freebsd-dev/sys/dev/pci/vga_pci.c

796 lines
19 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2005 John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Simple driver for PCI VGA display devices. Drivers such as agp(4) and
* drm(4) should attach as children of this device.
*
* XXX: The vgapci name is a hack until we somehow merge the isa vga driver
* in or rename it.
*/
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/rman.h>
Rewrite x86bios and update its dependent drivers. - Do not map entire real mode memory (1MB). Instead, we map IVT/BDA and ROM area separately. Most notably, ROM area is mapped as device memory (uncacheable) as it should be. User memory is dynamically allocated and free'ed with contigmalloc(9) and contigfree(9). Remove now redundant and potentially dangerous x86bios_alloc.c. If this emulator ever grows to support non-PC hardware, we may implement it with rman(9) later. - Move all host-specific initializations from x86emu_util.c to x86bios.c and remove now unnecessary x86emu_util.c. Currently, non-PC hardware is not supported. We may use bus_space(9) later when the KPI is fixed. - Replace all bzero() calls for emulated registers with more obviously named x86bios_init_regs(). This function also initializes DS and SS properly. - Add x86bios_get_intr(). This function checks if the interrupt vector is available for the platform. It is not necessary for PC-compatible hardware but it may be needed later. ;-) - Do not try turning off monitor if DPMS does not support the state. - Allocate stable memory for VESA OEM strings instead of just holding pointers to them. They may or may not be accessible always. Fix a memory leak of video mode table while I am here. - Add (experimental) BIOS POST call for vesa(4). This function calls VGA BIOS POST code from the current VGA option ROM. Some video controllers cannot save and restore the state properly even if it is claimed to be supported. Usually the symptom is blank display after resuming from suspend state. If the video mode does not match the previous mode after restoring, we try BIOS POST and force the known good initial state. Some magic was taken from NetBSD (and it was taken from vbetool, I believe.) - Add a loader tunable for vgapci(4) to give a hint to dpms(4) and vesa(4) to identify who owns the VESA BIOS. This is very useful for multi-display adapter setup. By default, the POST video controller is automatically probed and the tunable "hw.pci.default_vgapci_unit" is set to corresponding vgapci unit number. You may override it from loader but it is very unlikely to be necessary. Unfortunately only AGP/PCI/PCI-E controllers can be matched because ISA controller does not have necessary device IDs. - Fix a long standing bug in state save/restore function. The state buffer pointer should be ES:BX, not ES:DI according to VBE 3.0. If it ever worked, that's because BX was always zero. :-) - Clean up register initializations more clearer per VBE 3.0. - Fix a lot of style issues with vesa(4).
2009-10-19 20:58:10 +00:00
#include <sys/sysctl.h>
#include <sys/systm.h>
#if defined(__amd64__) || defined(__i386__)
#include <vm/vm.h>
#include <vm/pmap.h>
#endif
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <compat/x86bios/x86bios.h> /* To re-POST the card. */
struct vga_resource {
struct resource *vr_res;
int vr_refs;
};
struct vga_pci_softc {
device_t vga_msi_child; /* Child driver using MSI. */
struct vga_resource vga_bars[PCIR_MAX_BAR_0 + 1];
struct vga_resource vga_bios;
};
Rewrite x86bios and update its dependent drivers. - Do not map entire real mode memory (1MB). Instead, we map IVT/BDA and ROM area separately. Most notably, ROM area is mapped as device memory (uncacheable) as it should be. User memory is dynamically allocated and free'ed with contigmalloc(9) and contigfree(9). Remove now redundant and potentially dangerous x86bios_alloc.c. If this emulator ever grows to support non-PC hardware, we may implement it with rman(9) later. - Move all host-specific initializations from x86emu_util.c to x86bios.c and remove now unnecessary x86emu_util.c. Currently, non-PC hardware is not supported. We may use bus_space(9) later when the KPI is fixed. - Replace all bzero() calls for emulated registers with more obviously named x86bios_init_regs(). This function also initializes DS and SS properly. - Add x86bios_get_intr(). This function checks if the interrupt vector is available for the platform. It is not necessary for PC-compatible hardware but it may be needed later. ;-) - Do not try turning off monitor if DPMS does not support the state. - Allocate stable memory for VESA OEM strings instead of just holding pointers to them. They may or may not be accessible always. Fix a memory leak of video mode table while I am here. - Add (experimental) BIOS POST call for vesa(4). This function calls VGA BIOS POST code from the current VGA option ROM. Some video controllers cannot save and restore the state properly even if it is claimed to be supported. Usually the symptom is blank display after resuming from suspend state. If the video mode does not match the previous mode after restoring, we try BIOS POST and force the known good initial state. Some magic was taken from NetBSD (and it was taken from vbetool, I believe.) - Add a loader tunable for vgapci(4) to give a hint to dpms(4) and vesa(4) to identify who owns the VESA BIOS. This is very useful for multi-display adapter setup. By default, the POST video controller is automatically probed and the tunable "hw.pci.default_vgapci_unit" is set to corresponding vgapci unit number. You may override it from loader but it is very unlikely to be necessary. Unfortunately only AGP/PCI/PCI-E controllers can be matched because ISA controller does not have necessary device IDs. - Fix a long standing bug in state save/restore function. The state buffer pointer should be ES:BX, not ES:DI according to VBE 3.0. If it ever worked, that's because BX was always zero. :-) - Clean up register initializations more clearer per VBE 3.0. - Fix a lot of style issues with vesa(4).
2009-10-19 20:58:10 +00:00
SYSCTL_DECL(_hw_pci);
static struct vga_resource *lookup_res(struct vga_pci_softc *sc, int rid);
static struct resource *vga_pci_alloc_resource(device_t dev, device_t child,
int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count,
u_int flags);
static int vga_pci_release_resource(device_t dev, device_t child, int type,
int rid, struct resource *r);
Rewrite x86bios and update its dependent drivers. - Do not map entire real mode memory (1MB). Instead, we map IVT/BDA and ROM area separately. Most notably, ROM area is mapped as device memory (uncacheable) as it should be. User memory is dynamically allocated and free'ed with contigmalloc(9) and contigfree(9). Remove now redundant and potentially dangerous x86bios_alloc.c. If this emulator ever grows to support non-PC hardware, we may implement it with rman(9) later. - Move all host-specific initializations from x86emu_util.c to x86bios.c and remove now unnecessary x86emu_util.c. Currently, non-PC hardware is not supported. We may use bus_space(9) later when the KPI is fixed. - Replace all bzero() calls for emulated registers with more obviously named x86bios_init_regs(). This function also initializes DS and SS properly. - Add x86bios_get_intr(). This function checks if the interrupt vector is available for the platform. It is not necessary for PC-compatible hardware but it may be needed later. ;-) - Do not try turning off monitor if DPMS does not support the state. - Allocate stable memory for VESA OEM strings instead of just holding pointers to them. They may or may not be accessible always. Fix a memory leak of video mode table while I am here. - Add (experimental) BIOS POST call for vesa(4). This function calls VGA BIOS POST code from the current VGA option ROM. Some video controllers cannot save and restore the state properly even if it is claimed to be supported. Usually the symptom is blank display after resuming from suspend state. If the video mode does not match the previous mode after restoring, we try BIOS POST and force the known good initial state. Some magic was taken from NetBSD (and it was taken from vbetool, I believe.) - Add a loader tunable for vgapci(4) to give a hint to dpms(4) and vesa(4) to identify who owns the VESA BIOS. This is very useful for multi-display adapter setup. By default, the POST video controller is automatically probed and the tunable "hw.pci.default_vgapci_unit" is set to corresponding vgapci unit number. You may override it from loader but it is very unlikely to be necessary. Unfortunately only AGP/PCI/PCI-E controllers can be matched because ISA controller does not have necessary device IDs. - Fix a long standing bug in state save/restore function. The state buffer pointer should be ES:BX, not ES:DI according to VBE 3.0. If it ever worked, that's because BX was always zero. :-) - Clean up register initializations more clearer per VBE 3.0. - Fix a lot of style issues with vesa(4).
2009-10-19 20:58:10 +00:00
int vga_pci_default_unit = -1;
SYSCTL_INT(_hw_pci, OID_AUTO, default_vgapci_unit, CTLFLAG_RDTUN,
Rewrite x86bios and update its dependent drivers. - Do not map entire real mode memory (1MB). Instead, we map IVT/BDA and ROM area separately. Most notably, ROM area is mapped as device memory (uncacheable) as it should be. User memory is dynamically allocated and free'ed with contigmalloc(9) and contigfree(9). Remove now redundant and potentially dangerous x86bios_alloc.c. If this emulator ever grows to support non-PC hardware, we may implement it with rman(9) later. - Move all host-specific initializations from x86emu_util.c to x86bios.c and remove now unnecessary x86emu_util.c. Currently, non-PC hardware is not supported. We may use bus_space(9) later when the KPI is fixed. - Replace all bzero() calls for emulated registers with more obviously named x86bios_init_regs(). This function also initializes DS and SS properly. - Add x86bios_get_intr(). This function checks if the interrupt vector is available for the platform. It is not necessary for PC-compatible hardware but it may be needed later. ;-) - Do not try turning off monitor if DPMS does not support the state. - Allocate stable memory for VESA OEM strings instead of just holding pointers to them. They may or may not be accessible always. Fix a memory leak of video mode table while I am here. - Add (experimental) BIOS POST call for vesa(4). This function calls VGA BIOS POST code from the current VGA option ROM. Some video controllers cannot save and restore the state properly even if it is claimed to be supported. Usually the symptom is blank display after resuming from suspend state. If the video mode does not match the previous mode after restoring, we try BIOS POST and force the known good initial state. Some magic was taken from NetBSD (and it was taken from vbetool, I believe.) - Add a loader tunable for vgapci(4) to give a hint to dpms(4) and vesa(4) to identify who owns the VESA BIOS. This is very useful for multi-display adapter setup. By default, the POST video controller is automatically probed and the tunable "hw.pci.default_vgapci_unit" is set to corresponding vgapci unit number. You may override it from loader but it is very unlikely to be necessary. Unfortunately only AGP/PCI/PCI-E controllers can be matched because ISA controller does not have necessary device IDs. - Fix a long standing bug in state save/restore function. The state buffer pointer should be ES:BX, not ES:DI according to VBE 3.0. If it ever worked, that's because BX was always zero. :-) - Clean up register initializations more clearer per VBE 3.0. - Fix a lot of style issues with vesa(4).
2009-10-19 20:58:10 +00:00
&vga_pci_default_unit, -1, "Default VGA-compatible display");
int
vga_pci_is_boot_display(device_t dev)
{
vga_pci: Improve boot display detection The previous code was checking the "VGA Enable" bit on the video card's parent PCI-to-PCI bridge only. This didn't work for the case where the video card is attached to the root PCI bus (ie. the card has no parent PCI-to-PCI bridge). Now, the new code: 1. checks the "VGA Enable" bit on the parent bridge only if it's a PCI-to-PCI bridge; 2. always checks the "I/O" and "Memory address space decoding" bits on the video card itself. However, vendor-specific bits are not used. This fixes the use of many integrated Radeon cards: without this patch, we fail to detect them as the boot display and, when radeonkms looks for the Video BIOS, it skips the shadow copy made by the System BIOS. It then fails to fully initialize the card, because the shadow copy is the only way to read the Video BIOS in these situations. A workaround was to force the boot display selection using the "hw.pci.default_vgapci_unit" tunable. A previous version of this patch added a new function doing the checks. Now, the vga_pci_is_boot_display() function is used to perform the checks (only until the boot display is found) and return if the given device is the boot display or not. Furthermore, vga_pci_attach() logs "Boot video device" if the card being attached it the Chosen One: vgapci0: <VGA-compatible display> [...] vgapci0: Boot video device Reviewed by: kib@, jhb@ (both a previous version) Tested by: lunatic_ (#freebsd-xorg, integrated Radeon card, xmj (#freebsd-xorg, i915+NVIDIA cards)
2013-12-21 12:55:42 +00:00
int unit;
device_t pcib;
uint16_t config;
/* Check that the given device is a video card */
if ((pci_get_class(dev) != PCIC_DISPLAY &&
(pci_get_class(dev) != PCIC_OLD ||
pci_get_subclass(dev) != PCIS_OLD_VGA)))
return (0);
unit = device_get_unit(dev);
if (vga_pci_default_unit >= 0) {
/*
* The boot display device was determined by a previous
* call to this function, or the user forced it using
* the hw.pci.default_vgapci_unit tunable.
*/
return (vga_pci_default_unit == unit);
}
/*
vga_pci: Improve boot display detection The previous code was checking the "VGA Enable" bit on the video card's parent PCI-to-PCI bridge only. This didn't work for the case where the video card is attached to the root PCI bus (ie. the card has no parent PCI-to-PCI bridge). Now, the new code: 1. checks the "VGA Enable" bit on the parent bridge only if it's a PCI-to-PCI bridge; 2. always checks the "I/O" and "Memory address space decoding" bits on the video card itself. However, vendor-specific bits are not used. This fixes the use of many integrated Radeon cards: without this patch, we fail to detect them as the boot display and, when radeonkms looks for the Video BIOS, it skips the shadow copy made by the System BIOS. It then fails to fully initialize the card, because the shadow copy is the only way to read the Video BIOS in these situations. A workaround was to force the boot display selection using the "hw.pci.default_vgapci_unit" tunable. A previous version of this patch added a new function doing the checks. Now, the vga_pci_is_boot_display() function is used to perform the checks (only until the boot display is found) and return if the given device is the boot display or not. Furthermore, vga_pci_attach() logs "Boot video device" if the card being attached it the Chosen One: vgapci0: <VGA-compatible display> [...] vgapci0: Boot video device Reviewed by: kib@, jhb@ (both a previous version) Tested by: lunatic_ (#freebsd-xorg, integrated Radeon card, xmj (#freebsd-xorg, i915+NVIDIA cards)
2013-12-21 12:55:42 +00:00
* The primary video card used as a boot display must have the
* "I/O" and "Memory Address Space Decoding" bits set in its
* Command register.
*
* Furthermore, if the card is attached to a bridge, instead of
* the root PCI bus, the bridge must have the "VGA Enable" bit
* set in its Control register.
*/
vga_pci: Improve boot display detection The previous code was checking the "VGA Enable" bit on the video card's parent PCI-to-PCI bridge only. This didn't work for the case where the video card is attached to the root PCI bus (ie. the card has no parent PCI-to-PCI bridge). Now, the new code: 1. checks the "VGA Enable" bit on the parent bridge only if it's a PCI-to-PCI bridge; 2. always checks the "I/O" and "Memory address space decoding" bits on the video card itself. However, vendor-specific bits are not used. This fixes the use of many integrated Radeon cards: without this patch, we fail to detect them as the boot display and, when radeonkms looks for the Video BIOS, it skips the shadow copy made by the System BIOS. It then fails to fully initialize the card, because the shadow copy is the only way to read the Video BIOS in these situations. A workaround was to force the boot display selection using the "hw.pci.default_vgapci_unit" tunable. A previous version of this patch added a new function doing the checks. Now, the vga_pci_is_boot_display() function is used to perform the checks (only until the boot display is found) and return if the given device is the boot display or not. Furthermore, vga_pci_attach() logs "Boot video device" if the card being attached it the Chosen One: vgapci0: <VGA-compatible display> [...] vgapci0: Boot video device Reviewed by: kib@, jhb@ (both a previous version) Tested by: lunatic_ (#freebsd-xorg, integrated Radeon card, xmj (#freebsd-xorg, i915+NVIDIA cards)
2013-12-21 12:55:42 +00:00
pcib = device_get_parent(device_get_parent(dev));
if (device_get_devclass(device_get_parent(pcib)) ==
devclass_find("pci")) {
/*
* The parent bridge is a PCI-to-PCI bridge: check the
* value of the "VGA Enable" bit.
*/
config = pci_read_config(pcib, PCIR_BRIDGECTL_1, 2);
if ((config & PCIB_BCR_VGA_ENABLE) == 0)
return (0);
}
config = pci_read_config(dev, PCIR_COMMAND, 2);
if ((config & (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN)) == 0)
return (0);
/*
* Disable interrupts until a chipset driver is loaded for
* this PCI device. Else unhandled display adapter interrupts
* might freeze the CPU.
*/
pci_write_config(dev, PCIR_COMMAND, config | PCIM_CMD_INTxDIS, 2);
vga_pci: Improve boot display detection The previous code was checking the "VGA Enable" bit on the video card's parent PCI-to-PCI bridge only. This didn't work for the case where the video card is attached to the root PCI bus (ie. the card has no parent PCI-to-PCI bridge). Now, the new code: 1. checks the "VGA Enable" bit on the parent bridge only if it's a PCI-to-PCI bridge; 2. always checks the "I/O" and "Memory address space decoding" bits on the video card itself. However, vendor-specific bits are not used. This fixes the use of many integrated Radeon cards: without this patch, we fail to detect them as the boot display and, when radeonkms looks for the Video BIOS, it skips the shadow copy made by the System BIOS. It then fails to fully initialize the card, because the shadow copy is the only way to read the Video BIOS in these situations. A workaround was to force the boot display selection using the "hw.pci.default_vgapci_unit" tunable. A previous version of this patch added a new function doing the checks. Now, the vga_pci_is_boot_display() function is used to perform the checks (only until the boot display is found) and return if the given device is the boot display or not. Furthermore, vga_pci_attach() logs "Boot video device" if the card being attached it the Chosen One: vgapci0: <VGA-compatible display> [...] vgapci0: Boot video device Reviewed by: kib@, jhb@ (both a previous version) Tested by: lunatic_ (#freebsd-xorg, integrated Radeon card, xmj (#freebsd-xorg, i915+NVIDIA cards)
2013-12-21 12:55:42 +00:00
/* This video card is the boot display: record its unit number. */
vga_pci_default_unit = unit;
device_set_flags(dev, 1);
return (1);
}
static void
vga_pci_reset(device_t dev)
{
int ps;
/*
* FLR is unsupported on GPUs so attempt a power-management reset by cycling
* the device in/out of D3 state.
* PCI spec says we can only go into D3 state from D0 state.
* Transition from D[12] into D0 before going to D3 state.
*/
ps = pci_get_powerstate(dev);
if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
pci_set_powerstate(dev, PCI_POWERSTATE_D3);
pci_set_powerstate(dev, ps);
}
void *
vga_pci_map_bios(device_t dev, size_t *size)
{
struct vga_resource *vr;
struct resource *res;
device_t pcib;
uint32_t rom_addr;
uint16_t config;
volatile unsigned char *bios;
int i, rid, found;
#if defined(__amd64__) || defined(__i386__)
if (vga_pci_is_boot_display(dev)) {
/*
* On x86, the System BIOS copy the default display
* device's Video BIOS at a fixed location in system
* memory (0xC0000, 128 kBytes long) at boot time.
*
* We use this copy for the default boot device, because
* the original ROM may not be valid after boot.
*/
*size = VGA_PCI_BIOS_SHADOW_SIZE;
return (pmap_mapbios(VGA_PCI_BIOS_SHADOW_ADDR, *size));
}
#endif
pcib = device_get_parent(device_get_parent(dev));
if (device_get_devclass(device_get_parent(pcib)) ==
devclass_find("pci")) {
/*
* The parent bridge is a PCI-to-PCI bridge: check the
* value of the "VGA Enable" bit.
*/
config = pci_read_config(pcib, PCIR_BRIDGECTL_1, 2);
if ((config & PCIB_BCR_VGA_ENABLE) == 0) {
config |= PCIB_BCR_VGA_ENABLE;
pci_write_config(pcib, PCIR_BRIDGECTL_1, config, 2);
}
}
switch(pci_read_config(dev, PCIR_HDRTYPE, 1)) {
case PCIM_HDRTYPE_BRIDGE:
rid = PCIR_BIOS_1;
break;
case PCIM_HDRTYPE_CARDBUS:
rid = 0;
break;
default:
rid = PCIR_BIOS;
break;
}
if (rid == 0)
return (NULL);
res = vga_pci_alloc_resource(dev, NULL, SYS_RES_MEMORY, &rid, 0,
~0, 1, RF_ACTIVE);
if (res == NULL) {
device_printf(dev, "vga_pci_alloc_resource failed\n");
return (NULL);
}
bios = rman_get_virtual(res);
*size = rman_get_size(res);
for (found = i = 0; i < hz; i++) {
found = (bios[0] == 0x55 && bios[1] == 0xaa);
if (found)
break;
pause("vgabios", 1);
}
if (found)
return (__DEVOLATILE(void *, bios));
if (bootverbose)
device_printf(dev, "initial ROM mapping failed -- resetting\n");
/*
* Enable ROM decode
*/
vga_pci_reset(dev);
rom_addr = pci_read_config(dev, rid, 4);
rom_addr &= 0x7ff;
rom_addr |= rman_get_start(res) | 0x1;
pci_write_config(dev, rid, rom_addr, 4);
vr = lookup_res(device_get_softc(dev), rid);
vga_pci_release_resource(dev, NULL, SYS_RES_MEMORY, rid,
vr->vr_res);
/*
* re-allocate
*/
res = vga_pci_alloc_resource(dev, NULL, SYS_RES_MEMORY, &rid, 0,
~0, 1, RF_ACTIVE);
if (res == NULL) {
device_printf(dev, "vga_pci_alloc_resource failed\n");
return (NULL);
}
bios = rman_get_virtual(res);
*size = rman_get_size(res);
for (found = i = 0; i < 3*hz; i++) {
found = (bios[0] == 0x55 && bios[1] == 0xaa);
if (found)
break;
pause("vgabios", 1);
}
if (found)
return (__DEVOLATILE(void *, bios));
device_printf(dev, "ROM mapping failed\n");
vr = lookup_res(device_get_softc(dev), rid);
vga_pci_release_resource(dev, NULL, SYS_RES_MEMORY, rid,
vr->vr_res);
return (NULL);
}
void
vga_pci_unmap_bios(device_t dev, void *bios)
{
struct vga_resource *vr;
int rid;
if (bios == NULL) {
return;
}
#if defined(__amd64__) || defined(__i386__)
if (vga_pci_is_boot_display(dev)) {
/* We mapped the BIOS shadow copy located at 0xC0000. */
pmap_unmapdev((vm_offset_t)bios, VGA_PCI_BIOS_SHADOW_SIZE);
return;
}
#endif
switch(pci_read_config(dev, PCIR_HDRTYPE, 1)) {
case PCIM_HDRTYPE_BRIDGE:
rid = PCIR_BIOS_1;
break;
case PCIM_HDRTYPE_CARDBUS:
rid = 0;
break;
default:
rid = PCIR_BIOS;
break;
}
if (rid == 0)
return;
/*
* Look up the PCIR_BIOS resource in our softc. It should match
* the address we returned previously.
*/
vr = lookup_res(device_get_softc(dev), rid);
KASSERT(vr->vr_res != NULL, ("vga_pci_unmap_bios: bios not mapped"));
KASSERT(rman_get_virtual(vr->vr_res) == bios,
("vga_pci_unmap_bios: mismatch"));
vga_pci_release_resource(dev, NULL, SYS_RES_MEMORY, rid,
vr->vr_res);
}
int
vga_pci_repost(device_t dev)
{
#if defined(__amd64__) || defined(__i386__)
x86regs_t regs;
if (!vga_pci_is_boot_display(dev))
return (EINVAL);
if (x86bios_get_orm(VGA_PCI_BIOS_SHADOW_ADDR) == NULL)
return (ENOTSUP);
x86bios_init_regs(&regs);
regs.R_AH = pci_get_bus(dev);
regs.R_AL = (pci_get_slot(dev) << 3) | (pci_get_function(dev) & 0x07);
regs.R_DL = 0x80;
device_printf(dev, "REPOSTing\n");
x86bios_call(&regs, X86BIOS_PHYSTOSEG(VGA_PCI_BIOS_SHADOW_ADDR + 3),
X86BIOS_PHYSTOOFF(VGA_PCI_BIOS_SHADOW_ADDR + 3));
x86bios_get_intr(0x10);
return (0);
#else
return (ENOTSUP);
#endif
}
static int
vga_pci_probe(device_t dev)
{
switch (pci_get_class(dev)) {
case PCIC_DISPLAY:
break;
case PCIC_OLD:
if (pci_get_subclass(dev) != PCIS_OLD_VGA)
return (ENXIO);
break;
default:
return (ENXIO);
}
Rewrite x86bios and update its dependent drivers. - Do not map entire real mode memory (1MB). Instead, we map IVT/BDA and ROM area separately. Most notably, ROM area is mapped as device memory (uncacheable) as it should be. User memory is dynamically allocated and free'ed with contigmalloc(9) and contigfree(9). Remove now redundant and potentially dangerous x86bios_alloc.c. If this emulator ever grows to support non-PC hardware, we may implement it with rman(9) later. - Move all host-specific initializations from x86emu_util.c to x86bios.c and remove now unnecessary x86emu_util.c. Currently, non-PC hardware is not supported. We may use bus_space(9) later when the KPI is fixed. - Replace all bzero() calls for emulated registers with more obviously named x86bios_init_regs(). This function also initializes DS and SS properly. - Add x86bios_get_intr(). This function checks if the interrupt vector is available for the platform. It is not necessary for PC-compatible hardware but it may be needed later. ;-) - Do not try turning off monitor if DPMS does not support the state. - Allocate stable memory for VESA OEM strings instead of just holding pointers to them. They may or may not be accessible always. Fix a memory leak of video mode table while I am here. - Add (experimental) BIOS POST call for vesa(4). This function calls VGA BIOS POST code from the current VGA option ROM. Some video controllers cannot save and restore the state properly even if it is claimed to be supported. Usually the symptom is blank display after resuming from suspend state. If the video mode does not match the previous mode after restoring, we try BIOS POST and force the known good initial state. Some magic was taken from NetBSD (and it was taken from vbetool, I believe.) - Add a loader tunable for vgapci(4) to give a hint to dpms(4) and vesa(4) to identify who owns the VESA BIOS. This is very useful for multi-display adapter setup. By default, the POST video controller is automatically probed and the tunable "hw.pci.default_vgapci_unit" is set to corresponding vgapci unit number. You may override it from loader but it is very unlikely to be necessary. Unfortunately only AGP/PCI/PCI-E controllers can be matched because ISA controller does not have necessary device IDs. - Fix a long standing bug in state save/restore function. The state buffer pointer should be ES:BX, not ES:DI according to VBE 3.0. If it ever worked, that's because BX was always zero. :-) - Clean up register initializations more clearer per VBE 3.0. - Fix a lot of style issues with vesa(4).
2009-10-19 20:58:10 +00:00
/* Probe default display. */
vga_pci: Improve boot display detection The previous code was checking the "VGA Enable" bit on the video card's parent PCI-to-PCI bridge only. This didn't work for the case where the video card is attached to the root PCI bus (ie. the card has no parent PCI-to-PCI bridge). Now, the new code: 1. checks the "VGA Enable" bit on the parent bridge only if it's a PCI-to-PCI bridge; 2. always checks the "I/O" and "Memory address space decoding" bits on the video card itself. However, vendor-specific bits are not used. This fixes the use of many integrated Radeon cards: without this patch, we fail to detect them as the boot display and, when radeonkms looks for the Video BIOS, it skips the shadow copy made by the System BIOS. It then fails to fully initialize the card, because the shadow copy is the only way to read the Video BIOS in these situations. A workaround was to force the boot display selection using the "hw.pci.default_vgapci_unit" tunable. A previous version of this patch added a new function doing the checks. Now, the vga_pci_is_boot_display() function is used to perform the checks (only until the boot display is found) and return if the given device is the boot display or not. Furthermore, vga_pci_attach() logs "Boot video device" if the card being attached it the Chosen One: vgapci0: <VGA-compatible display> [...] vgapci0: Boot video device Reviewed by: kib@, jhb@ (both a previous version) Tested by: lunatic_ (#freebsd-xorg, integrated Radeon card, xmj (#freebsd-xorg, i915+NVIDIA cards)
2013-12-21 12:55:42 +00:00
vga_pci_is_boot_display(dev);
Rewrite x86bios and update its dependent drivers. - Do not map entire real mode memory (1MB). Instead, we map IVT/BDA and ROM area separately. Most notably, ROM area is mapped as device memory (uncacheable) as it should be. User memory is dynamically allocated and free'ed with contigmalloc(9) and contigfree(9). Remove now redundant and potentially dangerous x86bios_alloc.c. If this emulator ever grows to support non-PC hardware, we may implement it with rman(9) later. - Move all host-specific initializations from x86emu_util.c to x86bios.c and remove now unnecessary x86emu_util.c. Currently, non-PC hardware is not supported. We may use bus_space(9) later when the KPI is fixed. - Replace all bzero() calls for emulated registers with more obviously named x86bios_init_regs(). This function also initializes DS and SS properly. - Add x86bios_get_intr(). This function checks if the interrupt vector is available for the platform. It is not necessary for PC-compatible hardware but it may be needed later. ;-) - Do not try turning off monitor if DPMS does not support the state. - Allocate stable memory for VESA OEM strings instead of just holding pointers to them. They may or may not be accessible always. Fix a memory leak of video mode table while I am here. - Add (experimental) BIOS POST call for vesa(4). This function calls VGA BIOS POST code from the current VGA option ROM. Some video controllers cannot save and restore the state properly even if it is claimed to be supported. Usually the symptom is blank display after resuming from suspend state. If the video mode does not match the previous mode after restoring, we try BIOS POST and force the known good initial state. Some magic was taken from NetBSD (and it was taken from vbetool, I believe.) - Add a loader tunable for vgapci(4) to give a hint to dpms(4) and vesa(4) to identify who owns the VESA BIOS. This is very useful for multi-display adapter setup. By default, the POST video controller is automatically probed and the tunable "hw.pci.default_vgapci_unit" is set to corresponding vgapci unit number. You may override it from loader but it is very unlikely to be necessary. Unfortunately only AGP/PCI/PCI-E controllers can be matched because ISA controller does not have necessary device IDs. - Fix a long standing bug in state save/restore function. The state buffer pointer should be ES:BX, not ES:DI according to VBE 3.0. If it ever worked, that's because BX was always zero. :-) - Clean up register initializations more clearer per VBE 3.0. - Fix a lot of style issues with vesa(4).
2009-10-19 20:58:10 +00:00
device_set_desc(dev, "VGA-compatible display");
return (BUS_PROBE_GENERIC);
}
static int
vga_pci_attach(device_t dev)
{
bus_generic_probe(dev);
/* Always create a drm child for now to make it easier on drm. */
device_add_child(dev, "drm", -1);
device_add_child(dev, "drmn", -1);
bus_generic_attach(dev);
vga_pci: Improve boot display detection The previous code was checking the "VGA Enable" bit on the video card's parent PCI-to-PCI bridge only. This didn't work for the case where the video card is attached to the root PCI bus (ie. the card has no parent PCI-to-PCI bridge). Now, the new code: 1. checks the "VGA Enable" bit on the parent bridge only if it's a PCI-to-PCI bridge; 2. always checks the "I/O" and "Memory address space decoding" bits on the video card itself. However, vendor-specific bits are not used. This fixes the use of many integrated Radeon cards: without this patch, we fail to detect them as the boot display and, when radeonkms looks for the Video BIOS, it skips the shadow copy made by the System BIOS. It then fails to fully initialize the card, because the shadow copy is the only way to read the Video BIOS in these situations. A workaround was to force the boot display selection using the "hw.pci.default_vgapci_unit" tunable. A previous version of this patch added a new function doing the checks. Now, the vga_pci_is_boot_display() function is used to perform the checks (only until the boot display is found) and return if the given device is the boot display or not. Furthermore, vga_pci_attach() logs "Boot video device" if the card being attached it the Chosen One: vgapci0: <VGA-compatible display> [...] vgapci0: Boot video device Reviewed by: kib@, jhb@ (both a previous version) Tested by: lunatic_ (#freebsd-xorg, integrated Radeon card, xmj (#freebsd-xorg, i915+NVIDIA cards)
2013-12-21 12:55:42 +00:00
if (vga_pci_is_boot_display(dev))
device_printf(dev, "Boot video device\n");
return (0);
}
static int
vga_pci_suspend(device_t dev)
{
return (bus_generic_suspend(dev));
}
static int
vga_pci_detach(device_t dev)
{
int error;
error = bus_generic_detach(dev);
if (error == 0)
error = device_delete_children(dev);
return (error);
}
static int
vga_pci_resume(device_t dev)
{
return (bus_generic_resume(dev));
}
/* Bus interface. */
static int
vga_pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
return (BUS_READ_IVAR(device_get_parent(dev), dev, which, result));
}
static int
vga_pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
{
return (EINVAL);
}
static int
vga_pci_setup_intr(device_t dev, device_t child, struct resource *irq,
int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
void **cookiep)
{
return (BUS_SETUP_INTR(device_get_parent(dev), dev, irq, flags,
filter, intr, arg, cookiep));
}
static int
vga_pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
void *cookie)
{
return (BUS_TEARDOWN_INTR(device_get_parent(dev), dev, irq, cookie));
}
static struct vga_resource *
lookup_res(struct vga_pci_softc *sc, int rid)
{
int bar;
if (rid == PCIR_BIOS)
return (&sc->vga_bios);
bar = PCI_RID2BAR(rid);
if (bar >= 0 && bar <= PCIR_MAX_BAR_0)
return (&sc->vga_bars[bar]);
return (NULL);
}
static struct resource *
vga_pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
{
struct vga_resource *vr;
switch (type) {
case SYS_RES_MEMORY:
case SYS_RES_IOPORT:
/*
* For BARs, we cache the resource so that we only allocate it
* from the PCI bus once.
*/
vr = lookup_res(device_get_softc(dev), *rid);
if (vr == NULL)
return (NULL);
if (vr->vr_res == NULL)
vr->vr_res = bus_alloc_resource(dev, type, rid, start,
end, count, flags);
if (vr->vr_res != NULL)
vr->vr_refs++;
return (vr->vr_res);
}
return (bus_alloc_resource(dev, type, rid, start, end, count, flags));
}
static int
vga_pci_release_resource(device_t dev, device_t child, int type, int rid,
struct resource *r)
{
struct vga_resource *vr;
int error;
switch (type) {
case SYS_RES_MEMORY:
case SYS_RES_IOPORT:
/*
* For BARs, we release the resource from the PCI bus
* when the last child reference goes away.
*/
vr = lookup_res(device_get_softc(dev), rid);
if (vr == NULL)
return (EINVAL);
if (vr->vr_res == NULL)
return (EINVAL);
KASSERT(vr->vr_res == r, ("vga_pci resource mismatch"));
if (vr->vr_refs > 1) {
vr->vr_refs--;
return (0);
}
KASSERT(vr->vr_refs > 0,
("vga_pci resource reference count underflow"));
error = bus_release_resource(dev, type, rid, r);
if (error == 0) {
vr->vr_res = NULL;
vr->vr_refs = 0;
}
return (error);
}
return (bus_release_resource(dev, type, rid, r));
}
/* PCI interface. */
static uint32_t
vga_pci_read_config(device_t dev, device_t child, int reg, int width)
{
return (pci_read_config(dev, reg, width));
}
static void
2010-03-11 15:25:47 +00:00
vga_pci_write_config(device_t dev, device_t child, int reg,
uint32_t val, int width)
{
pci_write_config(dev, reg, val, width);
}
static int
vga_pci_enable_busmaster(device_t dev, device_t child)
{
return (pci_enable_busmaster(dev));
}
static int
vga_pci_disable_busmaster(device_t dev, device_t child)
{
return (pci_disable_busmaster(dev));
}
static int
vga_pci_enable_io(device_t dev, device_t child, int space)
{
device_printf(dev, "child %s requested pci_enable_io\n",
device_get_nameunit(child));
return (pci_enable_io(dev, space));
}
static int
vga_pci_disable_io(device_t dev, device_t child, int space)
{
device_printf(dev, "child %s requested pci_disable_io\n",
device_get_nameunit(child));
return (pci_disable_io(dev, space));
}
static int
vga_pci_get_vpd_ident(device_t dev, device_t child, const char **identptr)
{
return (pci_get_vpd_ident(dev, identptr));
}
static int
vga_pci_get_vpd_readonly(device_t dev, device_t child, const char *kw,
const char **vptr)
{
return (pci_get_vpd_readonly(dev, kw, vptr));
}
static int
vga_pci_set_powerstate(device_t dev, device_t child, int state)
{
device_printf(dev, "child %s requested pci_set_powerstate\n",
device_get_nameunit(child));
return (pci_set_powerstate(dev, state));
}
static int
vga_pci_get_powerstate(device_t dev, device_t child)
{
device_printf(dev, "child %s requested pci_get_powerstate\n",
device_get_nameunit(child));
return (pci_get_powerstate(dev));
}
static int
vga_pci_assign_interrupt(device_t dev, device_t child)
{
device_printf(dev, "child %s requested pci_assign_interrupt\n",
device_get_nameunit(child));
return (PCI_ASSIGN_INTERRUPT(device_get_parent(dev), dev));
}
static int
vga_pci_find_cap(device_t dev, device_t child, int capability,
int *capreg)
{
return (pci_find_cap(dev, capability, capreg));
}
static int
vga_pci_find_next_cap(device_t dev, device_t child, int capability,
int start, int *capreg)
{
return (pci_find_next_cap(dev, capability, start, capreg));
}
static int
vga_pci_find_extcap(device_t dev, device_t child, int capability,
int *capreg)
{
return (pci_find_extcap(dev, capability, capreg));
}
static int
vga_pci_find_next_extcap(device_t dev, device_t child, int capability,
int start, int *capreg)
{
return (pci_find_next_extcap(dev, capability, start, capreg));
}
static int
vga_pci_find_htcap(device_t dev, device_t child, int capability,
int *capreg)
{
return (pci_find_htcap(dev, capability, capreg));
}
static int
vga_pci_find_next_htcap(device_t dev, device_t child, int capability,
int start, int *capreg)
{
return (pci_find_next_htcap(dev, capability, start, capreg));
}
static int
vga_pci_alloc_msi(device_t dev, device_t child, int *count)
{
struct vga_pci_softc *sc;
int error;
sc = device_get_softc(dev);
if (sc->vga_msi_child != NULL)
return (EBUSY);
error = pci_alloc_msi(dev, count);
if (error == 0)
sc->vga_msi_child = child;
return (error);
}
static int
vga_pci_alloc_msix(device_t dev, device_t child, int *count)
{
struct vga_pci_softc *sc;
int error;
sc = device_get_softc(dev);
if (sc->vga_msi_child != NULL)
return (EBUSY);
error = pci_alloc_msix(dev, count);
if (error == 0)
sc->vga_msi_child = child;
return (error);
}
static int
vga_pci_remap_msix(device_t dev, device_t child, int count,
const u_int *vectors)
{
struct vga_pci_softc *sc;
sc = device_get_softc(dev);
if (sc->vga_msi_child != child)
return (ENXIO);
return (pci_remap_msix(dev, count, vectors));
}
static int
vga_pci_release_msi(device_t dev, device_t child)
{
struct vga_pci_softc *sc;
int error;
sc = device_get_softc(dev);
if (sc->vga_msi_child != child)
return (ENXIO);
error = pci_release_msi(dev);
if (error == 0)
sc->vga_msi_child = NULL;
return (error);
}
static int
vga_pci_msi_count(device_t dev, device_t child)
{
return (pci_msi_count(dev));
}
static int
vga_pci_msix_count(device_t dev, device_t child)
{
return (pci_msix_count(dev));
}
static bus_dma_tag_t
vga_pci_get_dma_tag(device_t bus, device_t child)
{
return (bus_get_dma_tag(bus));
}
static device_method_t vga_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, vga_pci_probe),
DEVMETHOD(device_attach, vga_pci_attach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, vga_pci_suspend),
DEVMETHOD(device_detach, vga_pci_detach),
DEVMETHOD(device_resume, vga_pci_resume),
/* Bus interface */
DEVMETHOD(bus_read_ivar, vga_pci_read_ivar),
DEVMETHOD(bus_write_ivar, vga_pci_write_ivar),
DEVMETHOD(bus_setup_intr, vga_pci_setup_intr),
DEVMETHOD(bus_teardown_intr, vga_pci_teardown_intr),
DEVMETHOD(bus_alloc_resource, vga_pci_alloc_resource),
DEVMETHOD(bus_release_resource, vga_pci_release_resource),
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
DEVMETHOD(bus_get_dma_tag, vga_pci_get_dma_tag),
/* PCI interface */
DEVMETHOD(pci_read_config, vga_pci_read_config),
DEVMETHOD(pci_write_config, vga_pci_write_config),
DEVMETHOD(pci_enable_busmaster, vga_pci_enable_busmaster),
DEVMETHOD(pci_disable_busmaster, vga_pci_disable_busmaster),
DEVMETHOD(pci_enable_io, vga_pci_enable_io),
DEVMETHOD(pci_disable_io, vga_pci_disable_io),
DEVMETHOD(pci_get_vpd_ident, vga_pci_get_vpd_ident),
DEVMETHOD(pci_get_vpd_readonly, vga_pci_get_vpd_readonly),
DEVMETHOD(pci_get_powerstate, vga_pci_get_powerstate),
DEVMETHOD(pci_set_powerstate, vga_pci_set_powerstate),
DEVMETHOD(pci_assign_interrupt, vga_pci_assign_interrupt),
DEVMETHOD(pci_find_cap, vga_pci_find_cap),
DEVMETHOD(pci_find_next_cap, vga_pci_find_next_cap),
DEVMETHOD(pci_find_extcap, vga_pci_find_extcap),
DEVMETHOD(pci_find_next_extcap, vga_pci_find_next_extcap),
DEVMETHOD(pci_find_htcap, vga_pci_find_htcap),
DEVMETHOD(pci_find_next_htcap, vga_pci_find_next_htcap),
DEVMETHOD(pci_alloc_msi, vga_pci_alloc_msi),
DEVMETHOD(pci_alloc_msix, vga_pci_alloc_msix),
DEVMETHOD(pci_remap_msix, vga_pci_remap_msix),
DEVMETHOD(pci_release_msi, vga_pci_release_msi),
DEVMETHOD(pci_msi_count, vga_pci_msi_count),
DEVMETHOD(pci_msix_count, vga_pci_msix_count),
{ 0, 0 }
};
static driver_t vga_pci_driver = {
"vgapci",
vga_pci_methods,
sizeof(struct vga_pci_softc),
};
static devclass_t vga_devclass;
DRIVER_MODULE(vgapci, pci, vga_pci_driver, vga_devclass, 0, 0);
MODULE_DEPEND(vgapci, x86bios, 1, 1, 1);