface which pass in the global run queue structure. - Group the priority level, user priority, native priority (before propogation) and the scheduling class into a struct priority. - Change any hard coded priority levels that I found to use symbolic constants (TTIPRI and TTOPRI). - Remove the curpriority global variable and use that of curproc. This was used to detect when a process' priority had lowered and it should yield. We now effectively yield on every interrupt. - Activate propogate_priority(). It should now have the desired effect without needing to also propogate the scheduling class. - Temporarily comment out the call to vm_page_zero_idle() in the idle loop. It interfered with propogate_priority() because the idle process needed to do a non-blocking acquire of Giant and then other processes would try to propogate their priority onto it. The idle process should not do anything except idle. vm_page_zero_idle() will return in the form of an idle priority kernel thread which is woken up at apprioriate times by the vm system. - Update struct kinfo_proc to the new priority interface. Deliberately change its size by adjusting the spare fields. It remained the same size, but the layout has changed, so userland processes that use it would parse the data incorrectly. The size constraint should really be changed to an arbitrary version number. Also add a debug.sizeof sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
p->p_pri.pri_level = p->p_pri.pri_user;
1994-05-24 10:09:53 +00:00
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
splx(s);
}
ALLPROC_LOCK(AP_RELEASE);
1994-05-24 10:09:53 +00:00
vmmeter();
wakeup((caddr_t)&lbolt);
callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
1994-05-24 10:09:53 +00:00
}
/*
* Recalculate the priority of a process after it has slept for a while.
* For all load averages >= 1 and max p_estcpu of 255, sleeping for at
* least six times the loadfactor will decay p_estcpu to zero.
*/
2001-01-16 01:00:43 +00:00
void
1994-05-24 10:09:53 +00:00
updatepri(p)
register struct proc *p;
{
register unsigned int newcpu = p->p_estcpu;
register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
if (p->p_slptime > 5 * loadfac)
p->p_estcpu = 0;
else {
p->p_slptime--; /* the first time was done in schedcpu */
while (newcpu && --p->p_slptime)
Scheduler fixes equivalent to the ones logged in the following NetBSD commit to kern_synch.c: ---------------------------- revision 1.55 date: 1999/02/23 02:56:03; author: ross; state: Exp; lines: +39 -10 Scheduler bug fixes and reorganization * fix the ancient nice(1) bug, where nice +20 processes incorrectly steal 10 - 20% of the CPU, (or even more depending on load average) * provide a new schedclk() mechanism at a new clock at schedhz, so high platform hz values don't cause nice +0 processes to look like they are niced * change the algorithm slightly, and reorganize the code a lot * fix percent-CPU calculation bugs, and eliminate some no-op code === nice bug === Correctly divide the scheduler queues between niced and compute-bound processes. The current nice weight of two (sort of, see `algorithm change' below) neatly divides the USRPRI queues in half; this should have been used to clip p_estcpu, instead of UCHAR_MAX. Besides being the wrong amount, clipping an unsigned char to UCHAR_MAX is a no-op, and it was done after decay_cpu() which can only _reduce_ the value. It has to be kept <= NICE_WEIGHT * PRIO_MAX - PPQ or processes can scheduler-penalize themselves onto the same queue as nice +20 processes. (Or even a higher one.) === New schedclk() mechansism === Some platforms should be cutting down stathz before hitting the scheduler, since the scheduler algorithm only works right in the vicinity of 64 Hz. Rather than prescale hz, then scale back and forth by 4 every time p_estcpu is touched (each occurance an abstraction violation), use p_estcpu without scaling and require schedhz to be generated directly at the right frequency. Use a default stathz (well, actually, profhz) / 4, so nothing changes unless a platform defines schedhz and a new clock. Define these for alpha, where hz==1024, and nice was totally broke. === Algorithm change === The nice value used to be added to the exponentially-decayed scheduler history value p_estcpu, in _addition_ to be incorporated directly (with greater wieght) into the priority calculation. At first glance, it appears to be a pointless increase of 1/8 the nice effect (pri = p_estcpu/4 + nice*2), but it's actually at least 3x that because it will ramp up linearly but be decayed only exponentially, thus converging to an additional .75 nice for a loadaverage of one. I killed this, it makes the behavior hard to control, almost impossible to analyze, and the effect (~~nothing at for the first second, then somewhat increased niceness after three seconds or more, depending on load average) pointless. === Other bugs === hz -> profhz in the p_pctcpu = f(p_cpticks) calcuation. Collect scheduler functionality. Try to put each abstraction in just one place. ---------------------------- The details are a little different in FreeBSD: === nice bug === Fixing this is the main point of this commit. We use essentially the same clipping rule as NetBSD (our limit on p_estcpu differs by a scale factor). However, clipping at all is fundamentally bad. It gives free CPU the hoggiest hogs once they reach the limit, and reaching the limit is normal for long-running hogs. This will be fixed later. === New schedclk() mechanism === We don't use the NetBSD schedclk() (now schedclock()) mechanism. We require (real)stathz to be about 128 and scale by an extra factor of 2 compared with NetBSD's statclock(). We scale p_estcpu instead of scaling the clock. This is more accurate and flexible. === Algorithm change === Same change. === Other bugs === The p_pctcpu bug was fixed long ago. We don't try as hard to abstract functionality yet. Related changes: the new limit on p_estcpu must be exported to kern_exit.c for clipping in wait1(). Agreed with by: dufault
1999-11-28 12:12:13 +00:00
newcpu = decay_cpu(loadfac, newcpu);
p->p_estcpu = newcpu;
1994-05-24 10:09:53 +00:00
}
resetpriority(p);
}
/*
* We're only looking at 7 bits of the address; everything is
* aligned to 4, lots of things are aligned to greater powers
* of 2. Shift right by 8, i.e. drop the bottom 256 worth.
*/
#define TABLESIZE 128
static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
#define LOOKUP(x) (((intptr_t)(x) >> 8) & (TABLESIZE - 1))
1994-05-24 10:09:53 +00:00
void
sleepinit(void)
{
int i;
sched_quantum = hz/10;
hogticks = 2 * sched_quantum;
for (i = 0; i < TABLESIZE; i++)
TAILQ_INIT(&slpque[i]);
}
1994-05-24 10:09:53 +00:00
/*
* General sleep call. Suspends the current process until a wakeup is
* performed on the specified identifier. The process will then be made
* runnable with the specified priority. Sleeps at most timo/hz seconds
* (0 means no timeout). If pri includes PCATCH flag, signals are checked
* before and after sleeping, else signals are not checked. Returns 0 if
* awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
* signal needs to be delivered, ERESTART is returned if the current system
* call should be restarted if possible, and EINTR is returned if the system
* call should be interrupted by the signal (return EINTR).
*
* The mutex argument is exited before the caller is suspended, and
* entered before msleep returns. If priority includes the PDROP
* flag the mutex is not entered before returning.
1994-05-24 10:09:53 +00:00
*/
int
msleep(ident, mtx, priority, wmesg, timo)
1994-05-24 10:09:53 +00:00
void *ident;
struct mtx *mtx;
1994-05-24 10:09:53 +00:00
int priority, timo;
1997-11-21 11:37:03 +00:00
const char *wmesg;
1994-05-24 10:09:53 +00:00
{
struct proc *p = curproc;
int s, sig, catch = priority & PCATCH;
int rval = 0;
WITNESS_SAVE_DECL(mtx);
1994-05-24 10:09:53 +00:00
#ifdef KTRACE
if (p && KTRPOINT(p, KTR_CSW))
1994-05-24 10:09:53 +00:00
ktrcsw(p->p_tracep, 1, 0);
#endif
WITNESS_SLEEP(0, mtx);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
s = splhigh();
if (cold || panicstr) {
/*
* After a panic, or during autoconfiguration,
* just give interrupts a chance, then just return;
* don't run any other procs or panic below,
* in case this is the idle process and already asleep.
*/
if (mtx != NULL && priority & PDROP)
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_flags(mtx, MTX_NOSWITCH);
mtx_unlock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
splx(s);
return (0);
}
DROP_GIANT_NOSWITCH();
if (mtx != NULL) {
mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
WITNESS_SAVE(mtx, mtx);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_flags(mtx, MTX_NOSWITCH);
if (priority & PDROP)
mtx = NULL;
}
KASSERT(p != NULL, ("msleep1"));
KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
/*
* Process may be sitting on a slpque if asleep() was called, remove
* it before re-adding.
*/
if (p->p_wchan != NULL)
unsleep(p);
1994-05-24 10:09:53 +00:00
p->p_wchan = ident;
p->p_wmesg = wmesg;
p->p_slptime = 0;
Implement a unified run queue and adjust priority levels accordingly. - All processes go into the same array of queues, with different scheduling classes using different portions of the array. This allows user processes to have their priorities propogated up into interrupt thread range if need be. - I chose 64 run queues as an arbitrary number that is greater than 32. We used to have 4 separate arrays of 32 queues each, so this may not be optimal. The new run queue code was written with this in mind; changing the number of run queues only requires changing constants in runq.h and adjusting the priority levels. - The new run queue code takes the run queue as a parameter. This is intended to be used to create per-cpu run queues. Implement wrappers for compatibility with the old interface which pass in the global run queue structure. - Group the priority level, user priority, native priority (before propogation) and the scheduling class into a struct priority. - Change any hard coded priority levels that I found to use symbolic constants (TTIPRI and TTOPRI). - Remove the curpriority global variable and use that of curproc. This was used to detect when a process' priority had lowered and it should yield. We now effectively yield on every interrupt. - Activate propogate_priority(). It should now have the desired effect without needing to also propogate the scheduling class. - Temporarily comment out the call to vm_page_zero_idle() in the idle loop. It interfered with propogate_priority() because the idle process needed to do a non-blocking acquire of Giant and then other processes would try to propogate their priority onto it. The idle process should not do anything except idle. vm_page_zero_idle() will return in the form of an idle priority kernel thread which is woken up at apprioriate times by the vm system. - Update struct kinfo_proc to the new priority interface. Deliberately change its size by adjusting the spare fields. It remained the same size, but the layout has changed, so userland processes that use it would parse the data incorrectly. The size constraint should really be changed to an arbitrary version number. Also add a debug.sizeof sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
p->p_pri.pri_level = priority & PRIMASK;
CTR4(KTR_PROC, "msleep: proc %p (pid %d, %s), schedlock %p",
2000-09-10 13:34:35 +00:00
p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
1994-05-24 10:09:53 +00:00
if (timo)
callout_reset(&p->p_slpcallout, timo, endtsleep, p);
1994-05-24 10:09:53 +00:00
/*
* We put ourselves on the sleep queue and start our timeout
* before calling CURSIG, as we could stop there, and a wakeup
* or a SIGCONT (or both) could occur while we were stopped.
* A SIGCONT would cause us to be marked as SSLEEP
* without resuming us, thus we must be ready for sleep
* when CURSIG is called. If the wakeup happens while we're
* stopped, p->p_wchan will be 0 upon return from CURSIG.
*/
if (catch) {
CTR4(KTR_PROC,
"msleep caught: proc %p (pid %d, %s), schedlock %p",
2000-09-10 13:34:35 +00:00
p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
p->p_sflag |= PS_SINTR;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
if ((sig = CURSIG(p))) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
if (p->p_wchan)
unsleep(p);
p->p_stat = SRUN;
goto resume;
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
if (p->p_wchan == NULL) {
1994-05-24 10:09:53 +00:00
catch = 0;
goto resume;
}
} else
sig = 0;
p->p_stat = SSLEEP;
p->p_stats->p_ru.ru_nvcsw++;
mi_switch();
CTR4(KTR_PROC,
"msleep resume: proc %p (pid %d, %s), schedlock %p",
2000-09-10 13:34:35 +00:00
p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
1994-05-24 10:09:53 +00:00
resume:
splx(s);
p->p_sflag &= ~PS_SINTR;
if (p->p_sflag & PS_TIMEOUT) {
p->p_sflag &= ~PS_TIMEOUT;
1994-05-24 10:09:53 +00:00
if (sig == 0) {
#ifdef KTRACE
if (KTRPOINT(p, KTR_CSW))
ktrcsw(p->p_tracep, 0, 0);
#endif
rval = EWOULDBLOCK;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
goto out;
1994-05-24 10:09:53 +00:00
}
} else if (timo)
callout_stop(&p->p_slpcallout);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
if (catch && (sig != 0 || (sig = CURSIG(p)))) {
#ifdef KTRACE
if (KTRPOINT(p, KTR_CSW))
ktrcsw(p->p_tracep, 0, 0);
#endif
if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
rval = EINTR;
else
rval = ERESTART;
goto out;
1994-05-24 10:09:53 +00:00
}
out:
1994-05-24 10:09:53 +00:00
#ifdef KTRACE
if (KTRPOINT(p, KTR_CSW))
ktrcsw(p->p_tracep, 0, 0);
#endif
PICKUP_GIANT();
if (mtx != NULL) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(mtx);
WITNESS_RESTORE(mtx, mtx);
}
return (rval);
1994-05-24 10:09:53 +00:00
}
/*
* asleep() - async sleep call. Place process on wait queue and return
* immediately without blocking. The process stays runnable until mawait()
* is called. If ident is NULL, remove process from wait queue if it is still
* on one.
*
* Only the most recent sleep condition is effective when making successive
* calls to asleep() or when calling msleep().
*
* The timeout, if any, is not initiated until mawait() is called. The sleep
* priority, signal, and timeout is specified in the asleep() call but may be
* overriden in the mawait() call.
*
* <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
*/
int
asleep(void *ident, int priority, const char *wmesg, int timo)
{
struct proc *p = curproc;
int s;
/*
* obtain sched_lock while manipulating sleep structures and slpque.
*
* Remove preexisting wait condition (if any) and place process
* on appropriate slpque, but do not put process to sleep.
*/
s = splhigh();
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
if (p->p_wchan != NULL)
unsleep(p);
if (ident) {
p->p_wchan = ident;
p->p_wmesg = wmesg;
p->p_slptime = 0;
p->p_asleep.as_priority = priority;
p->p_asleep.as_timo = timo;
TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
splx(s);
return(0);
}
/*
* mawait() - wait for async condition to occur. The process blocks until
* wakeup() is called on the most recent asleep() address. If wakeup is called
* prior to mawait(), mawait() winds up being a NOP.
*
* If mawait() is called more then once (without an intervening asleep() call),
* mawait() is still effectively a NOP but it calls mi_switch() to give other
* processes some cpu before returning. The process is left runnable.
*
* <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
*/
int
mawait(struct mtx *mtx, int priority, int timo)
{
struct proc *p = curproc;
int rval = 0;
int s;
WITNESS_SAVE_DECL(mtx);
WITNESS_SLEEP(0, mtx);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
DROP_GIANT_NOSWITCH();
if (mtx != NULL) {
mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
WITNESS_SAVE(mtx, mtx);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_flags(mtx, MTX_NOSWITCH);
if (priority & PDROP)
mtx = NULL;
}
s = splhigh();
if (p->p_wchan != NULL) {
int sig;
int catch;
/*
* The call to mawait() can override defaults specified in
* the original asleep().
*/
if (priority < 0)
priority = p->p_asleep.as_priority;
if (timo < 0)
timo = p->p_asleep.as_timo;
/*
* Install timeout
*/
if (timo)
callout_reset(&p->p_slpcallout, timo, endtsleep, p);
sig = 0;
catch = priority & PCATCH;
if (catch) {
p->p_sflag |= PS_SINTR;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
if ((sig = CURSIG(p))) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
if (p->p_wchan)
unsleep(p);
p->p_stat = SRUN;
goto resume;
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
if (p->p_wchan == NULL) {
catch = 0;
goto resume;
}
}
p->p_stat = SSLEEP;
p->p_stats->p_ru.ru_nvcsw++;
mi_switch();
resume:
splx(s);
p->p_sflag &= ~PS_SINTR;
if (p->p_sflag & PS_TIMEOUT) {
p->p_sflag &= ~PS_TIMEOUT;
if (sig == 0) {
#ifdef KTRACE
if (KTRPOINT(p, KTR_CSW))
ktrcsw(p->p_tracep, 0, 0);
#endif
rval = EWOULDBLOCK;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
goto out;
}
} else if (timo)
callout_stop(&p->p_slpcallout);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
if (catch && (sig != 0 || (sig = CURSIG(p)))) {
#ifdef KTRACE
if (KTRPOINT(p, KTR_CSW))
ktrcsw(p->p_tracep, 0, 0);
#endif
if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
rval = EINTR;
else
rval = ERESTART;
goto out;
}
#ifdef KTRACE
if (KTRPOINT(p, KTR_CSW))
ktrcsw(p->p_tracep, 0, 0);
#endif
} else {
/*
* If as_priority is 0, mawait() has been called without an
* intervening asleep(). We are still effectively a NOP,
* but we call mi_switch() for safety.
*/
if (p->p_asleep.as_priority == 0) {
p->p_stats->p_ru.ru_nvcsw++;
mi_switch();
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
splx(s);
}
/*
* clear p_asleep.as_priority as an indication that mawait() has been
* called. If mawait() is called again without an intervening asleep(),
* mawait() is still effectively a NOP but the above mi_switch() code
* is triggered as a safety.
*/
p->p_asleep.as_priority = 0;
out:
PICKUP_GIANT();
if (mtx != NULL) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(mtx);
WITNESS_RESTORE(mtx, mtx);
}
return (rval);
}
/*
* Implement timeout for msleep or asleep()/mawait()
*
1994-05-24 10:09:53 +00:00
* If process hasn't been awakened (wchan non-zero),
* set timeout flag and undo the sleep. If proc
* is stopped, just unsleep so it will remain stopped.
2000-12-01 04:55:52 +00:00
* MP-safe, called without the Giant mutex.
1994-05-24 10:09:53 +00:00
*/
1997-11-22 08:35:46 +00:00
static void
1994-05-24 10:09:53 +00:00
endtsleep(arg)
void *arg;
{
register struct proc *p;
int s;
p = (struct proc *)arg;
CTR4(KTR_PROC,
2000-09-10 13:34:35 +00:00
"endtsleep: proc %p (pid %d, %s), schedlock %p",
p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
1994-05-24 10:09:53 +00:00
s = splhigh();
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
if (p->p_wchan) {
if (p->p_stat == SSLEEP)
setrunnable(p);
else
unsleep(p);
p->p_sflag |= PS_TIMEOUT;
1994-05-24 10:09:53 +00:00
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
splx(s);
}
/*
* Remove a process from its wait queue
*/
void
unsleep(p)
register struct proc *p;
{
int s;
s = splhigh();
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
if (p->p_wchan) {
TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
p->p_wchan = NULL;
1994-05-24 10:09:53 +00:00
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
splx(s);
}
/*
* Make all processes sleeping on the specified identifier runnable.
*/
void
wakeup(ident)
register void *ident;
{
register struct slpquehead *qp;
register struct proc *p;
1994-05-24 10:09:53 +00:00
int s;
s = splhigh();
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
qp = &slpque[LOOKUP(ident)];
restart:
TAILQ_FOREACH(p, qp, p_slpq) {
1994-05-24 10:09:53 +00:00
if (p->p_wchan == ident) {
TAILQ_REMOVE(qp, p, p_slpq);
p->p_wchan = NULL;
1994-05-24 10:09:53 +00:00
if (p->p_stat == SSLEEP) {
/* OPTIMIZED EXPANSION OF setrunnable(p); */
CTR4(KTR_PROC,
2000-09-10 13:34:35 +00:00
"wakeup: proc %p (pid %d, %s), schedlock %p",
p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
1994-05-24 10:09:53 +00:00
if (p->p_slptime > 1)
updatepri(p);
p->p_slptime = 0;
p->p_stat = SRUN;
if (p->p_sflag & PS_INMEM) {
1994-05-24 10:09:53 +00:00
setrunqueue(p);
maybe_resched(p);
} else {
p->p_sflag |= PS_SWAPINREQ;
wakeup((caddr_t)&proc0);
}
/* END INLINE EXPANSION */
goto restart;
}
}
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
splx(s);
}
/*
* Make a process sleeping on the specified identifier runnable.
2000-05-07 05:09:45 +00:00
* May wake more than one process if a target process is currently
* swapped out.
*/
void
wakeup_one(ident)
register void *ident;
{
register struct slpquehead *qp;
register struct proc *p;
int s;
s = splhigh();
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
qp = &slpque[LOOKUP(ident)];
TAILQ_FOREACH(p, qp, p_slpq) {
if (p->p_wchan == ident) {
TAILQ_REMOVE(qp, p, p_slpq);
p->p_wchan = NULL;
if (p->p_stat == SSLEEP) {
/* OPTIMIZED EXPANSION OF setrunnable(p); */
CTR4(KTR_PROC,
2000-09-10 13:34:35 +00:00
"wakeup1: proc %p (pid %d, %s), schedlock %p",
p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
if (p->p_slptime > 1)
updatepri(p);
p->p_slptime = 0;
p->p_stat = SRUN;
if (p->p_sflag & PS_INMEM) {
setrunqueue(p);
maybe_resched(p);
break;
} else {
p->p_sflag |= PS_SWAPINREQ;
wakeup((caddr_t)&proc0);
}
1994-05-24 10:09:53 +00:00
/* END INLINE EXPANSION */
}
}
1994-05-24 10:09:53 +00:00
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
splx(s);
}
/*
* The machine independent parts of mi_switch().
* Must be called at splstatclock() or higher.
*/
void
mi_switch()
{
struct timeval new_switchtime;
1994-05-24 10:09:53 +00:00
register struct proc *p = curproc; /* XXX */
#if 0
register struct rlimit *rlim;
#endif
int x;
u_int sched_nest;
1994-05-24 10:09:53 +00:00
/*
* XXX this spl is almost unnecessary. It is partly to allow for
* sloppy callers that don't do it (issignal() via CURSIG() is the
* main offender). It is partly to work around a bug in the i386
* cpu_switch() (the ipl is not preserved). We ran for years
* without it. I think there was only a interrupt latency problem.
* The main caller, msleep(), does an splx() a couple of instructions
* after calling here. The buggy caller, issignal(), usually calls
* here at spl0() and sometimes returns at splhigh(). The process
* then runs for a little too long at splhigh(). The ipl gets fixed
* when the process returns to user mode (or earlier).
*
* It would probably be better to always call here at spl0(). Callers
* are prepared to give up control to another process, so they must
* be prepared to be interrupted. The clock stuff here may not
* actually need splstatclock().
*/
x = splstatclock();
mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
1994-05-24 10:09:53 +00:00
/*
* Compute the amount of time during which the current
* process was running, and add that to its total so far.
*/
microuptime(&new_switchtime);
if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
#if 0
/* XXX: This doesn't play well with sched_lock right now. */
2000-05-07 05:09:45 +00:00
printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
new_switchtime.tv_sec, new_switchtime.tv_usec);
#endif
new_switchtime = PCPU_GET(switchtime);
} else {
p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
(new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
(int64_t)1000000;
}
1994-05-24 10:09:53 +00:00
#if 0
1994-05-24 10:09:53 +00:00
/*
* Check if the process exceeds its cpu resource allocation.
* If over max, kill it.
*
* XXX drop sched_lock, pickup Giant
1994-05-24 10:09:53 +00:00
*/
if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
p->p_runtime > p->p_limit->p_cpulimit) {
rlim = &p->p_rlimit[RLIMIT_CPU];
if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
killproc(p, "exceeded maximum CPU limit");
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
} else {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
psignal(p, SIGXCPU);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
if (rlim->rlim_cur < rlim->rlim_max) {
/* XXX: we should make a private copy */
rlim->rlim_cur += 5;
}
}
1994-05-24 10:09:53 +00:00
}
#endif
1994-05-24 10:09:53 +00:00
/*
* Pick a new current process and record its start time.
*/
cnt.v_swtch++;
PCPU_SET(switchtime, new_switchtime);
2000-09-10 13:34:35 +00:00
CTR4(KTR_PROC, "mi_switch: old proc %p (pid %d, %s), schedlock %p",
p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
sched_nest = sched_lock.mtx_recurse;
curproc->p_lastcpu = curproc->p_oncpu;
curproc->p_oncpu = NOCPU;
clear_resched();
cpu_switch();
curproc->p_oncpu = PCPU_GET(cpuid);
sched_lock.mtx_recurse = sched_nest;
sched_lock.mtx_lock = (uintptr_t)curproc;
2000-09-10 13:34:35 +00:00
CTR4(KTR_PROC, "mi_switch: new proc %p (pid %d, %s), schedlock %p",
p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
if (PCPU_GET(switchtime.tv_sec) == 0)
microuptime(PCPU_PTR(switchtime));
PCPU_SET(switchticks, ticks);
splx(x);
1994-05-24 10:09:53 +00:00
}
/*
* Change process state to be runnable,
* placing it on the run queue if it is in memory,
* and awakening the swapper if it isn't in memory.
*/
void
setrunnable(p)
register struct proc *p;
{
register int s;
s = splhigh();
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
switch (p->p_stat) {
case 0:
case SRUN:
case SZOMB:
case SWAIT:
1994-05-24 10:09:53 +00:00
default:
panic("setrunnable");
case SSTOP:
2001-01-16 01:00:43 +00:00
case SSLEEP: /* e.g. when sending signals */
if (p->p_sflag & PS_CVWAITQ)
2001-01-16 01:00:43 +00:00
cv_waitq_remove(p);
else
unsleep(p);
1994-05-24 10:09:53 +00:00
break;
case SIDL:
break;
}
p->p_stat = SRUN;
if (p->p_sflag & PS_INMEM)
1994-05-24 10:09:53 +00:00
setrunqueue(p);
splx(s);
if (p->p_slptime > 1)
updatepri(p);
p->p_slptime = 0;
if ((p->p_sflag & PS_INMEM) == 0) {
p->p_sflag |= PS_SWAPINREQ;
1994-05-24 10:09:53 +00:00
wakeup((caddr_t)&proc0);
}
else
maybe_resched(p);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
}
/*
* Compute the priority of a process when running in user mode.
* Arrange to reschedule if the resulting priority is better
* than that of the current process.
*/
void
resetpriority(p)
register struct proc *p;
{
register unsigned int newpriority;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
Implement a unified run queue and adjust priority levels accordingly. - All processes go into the same array of queues, with different scheduling classes using different portions of the array. This allows user processes to have their priorities propogated up into interrupt thread range if need be. - I chose 64 run queues as an arbitrary number that is greater than 32. We used to have 4 separate arrays of 32 queues each, so this may not be optimal. The new run queue code was written with this in mind; changing the number of run queues only requires changing constants in runq.h and adjusting the priority levels. - The new run queue code takes the run queue as a parameter. This is intended to be used to create per-cpu run queues. Implement wrappers for compatibility with the old interface which pass in the global run queue structure. - Group the priority level, user priority, native priority (before propogation) and the scheduling class into a struct priority. - Change any hard coded priority levels that I found to use symbolic constants (TTIPRI and TTOPRI). - Remove the curpriority global variable and use that of curproc. This was used to detect when a process' priority had lowered and it should yield. We now effectively yield on every interrupt. - Activate propogate_priority(). It should now have the desired effect without needing to also propogate the scheduling class. - Temporarily comment out the call to vm_page_zero_idle() in the idle loop. It interfered with propogate_priority() because the idle process needed to do a non-blocking acquire of Giant and then other processes would try to propogate their priority onto it. The idle process should not do anything except idle. vm_page_zero_idle() will return in the form of an idle priority kernel thread which is woken up at apprioriate times by the vm system. - Update struct kinfo_proc to the new priority interface. Deliberately change its size by adjusting the spare fields. It remained the same size, but the layout has changed, so userland processes that use it would parse the data incorrectly. The size constraint should really be changed to an arbitrary version number. Also add a debug.sizeof sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
if (p->p_pri.pri_class == PRI_TIMESHARE) {
Scheduler fixes equivalent to the ones logged in the following NetBSD commit to kern_synch.c: ---------------------------- revision 1.55 date: 1999/02/23 02:56:03; author: ross; state: Exp; lines: +39 -10 Scheduler bug fixes and reorganization * fix the ancient nice(1) bug, where nice +20 processes incorrectly steal 10 - 20% of the CPU, (or even more depending on load average) * provide a new schedclk() mechanism at a new clock at schedhz, so high platform hz values don't cause nice +0 processes to look like they are niced * change the algorithm slightly, and reorganize the code a lot * fix percent-CPU calculation bugs, and eliminate some no-op code === nice bug === Correctly divide the scheduler queues between niced and compute-bound processes. The current nice weight of two (sort of, see `algorithm change' below) neatly divides the USRPRI queues in half; this should have been used to clip p_estcpu, instead of UCHAR_MAX. Besides being the wrong amount, clipping an unsigned char to UCHAR_MAX is a no-op, and it was done after decay_cpu() which can only _reduce_ the value. It has to be kept <= NICE_WEIGHT * PRIO_MAX - PPQ or processes can scheduler-penalize themselves onto the same queue as nice +20 processes. (Or even a higher one.) === New schedclk() mechansism === Some platforms should be cutting down stathz before hitting the scheduler, since the scheduler algorithm only works right in the vicinity of 64 Hz. Rather than prescale hz, then scale back and forth by 4 every time p_estcpu is touched (each occurance an abstraction violation), use p_estcpu without scaling and require schedhz to be generated directly at the right frequency. Use a default stathz (well, actually, profhz) / 4, so nothing changes unless a platform defines schedhz and a new clock. Define these for alpha, where hz==1024, and nice was totally broke. === Algorithm change === The nice value used to be added to the exponentially-decayed scheduler history value p_estcpu, in _addition_ to be incorporated directly (with greater wieght) into the priority calculation. At first glance, it appears to be a pointless increase of 1/8 the nice effect (pri = p_estcpu/4 + nice*2), but it's actually at least 3x that because it will ramp up linearly but be decayed only exponentially, thus converging to an additional .75 nice for a loadaverage of one. I killed this, it makes the behavior hard to control, almost impossible to analyze, and the effect (~~nothing at for the first second, then somewhat increased niceness after three seconds or more, depending on load average) pointless. === Other bugs === hz -> profhz in the p_pctcpu = f(p_cpticks) calcuation. Collect scheduler functionality. Try to put each abstraction in just one place. ---------------------------- The details are a little different in FreeBSD: === nice bug === Fixing this is the main point of this commit. We use essentially the same clipping rule as NetBSD (our limit on p_estcpu differs by a scale factor). However, clipping at all is fundamentally bad. It gives free CPU the hoggiest hogs once they reach the limit, and reaching the limit is normal for long-running hogs. This will be fixed later. === New schedclk() mechanism === We don't use the NetBSD schedclk() (now schedclock()) mechanism. We require (real)stathz to be about 128 and scale by an extra factor of 2 compared with NetBSD's statclock(). We scale p_estcpu instead of scaling the clock. This is more accurate and flexible. === Algorithm change === Same change. === Other bugs === The p_pctcpu bug was fixed long ago. We don't try as hard to abstract functionality yet. Related changes: the new limit on p_estcpu must be exported to kern_exit.c for clipping in wait1(). Agreed with by: dufault
1999-11-28 12:12:13 +00:00
newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
2000-04-30 18:33:43 +00:00
NICE_WEIGHT * (p->p_nice - PRIO_MIN);
Implement a unified run queue and adjust priority levels accordingly. - All processes go into the same array of queues, with different scheduling classes using different portions of the array. This allows user processes to have their priorities propogated up into interrupt thread range if need be. - I chose 64 run queues as an arbitrary number that is greater than 32. We used to have 4 separate arrays of 32 queues each, so this may not be optimal. The new run queue code was written with this in mind; changing the number of run queues only requires changing constants in runq.h and adjusting the priority levels. - The new run queue code takes the run queue as a parameter. This is intended to be used to create per-cpu run queues. Implement wrappers for compatibility with the old interface which pass in the global run queue structure. - Group the priority level, user priority, native priority (before propogation) and the scheduling class into a struct priority. - Change any hard coded priority levels that I found to use symbolic constants (TTIPRI and TTOPRI). - Remove the curpriority global variable and use that of curproc. This was used to detect when a process' priority had lowered and it should yield. We now effectively yield on every interrupt. - Activate propogate_priority(). It should now have the desired effect without needing to also propogate the scheduling class. - Temporarily comment out the call to vm_page_zero_idle() in the idle loop. It interfered with propogate_priority() because the idle process needed to do a non-blocking acquire of Giant and then other processes would try to propogate their priority onto it. The idle process should not do anything except idle. vm_page_zero_idle() will return in the form of an idle priority kernel thread which is woken up at apprioriate times by the vm system. - Update struct kinfo_proc to the new priority interface. Deliberately change its size by adjusting the spare fields. It remained the same size, but the layout has changed, so userland processes that use it would parse the data incorrectly. The size constraint should really be changed to an arbitrary version number. Also add a debug.sizeof sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
PRI_MAX_TIMESHARE);
p->p_pri.pri_user = newpriority;
}
maybe_resched(p);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
1994-05-24 10:09:53 +00:00
}
/* ARGSUSED */
static void
sched_setup(dummy)
void *dummy;
{
callout_init(&schedcpu_callout, 1);
callout_init(&roundrobin_callout, 0);
/* Kick off timeout driven events by calling first time. */
roundrobin(NULL);
schedcpu(NULL);
}
/*
* We adjust the priority of the current process. The priority of
* a process gets worse as it accumulates CPU time. The cpu usage
* estimator (p_estcpu) is increased here. resetpriority() will
Scheduler fixes equivalent to the ones logged in the following NetBSD commit to kern_synch.c: ---------------------------- revision 1.55 date: 1999/02/23 02:56:03; author: ross; state: Exp; lines: +39 -10 Scheduler bug fixes and reorganization * fix the ancient nice(1) bug, where nice +20 processes incorrectly steal 10 - 20% of the CPU, (or even more depending on load average) * provide a new schedclk() mechanism at a new clock at schedhz, so high platform hz values don't cause nice +0 processes to look like they are niced * change the algorithm slightly, and reorganize the code a lot * fix percent-CPU calculation bugs, and eliminate some no-op code === nice bug === Correctly divide the scheduler queues between niced and compute-bound processes. The current nice weight of two (sort of, see `algorithm change' below) neatly divides the USRPRI queues in half; this should have been used to clip p_estcpu, instead of UCHAR_MAX. Besides being the wrong amount, clipping an unsigned char to UCHAR_MAX is a no-op, and it was done after decay_cpu() which can only _reduce_ the value. It has to be kept <= NICE_WEIGHT * PRIO_MAX - PPQ or processes can scheduler-penalize themselves onto the same queue as nice +20 processes. (Or even a higher one.) === New schedclk() mechansism === Some platforms should be cutting down stathz before hitting the scheduler, since the scheduler algorithm only works right in the vicinity of 64 Hz. Rather than prescale hz, then scale back and forth by 4 every time p_estcpu is touched (each occurance an abstraction violation), use p_estcpu without scaling and require schedhz to be generated directly at the right frequency. Use a default stathz (well, actually, profhz) / 4, so nothing changes unless a platform defines schedhz and a new clock. Define these for alpha, where hz==1024, and nice was totally broke. === Algorithm change === The nice value used to be added to the exponentially-decayed scheduler history value p_estcpu, in _addition_ to be incorporated directly (with greater wieght) into the priority calculation. At first glance, it appears to be a pointless increase of 1/8 the nice effect (pri = p_estcpu/4 + nice*2), but it's actually at least 3x that because it will ramp up linearly but be decayed only exponentially, thus converging to an additional .75 nice for a loadaverage of one. I killed this, it makes the behavior hard to control, almost impossible to analyze, and the effect (~~nothing at for the first second, then somewhat increased niceness after three seconds or more, depending on load average) pointless. === Other bugs === hz -> profhz in the p_pctcpu = f(p_cpticks) calcuation. Collect scheduler functionality. Try to put each abstraction in just one place. ---------------------------- The details are a little different in FreeBSD: === nice bug === Fixing this is the main point of this commit. We use essentially the same clipping rule as NetBSD (our limit on p_estcpu differs by a scale factor). However, clipping at all is fundamentally bad. It gives free CPU the hoggiest hogs once they reach the limit, and reaching the limit is normal for long-running hogs. This will be fixed later. === New schedclk() mechanism === We don't use the NetBSD schedclk() (now schedclock()) mechanism. We require (real)stathz to be about 128 and scale by an extra factor of 2 compared with NetBSD's statclock(). We scale p_estcpu instead of scaling the clock. This is more accurate and flexible. === Algorithm change === Same change. === Other bugs === The p_pctcpu bug was fixed long ago. We don't try as hard to abstract functionality yet. Related changes: the new limit on p_estcpu must be exported to kern_exit.c for clipping in wait1(). Agreed with by: dufault
1999-11-28 12:12:13 +00:00
* compute a different priority each time p_estcpu increases by
* INVERSE_ESTCPU_WEIGHT
* (until MAXPRI is reached). The cpu usage estimator ramps up
* quite quickly when the process is running (linearly), and decays
* away exponentially, at a rate which is proportionally slower when
* the system is busy. The basic principle is that the system will
* 90% forget that the process used a lot of CPU time in 5 * loadav
* seconds. This causes the system to favor processes which haven't
* run much recently, and to round-robin among other processes.
*/
void
schedclock(p)
struct proc *p;
{
Scheduler fixes equivalent to the ones logged in the following NetBSD commit to kern_synch.c: ---------------------------- revision 1.55 date: 1999/02/23 02:56:03; author: ross; state: Exp; lines: +39 -10 Scheduler bug fixes and reorganization * fix the ancient nice(1) bug, where nice +20 processes incorrectly steal 10 - 20% of the CPU, (or even more depending on load average) * provide a new schedclk() mechanism at a new clock at schedhz, so high platform hz values don't cause nice +0 processes to look like they are niced * change the algorithm slightly, and reorganize the code a lot * fix percent-CPU calculation bugs, and eliminate some no-op code === nice bug === Correctly divide the scheduler queues between niced and compute-bound processes. The current nice weight of two (sort of, see `algorithm change' below) neatly divides the USRPRI queues in half; this should have been used to clip p_estcpu, instead of UCHAR_MAX. Besides being the wrong amount, clipping an unsigned char to UCHAR_MAX is a no-op, and it was done after decay_cpu() which can only _reduce_ the value. It has to be kept <= NICE_WEIGHT * PRIO_MAX - PPQ or processes can scheduler-penalize themselves onto the same queue as nice +20 processes. (Or even a higher one.) === New schedclk() mechansism === Some platforms should be cutting down stathz before hitting the scheduler, since the scheduler algorithm only works right in the vicinity of 64 Hz. Rather than prescale hz, then scale back and forth by 4 every time p_estcpu is touched (each occurance an abstraction violation), use p_estcpu without scaling and require schedhz to be generated directly at the right frequency. Use a default stathz (well, actually, profhz) / 4, so nothing changes unless a platform defines schedhz and a new clock. Define these for alpha, where hz==1024, and nice was totally broke. === Algorithm change === The nice value used to be added to the exponentially-decayed scheduler history value p_estcpu, in _addition_ to be incorporated directly (with greater wieght) into the priority calculation. At first glance, it appears to be a pointless increase of 1/8 the nice effect (pri = p_estcpu/4 + nice*2), but it's actually at least 3x that because it will ramp up linearly but be decayed only exponentially, thus converging to an additional .75 nice for a loadaverage of one. I killed this, it makes the behavior hard to control, almost impossible to analyze, and the effect (~~nothing at for the first second, then somewhat increased niceness after three seconds or more, depending on load average) pointless. === Other bugs === hz -> profhz in the p_pctcpu = f(p_cpticks) calcuation. Collect scheduler functionality. Try to put each abstraction in just one place. ---------------------------- The details are a little different in FreeBSD: === nice bug === Fixing this is the main point of this commit. We use essentially the same clipping rule as NetBSD (our limit on p_estcpu differs by a scale factor). However, clipping at all is fundamentally bad. It gives free CPU the hoggiest hogs once they reach the limit, and reaching the limit is normal for long-running hogs. This will be fixed later. === New schedclk() mechanism === We don't use the NetBSD schedclk() (now schedclock()) mechanism. We require (real)stathz to be about 128 and scale by an extra factor of 2 compared with NetBSD's statclock(). We scale p_estcpu instead of scaling the clock. This is more accurate and flexible. === Algorithm change === Same change. === Other bugs === The p_pctcpu bug was fixed long ago. We don't try as hard to abstract functionality yet. Related changes: the new limit on p_estcpu must be exported to kern_exit.c for clipping in wait1(). Agreed with by: dufault
1999-11-28 12:12:13 +00:00
p->p_cpticks++;
Scheduler fixes equivalent to the ones logged in the following NetBSD commit to kern_synch.c: ---------------------------- revision 1.55 date: 1999/02/23 02:56:03; author: ross; state: Exp; lines: +39 -10 Scheduler bug fixes and reorganization * fix the ancient nice(1) bug, where nice +20 processes incorrectly steal 10 - 20% of the CPU, (or even more depending on load average) * provide a new schedclk() mechanism at a new clock at schedhz, so high platform hz values don't cause nice +0 processes to look like they are niced * change the algorithm slightly, and reorganize the code a lot * fix percent-CPU calculation bugs, and eliminate some no-op code === nice bug === Correctly divide the scheduler queues between niced and compute-bound processes. The current nice weight of two (sort of, see `algorithm change' below) neatly divides the USRPRI queues in half; this should have been used to clip p_estcpu, instead of UCHAR_MAX. Besides being the wrong amount, clipping an unsigned char to UCHAR_MAX is a no-op, and it was done after decay_cpu() which can only _reduce_ the value. It has to be kept <= NICE_WEIGHT * PRIO_MAX - PPQ or processes can scheduler-penalize themselves onto the same queue as nice +20 processes. (Or even a higher one.) === New schedclk() mechansism === Some platforms should be cutting down stathz before hitting the scheduler, since the scheduler algorithm only works right in the vicinity of 64 Hz. Rather than prescale hz, then scale back and forth by 4 every time p_estcpu is touched (each occurance an abstraction violation), use p_estcpu without scaling and require schedhz to be generated directly at the right frequency. Use a default stathz (well, actually, profhz) / 4, so nothing changes unless a platform defines schedhz and a new clock. Define these for alpha, where hz==1024, and nice was totally broke. === Algorithm change === The nice value used to be added to the exponentially-decayed scheduler history value p_estcpu, in _addition_ to be incorporated directly (with greater wieght) into the priority calculation. At first glance, it appears to be a pointless increase of 1/8 the nice effect (pri = p_estcpu/4 + nice*2), but it's actually at least 3x that because it will ramp up linearly but be decayed only exponentially, thus converging to an additional .75 nice for a loadaverage of one. I killed this, it makes the behavior hard to control, almost impossible to analyze, and the effect (~~nothing at for the first second, then somewhat increased niceness after three seconds or more, depending on load average) pointless. === Other bugs === hz -> profhz in the p_pctcpu = f(p_cpticks) calcuation. Collect scheduler functionality. Try to put each abstraction in just one place. ---------------------------- The details are a little different in FreeBSD: === nice bug === Fixing this is the main point of this commit. We use essentially the same clipping rule as NetBSD (our limit on p_estcpu differs by a scale factor). However, clipping at all is fundamentally bad. It gives free CPU the hoggiest hogs once they reach the limit, and reaching the limit is normal for long-running hogs. This will be fixed later. === New schedclk() mechanism === We don't use the NetBSD schedclk() (now schedclock()) mechanism. We require (real)stathz to be about 128 and scale by an extra factor of 2 compared with NetBSD's statclock(). We scale p_estcpu instead of scaling the clock. This is more accurate and flexible. === Algorithm change === Same change. === Other bugs === The p_pctcpu bug was fixed long ago. We don't try as hard to abstract functionality yet. Related changes: the new limit on p_estcpu must be exported to kern_exit.c for clipping in wait1(). Agreed with by: dufault
1999-11-28 12:12:13 +00:00
p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
resetpriority(p);
Implement a unified run queue and adjust priority levels accordingly. - All processes go into the same array of queues, with different scheduling classes using different portions of the array. This allows user processes to have their priorities propogated up into interrupt thread range if need be. - I chose 64 run queues as an arbitrary number that is greater than 32. We used to have 4 separate arrays of 32 queues each, so this may not be optimal. The new run queue code was written with this in mind; changing the number of run queues only requires changing constants in runq.h and adjusting the priority levels. - The new run queue code takes the run queue as a parameter. This is intended to be used to create per-cpu run queues. Implement wrappers for compatibility with the old interface which pass in the global run queue structure. - Group the priority level, user priority, native priority (before propogation) and the scheduling class into a struct priority. - Change any hard coded priority levels that I found to use symbolic constants (TTIPRI and TTOPRI). - Remove the curpriority global variable and use that of curproc. This was used to detect when a process' priority had lowered and it should yield. We now effectively yield on every interrupt. - Activate propogate_priority(). It should now have the desired effect without needing to also propogate the scheduling class. - Temporarily comment out the call to vm_page_zero_idle() in the idle loop. It interfered with propogate_priority() because the idle process needed to do a non-blocking acquire of Giant and then other processes would try to propogate their priority onto it. The idle process should not do anything except idle. vm_page_zero_idle() will return in the form of an idle priority kernel thread which is woken up at apprioriate times by the vm system. - Update struct kinfo_proc to the new priority interface. Deliberately change its size by adjusting the spare fields. It remained the same size, but the layout has changed, so userland processes that use it would parse the data incorrectly. The size constraint should really be changed to an arbitrary version number. Also add a debug.sizeof sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
if (p->p_pri.pri_level >= PUSER)
p->p_pri.pri_level = p->p_pri.pri_user;
}
}
/*
* General purpose yield system call
*/
int
yield(struct proc *p, struct yield_args *uap)
{
int s;
p->p_retval[0] = 0;
s = splhigh();
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
DROP_GIANT_NOSWITCH();
Implement a unified run queue and adjust priority levels accordingly. - All processes go into the same array of queues, with different scheduling classes using different portions of the array. This allows user processes to have their priorities propogated up into interrupt thread range if need be. - I chose 64 run queues as an arbitrary number that is greater than 32. We used to have 4 separate arrays of 32 queues each, so this may not be optimal. The new run queue code was written with this in mind; changing the number of run queues only requires changing constants in runq.h and adjusting the priority levels. - The new run queue code takes the run queue as a parameter. This is intended to be used to create per-cpu run queues. Implement wrappers for compatibility with the old interface which pass in the global run queue structure. - Group the priority level, user priority, native priority (before propogation) and the scheduling class into a struct priority. - Change any hard coded priority levels that I found to use symbolic constants (TTIPRI and TTOPRI). - Remove the curpriority global variable and use that of curproc. This was used to detect when a process' priority had lowered and it should yield. We now effectively yield on every interrupt. - Activate propogate_priority(). It should now have the desired effect without needing to also propogate the scheduling class. - Temporarily comment out the call to vm_page_zero_idle() in the idle loop. It interfered with propogate_priority() because the idle process needed to do a non-blocking acquire of Giant and then other processes would try to propogate their priority onto it. The idle process should not do anything except idle. vm_page_zero_idle() will return in the form of an idle priority kernel thread which is woken up at apprioriate times by the vm system. - Update struct kinfo_proc to the new priority interface. Deliberately change its size by adjusting the spare fields. It remained the same size, but the layout has changed, so userland processes that use it would parse the data incorrectly. The size constraint should really be changed to an arbitrary version number. Also add a debug.sizeof sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
p->p_pri.pri_level = PRI_MAX_TIMESHARE;
setrunqueue(p);
p->p_stats->p_ru.ru_nvcsw++;
mi_switch();
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
PICKUP_GIANT();
splx(s);
return (0);
}