freebsd-dev/sys/amd64/vmm/vmm.c

993 lines
21 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/pcpu.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/systm.h>
#include <vm/vm.h>
#include <machine/vm.h>
#include <machine/pcb.h>
#include <machine/smp.h>
#include <x86/apicreg.h>
#include <machine/vmm.h>
#include "vmm_host.h"
#include "vmm_mem.h"
#include "vmm_util.h"
#include <machine/vmm_dev.h>
#include "vlapic.h"
#include "vmm_msr.h"
#include "vmm_ipi.h"
#include "vmm_stat.h"
#include "vmm_lapic.h"
#include "io/ppt.h"
#include "io/iommu.h"
struct vlapic;
struct vcpu {
int flags;
enum vcpu_state state;
struct mtx mtx;
int hostcpu; /* host cpuid this vcpu last ran on */
uint64_t guest_msrs[VMM_MSR_NUM];
struct vlapic *vlapic;
int vcpuid;
struct savefpu *guestfpu; /* guest fpu state */
void *stats;
struct vm_exit exitinfo;
enum x2apic_state x2apic_state;
int nmi_pending;
};
#define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
#define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
#define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
#define VM_MAX_MEMORY_SEGMENTS 2
struct vm {
void *cookie; /* processor-specific data */
void *iommu; /* iommu-specific data */
struct vcpu vcpu[VM_MAXCPU];
int num_mem_segs;
struct vm_memory_segment mem_segs[VM_MAX_MEMORY_SEGMENTS];
char name[VM_MAX_NAMELEN];
/*
2011-06-28 06:26:03 +00:00
* Set of active vcpus.
* An active vcpu is one that has been started implicitly (BSP) or
* explicitly (AP) by sending it a startup ipi.
*/
2011-06-28 06:26:03 +00:00
cpuset_t active_cpus;
};
static int vmm_initialized;
static struct vmm_ops *ops;
#define VMM_INIT() (ops != NULL ? (*ops->init)() : 0)
#define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0)
#define VMINIT(vm) (ops != NULL ? (*ops->vminit)(vm): NULL)
#define VMRUN(vmi, vcpu, rip) \
(ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip) : ENXIO)
#define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
#define VMMMAP_SET(vmi, gpa, hpa, len, attr, prot, spm) \
(ops != NULL ? \
(*ops->vmmmap_set)(vmi, gpa, hpa, len, attr, prot, spm) : \
ENXIO)
#define VMMMAP_GET(vmi, gpa) \
(ops != NULL ? (*ops->vmmmap_get)(vmi, gpa) : ENXIO)
#define VMGETREG(vmi, vcpu, num, retval) \
(ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
#define VMSETREG(vmi, vcpu, num, val) \
(ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
#define VMGETDESC(vmi, vcpu, num, desc) \
(ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
#define VMSETDESC(vmi, vcpu, num, desc) \
(ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
#define VMINJECT(vmi, vcpu, type, vec, ec, ecv) \
(ops != NULL ? (*ops->vminject)(vmi, vcpu, type, vec, ec, ecv) : ENXIO)
#define VMGETCAP(vmi, vcpu, num, retval) \
(ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
#define VMSETCAP(vmi, vcpu, num, val) \
(ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
#define fpu_start_emulating() load_cr0(rcr0() | CR0_TS)
#define fpu_stop_emulating() clts()
static MALLOC_DEFINE(M_VM, "vm", "vm");
CTASSERT(VMM_MSR_NUM <= 64); /* msr_mask can keep track of up to 64 msrs */
/* statistics */
static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
static void
vcpu_cleanup(struct vcpu *vcpu)
{
vlapic_cleanup(vcpu->vlapic);
vmm_stat_free(vcpu->stats);
fpu_save_area_free(vcpu->guestfpu);
}
static void
vcpu_init(struct vm *vm, uint32_t vcpu_id)
{
struct vcpu *vcpu;
vcpu = &vm->vcpu[vcpu_id];
vcpu_lock_init(vcpu);
vcpu->hostcpu = NOCPU;
vcpu->vcpuid = vcpu_id;
vcpu->vlapic = vlapic_init(vm, vcpu_id);
vm_set_x2apic_state(vm, vcpu_id, X2APIC_ENABLED);
vcpu->guestfpu = fpu_save_area_alloc();
fpu_save_area_reset(vcpu->guestfpu);
vcpu->stats = vmm_stat_alloc();
}
struct vm_exit *
vm_exitinfo(struct vm *vm, int cpuid)
{
struct vcpu *vcpu;
if (cpuid < 0 || cpuid >= VM_MAXCPU)
panic("vm_exitinfo: invalid cpuid %d", cpuid);
vcpu = &vm->vcpu[cpuid];
return (&vcpu->exitinfo);
}
static int
vmm_init(void)
{
int error;
vmm_host_state_init();
vmm_ipi_init();
error = vmm_mem_init();
if (error)
return (error);
if (vmm_is_intel())
ops = &vmm_ops_intel;
else if (vmm_is_amd())
ops = &vmm_ops_amd;
else
return (ENXIO);
vmm_msr_init();
return (VMM_INIT());
}
static int
vmm_handler(module_t mod, int what, void *arg)
{
int error;
switch (what) {
case MOD_LOAD:
vmmdev_init();
iommu_init();
error = vmm_init();
if (error == 0)
vmm_initialized = 1;
break;
case MOD_UNLOAD:
error = vmmdev_cleanup();
if (error == 0) {
iommu_cleanup();
vmm_ipi_cleanup();
error = VMM_CLEANUP();
}
vmm_initialized = 0;
break;
default:
error = 0;
break;
}
return (error);
}
static moduledata_t vmm_kmod = {
"vmm",
vmm_handler,
NULL
};
/*
* vmm initialization has the following dependencies:
*
* - iommu initialization must happen after the pci passthru driver has had
* a chance to attach to any passthru devices (after SI_SUB_CONFIGURE).
*
* - VT-x initialization requires smp_rendezvous() and therefore must happen
* after SMP is fully functional (after SI_SUB_SMP).
*/
DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
MODULE_VERSION(vmm, 1);
SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
int
vm_create(const char *name, struct vm **retvm)
{
int i;
struct vm *vm;
vm_paddr_t maxaddr;
const int BSP = 0;
/*
* If vmm.ko could not be successfully initialized then don't attempt
* to create the virtual machine.
*/
if (!vmm_initialized)
return (ENXIO);
if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
return (EINVAL);
vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
strcpy(vm->name, name);
vm->cookie = VMINIT(vm);
for (i = 0; i < VM_MAXCPU; i++) {
vcpu_init(vm, i);
guest_msrs_init(vm, i);
}
maxaddr = vmm_mem_maxaddr();
vm->iommu = iommu_create_domain(maxaddr);
vm_activate_cpu(vm, BSP);
*retvm = vm;
return (0);
}
static void
vm_free_mem_seg(struct vm *vm, struct vm_memory_segment *seg)
{
size_t len;
vm_paddr_t hpa;
void *host_domain;
host_domain = iommu_host_domain();
len = 0;
while (len < seg->len) {
hpa = vm_gpa2hpa(vm, seg->gpa + len, PAGE_SIZE);
if (hpa == (vm_paddr_t)-1) {
panic("vm_free_mem_segs: cannot free hpa "
"associated with gpa 0x%016lx", seg->gpa + len);
}
/*
* Remove the 'gpa' to 'hpa' mapping in VMs domain.
* And resurrect the 1:1 mapping for 'hpa' in 'host_domain'.
*/
iommu_remove_mapping(vm->iommu, seg->gpa + len, PAGE_SIZE);
iommu_create_mapping(host_domain, hpa, hpa, PAGE_SIZE);
vmm_mem_free(hpa, PAGE_SIZE);
len += PAGE_SIZE;
}
/*
* Invalidate cached translations associated with 'vm->iommu' since
* we have now moved some pages from it.
*/
iommu_invalidate_tlb(vm->iommu);
bzero(seg, sizeof(struct vm_memory_segment));
}
void
vm_destroy(struct vm *vm)
{
int i;
ppt_unassign_all(vm);
for (i = 0; i < vm->num_mem_segs; i++)
vm_free_mem_seg(vm, &vm->mem_segs[i]);
vm->num_mem_segs = 0;
for (i = 0; i < VM_MAXCPU; i++)
vcpu_cleanup(&vm->vcpu[i]);
iommu_destroy_domain(vm->iommu);
VMCLEANUP(vm->cookie);
free(vm, M_VM);
}
const char *
vm_name(struct vm *vm)
{
return (vm->name);
}
int
vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
{
const boolean_t spok = TRUE; /* superpage mappings are ok */
return (VMMMAP_SET(vm->cookie, gpa, hpa, len, VM_MEMATTR_UNCACHEABLE,
VM_PROT_RW, spok));
}
int
vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
{
const boolean_t spok = TRUE; /* superpage mappings are ok */
return (VMMMAP_SET(vm->cookie, gpa, 0, len, 0,
VM_PROT_NONE, spok));
}
/*
* Returns TRUE if 'gpa' is available for allocation and FALSE otherwise
*/
static boolean_t
vm_gpa_available(struct vm *vm, vm_paddr_t gpa)
{
int i;
vm_paddr_t gpabase, gpalimit;
if (gpa & PAGE_MASK)
panic("vm_gpa_available: gpa (0x%016lx) not page aligned", gpa);
for (i = 0; i < vm->num_mem_segs; i++) {
gpabase = vm->mem_segs[i].gpa;
gpalimit = gpabase + vm->mem_segs[i].len;
if (gpa >= gpabase && gpa < gpalimit)
return (FALSE);
}
return (TRUE);
}
int
vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len)
{
int error, available, allocated;
struct vm_memory_segment *seg;
vm_paddr_t g, hpa;
void *host_domain;
const boolean_t spok = TRUE; /* superpage mappings are ok */
if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0)
return (EINVAL);
available = allocated = 0;
g = gpa;
while (g < gpa + len) {
if (vm_gpa_available(vm, g))
available++;
else
allocated++;
g += PAGE_SIZE;
}
/*
* If there are some allocated and some available pages in the address
* range then it is an error.
*/
if (allocated && available)
return (EINVAL);
/*
* If the entire address range being requested has already been
* allocated then there isn't anything more to do.
*/
if (allocated && available == 0)
return (0);
if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS)
return (E2BIG);
host_domain = iommu_host_domain();
seg = &vm->mem_segs[vm->num_mem_segs];
error = 0;
seg->gpa = gpa;
seg->len = 0;
while (seg->len < len) {
hpa = vmm_mem_alloc(PAGE_SIZE);
if (hpa == 0) {
error = ENOMEM;
break;
}
error = VMMMAP_SET(vm->cookie, gpa + seg->len, hpa, PAGE_SIZE,
VM_MEMATTR_WRITE_BACK, VM_PROT_ALL, spok);
if (error)
break;
/*
* Remove the 1:1 mapping for 'hpa' from the 'host_domain'.
* Add mapping for 'gpa + seg->len' to 'hpa' in the VMs domain.
*/
iommu_remove_mapping(host_domain, hpa, PAGE_SIZE);
iommu_create_mapping(vm->iommu, gpa + seg->len, hpa, PAGE_SIZE);
seg->len += PAGE_SIZE;
}
if (error) {
vm_free_mem_seg(vm, seg);
return (error);
}
/*
* Invalidate cached translations associated with 'host_domain' since
* we have now moved some pages from it.
*/
iommu_invalidate_tlb(host_domain);
vm->num_mem_segs++;
return (0);
}
vm_paddr_t
vm_gpa2hpa(struct vm *vm, vm_paddr_t gpa, size_t len)
{
vm_paddr_t nextpage;
nextpage = rounddown(gpa + PAGE_SIZE, PAGE_SIZE);
if (len > nextpage - gpa)
panic("vm_gpa2hpa: invalid gpa/len: 0x%016lx/%lu", gpa, len);
return (VMMMAP_GET(vm->cookie, gpa));
}
int
vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase,
struct vm_memory_segment *seg)
{
int i;
for (i = 0; i < vm->num_mem_segs; i++) {
if (gpabase == vm->mem_segs[i].gpa) {
*seg = vm->mem_segs[i];
return (0);
}
}
return (-1);
}
int
vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (reg >= VM_REG_LAST)
return (EINVAL);
return (VMGETREG(vm->cookie, vcpu, reg, retval));
}
int
vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (reg >= VM_REG_LAST)
return (EINVAL);
return (VMSETREG(vm->cookie, vcpu, reg, val));
}
static boolean_t
is_descriptor_table(int reg)
{
switch (reg) {
case VM_REG_GUEST_IDTR:
case VM_REG_GUEST_GDTR:
return (TRUE);
default:
return (FALSE);
}
}
static boolean_t
is_segment_register(int reg)
{
switch (reg) {
case VM_REG_GUEST_ES:
case VM_REG_GUEST_CS:
case VM_REG_GUEST_SS:
case VM_REG_GUEST_DS:
case VM_REG_GUEST_FS:
case VM_REG_GUEST_GS:
case VM_REG_GUEST_TR:
case VM_REG_GUEST_LDTR:
return (TRUE);
default:
return (FALSE);
}
}
int
vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
struct seg_desc *desc)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (!is_segment_register(reg) && !is_descriptor_table(reg))
return (EINVAL);
return (VMGETDESC(vm->cookie, vcpu, reg, desc));
}
int
vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
struct seg_desc *desc)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (!is_segment_register(reg) && !is_descriptor_table(reg))
return (EINVAL);
return (VMSETDESC(vm->cookie, vcpu, reg, desc));
}
static void
restore_guest_fpustate(struct vcpu *vcpu)
{
/* flush host state to the pcb */
fpuexit(curthread);
/* restore guest FPU state */
fpu_stop_emulating();
fpurestore(vcpu->guestfpu);
/*
* The FPU is now "dirty" with the guest's state so turn on emulation
* to trap any access to the FPU by the host.
*/
fpu_start_emulating();
}
static void
save_guest_fpustate(struct vcpu *vcpu)
{
if ((rcr0() & CR0_TS) == 0)
panic("fpu emulation not enabled in host!");
/* save guest FPU state */
fpu_stop_emulating();
fpusave(vcpu->guestfpu);
fpu_start_emulating();
}
static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
int
vm_run(struct vm *vm, struct vm_run *vmrun)
{
int error, vcpuid, sleepticks, t;
struct vcpu *vcpu;
struct pcb *pcb;
uint64_t tscval, rip;
struct vm_exit *vme;
vcpuid = vmrun->cpuid;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
vcpu = &vm->vcpu[vcpuid];
vme = &vmrun->vm_exit;
rip = vmrun->rip;
restart:
critical_enter();
tscval = rdtsc();
pcb = PCPU_GET(curpcb);
set_pcb_flags(pcb, PCB_FULL_IRET);
restore_guest_msrs(vm, vcpuid);
restore_guest_fpustate(vcpu);
vcpu->hostcpu = curcpu;
error = VMRUN(vm->cookie, vcpuid, rip);
vcpu->hostcpu = NOCPU;
save_guest_fpustate(vcpu);
restore_host_msrs(vm, vcpuid);
vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
/* copy the exit information */
bcopy(&vcpu->exitinfo, vme, sizeof(struct vm_exit));
critical_exit();
/*
* Oblige the guest's desire to 'hlt' by sleeping until the vcpu
* is ready to run.
*/
if (error == 0 && vme->exitcode == VM_EXITCODE_HLT) {
vcpu_lock(vcpu);
/*
* Figure out the number of host ticks until the next apic
* timer interrupt in the guest.
*/
sleepticks = lapic_timer_tick(vm, vcpuid);
/*
* If the guest local apic timer is disabled then sleep for
* a long time but not forever.
*/
if (sleepticks < 0)
sleepticks = hz;
/*
* Do a final check for pending NMI or interrupts before
* really putting this thread to sleep.
*
* These interrupts could have happened any time after we
* returned from VMRUN() and before we grabbed the vcpu lock.
*/
if (!vm_nmi_pending(vm, vcpuid) &&
lapic_pending_intr(vm, vcpuid) < 0) {
if (sleepticks <= 0)
panic("invalid sleepticks %d", sleepticks);
t = ticks;
msleep_spin(vcpu, &vcpu->mtx, "vmidle", sleepticks);
vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
}
vcpu_unlock(vcpu);
rip = vme->rip + vme->inst_length;
goto restart;
}
return (error);
}
int
vm_inject_event(struct vm *vm, int vcpuid, int type,
int vector, uint32_t code, int code_valid)
{
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
if ((type > VM_EVENT_NONE && type < VM_EVENT_MAX) == 0)
return (EINVAL);
if (vector < 0 || vector > 255)
return (EINVAL);
return (VMINJECT(vm->cookie, vcpuid, type, vector, code, code_valid));
}
static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
int
vm_inject_nmi(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
vcpu = &vm->vcpu[vcpuid];
vcpu->nmi_pending = 1;
vm_interrupt_hostcpu(vm, vcpuid);
return (0);
}
int
vm_nmi_pending(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
return (vcpu->nmi_pending);
}
void
vm_nmi_clear(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
if (vcpu->nmi_pending == 0)
panic("vm_nmi_clear: inconsistent nmi_pending state");
vcpu->nmi_pending = 0;
vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
}
int
vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (type < 0 || type >= VM_CAP_MAX)
return (EINVAL);
return (VMGETCAP(vm->cookie, vcpu, type, retval));
}
int
vm_set_capability(struct vm *vm, int vcpu, int type, int val)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (type < 0 || type >= VM_CAP_MAX)
return (EINVAL);
return (VMSETCAP(vm->cookie, vcpu, type, val));
}
uint64_t *
vm_guest_msrs(struct vm *vm, int cpu)
{
return (vm->vcpu[cpu].guest_msrs);
}
struct vlapic *
vm_lapic(struct vm *vm, int cpu)
{
return (vm->vcpu[cpu].vlapic);
}
boolean_t
vmm_is_pptdev(int bus, int slot, int func)
{
int found, i, n;
int b, s, f;
char *val, *cp, *cp2;
/*
* XXX
* The length of an environment variable is limited to 128 bytes which
* puts an upper limit on the number of passthru devices that may be
* specified using a single environment variable.
*
* Work around this by scanning multiple environment variable
* names instead of a single one - yuck!
*/
const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
found = 0;
for (i = 0; names[i] != NULL && !found; i++) {
cp = val = getenv(names[i]);
while (cp != NULL && *cp != '\0') {
if ((cp2 = strchr(cp, ' ')) != NULL)
*cp2 = '\0';
n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
if (n == 3 && bus == b && slot == s && func == f) {
found = 1;
break;
}
if (cp2 != NULL)
*cp2++ = ' ';
cp = cp2;
}
freeenv(val);
}
return (found);
}
void *
vm_iommu_domain(struct vm *vm)
{
return (vm->iommu);
}
int
vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state state)
{
int error;
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
vcpu_lock(vcpu);
/*
* The following state transitions are allowed:
* IDLE -> RUNNING -> IDLE
* IDLE -> CANNOT_RUN -> IDLE
*/
if ((vcpu->state == VCPU_IDLE && state != VCPU_IDLE) ||
(vcpu->state != VCPU_IDLE && state == VCPU_IDLE)) {
error = 0;
vcpu->state = state;
} else {
error = EBUSY;
}
vcpu_unlock(vcpu);
return (error);
}
enum vcpu_state
vcpu_get_state(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
enum vcpu_state state;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
vcpu_lock(vcpu);
state = vcpu->state;
vcpu_unlock(vcpu);
return (state);
}
void
vm_activate_cpu(struct vm *vm, int vcpuid)
{
if (vcpuid >= 0 && vcpuid < VM_MAXCPU)
2011-06-28 06:26:03 +00:00
CPU_SET(vcpuid, &vm->active_cpus);
}
2011-06-28 06:26:03 +00:00
cpuset_t
vm_active_cpus(struct vm *vm)
{
return (vm->active_cpus);
}
void *
vcpu_stats(struct vm *vm, int vcpuid)
{
return (vm->vcpu[vcpuid].stats);
}
int
vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
{
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
*state = vm->vcpu[vcpuid].x2apic_state;
return (0);
}
int
vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
{
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
if (state >= X2APIC_STATE_LAST)
return (EINVAL);
vm->vcpu[vcpuid].x2apic_state = state;
vlapic_set_x2apic_state(vm, vcpuid, state);
return (0);
}
void
vm_interrupt_hostcpu(struct vm *vm, int vcpuid)
{
int hostcpu;
struct vcpu *vcpu;
vcpu = &vm->vcpu[vcpuid];
vcpu_lock(vcpu);
hostcpu = vcpu->hostcpu;
if (hostcpu == NOCPU) {
/*
* If the vcpu is 'RUNNING' but without a valid 'hostcpu' then
* the host thread must be sleeping waiting for an event to
* kick the vcpu out of 'hlt'.
*
* XXX this is racy because the condition exists right before
* and after calling VMRUN() in vm_run(). The wakeup() is
* benign in this case.
*/
if (vcpu->state == VCPU_RUNNING)
wakeup_one(vcpu);
} else {
if (vcpu->state != VCPU_RUNNING)
panic("invalid vcpu state %d", vcpu->state);
if (hostcpu != curcpu)
ipi_cpu(hostcpu, vmm_ipinum);
}
vcpu_unlock(vcpu);
}