freebsd-dev/sys/compat/linux/linux_futex.c

1077 lines
27 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2009-2021 Dmitry Chagin <dchagin@FreeBSD.org>
* Copyright (c) 2008 Roman Divacky
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/imgact.h>
#include <sys/imgact_elf.h>
#include <sys/ktr.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/umtxvar.h>
#ifdef COMPAT_LINUX32
#include <machine/../linux32/linux.h>
#include <machine/../linux32/linux32_proto.h>
#else
#include <machine/../linux/linux.h>
#include <machine/../linux/linux_proto.h>
#endif
#include <compat/linux/linux_emul.h>
#include <compat/linux/linux_futex.h>
#include <compat/linux/linux_misc.h>
#include <compat/linux/linux_timer.h>
#include <compat/linux/linux_util.h>
#define FUTEX_SHARED 0x8 /* shared futex */
#define FUTEX_UNOWNED 0
#define GET_SHARED(a) (a->flags & FUTEX_SHARED) ? AUTO_SHARE : THREAD_SHARE
static int futex_atomic_op(struct thread *, int, uint32_t *, int *);
static int handle_futex_death(struct thread *td, struct linux_emuldata *,
uint32_t *, unsigned int, bool);
static int fetch_robust_entry(struct linux_robust_list **,
struct linux_robust_list **, unsigned int *);
struct linux_futex_args {
uint32_t *uaddr;
int32_t op;
uint32_t flags;
bool clockrt;
uint32_t val;
struct timespec *ts;
uint32_t *uaddr2;
uint32_t val3;
bool val3_compare;
struct timespec kts;
};
static inline int futex_key_get(const void *, int, int, struct umtx_key *);
static void linux_umtx_abs_timeout_init(struct umtx_abs_timeout *,
struct linux_futex_args *);
2022-05-09 18:16:48 +00:00
static int linux_futex(struct thread *, struct linux_futex_args *);
static int linux_futex_wait(struct thread *, struct linux_futex_args *);
static int linux_futex_wake(struct thread *, struct linux_futex_args *);
static int linux_futex_requeue(struct thread *, struct linux_futex_args *);
static int linux_futex_wakeop(struct thread *, struct linux_futex_args *);
static int linux_futex_lock_pi(struct thread *, bool, struct linux_futex_args *);
static int linux_futex_unlock_pi(struct thread *, bool,
struct linux_futex_args *);
static int futex_wake_pi(struct thread *, uint32_t *, bool);
static int
futex_key_get(const void *uaddr, int type, int share, struct umtx_key *key)
{
/* Check that futex address is a 32bit aligned. */
if (!__is_aligned(uaddr, sizeof(uint32_t)))
return (EINVAL);
return (umtx_key_get(uaddr, type, share, key));
}
int
futex_wake(struct thread *td, uint32_t *uaddr, int val, bool shared)
{
struct linux_futex_args args;
bzero(&args, sizeof(args));
args.op = LINUX_FUTEX_WAKE;
args.uaddr = uaddr;
args.flags = shared == true ? FUTEX_SHARED : 0;
args.val = val;
args.val3 = FUTEX_BITSET_MATCH_ANY;
return (linux_futex_wake(td, &args));
}
static int
futex_wake_pi(struct thread *td, uint32_t *uaddr, bool shared)
{
struct linux_futex_args args;
bzero(&args, sizeof(args));
args.op = LINUX_FUTEX_UNLOCK_PI;
args.uaddr = uaddr;
args.flags = shared == true ? FUTEX_SHARED : 0;
return (linux_futex_unlock_pi(td, true, &args));
}
static int
futex_atomic_op(struct thread *td, int encoded_op, uint32_t *uaddr,
int *res)
{
int op = (encoded_op >> 28) & 7;
int cmp = (encoded_op >> 24) & 15;
int oparg = (encoded_op << 8) >> 20;
int cmparg = (encoded_op << 20) >> 20;
int oldval = 0, ret;
if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28))
oparg = 1 << oparg;
switch (op) {
case FUTEX_OP_SET:
ret = futex_xchgl(oparg, uaddr, &oldval);
break;
case FUTEX_OP_ADD:
ret = futex_addl(oparg, uaddr, &oldval);
break;
case FUTEX_OP_OR:
ret = futex_orl(oparg, uaddr, &oldval);
break;
case FUTEX_OP_ANDN:
ret = futex_andl(~oparg, uaddr, &oldval);
break;
case FUTEX_OP_XOR:
ret = futex_xorl(oparg, uaddr, &oldval);
break;
default:
ret = ENOSYS;
break;
}
if (ret != 0)
return (ret);
switch (cmp) {
case FUTEX_OP_CMP_EQ:
*res = (oldval == cmparg);
break;
case FUTEX_OP_CMP_NE:
*res = (oldval != cmparg);
break;
case FUTEX_OP_CMP_LT:
*res = (oldval < cmparg);
break;
case FUTEX_OP_CMP_GE:
*res = (oldval >= cmparg);
break;
case FUTEX_OP_CMP_LE:
*res = (oldval <= cmparg);
break;
case FUTEX_OP_CMP_GT:
*res = (oldval > cmparg);
break;
default:
ret = ENOSYS;
}
return (ret);
}
static int
linux_futex(struct thread *td, struct linux_futex_args *args)
{
struct linux_pemuldata *pem;
struct proc *p;
if (args->op & LINUX_FUTEX_PRIVATE_FLAG) {
args->flags = 0;
args->op &= ~LINUX_FUTEX_PRIVATE_FLAG;
} else
args->flags = FUTEX_SHARED;
args->clockrt = args->op & LINUX_FUTEX_CLOCK_REALTIME;
args->op = args->op & ~LINUX_FUTEX_CLOCK_REALTIME;
if (args->clockrt &&
args->op != LINUX_FUTEX_WAIT_BITSET &&
args->op != LINUX_FUTEX_WAIT_REQUEUE_PI &&
args->op != LINUX_FUTEX_LOCK_PI2)
return (ENOSYS);
switch (args->op) {
case LINUX_FUTEX_WAIT:
args->val3 = FUTEX_BITSET_MATCH_ANY;
/* FALLTHROUGH */
case LINUX_FUTEX_WAIT_BITSET:
LINUX_CTR3(sys_futex, "WAIT uaddr %p val 0x%x bitset 0x%x",
args->uaddr, args->val, args->val3);
return (linux_futex_wait(td, args));
case LINUX_FUTEX_WAKE:
args->val3 = FUTEX_BITSET_MATCH_ANY;
/* FALLTHROUGH */
case LINUX_FUTEX_WAKE_BITSET:
LINUX_CTR3(sys_futex, "WAKE uaddr %p nrwake 0x%x bitset 0x%x",
args->uaddr, args->val, args->val3);
return (linux_futex_wake(td, args));
case LINUX_FUTEX_REQUEUE:
/*
* Glibc does not use this operation since version 2.3.3,
* as it is racy and replaced by FUTEX_CMP_REQUEUE operation.
* Glibc versions prior to 2.3.3 fall back to FUTEX_WAKE when
* FUTEX_REQUEUE returned EINVAL.
*/
pem = pem_find(td->td_proc);
if ((pem->flags & LINUX_XDEPR_REQUEUEOP) == 0) {
linux_msg(td, "unsupported FUTEX_REQUEUE");
pem->flags |= LINUX_XDEPR_REQUEUEOP;
}
/*
* The above is true, however musl libc does make use of the
* futex requeue operation, allow operation for brands which
* set LINUX_BI_FUTEX_REQUEUE bit of Brandinfo flags.
*/
p = td->td_proc;
Elf_Brandinfo *bi = p->p_elf_brandinfo;
if (bi == NULL || ((bi->flags & LINUX_BI_FUTEX_REQUEUE)) == 0)
return (EINVAL);
args->val3_compare = false;
/* FALLTHROUGH */
case LINUX_FUTEX_CMP_REQUEUE:
LINUX_CTR5(sys_futex, "CMP_REQUEUE uaddr %p "
"nrwake 0x%x uval 0x%x uaddr2 %p nrequeue 0x%x",
args->uaddr, args->val, args->val3, args->uaddr2,
args->ts);
return (linux_futex_requeue(td, args));
case LINUX_FUTEX_WAKE_OP:
LINUX_CTR5(sys_futex, "WAKE_OP "
"uaddr %p nrwake 0x%x uaddr2 %p op 0x%x nrwake2 0x%x",
args->uaddr, args->val, args->uaddr2, args->val3,
args->ts);
return (linux_futex_wakeop(td, args));
case LINUX_FUTEX_LOCK_PI:
args->clockrt = true;
/* FALLTHROUGH */
case LINUX_FUTEX_LOCK_PI2:
LINUX_CTR2(sys_futex, "LOCKPI uaddr %p val 0x%x",
args->uaddr, args->val);
return (linux_futex_lock_pi(td, false, args));
case LINUX_FUTEX_UNLOCK_PI:
LINUX_CTR1(sys_futex, "UNLOCKPI uaddr %p",
args->uaddr);
return (linux_futex_unlock_pi(td, false, args));
case LINUX_FUTEX_TRYLOCK_PI:
LINUX_CTR1(sys_futex, "TRYLOCKPI uaddr %p",
args->uaddr);
return (linux_futex_lock_pi(td, true, args));
/*
* Current implementation of FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI
* can't be used anymore to implement conditional variables.
* A detailed explanation can be found here:
*
* https://sourceware.org/bugzilla/show_bug.cgi?id=13165
* and here http://austingroupbugs.net/view.php?id=609
*
* And since commit
* https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=ed19993b5b0d05d62cc883571519a67dae481a14
* glibc does not use them.
*/
case LINUX_FUTEX_WAIT_REQUEUE_PI:
/* not yet implemented */
pem = pem_find(td->td_proc);
if ((pem->flags & LINUX_XUNSUP_FUTEXPIOP) == 0) {
linux_msg(td, "unsupported FUTEX_WAIT_REQUEUE_PI");
pem->flags |= LINUX_XUNSUP_FUTEXPIOP;
}
return (ENOSYS);
case LINUX_FUTEX_CMP_REQUEUE_PI:
/* not yet implemented */
pem = pem_find(td->td_proc);
if ((pem->flags & LINUX_XUNSUP_FUTEXPIOP) == 0) {
linux_msg(td, "unsupported FUTEX_CMP_REQUEUE_PI");
pem->flags |= LINUX_XUNSUP_FUTEXPIOP;
}
return (ENOSYS);
default:
linux_msg(td, "unsupported futex op %d", args->op);
return (ENOSYS);
}
}
/*
* pi protocol:
* - 0 futex word value means unlocked.
* - TID futex word value means locked.
* Userspace uses atomic ops to lock/unlock these futexes without entering the
* kernel. If the lock-acquire fastpath fails, (transition from 0 to TID fails),
* then FUTEX_LOCK_PI is called.
* The kernel atomically set FUTEX_WAITERS bit in the futex word value, if no
* other waiters exists looks up the thread that owns the futex (it has put its
* own TID into the futex value) and made this thread the owner of the internal
* pi-aware lock object (mutex). Then the kernel tries to lock the internal lock
* object, on which it blocks. Once it returns, it has the mutex acquired, and it
* sets the futex value to its own TID and returns (futex value contains
* FUTEX_WAITERS|TID).
* The unlock fastpath would fail (because the FUTEX_WAITERS bit is set) and
* FUTEX_UNLOCK_PI will be called.
* If a futex is found to be held at exit time, the kernel sets the OWNER_DIED
* bit of the futex word and wakes up the next futex waiter (if any), WAITERS
* bit is preserved (if any).
* If OWNER_DIED bit is set the kernel sanity checks the futex word value against
* the internal futex state and if correct, acquire futex.
*/
static int
linux_futex_lock_pi(struct thread *td, bool try, struct linux_futex_args *args)
{
struct umtx_abs_timeout timo;
struct linux_emuldata *em;
struct umtx_pi *pi, *new_pi;
struct thread *td1;
struct umtx_q *uq;
int error, rv;
uint32_t owner, old_owner;
em = em_find(td);
uq = td->td_umtxq;
error = futex_key_get(args->uaddr, TYPE_PI_FUTEX, GET_SHARED(args),
&uq->uq_key);
if (error != 0)
return (error);
if (args->ts != NULL)
linux_umtx_abs_timeout_init(&timo, args);
umtxq_lock(&uq->uq_key);
pi = umtx_pi_lookup(&uq->uq_key);
if (pi == NULL) {
new_pi = umtx_pi_alloc(M_NOWAIT);
if (new_pi == NULL) {
umtxq_unlock(&uq->uq_key);
new_pi = umtx_pi_alloc(M_WAITOK);
umtxq_lock(&uq->uq_key);
pi = umtx_pi_lookup(&uq->uq_key);
if (pi != NULL) {
umtx_pi_free(new_pi);
new_pi = NULL;
}
}
if (new_pi != NULL) {
new_pi->pi_key = uq->uq_key;
umtx_pi_insert(new_pi);
pi = new_pi;
}
}
umtx_pi_ref(pi);
umtxq_unlock(&uq->uq_key);
for (;;) {
/* Try uncontested case first. */
rv = casueword32(args->uaddr, FUTEX_UNOWNED, &owner, em->em_tid);
/* The acquire succeeded. */
if (rv == 0) {
error = 0;
break;
}
if (rv == -1) {
error = EFAULT;
break;
}
/*
* Nobody owns it, but the acquire failed. This can happen
* with ll/sc atomic.
*/
if (owner == FUTEX_UNOWNED) {
error = thread_check_susp(td, true);
if (error != 0)
break;
continue;
}
/*
* Avoid overwriting a possible error from sleep due
* to the pending signal with suspension check result.
*/
if (error == 0) {
error = thread_check_susp(td, true);
if (error != 0)
break;
}
/* The futex word at *uaddr is already locked by the caller. */
if ((owner & FUTEX_TID_MASK) == em->em_tid) {
error = EDEADLK;
break;
}
/*
* Futex owner died, handle_futex_death() set the OWNER_DIED bit
* and clear tid. Try to acquire it.
*/
if ((owner & FUTEX_TID_MASK) == FUTEX_UNOWNED) {
old_owner = owner;
owner = owner & (FUTEX_WAITERS | FUTEX_OWNER_DIED);
owner |= em->em_tid;
rv = casueword32(args->uaddr, old_owner, &owner, owner);
if (rv == -1) {
error = EFAULT;
break;
}
if (rv == 1) {
if (error == 0) {
error = thread_check_susp(td, true);
if (error != 0)
break;
}
/*
* If this failed the lock could
* changed, restart.
*/
continue;
}
umtxq_lock(&uq->uq_key);
umtxq_busy(&uq->uq_key);
error = umtx_pi_claim(pi, td);
umtxq_unbusy(&uq->uq_key);
umtxq_unlock(&uq->uq_key);
if (error != 0) {
/*
* Since we're going to return an
* error, restore the futex to its
* previous, unowned state to avoid
* compounding the problem.
*/
(void)casuword32(args->uaddr, owner, old_owner);
}
break;
}
/*
* Inconsistent state: OWNER_DIED is set and tid is not 0.
* Linux does some checks of futex state, we return EINVAL,
* as the user space can take care of this.
*/
if ((owner & FUTEX_OWNER_DIED) != FUTEX_UNOWNED) {
error = EINVAL;
break;
}
if (try != 0) {
error = EBUSY;
break;
}
/*
* If we caught a signal, we have retried and now
* exit immediately.
*/
if (error != 0)
break;
umtxq_lock(&uq->uq_key);
umtxq_busy(&uq->uq_key);
umtxq_unlock(&uq->uq_key);
/*
* Set the contested bit so that a release in user space knows
* to use the system call for unlock. If this fails either some
* one else has acquired the lock or it has been released.
*/
rv = casueword32(args->uaddr, owner, &owner,
owner | FUTEX_WAITERS);
if (rv == -1) {
umtxq_unbusy_unlocked(&uq->uq_key);
error = EFAULT;
break;
}
if (rv == 1) {
umtxq_unbusy_unlocked(&uq->uq_key);
error = thread_check_susp(td, true);
if (error != 0)
break;
/*
* The lock changed and we need to retry or we
* lost a race to the thread unlocking the umtx.
*/
continue;
}
/*
* Substitute Linux thread id by native thread id to
* avoid refactoring code of umtxq_sleep_pi().
*/
td1 = linux_tdfind(td, owner & FUTEX_TID_MASK, -1);
if (td1 != NULL) {
owner = td1->td_tid;
PROC_UNLOCK(td1->td_proc);
} else {
umtxq_unbusy_unlocked(&uq->uq_key);
error = EINVAL;
break;
}
umtxq_lock(&uq->uq_key);
/* We set the contested bit, sleep. */
error = umtxq_sleep_pi(uq, pi, owner, "futexp",
args->ts == NULL ? NULL : &timo,
(args->flags & FUTEX_SHARED) != 0);
if (error != 0)
continue;
error = thread_check_susp(td, false);
if (error != 0)
break;
}
umtxq_lock(&uq->uq_key);
umtx_pi_unref(pi);
umtxq_unlock(&uq->uq_key);
umtx_key_release(&uq->uq_key);
return (error);
}
static int
linux_futex_unlock_pi(struct thread *td, bool rb, struct linux_futex_args *args)
{
struct linux_emuldata *em;
struct umtx_key key;
uint32_t old, owner, new_owner;
int count, error;
em = em_find(td);
/*
* Make sure we own this mtx.
*/
error = fueword32(args->uaddr, &owner);
if (error == -1)
return (EFAULT);
if (!rb && (owner & FUTEX_TID_MASK) != em->em_tid)
return (EPERM);
error = futex_key_get(args->uaddr, TYPE_PI_FUTEX, GET_SHARED(args), &key);
if (error != 0)
return (error);
umtxq_lock(&key);
umtxq_busy(&key);
error = umtx_pi_drop(td, &key, rb, &count);
if (error != 0 || rb) {
umtxq_unbusy(&key);
umtxq_unlock(&key);
umtx_key_release(&key);
return (error);
}
umtxq_unlock(&key);
/*
* When unlocking the futex, it must be marked as unowned if
* there is zero or one thread only waiting for it.
* Otherwise, it must be marked as contested.
*/
if (count > 1)
new_owner = FUTEX_WAITERS;
else
new_owner = FUTEX_UNOWNED;
again:
error = casueword32(args->uaddr, owner, &old, new_owner);
if (error == 1) {
error = thread_check_susp(td, false);
if (error == 0)
goto again;
}
umtxq_unbusy_unlocked(&key);
umtx_key_release(&key);
if (error == -1)
return (EFAULT);
if (error == 0 && old != owner)
return (EINVAL);
return (error);
}
static int
linux_futex_wakeop(struct thread *td, struct linux_futex_args *args)
{
struct umtx_key key, key2;
int nrwake, op_ret, ret;
int error, count;
if (args->uaddr == args->uaddr2)
return (EINVAL);
error = futex_key_get(args->uaddr, TYPE_FUTEX, GET_SHARED(args), &key);
if (error != 0)
return (error);
error = futex_key_get(args->uaddr2, TYPE_FUTEX, GET_SHARED(args), &key2);
if (error != 0) {
umtx_key_release(&key);
return (error);
}
umtxq_lock(&key);
umtxq_busy(&key);
umtxq_unlock(&key);
error = futex_atomic_op(td, args->val3, args->uaddr2, &op_ret);
umtxq_lock(&key);
umtxq_unbusy(&key);
if (error != 0)
goto out;
ret = umtxq_signal_mask(&key, args->val, args->val3);
if (op_ret > 0) {
nrwake = (int)(unsigned long)args->ts;
umtxq_lock(&key2);
count = umtxq_count(&key2);
if (count > 0)
ret += umtxq_signal_mask(&key2, nrwake, args->val3);
else
ret += umtxq_signal_mask(&key, nrwake, args->val3);
umtxq_unlock(&key2);
}
td->td_retval[0] = ret;
out:
umtxq_unlock(&key);
umtx_key_release(&key2);
umtx_key_release(&key);
return (error);
}
static int
linux_futex_requeue(struct thread *td, struct linux_futex_args *args)
{
int nrwake, nrrequeue;
struct umtx_key key, key2;
int error;
uint32_t uval;
/*
* Linux allows this, we would not, it is an incorrect
* usage of declared ABI, so return EINVAL.
*/
if (args->uaddr == args->uaddr2)
return (EINVAL);
nrrequeue = (int)(unsigned long)args->ts;
nrwake = args->val;
/*
* Sanity check to prevent signed integer overflow,
* see Linux CVE-2018-6927
*/
if (nrwake < 0 || nrrequeue < 0)
return (EINVAL);
error = futex_key_get(args->uaddr, TYPE_FUTEX, GET_SHARED(args), &key);
if (error != 0)
return (error);
error = futex_key_get(args->uaddr2, TYPE_FUTEX, GET_SHARED(args), &key2);
if (error != 0) {
umtx_key_release(&key);
return (error);
}
umtxq_lock(&key);
umtxq_busy(&key);
umtxq_unlock(&key);
error = fueword32(args->uaddr, &uval);
if (error != 0)
error = EFAULT;
else if (args->val3_compare == true && uval != args->val3)
error = EWOULDBLOCK;
umtxq_lock(&key);
umtxq_unbusy(&key);
if (error == 0) {
umtxq_lock(&key2);
td->td_retval[0] = umtxq_requeue(&key, nrwake, &key2, nrrequeue);
umtxq_unlock(&key2);
}
umtxq_unlock(&key);
umtx_key_release(&key2);
umtx_key_release(&key);
return (error);
}
static int
linux_futex_wake(struct thread *td, struct linux_futex_args *args)
{
struct umtx_key key;
int error;
if (args->val3 == 0)
return (EINVAL);
error = futex_key_get(args->uaddr, TYPE_FUTEX, GET_SHARED(args), &key);
if (error != 0)
return (error);
umtxq_lock(&key);
td->td_retval[0] = umtxq_signal_mask(&key, args->val, args->val3);
umtxq_unlock(&key);
umtx_key_release(&key);
return (0);
}
static int
linux_futex_wait(struct thread *td, struct linux_futex_args *args)
{
struct umtx_abs_timeout timo;
struct umtx_q *uq;
uint32_t uval;
int error;
if (args->val3 == 0)
error = EINVAL;
uq = td->td_umtxq;
error = futex_key_get(args->uaddr, TYPE_FUTEX, GET_SHARED(args),
&uq->uq_key);
if (error != 0)
return (error);
if (args->ts != NULL)
linux_umtx_abs_timeout_init(&timo, args);
umtxq_lock(&uq->uq_key);
umtxq_busy(&uq->uq_key);
uq->uq_bitset = args->val3;
umtxq_insert(uq);
umtxq_unlock(&uq->uq_key);
error = fueword32(args->uaddr, &uval);
if (error != 0)
error = EFAULT;
else if (uval != args->val)
error = EWOULDBLOCK;
umtxq_lock(&uq->uq_key);
umtxq_unbusy(&uq->uq_key);
if (error == 0) {
error = umtxq_sleep(uq, "futex",
args->ts == NULL ? NULL : &timo);
if ((uq->uq_flags & UQF_UMTXQ) == 0)
error = 0;
else
umtxq_remove(uq);
} else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
umtxq_remove(uq);
}
umtxq_unlock(&uq->uq_key);
umtx_key_release(&uq->uq_key);
return (error);
}
static void
linux_umtx_abs_timeout_init(struct umtx_abs_timeout *timo,
struct linux_futex_args *args)
{
int clockid, absolute;
/*
* The FUTEX_CLOCK_REALTIME option bit can be employed only with the
* FUTEX_WAIT_BITSET, FUTEX_WAIT_REQUEUE_PI, FUTEX_LOCK_PI2.
* For FUTEX_WAIT, timeout is interpreted as a relative value, for other
* futex operations timeout is interpreted as an absolute value.
* If FUTEX_CLOCK_REALTIME option bit is set, the Linux kernel measures
* the timeout against the CLOCK_REALTIME clock, otherwise the kernel
* measures the timeout against the CLOCK_MONOTONIC clock.
*/
clockid = args->clockrt ? CLOCK_REALTIME : CLOCK_MONOTONIC;
absolute = args->op == LINUX_FUTEX_WAIT ? false : true;
umtx_abs_timeout_init(timo, clockid, absolute, args->ts);
}
int
linux_sys_futex(struct thread *td, struct linux_sys_futex_args *args)
{
struct linux_futex_args fargs = {
.uaddr = args->uaddr,
.op = args->op,
.val = args->val,
.ts = NULL,
.uaddr2 = args->uaddr2,
.val3 = args->val3,
.val3_compare = true,
};
int error;
switch (args->op & LINUX_FUTEX_CMD_MASK) {
case LINUX_FUTEX_WAIT:
case LINUX_FUTEX_WAIT_BITSET:
case LINUX_FUTEX_LOCK_PI:
case LINUX_FUTEX_LOCK_PI2:
if (args->timeout != NULL) {
error = linux_get_timespec(&fargs.kts, args->timeout);
if (error != 0)
return (error);
fargs.ts = &fargs.kts;
}
break;
default:
fargs.ts = PTRIN(args->timeout);
}
return (linux_futex(td, &fargs));
}
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
int
linux_sys_futex_time64(struct thread *td,
struct linux_sys_futex_time64_args *args)
{
struct linux_futex_args fargs = {
.uaddr = args->uaddr,
.op = args->op,
.val = args->val,
.ts = NULL,
.uaddr2 = args->uaddr2,
.val3 = args->val3,
.val3_compare = true,
};
int error;
switch (args->op & LINUX_FUTEX_CMD_MASK) {
case LINUX_FUTEX_WAIT:
case LINUX_FUTEX_WAIT_BITSET:
case LINUX_FUTEX_LOCK_PI:
case LINUX_FUTEX_LOCK_PI2:
if (args->timeout != NULL) {
error = linux_get_timespec64(&fargs.kts, args->timeout);
if (error != 0)
return (error);
fargs.ts = &fargs.kts;
}
break;
default:
fargs.ts = PTRIN(args->timeout);
}
return (linux_futex(td, &fargs));
}
#endif
int
linux_set_robust_list(struct thread *td, struct linux_set_robust_list_args *args)
{
struct linux_emuldata *em;
if (args->len != sizeof(struct linux_robust_list_head))
return (EINVAL);
em = em_find(td);
em->robust_futexes = args->head;
return (0);
}
int
linux_get_robust_list(struct thread *td, struct linux_get_robust_list_args *args)
{
struct linux_emuldata *em;
struct linux_robust_list_head *head;
l_size_t len;
struct thread *td2;
int error;
if (!args->pid) {
em = em_find(td);
KASSERT(em != NULL, ("get_robust_list: emuldata notfound.\n"));
head = em->robust_futexes;
} else {
td2 = linux_tdfind(td, args->pid, -1);
if (td2 == NULL)
return (ESRCH);
if (SV_PROC_ABI(td2->td_proc) != SV_ABI_LINUX) {
PROC_UNLOCK(td2->td_proc);
return (EPERM);
}
em = em_find(td2);
KASSERT(em != NULL, ("get_robust_list: emuldata notfound.\n"));
/* XXX: ptrace? */
if (priv_check(td, PRIV_CRED_SETUID) ||
priv_check(td, PRIV_CRED_SETEUID) ||
p_candebug(td, td2->td_proc)) {
PROC_UNLOCK(td2->td_proc);
return (EPERM);
}
head = em->robust_futexes;
PROC_UNLOCK(td2->td_proc);
}
len = sizeof(struct linux_robust_list_head);
error = copyout(&len, args->len, sizeof(l_size_t));
if (error != 0)
return (EFAULT);
return (copyout(&head, args->head, sizeof(l_uintptr_t)));
}
static int
handle_futex_death(struct thread *td, struct linux_emuldata *em, uint32_t *uaddr,
unsigned int pi, bool pending_op)
{
uint32_t uval, nval, mval;
int error;
retry:
error = fueword32(uaddr, &uval);
if (error != 0)
return (EFAULT);
/*
* Special case for regular (non PI) futexes. The unlock path in
* user space has two race scenarios:
*
* 1. The unlock path releases the user space futex value and
* before it can execute the futex() syscall to wake up
* waiters it is killed.
*
* 2. A woken up waiter is killed before it can acquire the
* futex in user space.
*
* In both cases the TID validation below prevents a wakeup of
* potential waiters which can cause these waiters to block
* forever.
*
* In both cases it is safe to attempt waking up a potential
* waiter without touching the user space futex value and trying
* to set the OWNER_DIED bit.
*/
if (pending_op && !pi && !uval) {
(void)futex_wake(td, uaddr, 1, true);
return (0);
}
if ((uval & FUTEX_TID_MASK) == em->em_tid) {
mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
error = casueword32(uaddr, uval, &nval, mval);
if (error == -1)
return (EFAULT);
if (error == 1) {
error = thread_check_susp(td, false);
if (error != 0)
return (error);
goto retry;
}
if (!pi && (uval & FUTEX_WAITERS)) {
error = futex_wake(td, uaddr, 1, true);
if (error != 0)
return (error);
} else if (pi && (uval & FUTEX_WAITERS)) {
error = futex_wake_pi(td, uaddr, true);
if (error != 0)
return (error);
}
}
return (0);
}
static int
fetch_robust_entry(struct linux_robust_list **entry,
struct linux_robust_list **head, unsigned int *pi)
{
l_ulong uentry;
int error;
error = copyin((const void *)head, &uentry, sizeof(uentry));
if (error != 0)
return (EFAULT);
*entry = (void *)(uentry & ~1UL);
*pi = uentry & 1;
return (0);
}
#define LINUX_HANDLE_DEATH_PENDING true
#define LINUX_HANDLE_DEATH_LIST false
/* This walks the list of robust futexes releasing them. */
void
release_futexes(struct thread *td, struct linux_emuldata *em)
{
struct linux_robust_list_head *head;
struct linux_robust_list *entry, *next_entry, *pending;
unsigned int limit = 2048, pi, next_pi, pip;
uint32_t *uaddr;
l_long futex_offset;
int error;
head = em->robust_futexes;
if (head == NULL)
return;
if (fetch_robust_entry(&entry, PTRIN(&head->list.next), &pi))
return;
error = copyin(&head->futex_offset, &futex_offset,
sizeof(futex_offset));
if (error != 0)
return;
if (fetch_robust_entry(&pending, PTRIN(&head->pending_list), &pip))
return;
while (entry != &head->list) {
error = fetch_robust_entry(&next_entry, PTRIN(&entry->next),
&next_pi);
/*
* A pending lock might already be on the list, so
* don't process it twice.
*/
if (entry != pending) {
uaddr = (uint32_t *)((caddr_t)entry + futex_offset);
if (handle_futex_death(td, em, uaddr, pi,
LINUX_HANDLE_DEATH_LIST))
return;
}
if (error != 0)
return;
entry = next_entry;
pi = next_pi;
if (!--limit)
break;
sched_relinquish(curthread);
}
if (pending) {
uaddr = (uint32_t *)((caddr_t)pending + futex_offset);
(void)handle_futex_death(td, em, uaddr, pip,
LINUX_HANDLE_DEATH_PENDING);
}
}