freebsd-dev/sys/ufs/ffs/ffs_vnops.c

1792 lines
44 KiB
C
Raw Normal View History

1994-05-24 10:09:53 +00:00
/*
* Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
1994-05-24 10:09:53 +00:00
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95
1994-05-24 10:09:53 +00:00
*/
2003-06-11 06:34:30 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/bio.h>
1994-05-24 10:09:53 +00:00
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/extattr.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/proc.h>
1994-05-24 10:09:53 +00:00
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
1994-05-24 10:09:53 +00:00
#include <sys/stat.h>
#include <sys/vmmeter.h>
1994-05-24 10:09:53 +00:00
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vnode_pager.h>
1994-05-24 10:09:53 +00:00
#include <ufs/ufs/extattr.h>
1994-05-24 10:09:53 +00:00
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ufs/ufsmount.h>
1994-05-24 10:09:53 +00:00
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
#include "opt_directio.h"
1994-05-24 10:09:53 +00:00
#ifdef DIRECTIO
extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
#endif
static int ffs_fsync(struct vop_fsync_args *);
2002-03-19 22:40:48 +00:00
static int ffs_getpages(struct vop_getpages_args *);
static int ffs_read(struct vop_read_args *);
static int ffs_write(struct vop_write_args *);
static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
struct ucred *cred);
static int ffsext_strategy(struct vop_strategy_args *);
static int ffs_closeextattr(struct vop_closeextattr_args *);
static int ffs_deleteextattr(struct vop_deleteextattr_args *);
static int ffs_getextattr(struct vop_getextattr_args *);
static int ffs_listextattr(struct vop_listextattr_args *);
static int ffs_openextattr(struct vop_openextattr_args *);
static int ffs_setextattr(struct vop_setextattr_args *);
1995-12-17 21:14:36 +00:00
1994-05-24 10:09:53 +00:00
/* Global vfs data structures for ufs. */
vop_t **ffs_vnodeop_p;
1995-12-17 21:14:36 +00:00
static struct vnodeopv_entry_desc ffs_vnodeop_entries[] = {
{ &vop_default_desc, (vop_t *) ufs_vnoperate },
{ &vop_fsync_desc, (vop_t *) ffs_fsync },
{ &vop_getpages_desc, (vop_t *) ffs_getpages },
{ &vop_read_desc, (vop_t *) ffs_read },
{ &vop_reallocblks_desc, (vop_t *) ffs_reallocblks },
{ &vop_write_desc, (vop_t *) ffs_write },
{ &vop_closeextattr_desc, (vop_t *) ffs_closeextattr },
{ &vop_deleteextattr_desc, (vop_t *) ffs_deleteextattr },
{ &vop_getextattr_desc, (vop_t *) ffs_getextattr },
{ &vop_listextattr_desc, (vop_t *) ffs_listextattr },
{ &vop_openextattr_desc, (vop_t *) ffs_openextattr },
{ &vop_setextattr_desc, (vop_t *) ffs_setextattr },
{ NULL, NULL }
1994-05-24 10:09:53 +00:00
};
1995-12-17 21:14:36 +00:00
static struct vnodeopv_desc ffs_vnodeop_opv_desc =
1994-05-24 10:09:53 +00:00
{ &ffs_vnodeop_p, ffs_vnodeop_entries };
vop_t **ffs_specop_p;
1995-12-17 21:14:36 +00:00
static struct vnodeopv_entry_desc ffs_specop_entries[] = {
{ &vop_default_desc, (vop_t *) ufs_vnoperatespec },
{ &vop_fsync_desc, (vop_t *) ffs_fsync },
{ &vop_reallocblks_desc, (vop_t *) ffs_reallocblks },
{ &vop_strategy_desc, (vop_t *) ffsext_strategy },
{ &vop_closeextattr_desc, (vop_t *) ffs_closeextattr },
{ &vop_deleteextattr_desc, (vop_t *) ffs_deleteextattr },
{ &vop_getextattr_desc, (vop_t *) ffs_getextattr },
{ &vop_listextattr_desc, (vop_t *) ffs_listextattr },
{ &vop_openextattr_desc, (vop_t *) ffs_openextattr },
{ &vop_setextattr_desc, (vop_t *) ffs_setextattr },
{ NULL, NULL }
1994-05-24 10:09:53 +00:00
};
1995-12-17 21:14:36 +00:00
static struct vnodeopv_desc ffs_specop_opv_desc =
1994-05-24 10:09:53 +00:00
{ &ffs_specop_p, ffs_specop_entries };
vop_t **ffs_fifoop_p;
1995-12-17 21:14:36 +00:00
static struct vnodeopv_entry_desc ffs_fifoop_entries[] = {
{ &vop_default_desc, (vop_t *) ufs_vnoperatefifo },
{ &vop_fsync_desc, (vop_t *) ffs_fsync },
{ &vop_reallocblks_desc, (vop_t *) ffs_reallocblks },
{ &vop_strategy_desc, (vop_t *) ffsext_strategy },
{ &vop_closeextattr_desc, (vop_t *) ffs_closeextattr },
{ &vop_deleteextattr_desc, (vop_t *) ffs_deleteextattr },
{ &vop_getextattr_desc, (vop_t *) ffs_getextattr },
{ &vop_listextattr_desc, (vop_t *) ffs_listextattr },
{ &vop_openextattr_desc, (vop_t *) ffs_openextattr },
{ &vop_setextattr_desc, (vop_t *) ffs_setextattr },
{ NULL, NULL }
1994-05-24 10:09:53 +00:00
};
1995-12-17 21:14:36 +00:00
static struct vnodeopv_desc ffs_fifoop_opv_desc =
1994-05-24 10:09:53 +00:00
{ &ffs_fifoop_p, ffs_fifoop_entries };
VNODEOP_SET(ffs_vnodeop_opv_desc);
VNODEOP_SET(ffs_specop_opv_desc);
VNODEOP_SET(ffs_fifoop_opv_desc);
1994-05-24 10:09:53 +00:00
/*
* Synch an open file.
*/
/* ARGSUSED */
static int
1994-05-24 10:09:53 +00:00
ffs_fsync(ap)
struct vop_fsync_args /* {
struct vnode *a_vp;
struct ucred *a_cred;
int a_waitfor;
struct thread *a_td;
1994-05-24 10:09:53 +00:00
} */ *ap;
{
struct vnode *vp = ap->a_vp;
struct inode *ip = VTOI(vp);
struct buf *bp;
1994-05-24 10:09:53 +00:00
struct buf *nbp;
int s, error, wait, passes, skipmeta;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
ufs_lbn_t lbn;
wait = (ap->a_waitfor == MNT_WAIT);
if (vn_isdisk(vp, NULL)) {
lbn = INT_MAX;
if (vp->v_rdev->si_mountpoint != NULL &&
(vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP))
softdep_fsync_mountdev(vp);
} else {
lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1));
}
1994-05-24 10:09:53 +00:00
/*
* Flush all dirty buffers associated with a vnode.
*/
passes = NIADDR + 1;
skipmeta = 0;
if (wait)
skipmeta = 1;
1994-05-24 10:09:53 +00:00
s = splbio();
VI_LOCK(vp);
loop:
TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs)
bp->b_vflags &= ~BV_SCANNED;
for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = TAILQ_NEXT(bp, b_vnbufs);
/*
* Reasons to skip this buffer: it has already been considered
* on this pass, this pass is the first time through on a
* synchronous flush request and the buffer being considered
* is metadata, the buffer has dependencies that will cause
* it to be redirtied and it has not already been deferred,
* or it is already being written.
*/
if ((bp->b_vflags & BV_SCANNED) != 0)
continue;
bp->b_vflags |= BV_SCANNED;
if ((skipmeta == 1 && bp->b_lblkno < 0))
continue;
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
continue;
if (!wait && LIST_FIRST(&bp->b_dep) != NULL &&
(bp->b_flags & B_DEFERRED) == 0 &&
buf_countdeps(bp, 0)) {
bp->b_flags |= B_DEFERRED;
BUF_UNLOCK(bp);
continue;
}
VI_UNLOCK(vp);
1994-05-24 10:09:53 +00:00
if ((bp->b_flags & B_DELWRI) == 0)
panic("ffs_fsync: not dirty");
if (vp != bp->b_vp)
panic("ffs_fsync: vp != vp->b_vp");
/*
* If this is a synchronous flush request, or it is not a
* file or device, start the write on this buffer immediatly.
*/
if (wait || (vp->v_type != VREG && vp->v_type != VBLK)) {
/*
* On our final pass through, do all I/O synchronously
* so that we can find out if our flush is failing
* because of write errors.
*/
if (passes > 0 || !wait) {
if ((bp->b_flags & B_CLUSTEROK) && !wait) {
(void) vfs_bio_awrite(bp);
} else {
bremfree(bp);
splx(s);
(void) bawrite(bp);
s = splbio();
}
} else {
bremfree(bp);
splx(s);
if ((error = bwrite(bp)) != 0)
return (error);
s = splbio();
}
} else if ((vp->v_type == VREG) && (bp->b_lblkno >= lbn)) {
/*
* If the buffer is for data that has been truncated
* off the file, then throw it away.
*/
bremfree(bp);
bp->b_flags |= B_INVAL | B_NOCACHE;
splx(s);
brelse(bp);
s = splbio();
} else
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
vfs_bio_awrite(bp);
/*
* Since we may have slept during the I/O, we need
* to start from a known point.
*/
VI_LOCK(vp);
nbp = TAILQ_FIRST(&vp->v_dirtyblkhd);
1994-05-24 10:09:53 +00:00
}
/*
* If we were asked to do this synchronously, then go back for
* another pass, this time doing the metadata.
*/
if (skipmeta) {
skipmeta = 0;
goto loop;
}
if (wait) {
while (vp->v_numoutput) {
vp->v_iflag |= VI_BWAIT;
msleep((caddr_t)&vp->v_numoutput, VI_MTX(vp),
PRIBIO + 4, "ffsfsn", 0);
}
VI_UNLOCK(vp);
/*
* Ensure that any filesystem metatdata associated
* with the vnode has been written.
*/
splx(s);
if ((error = softdep_sync_metadata(ap)) != 0)
return (error);
s = splbio();
VI_LOCK(vp);
if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
/*
* Block devices associated with filesystems may
* have new I/O requests posted for them even if
* the vnode is locked, so no amount of trying will
* get them clean. Thus we give block devices a
* good effort, then just give up. For all other file
* types, go around and try again until it is clean.
*/
if (passes > 0) {
passes -= 1;
goto loop;
}
#ifdef DIAGNOSTIC
if (!vn_isdisk(vp, NULL))
vprint("ffs_fsync: dirty", vp);
1994-05-24 10:09:53 +00:00
#endif
}
1994-05-24 10:09:53 +00:00
}
VI_UNLOCK(vp);
splx(s);
return (UFS_UPDATE(vp, wait));
1994-05-24 10:09:53 +00:00
}
/*
* Vnode op for reading.
*/
/* ARGSUSED */
static int
ffs_read(ap)
struct vop_read_args /* {
struct vnode *a_vp;
struct uio *a_uio;
int a_ioflag;
struct ucred *a_cred;
} */ *ap;
{
struct vnode *vp;
struct inode *ip;
struct uio *uio;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn, nextlbn;
off_t bytesinfile;
long size, xfersize, blkoffset;
int error, orig_resid;
int seqcount;
int ioflag;
vp = ap->a_vp;
uio = ap->a_uio;
ioflag = ap->a_ioflag;
if (ap->a_ioflag & IO_EXT)
#ifdef notyet
return (ffs_extread(vp, uio, ioflag));
#else
panic("ffs_read+IO_EXT");
#endif
#ifdef DIRECTIO
if ((ioflag & IO_DIRECT) != 0) {
int workdone;
error = ffs_rawread(vp, uio, &workdone);
if (error != 0 || workdone != 0)
return error;
}
#endif
GIANT_REQUIRED;
seqcount = ap->a_ioflag >> IO_SEQSHIFT;
ip = VTOI(vp);
#ifdef DIAGNOSTIC
if (uio->uio_rw != UIO_READ)
panic("ffs_read: mode");
if (vp->v_type == VLNK) {
if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
panic("ffs_read: short symlink");
} else if (vp->v_type != VREG && vp->v_type != VDIR)
panic("ffs_read: type %d", vp->v_type);
#endif
orig_resid = uio->uio_resid;
KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0"));
if (orig_resid == 0)
return (0);
KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0"));
fs = ip->i_fs;
if (uio->uio_offset < ip->i_size &&
uio->uio_offset >= fs->fs_maxfilesize)
return (EOVERFLOW);
bytesinfile = ip->i_size - uio->uio_offset;
if (bytesinfile <= 0) {
if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
ip->i_flag |= IN_ACCESS;
return (0);
}
/*
* Ok so we couldn't do it all in one vm trick...
* so cycle around trying smaller bites..
*/
for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
break;
lbn = lblkno(fs, uio->uio_offset);
nextlbn = lbn + 1;
/*
* size of buffer. The buffer representing the
* end of the file is rounded up to the size of
* the block type ( fragment or full block,
* depending ).
*/
size = blksize(fs, ip, lbn);
blkoffset = blkoff(fs, uio->uio_offset);
/*
* The amount we want to transfer in this iteration is
* one FS block less the amount of the data before
* our startpoint (duh!)
*/
xfersize = fs->fs_bsize - blkoffset;
/*
* But if we actually want less than the block,
* or the file doesn't have a whole block more of data,
* then use the lesser number.
*/
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (bytesinfile < xfersize)
xfersize = bytesinfile;
if (lblktosize(fs, nextlbn) >= ip->i_size) {
/*
* Don't do readahead if this is the end of the file.
*/
error = bread(vp, lbn, size, NOCRED, &bp);
} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
/*
* Otherwise if we are allowed to cluster,
* grab as much as we can.
*
* XXX This may not be a win if we are not
* doing sequential access.
*/
error = cluster_read(vp, ip->i_size, lbn,
size, NOCRED, uio->uio_resid, seqcount, &bp);
} else if (seqcount > 1) {
/*
* If we are NOT allowed to cluster, then
* if we appear to be acting sequentially,
* fire off a request for a readahead
* as well as a read. Note that the 4th and 5th
* arguments point to arrays of the size specified in
* the 6th argument.
*/
int nextsize = blksize(fs, ip, nextlbn);
error = breadn(vp, lbn,
size, &nextlbn, &nextsize, 1, NOCRED, &bp);
} else {
/*
* Failing all of the above, just read what the
* user asked for. Interestingly, the same as
* the first option above.
*/
error = bread(vp, lbn, size, NOCRED, &bp);
}
if (error) {
brelse(bp);
bp = NULL;
break;
}
/*
* If IO_DIRECT then set B_DIRECT for the buffer. This
* will cause us to attempt to release the buffer later on
* and will cause the buffer cache to attempt to free the
* underlying pages.
*/
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
/*
* We should only get non-zero b_resid when an I/O error
* has occurred, which should cause us to break above.
* However, if the short read did not cause an error,
* then we want to ensure that we do not uiomove bad
* or uninitialized data.
*/
size -= bp->b_resid;
if (size < xfersize) {
if (size == 0)
break;
xfersize = size;
}
{
/*
* otherwise use the general form
*/
error =
uiomove((char *)bp->b_data + blkoffset,
(int)xfersize, uio);
}
if (error)
break;
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_FIRST(&bp->b_dep) == NULL)) {
/*
* If there are no dependencies, and it's VMIO,
* then we don't need the buf, mark it available
* for freeing. The VM has the data.
*/
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
/*
* Otherwise let whoever
* made the request take care of
* freeing it. We just queue
* it onto another list.
*/
bqrelse(bp);
}
}
/*
* This can only happen in the case of an error
* because the loop above resets bp to NULL on each iteration
* and on normal completion has not set a new value into it.
* so it must have come from a 'break' statement
*/
if (bp != NULL) {
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_FIRST(&bp->b_dep) == NULL)) {
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
bqrelse(bp);
}
}
if ((error == 0 || uio->uio_resid != orig_resid) &&
(vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
ip->i_flag |= IN_ACCESS;
return (error);
}
/*
* Vnode op for writing.
*/
static int
ffs_write(ap)
struct vop_write_args /* {
struct vnode *a_vp;
struct uio *a_uio;
int a_ioflag;
struct ucred *a_cred;
} */ *ap;
{
struct vnode *vp;
struct uio *uio;
struct inode *ip;
struct fs *fs;
struct buf *bp;
struct thread *td;
ufs_lbn_t lbn;
off_t osize;
int seqcount;
int blkoffset, error, extended, flags, ioflag, resid, size, xfersize;
vp = ap->a_vp;
uio = ap->a_uio;
ioflag = ap->a_ioflag;
if (ap->a_ioflag & IO_EXT)
#ifdef notyet
return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
#else
panic("ffs_write+IO_EXT");
#endif
GIANT_REQUIRED;
extended = 0;
seqcount = ap->a_ioflag >> IO_SEQSHIFT;
ip = VTOI(vp);
#ifdef DIAGNOSTIC
if (uio->uio_rw != UIO_WRITE)
panic("ffs_write: mode");
#endif
switch (vp->v_type) {
case VREG:
if (ioflag & IO_APPEND)
uio->uio_offset = ip->i_size;
if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) {
return (EPERM);
}
/* FALLTHROUGH */
case VLNK:
break;
case VDIR:
panic("ffs_write: dir write");
break;
default:
panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type,
(int)uio->uio_offset,
(int)uio->uio_resid
);
}
KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0"));
KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0"));
fs = ip->i_fs;
if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) {
return (EFBIG);
}
/*
* Maybe this should be above the vnode op call, but so long as
* file servers have no limits, I don't think it matters.
*/
td = uio->uio_td;
Locking for the per-process resource limits structure. - struct plimit includes a mutex to protect a reference count. The plimit structure is treated similarly to struct ucred in that is is always copy on write, so having a reference to a structure is sufficient to read from it without needing a further lock. - The proc lock protects the p_limit pointer and must be held while reading limits from a process to keep the limit structure from changing out from under you while reading from it. - Various global limits that are ints are not protected by a lock since int writes are atomic on all the archs we support and thus a lock wouldn't buy us anything. - All accesses to individual resource limits from a process are abstracted behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return either an rlimit, or the current or max individual limit of the specified resource from a process. - dosetrlimit() was renamed to kern_setrlimit() to match existing style of other similar syscall helper functions. - The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit() (it didn't used the stackgap when it should have) but uses lim_rlimit() and kern_setrlimit() instead. - The svr4 compat no longer uses the stackgap for resource limits calls, but uses lim_rlimit() and kern_setrlimit() instead. - The ibcs2 compat no longer uses the stackgap for resource limits. It also no longer uses the stackgap for accessing sysctl's for the ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result, ibcs2_sysconf() no longer needs Giant. - The p_rlimit macro no longer exists. Submitted by: mtm (mostly, I only did a few cleanups and catchups) Tested on: i386 Compiled on: alpha, amd64
2004-02-04 21:52:57 +00:00
if (vp->v_type == VREG && td != NULL) {
PROC_LOCK(td->td_proc);
Locking for the per-process resource limits structure. - struct plimit includes a mutex to protect a reference count. The plimit structure is treated similarly to struct ucred in that is is always copy on write, so having a reference to a structure is sufficient to read from it without needing a further lock. - The proc lock protects the p_limit pointer and must be held while reading limits from a process to keep the limit structure from changing out from under you while reading from it. - Various global limits that are ints are not protected by a lock since int writes are atomic on all the archs we support and thus a lock wouldn't buy us anything. - All accesses to individual resource limits from a process are abstracted behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return either an rlimit, or the current or max individual limit of the specified resource from a process. - dosetrlimit() was renamed to kern_setrlimit() to match existing style of other similar syscall helper functions. - The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit() (it didn't used the stackgap when it should have) but uses lim_rlimit() and kern_setrlimit() instead. - The svr4 compat no longer uses the stackgap for resource limits calls, but uses lim_rlimit() and kern_setrlimit() instead. - The ibcs2 compat no longer uses the stackgap for resource limits. It also no longer uses the stackgap for accessing sysctl's for the ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result, ibcs2_sysconf() no longer needs Giant. - The p_rlimit macro no longer exists. Submitted by: mtm (mostly, I only did a few cleanups and catchups) Tested on: i386 Compiled on: alpha, amd64
2004-02-04 21:52:57 +00:00
if (uio->uio_offset + uio->uio_resid >
lim_cur(td->td_proc, RLIMIT_FSIZE)) {
psignal(td->td_proc, SIGXFSZ);
PROC_UNLOCK(td->td_proc);
return (EFBIG);
}
PROC_UNLOCK(td->td_proc);
}
resid = uio->uio_resid;
osize = ip->i_size;
Fix a file-rewrite performance case for UFS[2]. When rewriting portions of a file in chunks that are less then the filesystem block size, if the data is not already cached the system will perform a read-before-write. The problem is that it does this on a block-by-block basis, breaking up the I/Os and making clustering impossible for the writes. Programs such as INN using cyclic file buffers suffer greatly. This problem is only going to get worse as we use larger and larger filesystem block sizes. The solution is to extend the sequential heuristic so UFS[2] can perform a far larger read and readahead when dealing with this case. (note: maximum disk write bandwidth is 27MB/sec thru filesystem) (note: filesystem blocksize in test is 8K (1K frag)) dd if=/dev/zero of=test.dat bs=1k count=2m conv=notrunc Before: (note half of these are reads) tty da0 da1 acd0 cpu tin tout KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us ni sy in id 0 76 14.21 598 8.30 0.00 0 0.00 0.00 0 0.00 0 0 7 1 92 0 76 14.09 813 11.19 0.00 0 0.00 0.00 0 0.00 0 0 9 5 86 0 76 14.28 821 11.45 0.00 0 0.00 0.00 0 0.00 0 0 8 1 91 After: (note half of these are reads) tty da0 da1 acd0 cpu tin tout KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us ni sy in id 0 76 63.62 434 26.99 0.00 0 0.00 0.00 0 0.00 0 0 18 1 80 0 76 63.58 424 26.30 0.00 0 0.00 0.00 0 0.00 0 0 17 2 82 0 76 63.82 438 27.32 0.00 0 0.00 0.00 0 0.00 1 0 19 2 79 Reviewed by: mckusick Approved by: re X-MFC after: immediately (was heavily tested in -stable for 4 months)
2002-10-18 22:52:41 +00:00
if (seqcount > BA_SEQMAX)
flags = BA_SEQMAX << BA_SEQSHIFT;
else
flags = seqcount << BA_SEQSHIFT;
if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
Fix a file-rewrite performance case for UFS[2]. When rewriting portions of a file in chunks that are less then the filesystem block size, if the data is not already cached the system will perform a read-before-write. The problem is that it does this on a block-by-block basis, breaking up the I/Os and making clustering impossible for the writes. Programs such as INN using cyclic file buffers suffer greatly. This problem is only going to get worse as we use larger and larger filesystem block sizes. The solution is to extend the sequential heuristic so UFS[2] can perform a far larger read and readahead when dealing with this case. (note: maximum disk write bandwidth is 27MB/sec thru filesystem) (note: filesystem blocksize in test is 8K (1K frag)) dd if=/dev/zero of=test.dat bs=1k count=2m conv=notrunc Before: (note half of these are reads) tty da0 da1 acd0 cpu tin tout KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us ni sy in id 0 76 14.21 598 8.30 0.00 0 0.00 0.00 0 0.00 0 0 7 1 92 0 76 14.09 813 11.19 0.00 0 0.00 0.00 0 0.00 0 0 9 5 86 0 76 14.28 821 11.45 0.00 0 0.00 0.00 0 0.00 0 0 8 1 91 After: (note half of these are reads) tty da0 da1 acd0 cpu tin tout KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us ni sy in id 0 76 63.62 434 26.99 0.00 0 0.00 0.00 0 0.00 0 0 18 1 80 0 76 63.58 424 26.30 0.00 0 0.00 0.00 0 0.00 0 0 17 2 82 0 76 63.82 438 27.32 0.00 0 0.00 0.00 0 0.00 1 0 19 2 79 Reviewed by: mckusick Approved by: re X-MFC after: immediately (was heavily tested in -stable for 4 months)
2002-10-18 22:52:41 +00:00
flags |= IO_SYNC;
for (error = 0; uio->uio_resid > 0;) {
lbn = lblkno(fs, uio->uio_offset);
blkoffset = blkoff(fs, uio->uio_offset);
xfersize = fs->fs_bsize - blkoffset;
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (uio->uio_offset + xfersize > ip->i_size)
vnode_pager_setsize(vp, uio->uio_offset + xfersize);
/*
* We must perform a read-before-write if the transfer size
* does not cover the entire buffer.
*/
if (fs->fs_bsize > xfersize)
flags |= BA_CLRBUF;
else
flags &= ~BA_CLRBUF;
/* XXX is uio->uio_offset the right thing here? */
error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
ap->a_cred, flags, &bp);
if (error != 0)
break;
/*
* If the buffer is not valid we have to clear out any
* garbage data from the pages instantiated for the buffer.
* If we do not, a failed uiomove() during a write can leave
* the prior contents of the pages exposed to a userland
* mmap(). XXX deal with uiomove() errors a better way.
*/
if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
vfs_bio_clrbuf(bp);
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
if (uio->uio_offset + xfersize > ip->i_size) {
ip->i_size = uio->uio_offset + xfersize;
DIP(ip, i_size) = ip->i_size;
extended = 1;
}
size = blksize(fs, ip, lbn) - bp->b_resid;
if (size < xfersize)
xfersize = size;
error =
uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_FIRST(&bp->b_dep) == NULL)) {
bp->b_flags |= B_RELBUF;
}
/*
* If IO_SYNC each buffer is written synchronously. Otherwise
* if we have a severe page deficiency write the buffer
* asynchronously. Otherwise try to cluster, and if that
* doesn't do it then either do an async write (if O_DIRECT),
* or a delayed write (if not).
*/
if (ioflag & IO_SYNC) {
(void)bwrite(bp);
} else if (vm_page_count_severe() ||
buf_dirty_count_severe() ||
(ioflag & IO_ASYNC)) {
bp->b_flags |= B_CLUSTEROK;
bawrite(bp);
} else if (xfersize + blkoffset == fs->fs_bsize) {
if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
bp->b_flags |= B_CLUSTEROK;
cluster_write(bp, ip->i_size, seqcount);
} else {
bawrite(bp);
}
} else if (ioflag & IO_DIRECT) {
bp->b_flags |= B_CLUSTEROK;
bawrite(bp);
} else {
bp->b_flags |= B_CLUSTEROK;
bdwrite(bp);
}
if (error || xfersize == 0)
break;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
}
/*
* If we successfully wrote any data, and we are not the superuser
* we clear the setuid and setgid bits as a precaution against
* tampering.
*/
if (resid > uio->uio_resid && ap->a_cred &&
suser_cred(ap->a_cred, PRISON_ROOT)) {
ip->i_mode &= ~(ISUID | ISGID);
DIP(ip, i_mode) = ip->i_mode;
}
if (resid > uio->uio_resid)
VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
if (error) {
if (ioflag & IO_UNIT) {
(void)UFS_TRUNCATE(vp, osize,
IO_NORMAL | (ioflag & IO_SYNC),
ap->a_cred, uio->uio_td);
uio->uio_offset -= resid - uio->uio_resid;
uio->uio_resid = resid;
}
} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
error = UFS_UPDATE(vp, 1);
return (error);
}
/*
* get page routine
*/
static int
ffs_getpages(ap)
struct vop_getpages_args *ap;
{
off_t foff, physoffset;
int i, size, bsize;
struct vnode *dp, *vp;
vm_object_t obj;
vm_pindex_t pindex;
vm_page_t mreq;
int bbackwards, bforwards;
int pbackwards, pforwards;
int firstpage;
ufs2_daddr_t reqblkno, reqlblkno;
int poff;
int pcount;
int rtval;
int pagesperblock;
GIANT_REQUIRED;
pcount = round_page(ap->a_count) / PAGE_SIZE;
mreq = ap->a_m[ap->a_reqpage];
/*
* if ANY DEV_BSIZE blocks are valid on a large filesystem block,
* then the entire page is valid. Since the page may be mapped,
* user programs might reference data beyond the actual end of file
* occuring within the page. We have to zero that data.
*/
VM_OBJECT_LOCK(mreq->object);
if (mreq->valid) {
if (mreq->valid != VM_PAGE_BITS_ALL)
vm_page_zero_invalid(mreq, TRUE);
vm_page_lock_queues();
for (i = 0; i < pcount; i++) {
if (i != ap->a_reqpage) {
vm_page_free(ap->a_m[i]);
}
}
vm_page_unlock_queues();
2003-06-15 21:50:38 +00:00
VM_OBJECT_UNLOCK(mreq->object);
return VM_PAGER_OK;
}
VM_OBJECT_UNLOCK(mreq->object);
vp = ap->a_vp;
obj = vp->v_object;
bsize = vp->v_mount->mnt_stat.f_iosize;
pindex = mreq->pindex;
foff = IDX_TO_OFF(pindex) /* + ap->a_offset should be zero */;
if (bsize < PAGE_SIZE)
return vnode_pager_generic_getpages(ap->a_vp, ap->a_m,
ap->a_count,
ap->a_reqpage);
/*
* foff is the file offset of the required page
* reqlblkno is the logical block that contains the page
* poff is the index of the page into the logical block
*/
reqlblkno = foff / bsize;
poff = (foff % bsize) / PAGE_SIZE;
dp = VTOI(vp)->i_devvp;
if (ufs_bmaparray(vp, reqlblkno, &reqblkno, 0, &bforwards, &bbackwards)
|| (reqblkno == -1)) {
2003-06-15 21:50:38 +00:00
VM_OBJECT_LOCK(obj);
vm_page_lock_queues();
for(i = 0; i < pcount; i++) {
if (i != ap->a_reqpage)
vm_page_free(ap->a_m[i]);
}
vm_page_unlock_queues();
if (reqblkno == -1) {
if ((mreq->flags & PG_ZERO) == 0)
pmap_zero_page(mreq);
vm_page_undirty(mreq);
mreq->valid = VM_PAGE_BITS_ALL;
VM_OBJECT_UNLOCK(obj);
return VM_PAGER_OK;
} else {
VM_OBJECT_UNLOCK(obj);
return VM_PAGER_ERROR;
}
}
physoffset = (off_t)reqblkno * DEV_BSIZE + poff * PAGE_SIZE;
pagesperblock = bsize / PAGE_SIZE;
/*
* find the first page that is contiguous...
* note that pbackwards is the number of pages that are contiguous
* backwards.
*/
firstpage = 0;
if (ap->a_count) {
pbackwards = poff + bbackwards * pagesperblock;
if (ap->a_reqpage > pbackwards) {
firstpage = ap->a_reqpage - pbackwards;
2003-06-15 21:50:38 +00:00
VM_OBJECT_LOCK(obj);
vm_page_lock_queues();
for(i=0;i<firstpage;i++)
vm_page_free(ap->a_m[i]);
vm_page_unlock_queues();
2003-06-15 21:50:38 +00:00
VM_OBJECT_UNLOCK(obj);
}
/*
* pforwards is the number of pages that are contiguous
* after the current page.
*/
pforwards = (pagesperblock - (poff + 1)) +
bforwards * pagesperblock;
if (pforwards < (pcount - (ap->a_reqpage + 1))) {
2003-06-15 21:50:38 +00:00
VM_OBJECT_LOCK(obj);
vm_page_lock_queues();
for( i = ap->a_reqpage + pforwards + 1; i < pcount; i++)
vm_page_free(ap->a_m[i]);
vm_page_unlock_queues();
2003-06-15 21:50:38 +00:00
VM_OBJECT_UNLOCK(obj);
pcount = ap->a_reqpage + pforwards + 1;
}
/*
* number of pages for I/O corrected for the non-contig pages at
* the beginning of the array.
*/
pcount -= firstpage;
}
/*
* calculate the size of the transfer
*/
size = pcount * PAGE_SIZE;
if ((IDX_TO_OFF(ap->a_m[firstpage]->pindex) + size) >
obj->un_pager.vnp.vnp_size)
size = obj->un_pager.vnp.vnp_size -
IDX_TO_OFF(ap->a_m[firstpage]->pindex);
physoffset -= foff;
rtval = VOP_GETPAGES(dp, &ap->a_m[firstpage], size,
(ap->a_reqpage - firstpage), physoffset);
return (rtval);
}
/*
* Extended attribute area reading.
*/
static int
ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn, nextlbn;
off_t bytesinfile;
long size, xfersize, blkoffset;
int error, orig_resid;
GIANT_REQUIRED;
ip = VTOI(vp);
fs = ip->i_fs;
dp = ip->i_din2;
#ifdef DIAGNOSTIC
if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
panic("ffs_extread: mode");
#endif
orig_resid = uio->uio_resid;
KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0"));
if (orig_resid == 0)
return (0);
KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0"));
bytesinfile = dp->di_extsize - uio->uio_offset;
if (bytesinfile <= 0) {
if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
ip->i_flag |= IN_ACCESS;
return (0);
}
for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
break;
lbn = lblkno(fs, uio->uio_offset);
nextlbn = lbn + 1;
/*
* size of buffer. The buffer representing the
* end of the file is rounded up to the size of
* the block type ( fragment or full block,
* depending ).
*/
size = sblksize(fs, dp->di_extsize, lbn);
blkoffset = blkoff(fs, uio->uio_offset);
/*
* The amount we want to transfer in this iteration is
* one FS block less the amount of the data before
* our startpoint (duh!)
*/
xfersize = fs->fs_bsize - blkoffset;
/*
* But if we actually want less than the block,
* or the file doesn't have a whole block more of data,
* then use the lesser number.
*/
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (bytesinfile < xfersize)
xfersize = bytesinfile;
if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
/*
* Don't do readahead if this is the end of the info.
*/
error = bread(vp, -1 - lbn, size, NOCRED, &bp);
} else {
/*
* If we have a second block, then
* fire off a request for a readahead
* as well as a read. Note that the 4th and 5th
* arguments point to arrays of the size specified in
* the 6th argument.
*/
int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
nextlbn = -1 - nextlbn;
error = breadn(vp, -1 - lbn,
size, &nextlbn, &nextsize, 1, NOCRED, &bp);
}
if (error) {
brelse(bp);
bp = NULL;
break;
}
/*
* If IO_DIRECT then set B_DIRECT for the buffer. This
* will cause us to attempt to release the buffer later on
* and will cause the buffer cache to attempt to free the
* underlying pages.
*/
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
/*
* We should only get non-zero b_resid when an I/O error
* has occurred, which should cause us to break above.
* However, if the short read did not cause an error,
* then we want to ensure that we do not uiomove bad
* or uninitialized data.
*/
size -= bp->b_resid;
if (size < xfersize) {
if (size == 0)
break;
xfersize = size;
}
error = uiomove((char *)bp->b_data + blkoffset,
(int)xfersize, uio);
if (error)
break;
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_FIRST(&bp->b_dep) == NULL)) {
/*
* If there are no dependencies, and it's VMIO,
* then we don't need the buf, mark it available
* for freeing. The VM has the data.
*/
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
/*
* Otherwise let whoever
* made the request take care of
* freeing it. We just queue
* it onto another list.
*/
bqrelse(bp);
}
}
/*
* This can only happen in the case of an error
* because the loop above resets bp to NULL on each iteration
* and on normal completion has not set a new value into it.
* so it must have come from a 'break' statement
*/
if (bp != NULL) {
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_FIRST(&bp->b_dep) == NULL)) {
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
bqrelse(bp);
}
}
if ((error == 0 || uio->uio_resid != orig_resid) &&
(vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
ip->i_flag |= IN_ACCESS;
return (error);
}
/*
* Extended attribute area writing.
*/
static int
ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn;
off_t osize;
int blkoffset, error, flags, resid, size, xfersize;
GIANT_REQUIRED;
ip = VTOI(vp);
fs = ip->i_fs;
dp = ip->i_din2;
#ifdef DIAGNOSTIC
if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
panic("ffs_extwrite: mode");
#endif
if (ioflag & IO_APPEND)
uio->uio_offset = dp->di_extsize;
KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0"));
KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0"));
if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize)
return (EFBIG);
resid = uio->uio_resid;
osize = dp->di_extsize;
flags = IO_EXT;
if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
flags |= IO_SYNC;
for (error = 0; uio->uio_resid > 0;) {
lbn = lblkno(fs, uio->uio_offset);
blkoffset = blkoff(fs, uio->uio_offset);
xfersize = fs->fs_bsize - blkoffset;
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
/*
* We must perform a read-before-write if the transfer size
* does not cover the entire buffer.
*/
if (fs->fs_bsize > xfersize)
flags |= BA_CLRBUF;
else
flags &= ~BA_CLRBUF;
error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
ucred, flags, &bp);
if (error != 0)
break;
/*
* If the buffer is not valid we have to clear out any
* garbage data from the pages instantiated for the buffer.
* If we do not, a failed uiomove() during a write can leave
* the prior contents of the pages exposed to a userland
* mmap(). XXX deal with uiomove() errors a better way.
*/
if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
vfs_bio_clrbuf(bp);
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
if (uio->uio_offset + xfersize > dp->di_extsize)
dp->di_extsize = uio->uio_offset + xfersize;
size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
if (size < xfersize)
xfersize = size;
error =
uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_FIRST(&bp->b_dep) == NULL)) {
bp->b_flags |= B_RELBUF;
}
/*
* If IO_SYNC each buffer is written synchronously. Otherwise
* if we have a severe page deficiency write the buffer
* asynchronously. Otherwise try to cluster, and if that
* doesn't do it then either do an async write (if O_DIRECT),
* or a delayed write (if not).
*/
if (ioflag & IO_SYNC) {
(void)bwrite(bp);
} else if (vm_page_count_severe() ||
buf_dirty_count_severe() ||
xfersize + blkoffset == fs->fs_bsize ||
(ioflag & (IO_ASYNC | IO_DIRECT)))
bawrite(bp);
else
bdwrite(bp);
if (error || xfersize == 0)
break;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
}
/*
* If we successfully wrote any data, and we are not the superuser
* we clear the setuid and setgid bits as a precaution against
* tampering.
*/
if (resid > uio->uio_resid && ucred &&
suser_cred(ucred, PRISON_ROOT)) {
ip->i_mode &= ~(ISUID | ISGID);
dp->di_mode = ip->i_mode;
}
if (error) {
if (ioflag & IO_UNIT) {
(void)UFS_TRUNCATE(vp, osize,
IO_EXT | (ioflag&IO_SYNC), ucred, uio->uio_td);
uio->uio_offset -= resid - uio->uio_resid;
uio->uio_resid = resid;
}
} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
error = UFS_UPDATE(vp, 1);
return (error);
}
/*
* Vnode operating to retrieve a named extended attribute.
*
* Locate a particular EA (nspace:name) in the area (ptr:length), and return
* the length of the EA, and possibly the pointer to the entry and to the data.
*/
static int
ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac)
{
u_char *p, *pe, *pn, *p0;
int eapad1, eapad2, ealength, ealen, nlen;
uint32_t ul;
pe = ptr + length;
nlen = strlen(name);
for (p = ptr; p < pe; p = pn) {
p0 = p;
bcopy(p, &ul, sizeof(ul));
pn = p + ul;
/* make sure this entry is complete */
if (pn > pe)
break;
p += sizeof(uint32_t);
if (*p != nspace)
continue;
p++;
eapad2 = *p++;
if (*p != nlen)
continue;
p++;
if (bcmp(p, name, nlen))
continue;
ealength = sizeof(uint32_t) + 3 + nlen;
eapad1 = 8 - (ealength % 8);
if (eapad1 == 8)
eapad1 = 0;
ealength += eapad1;
ealen = ul - ealength - eapad2;
p += nlen + eapad1;
if (eap != NULL)
*eap = p0;
if (eac != NULL)
*eac = p;
return (ealen);
}
return(-1);
}
static int
ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct uio luio;
struct iovec liovec;
int easize, error;
u_char *eae;
ip = VTOI(vp);
dp = ip->i_din2;
easize = dp->di_extsize;
eae = malloc(easize + extra, M_TEMP, M_WAITOK);
liovec.iov_base = eae;
liovec.iov_len = easize;
luio.uio_iov = &liovec;
luio.uio_iovcnt = 1;
luio.uio_offset = 0;
luio.uio_resid = easize;
luio.uio_segflg = UIO_SYSSPACE;
luio.uio_rw = UIO_READ;
luio.uio_td = td;
error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
if (error) {
free(eae, M_TEMP);
return(error);
}
*p = eae;
return (0);
}
static int
ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
{
struct inode *ip;
struct ufs2_dinode *dp;
int error;
ip = VTOI(vp);
if (ip->i_ea_area != NULL)
return (EBUSY);
dp = ip->i_din2;
error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0);
if (error)
return (error);
ip->i_ea_len = dp->di_extsize;
ip->i_ea_error = 0;
return (0);
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
{
struct inode *ip;
struct uio luio;
struct iovec liovec;
int error;
struct ufs2_dinode *dp;
ip = VTOI(vp);
if (ip->i_ea_area == NULL)
return (EINVAL);
dp = ip->i_din2;
error = ip->i_ea_error;
if (commit && error == 0) {
if (cred == NOCRED)
cred = vp->v_mount->mnt_cred;
liovec.iov_base = ip->i_ea_area;
liovec.iov_len = ip->i_ea_len;
luio.uio_iov = &liovec;
luio.uio_iovcnt = 1;
luio.uio_offset = 0;
luio.uio_resid = ip->i_ea_len;
luio.uio_segflg = UIO_SYSSPACE;
luio.uio_rw = UIO_WRITE;
luio.uio_td = td;
/* XXX: I'm not happy about truncating to zero size */
if (ip->i_ea_len < dp->di_extsize)
error = ffs_truncate(vp, 0, IO_EXT, cred, td);
error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
}
free(ip->i_ea_area, M_TEMP);
ip->i_ea_area = NULL;
ip->i_ea_len = 0;
ip->i_ea_error = 0;
return (error);
}
/*
* Vnode extattr strategy routine for special devices and fifos.
*
* We need to check for a read or write of the external attributes.
* Otherwise we just fall through and do the usual thing.
*/
static int
ffsext_strategy(struct vop_strategy_args *ap)
/*
struct vop_strategy_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
struct buf *a_bp;
};
*/
{
struct vnode *vp;
daddr_t lbn;
KASSERT(ap->a_vp == ap->a_bp->b_vp, ("%s(%p != %p)",
__func__, ap->a_vp, ap->a_bp->b_vp));
vp = ap->a_vp;
lbn = ap->a_bp->b_lblkno;
if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC &&
lbn < 0 && lbn >= -NXADDR)
return (ufs_vnoperate((struct vop_generic_args *)ap));
if (vp->v_type == VFIFO)
return (ufs_vnoperatefifo((struct vop_generic_args *)ap));
return (ufs_vnoperatespec((struct vop_generic_args *)ap));
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_openextattr(struct vop_openextattr_args *ap)
/*
struct vop_openextattr_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (fs->fs_magic == FS_UFS1_MAGIC)
return (ufs_vnoperate((struct vop_generic_args *)ap));
if (ap->a_vp->v_type == VCHR)
return (EOPNOTSUPP);
return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_closeextattr(struct vop_closeextattr_args *ap)
/*
struct vop_closeextattr_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
int a_commit;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (fs->fs_magic == FS_UFS1_MAGIC)
return (ufs_vnoperate((struct vop_generic_args *)ap));
if (ap->a_vp->v_type == VCHR)
return (EOPNOTSUPP);
return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
}
/*
* Vnode operation to remove a named attribute.
*/
static int
ffs_deleteextattr(struct vop_deleteextattr_args *ap)
/*
vop_deleteextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
uint32_t ealength, ul;
int ealen, olen, eapad1, eapad2, error, i, easize;
u_char *eae, *p;
int stand_alone;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (fs->fs_magic == FS_UFS1_MAGIC)
return (ufs_vnoperate((struct vop_generic_args *)ap));
if (ap->a_vp->v_type == VCHR)
return (EOPNOTSUPP);
if (strlen(ap->a_name) == 0)
return (EINVAL);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, IWRITE);
if (error) {
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = error;
return (error);
}
if (ip->i_ea_area == NULL) {
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
stand_alone = 1;
} else {
stand_alone = 0;
}
ealength = eapad1 = ealen = eapad2 = 0;
eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
bcopy(ip->i_ea_area, eae, ip->i_ea_len);
easize = ip->i_ea_len;
olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
&p, NULL);
if (olen == -1) {
/* delete but nonexistent */
free(eae, M_TEMP);
if (stand_alone)
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return(ENOATTR);
}
bcopy(p, &ul, sizeof ul);
i = p - eae + ul;
if (ul != ealength) {
bcopy(p + ul, p + ealength, easize - i);
easize += (ealength - ul);
}
if (easize > NXADDR * fs->fs_bsize) {
free(eae, M_TEMP);
if (stand_alone)
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
else if (ip->i_ea_error == 0)
ip->i_ea_error = ENOSPC;
return(ENOSPC);
}
p = ip->i_ea_area;
ip->i_ea_area = eae;
ip->i_ea_len = easize;
free(p, M_TEMP);
if (stand_alone)
error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
return(error);
}
/*
* Vnode operation to retrieve a named extended attribute.
*/
static int
ffs_getextattr(struct vop_getextattr_args *ap)
/*
vop_getextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
INOUT struct uio *a_uio;
OUT size_t *a_size;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
u_char *eae, *p;
unsigned easize;
int error, ealen, stand_alone;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (fs->fs_magic == FS_UFS1_MAGIC)
return (ufs_vnoperate((struct vop_generic_args *)ap));
if (ap->a_vp->v_type == VCHR)
return (EOPNOTSUPP);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, IREAD);
if (error)
return (error);
if (ip->i_ea_area == NULL) {
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
stand_alone = 1;
} else {
stand_alone = 0;
}
eae = ip->i_ea_area;
easize = ip->i_ea_len;
ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
NULL, &p);
if (ealen >= 0) {
error = 0;
if (ap->a_size != NULL)
*ap->a_size = ealen;
else if (ap->a_uio != NULL)
error = uiomove(p, ealen, ap->a_uio);
} else
error = ENOATTR;
if (stand_alone)
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return(error);
}
/*
* Vnode operation to retrieve extended attributes on a vnode.
*/
static int
ffs_listextattr(struct vop_listextattr_args *ap)
/*
vop_listextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
INOUT struct uio *a_uio;
OUT size_t *a_size;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
u_char *eae, *p, *pe, *pn;
unsigned easize;
uint32_t ul;
int error, ealen, stand_alone;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (fs->fs_magic == FS_UFS1_MAGIC)
return (ufs_vnoperate((struct vop_generic_args *)ap));
if (ap->a_vp->v_type == VCHR)
return (EOPNOTSUPP);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, IREAD);
if (error)
return (error);
if (ip->i_ea_area == NULL) {
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
stand_alone = 1;
} else {
stand_alone = 0;
}
eae = ip->i_ea_area;
easize = ip->i_ea_len;
error = 0;
if (ap->a_size != NULL)
*ap->a_size = 0;
pe = eae + easize;
for(p = eae; error == 0 && p < pe; p = pn) {
bcopy(p, &ul, sizeof(ul));
pn = p + ul;
if (pn > pe)
break;
p += sizeof(ul);
if (*p++ != ap->a_attrnamespace)
continue;
p++; /* pad2 */
ealen = *p;
if (ap->a_size != NULL) {
*ap->a_size += ealen + 1;
} else if (ap->a_uio != NULL) {
error = uiomove(p, ealen + 1, ap->a_uio);
}
}
if (stand_alone)
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return(error);
}
/*
* Vnode operation to set a named attribute.
*/
static int
ffs_setextattr(struct vop_setextattr_args *ap)
/*
vop_setextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
INOUT struct uio *a_uio;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
uint32_t ealength, ul;
int ealen, olen, eapad1, eapad2, error, i, easize;
u_char *eae, *p;
int stand_alone;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (fs->fs_magic == FS_UFS1_MAGIC)
return (ufs_vnoperate((struct vop_generic_args *)ap));
if (ap->a_vp->v_type == VCHR)
return (EOPNOTSUPP);
if (strlen(ap->a_name) == 0)
return (EINVAL);
/* XXX Now unsupported API to delete EAs using NULL uio. */
if (ap->a_uio == NULL)
return (EOPNOTSUPP);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, IWRITE);
if (error) {
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = error;
return (error);
}
if (ip->i_ea_area == NULL) {
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
stand_alone = 1;
} else {
stand_alone = 0;
}
ealen = ap->a_uio->uio_resid;
ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
eapad1 = 8 - (ealength % 8);
if (eapad1 == 8)
eapad1 = 0;
eapad2 = 8 - (ealen % 8);
if (eapad2 == 8)
eapad2 = 0;
ealength += eapad1 + ealen + eapad2;
eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
bcopy(ip->i_ea_area, eae, ip->i_ea_len);
easize = ip->i_ea_len;
olen = ffs_findextattr(eae, easize,
ap->a_attrnamespace, ap->a_name, &p, NULL);
if (olen == -1) {
/* new, append at end */
p = eae + easize;
easize += ealength;
} else {
bcopy(p, &ul, sizeof ul);
i = p - eae + ul;
if (ul != ealength) {
bcopy(p + ul, p + ealength, easize - i);
easize += (ealength - ul);
}
}
if (easize > NXADDR * fs->fs_bsize) {
free(eae, M_TEMP);
if (stand_alone)
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
else if (ip->i_ea_error == 0)
ip->i_ea_error = ENOSPC;
return(ENOSPC);
}
bcopy(&ealength, p, sizeof(ealength));
p += sizeof(ealength);
*p++ = ap->a_attrnamespace;
*p++ = eapad2;
*p++ = strlen(ap->a_name);
strcpy(p, ap->a_name);
p += strlen(ap->a_name);
bzero(p, eapad1);
p += eapad1;
error = uiomove(p, ealen, ap->a_uio);
if (error) {
free(eae, M_TEMP);
if (stand_alone)
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
else if (ip->i_ea_error == 0)
ip->i_ea_error = error;
return(error);
}
p += ealen;
bzero(p, eapad2);
p = ip->i_ea_area;
ip->i_ea_area = eae;
ip->i_ea_len = easize;
free(p, M_TEMP);
if (stand_alone)
error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
return(error);
}