2011-04-09 14:02:04 +00:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2011 The FreeBSD Project. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Based on:
|
|
|
|
* SHA512-based Unix crypt implementation. Released into the Public Domain by
|
|
|
|
* Ulrich Drepper <drepper@redhat.com>. */
|
|
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
|
|
|
#include <sys/endian.h>
|
|
|
|
#include <sys/param.h>
|
|
|
|
|
|
|
|
#include <errno.h>
|
|
|
|
#include <limits.h>
|
|
|
|
#include <sha512.h>
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include "crypt.h"
|
|
|
|
|
|
|
|
/* Define our magic string to mark salt for SHA512 "encryption" replacement. */
|
|
|
|
static const char sha512_salt_prefix[] = "$6$";
|
|
|
|
|
|
|
|
/* Prefix for optional rounds specification. */
|
|
|
|
static const char sha512_rounds_prefix[] = "rounds=";
|
|
|
|
|
|
|
|
/* Maximum salt string length. */
|
|
|
|
#define SALT_LEN_MAX 16
|
|
|
|
/* Default number of rounds if not explicitly specified. */
|
|
|
|
#define ROUNDS_DEFAULT 5000
|
|
|
|
/* Minimum number of rounds. */
|
|
|
|
#define ROUNDS_MIN 1000
|
|
|
|
/* Maximum number of rounds. */
|
|
|
|
#define ROUNDS_MAX 999999999
|
|
|
|
|
|
|
|
static char *
|
2011-05-05 01:09:42 +00:00
|
|
|
crypt_sha512_r(const char *key, const char *salt, char *buffer, int buflen)
|
2011-04-09 14:02:04 +00:00
|
|
|
{
|
|
|
|
u_long srounds;
|
|
|
|
int n;
|
|
|
|
uint8_t alt_result[64], temp_result[64];
|
|
|
|
SHA512_CTX ctx, alt_ctx;
|
|
|
|
size_t salt_len, key_len, cnt, rounds;
|
|
|
|
char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp;
|
|
|
|
const char *num;
|
|
|
|
bool rounds_custom;
|
|
|
|
|
|
|
|
copied_key = NULL;
|
|
|
|
copied_salt = NULL;
|
|
|
|
|
|
|
|
/* Default number of rounds. */
|
|
|
|
rounds = ROUNDS_DEFAULT;
|
|
|
|
rounds_custom = false;
|
|
|
|
|
|
|
|
/* Find beginning of salt string. The prefix should normally always
|
|
|
|
* be present. Just in case it is not. */
|
|
|
|
if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0)
|
|
|
|
/* Skip salt prefix. */
|
|
|
|
salt += sizeof(sha512_salt_prefix) - 1;
|
|
|
|
|
|
|
|
if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1)
|
|
|
|
== 0) {
|
|
|
|
num = salt + sizeof(sha512_rounds_prefix) - 1;
|
|
|
|
srounds = strtoul(num, &endp, 10);
|
|
|
|
|
|
|
|
if (*endp == '$') {
|
|
|
|
salt = endp + 1;
|
|
|
|
rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
|
|
|
|
rounds_custom = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
|
|
|
|
key_len = strlen(key);
|
|
|
|
|
|
|
|
/* Prepare for the real work. */
|
|
|
|
SHA512_Init(&ctx);
|
|
|
|
|
|
|
|
/* Add the key string. */
|
|
|
|
SHA512_Update(&ctx, key, key_len);
|
|
|
|
|
|
|
|
/* The last part is the salt string. This must be at most 8
|
|
|
|
* characters and it ends at the first `$' character (for
|
|
|
|
* compatibility with existing implementations). */
|
|
|
|
SHA512_Update(&ctx, salt, salt_len);
|
|
|
|
|
|
|
|
/* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The
|
|
|
|
* final result will be added to the first context. */
|
|
|
|
SHA512_Init(&alt_ctx);
|
|
|
|
|
|
|
|
/* Add key. */
|
|
|
|
SHA512_Update(&alt_ctx, key, key_len);
|
|
|
|
|
|
|
|
/* Add salt. */
|
|
|
|
SHA512_Update(&alt_ctx, salt, salt_len);
|
|
|
|
|
|
|
|
/* Add key again. */
|
|
|
|
SHA512_Update(&alt_ctx, key, key_len);
|
|
|
|
|
|
|
|
/* Now get result of this (64 bytes) and add it to the other context. */
|
|
|
|
SHA512_Final(alt_result, &alt_ctx);
|
|
|
|
|
|
|
|
/* Add for any character in the key one byte of the alternate sum. */
|
|
|
|
for (cnt = key_len; cnt > 64; cnt -= 64)
|
|
|
|
SHA512_Update(&ctx, alt_result, 64);
|
|
|
|
SHA512_Update(&ctx, alt_result, cnt);
|
|
|
|
|
|
|
|
/* Take the binary representation of the length of the key and for
|
|
|
|
* every 1 add the alternate sum, for every 0 the key. */
|
|
|
|
for (cnt = key_len; cnt > 0; cnt >>= 1)
|
|
|
|
if ((cnt & 1) != 0)
|
|
|
|
SHA512_Update(&ctx, alt_result, 64);
|
|
|
|
else
|
|
|
|
SHA512_Update(&ctx, key, key_len);
|
|
|
|
|
|
|
|
/* Create intermediate result. */
|
|
|
|
SHA512_Final(alt_result, &ctx);
|
|
|
|
|
|
|
|
/* Start computation of P byte sequence. */
|
|
|
|
SHA512_Init(&alt_ctx);
|
|
|
|
|
|
|
|
/* For every character in the password add the entire password. */
|
|
|
|
for (cnt = 0; cnt < key_len; ++cnt)
|
|
|
|
SHA512_Update(&alt_ctx, key, key_len);
|
|
|
|
|
|
|
|
/* Finish the digest. */
|
|
|
|
SHA512_Final(temp_result, &alt_ctx);
|
|
|
|
|
|
|
|
/* Create byte sequence P. */
|
|
|
|
cp = p_bytes = alloca(key_len);
|
|
|
|
for (cnt = key_len; cnt >= 64; cnt -= 64) {
|
|
|
|
memcpy(cp, temp_result, 64);
|
|
|
|
cp += 64;
|
|
|
|
}
|
|
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
|
|
|
|
/* Start computation of S byte sequence. */
|
|
|
|
SHA512_Init(&alt_ctx);
|
|
|
|
|
|
|
|
/* For every character in the password add the entire password. */
|
|
|
|
for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
|
|
|
|
SHA512_Update(&alt_ctx, salt, salt_len);
|
|
|
|
|
|
|
|
/* Finish the digest. */
|
|
|
|
SHA512_Final(temp_result, &alt_ctx);
|
|
|
|
|
|
|
|
/* Create byte sequence S. */
|
|
|
|
cp = s_bytes = alloca(salt_len);
|
|
|
|
for (cnt = salt_len; cnt >= 64; cnt -= 64) {
|
|
|
|
memcpy(cp, temp_result, 64);
|
|
|
|
cp += 64;
|
|
|
|
}
|
|
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
|
|
|
|
/* Repeatedly run the collected hash value through SHA512 to burn CPU
|
|
|
|
* cycles. */
|
|
|
|
for (cnt = 0; cnt < rounds; ++cnt) {
|
|
|
|
/* New context. */
|
|
|
|
SHA512_Init(&ctx);
|
|
|
|
|
|
|
|
/* Add key or last result. */
|
|
|
|
if ((cnt & 1) != 0)
|
|
|
|
SHA512_Update(&ctx, p_bytes, key_len);
|
|
|
|
else
|
|
|
|
SHA512_Update(&ctx, alt_result, 64);
|
|
|
|
|
|
|
|
/* Add salt for numbers not divisible by 3. */
|
|
|
|
if (cnt % 3 != 0)
|
|
|
|
SHA512_Update(&ctx, s_bytes, salt_len);
|
|
|
|
|
|
|
|
/* Add key for numbers not divisible by 7. */
|
|
|
|
if (cnt % 7 != 0)
|
|
|
|
SHA512_Update(&ctx, p_bytes, key_len);
|
|
|
|
|
|
|
|
/* Add key or last result. */
|
|
|
|
if ((cnt & 1) != 0)
|
|
|
|
SHA512_Update(&ctx, alt_result, 64);
|
|
|
|
else
|
|
|
|
SHA512_Update(&ctx, p_bytes, key_len);
|
|
|
|
|
|
|
|
/* Create intermediate result. */
|
|
|
|
SHA512_Final(alt_result, &ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now we can construct the result string. It consists of three
|
|
|
|
* parts. */
|
|
|
|
cp = stpncpy(buffer, sha512_salt_prefix, MAX(0, buflen));
|
|
|
|
buflen -= sizeof(sha512_salt_prefix) - 1;
|
|
|
|
|
|
|
|
if (rounds_custom) {
|
|
|
|
n = snprintf(cp, MAX(0, buflen), "%s%zu$",
|
|
|
|
sha512_rounds_prefix, rounds);
|
|
|
|
|
|
|
|
cp += n;
|
|
|
|
buflen -= n;
|
|
|
|
}
|
|
|
|
|
|
|
|
cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len));
|
|
|
|
buflen -= MIN((size_t)MAX(0, buflen), salt_len);
|
|
|
|
|
|
|
|
if (buflen > 0) {
|
|
|
|
*cp++ = '$';
|
|
|
|
--buflen;
|
|
|
|
}
|
|
|
|
|
|
|
|
b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4, &buflen, &cp);
|
|
|
|
b64_from_24bit(0, 0, alt_result[63], 2, &buflen, &cp);
|
|
|
|
|
|
|
|
if (buflen <= 0) {
|
|
|
|
errno = ERANGE;
|
|
|
|
buffer = NULL;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
*cp = '\0'; /* Terminate the string. */
|
|
|
|
|
|
|
|
/* Clear the buffer for the intermediate result so that people
|
|
|
|
* attaching to processes or reading core dumps cannot get any
|
|
|
|
* information. We do it in this way to clear correct_words[] inside
|
|
|
|
* the SHA512 implementation as well. */
|
|
|
|
SHA512_Init(&ctx);
|
|
|
|
SHA512_Final(alt_result, &ctx);
|
|
|
|
memset(temp_result, '\0', sizeof(temp_result));
|
|
|
|
memset(p_bytes, '\0', key_len);
|
|
|
|
memset(s_bytes, '\0', salt_len);
|
|
|
|
memset(&ctx, '\0', sizeof(ctx));
|
|
|
|
memset(&alt_ctx, '\0', sizeof(alt_ctx));
|
|
|
|
if (copied_key != NULL)
|
|
|
|
memset(copied_key, '\0', key_len);
|
|
|
|
if (copied_salt != NULL)
|
|
|
|
memset(copied_salt, '\0', salt_len);
|
|
|
|
|
|
|
|
return buffer;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This entry point is equivalent to crypt(3). */
|
|
|
|
char *
|
2011-05-05 01:09:42 +00:00
|
|
|
crypt_sha512(const char *key, const char *salt)
|
2011-04-09 14:02:04 +00:00
|
|
|
{
|
|
|
|
/* We don't want to have an arbitrary limit in the size of the
|
|
|
|
* password. We can compute an upper bound for the size of the
|
|
|
|
* result in advance and so we can prepare the buffer we pass to
|
2011-05-05 01:09:42 +00:00
|
|
|
* `crypt_sha512_r'. */
|
2011-04-09 14:02:04 +00:00
|
|
|
static char *buffer;
|
|
|
|
static int buflen;
|
|
|
|
int needed;
|
|
|
|
char *new_buffer;
|
|
|
|
|
|
|
|
needed = (sizeof(sha512_salt_prefix) - 1
|
|
|
|
+ sizeof(sha512_rounds_prefix) + 9 + 1
|
|
|
|
+ strlen(salt) + 1 + 86 + 1);
|
|
|
|
|
|
|
|
if (buflen < needed) {
|
|
|
|
new_buffer = (char *)realloc(buffer, needed);
|
|
|
|
|
|
|
|
if (new_buffer == NULL)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
buffer = new_buffer;
|
|
|
|
buflen = needed;
|
|
|
|
}
|
|
|
|
|
2011-05-05 01:09:42 +00:00
|
|
|
return crypt_sha512_r(key, salt, buffer, buflen);
|
2011-04-09 14:02:04 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef TEST
|
|
|
|
|
|
|
|
static const struct {
|
|
|
|
const char *input;
|
|
|
|
const char result[64];
|
|
|
|
} tests[] =
|
|
|
|
{
|
|
|
|
/* Test vectors from FIPS 180-2: appendix C.1. */
|
|
|
|
{
|
|
|
|
"abc",
|
|
|
|
"\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41\x31"
|
|
|
|
"\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b\x55\xd3\x9a"
|
|
|
|
"\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c\x23\xa3\xfe\xeb\xbd"
|
|
|
|
"\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a\x9a\xc9\x4f\xa5\x4c\xa4\x9f"
|
|
|
|
},
|
|
|
|
/* Test vectors from FIPS 180-2: appendix C.2. */
|
|
|
|
{
|
|
|
|
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
|
|
|
|
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu",
|
|
|
|
"\x8e\x95\x9b\x75\xda\xe3\x13\xda\x8c\xf4\xf7\x28\x14\xfc\x14\x3f"
|
|
|
|
"\x8f\x77\x79\xc6\xeb\x9f\x7f\xa1\x72\x99\xae\xad\xb6\x88\x90\x18"
|
|
|
|
"\x50\x1d\x28\x9e\x49\x00\xf7\xe4\x33\x1b\x99\xde\xc4\xb5\x43\x3a"
|
|
|
|
"\xc7\xd3\x29\xee\xb6\xdd\x26\x54\x5e\x96\xe5\x5b\x87\x4b\xe9\x09"
|
|
|
|
},
|
|
|
|
/* Test vectors from the NESSIE project. */
|
|
|
|
{
|
|
|
|
"",
|
|
|
|
"\xcf\x83\xe1\x35\x7e\xef\xb8\xbd\xf1\x54\x28\x50\xd6\x6d\x80\x07"
|
|
|
|
"\xd6\x20\xe4\x05\x0b\x57\x15\xdc\x83\xf4\xa9\x21\xd3\x6c\xe9\xce"
|
|
|
|
"\x47\xd0\xd1\x3c\x5d\x85\xf2\xb0\xff\x83\x18\xd2\x87\x7e\xec\x2f"
|
|
|
|
"\x63\xb9\x31\xbd\x47\x41\x7a\x81\xa5\x38\x32\x7a\xf9\x27\xda\x3e"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"a",
|
|
|
|
"\x1f\x40\xfc\x92\xda\x24\x16\x94\x75\x09\x79\xee\x6c\xf5\x82\xf2"
|
|
|
|
"\xd5\xd7\xd2\x8e\x18\x33\x5d\xe0\x5a\xbc\x54\xd0\x56\x0e\x0f\x53"
|
|
|
|
"\x02\x86\x0c\x65\x2b\xf0\x8d\x56\x02\x52\xaa\x5e\x74\x21\x05\x46"
|
|
|
|
"\xf3\x69\xfb\xbb\xce\x8c\x12\xcf\xc7\x95\x7b\x26\x52\xfe\x9a\x75"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"message digest",
|
|
|
|
"\x10\x7d\xbf\x38\x9d\x9e\x9f\x71\xa3\xa9\x5f\x6c\x05\x5b\x92\x51"
|
|
|
|
"\xbc\x52\x68\xc2\xbe\x16\xd6\xc1\x34\x92\xea\x45\xb0\x19\x9f\x33"
|
|
|
|
"\x09\xe1\x64\x55\xab\x1e\x96\x11\x8e\x8a\x90\x5d\x55\x97\xb7\x20"
|
|
|
|
"\x38\xdd\xb3\x72\xa8\x98\x26\x04\x6d\xe6\x66\x87\xbb\x42\x0e\x7c"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"abcdefghijklmnopqrstuvwxyz",
|
|
|
|
"\x4d\xbf\xf8\x6c\xc2\xca\x1b\xae\x1e\x16\x46\x8a\x05\xcb\x98\x81"
|
|
|
|
"\xc9\x7f\x17\x53\xbc\xe3\x61\x90\x34\x89\x8f\xaa\x1a\xab\xe4\x29"
|
|
|
|
"\x95\x5a\x1b\xf8\xec\x48\x3d\x74\x21\xfe\x3c\x16\x46\x61\x3a\x59"
|
|
|
|
"\xed\x54\x41\xfb\x0f\x32\x13\x89\xf7\x7f\x48\xa8\x79\xc7\xb1\xf1"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
|
|
"\x20\x4a\x8f\xc6\xdd\xa8\x2f\x0a\x0c\xed\x7b\xeb\x8e\x08\xa4\x16"
|
|
|
|
"\x57\xc1\x6e\xf4\x68\xb2\x28\xa8\x27\x9b\xe3\x31\xa7\x03\xc3\x35"
|
|
|
|
"\x96\xfd\x15\xc1\x3b\x1b\x07\xf9\xaa\x1d\x3b\xea\x57\x78\x9c\xa0"
|
|
|
|
"\x31\xad\x85\xc7\xa7\x1d\xd7\x03\x54\xec\x63\x12\x38\xca\x34\x45"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
|
|
|
|
"\x1e\x07\xbe\x23\xc2\x6a\x86\xea\x37\xea\x81\x0c\x8e\xc7\x80\x93"
|
|
|
|
"\x52\x51\x5a\x97\x0e\x92\x53\xc2\x6f\x53\x6c\xfc\x7a\x99\x96\xc4"
|
|
|
|
"\x5c\x83\x70\x58\x3e\x0a\x78\xfa\x4a\x90\x04\x1d\x71\xa4\xce\xab"
|
|
|
|
"\x74\x23\xf1\x9c\x71\xb9\xd5\xa3\xe0\x12\x49\xf0\xbe\xbd\x58\x94"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"123456789012345678901234567890123456789012345678901234567890"
|
|
|
|
"12345678901234567890",
|
|
|
|
"\x72\xec\x1e\xf1\x12\x4a\x45\xb0\x47\xe8\xb7\xc7\x5a\x93\x21\x95"
|
|
|
|
"\x13\x5b\xb6\x1d\xe2\x4e\xc0\xd1\x91\x40\x42\x24\x6e\x0a\xec\x3a"
|
|
|
|
"\x23\x54\xe0\x93\xd7\x6f\x30\x48\xb4\x56\x76\x43\x46\x90\x0c\xb1"
|
|
|
|
"\x30\xd2\xa4\xfd\x5d\xd1\x6a\xbb\x5e\x30\xbc\xb8\x50\xde\xe8\x43"
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
#define ntests (sizeof (tests) / sizeof (tests[0]))
|
|
|
|
|
|
|
|
static const struct {
|
|
|
|
const char *salt;
|
|
|
|
const char *input;
|
|
|
|
const char *expected;
|
|
|
|
} tests2[] =
|
|
|
|
{
|
|
|
|
{
|
|
|
|
"$6$saltstring", "Hello world!",
|
|
|
|
"$6$saltstring$svn8UoSVapNtMuq1ukKS4tPQd8iKwSMHWjl/O817G3uBnIFNjnQJu"
|
|
|
|
"esI68u4OTLiBFdcbYEdFCoEOfaS35inz1"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"$6$rounds=10000$saltstringsaltstring", "Hello world!",
|
|
|
|
"$6$rounds=10000$saltstringsaltst$OW1/O6BYHV6BcXZu8QVeXbDWra3Oeqh0sb"
|
|
|
|
"HbbMCVNSnCM/UrjmM0Dp8vOuZeHBy/YTBmSK6H9qs/y3RnOaw5v."
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"$6$rounds=5000$toolongsaltstring", "This is just a test",
|
|
|
|
"$6$rounds=5000$toolongsaltstrin$lQ8jolhgVRVhY4b5pZKaysCLi0QBxGoNeKQ"
|
|
|
|
"zQ3glMhwllF7oGDZxUhx1yxdYcz/e1JSbq3y6JMxxl8audkUEm0"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"$6$rounds=1400$anotherlongsaltstring",
|
|
|
|
"a very much longer text to encrypt. This one even stretches over more"
|
|
|
|
"than one line.",
|
|
|
|
"$6$rounds=1400$anotherlongsalts$POfYwTEok97VWcjxIiSOjiykti.o/pQs.wP"
|
|
|
|
"vMxQ6Fm7I6IoYN3CmLs66x9t0oSwbtEW7o7UmJEiDwGqd8p4ur1"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"$6$rounds=77777$short",
|
|
|
|
"we have a short salt string but not a short password",
|
|
|
|
"$6$rounds=77777$short$WuQyW2YR.hBNpjjRhpYD/ifIw05xdfeEyQoMxIXbkvr0g"
|
|
|
|
"ge1a1x3yRULJ5CCaUeOxFmtlcGZelFl5CxtgfiAc0"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"$6$rounds=123456$asaltof16chars..", "a short string",
|
|
|
|
"$6$rounds=123456$asaltof16chars..$BtCwjqMJGx5hrJhZywWvt0RLE8uZ4oPwc"
|
|
|
|
"elCjmw2kSYu.Ec6ycULevoBK25fs2xXgMNrCzIMVcgEJAstJeonj1"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"$6$rounds=10$roundstoolow", "the minimum number is still observed",
|
|
|
|
"$6$rounds=1000$roundstoolow$kUMsbe306n21p9R.FRkW3IGn.S9NPN0x50YhH1x"
|
|
|
|
"hLsPuWGsUSklZt58jaTfF4ZEQpyUNGc0dqbpBYYBaHHrsX."
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
|
|
|
#define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
|
|
|
|
|
|
|
|
int
|
|
|
|
main(void)
|
|
|
|
{
|
|
|
|
SHA512_CTX ctx;
|
|
|
|
uint8_t sum[64];
|
|
|
|
int result = 0;
|
|
|
|
int i, cnt;
|
|
|
|
|
|
|
|
for (cnt = 0; cnt < (int)ntests; ++cnt) {
|
|
|
|
SHA512_Init(&ctx);
|
|
|
|
SHA512_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input));
|
|
|
|
SHA512_Final(sum, &ctx);
|
|
|
|
if (memcmp(tests[cnt].result, sum, 64) != 0) {
|
|
|
|
printf("test %d run %d failed\n", cnt, 1);
|
|
|
|
result = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
SHA512_Init(&ctx);
|
|
|
|
for (i = 0; tests[cnt].input[i] != '\0'; ++i)
|
|
|
|
SHA512_Update(&ctx, &tests[cnt].input[i], 1);
|
|
|
|
SHA512_Final(sum, &ctx);
|
|
|
|
if (memcmp(tests[cnt].result, sum, 64) != 0) {
|
|
|
|
printf("test %d run %d failed\n", cnt, 2);
|
|
|
|
result = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Test vector from FIPS 180-2: appendix C.3. */
|
|
|
|
char buf[1000];
|
|
|
|
|
|
|
|
memset(buf, 'a', sizeof(buf));
|
|
|
|
SHA512_Init(&ctx);
|
|
|
|
for (i = 0; i < 1000; ++i)
|
|
|
|
SHA512_Update(&ctx, buf, sizeof(buf));
|
|
|
|
SHA512_Final(sum, &ctx);
|
|
|
|
static const char expected[64] =
|
|
|
|
"\xe7\x18\x48\x3d\x0c\xe7\x69\x64\x4e\x2e\x42\xc7\xbc\x15\xb4\x63"
|
|
|
|
"\x8e\x1f\x98\xb1\x3b\x20\x44\x28\x56\x32\xa8\x03\xaf\xa9\x73\xeb"
|
|
|
|
"\xde\x0f\xf2\x44\x87\x7e\xa6\x0a\x4c\xb0\x43\x2c\xe5\x77\xc3\x1b"
|
|
|
|
"\xeb\x00\x9c\x5c\x2c\x49\xaa\x2e\x4e\xad\xb2\x17\xad\x8c\xc0\x9b";
|
|
|
|
|
|
|
|
if (memcmp(expected, sum, 64) != 0) {
|
|
|
|
printf("test %d failed\n", cnt);
|
|
|
|
result = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (cnt = 0; cnt < ntests2; ++cnt) {
|
2011-05-05 01:09:42 +00:00
|
|
|
char *cp = crypt_sha512(tests2[cnt].input, tests2[cnt].salt);
|
2011-04-09 14:02:04 +00:00
|
|
|
|
|
|
|
if (strcmp(cp, tests2[cnt].expected) != 0) {
|
|
|
|
printf("test %d: expected \"%s\", got \"%s\"\n",
|
|
|
|
cnt, tests2[cnt].expected, cp);
|
|
|
|
result = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (result == 0)
|
|
|
|
puts("all tests OK");
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* TEST */
|