freebsd-dev/sys/dev/aic7xxx/aic7xxx_pci.c

2510 lines
63 KiB
C
Raw Normal View History

/*-
* Product specific probe and attach routines for:
* 3940, 2940, aic7895, aic7890, aic7880,
* aic7870, aic7860 and aic7850 SCSI controllers
*
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
* Copyright (c) 1994-2001 Justin T. Gibbs.
* Copyright (c) 2000-2001 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
* $Id: //depot/aic7xxx/aic7xxx/aic7xxx_pci.c#78 $
*/
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
#ifdef __linux__
#include "aic7xxx_osm.h"
#include "aic7xxx_inline.h"
#include "aic7xxx_93cx6.h"
#else
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
#include <dev/aic7xxx/aic7xxx_osm.h>
#include <dev/aic7xxx/aic7xxx_inline.h>
#include <dev/aic7xxx/aic7xxx_93cx6.h>
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
#endif
static __inline uint64_t
ahc_compose_id(u_int device, u_int vendor, u_int subdevice, u_int subvendor)
{
uint64_t id;
id = subvendor
| (subdevice << 16)
| ((uint64_t)vendor << 32)
| ((uint64_t)device << 48);
return (id);
}
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
#define ID_ALL_MASK 0xFFFFFFFFFFFFFFFFull
#define ID_DEV_VENDOR_MASK 0xFFFFFFFF00000000ull
#define ID_9005_GENERIC_MASK 0xFFF0FFFF00000000ull
#define ID_9005_SISL_MASK 0x000FFFFF00000000ull
#define ID_9005_SISL_ID 0x0005900500000000ull
#define ID_AIC7850 0x5078900400000000ull
#define ID_AHA_2902_04_10_15_20C_30C 0x5078900478509004ull
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
#define ID_AIC7855 0x5578900400000000ull
#define ID_AIC7859 0x3860900400000000ull
#define ID_AHA_2930CU 0x3860900438699004ull
#define ID_AIC7860 0x6078900400000000ull
#define ID_AIC7860C 0x6078900478609004ull
#define ID_AHA_1480A 0x6075900400000000ull
#define ID_AHA_2940AU_0 0x6178900400000000ull
#define ID_AHA_2940AU_1 0x6178900478619004ull
#define ID_AHA_2940AU_CN 0x2178900478219004ull
#define ID_AHA_2930C_VAR 0x6038900438689004ull
#define ID_AIC7870 0x7078900400000000ull
#define ID_AHA_2940 0x7178900400000000ull
#define ID_AHA_3940 0x7278900400000000ull
#define ID_AHA_398X 0x7378900400000000ull
#define ID_AHA_2944 0x7478900400000000ull
#define ID_AHA_3944 0x7578900400000000ull
#define ID_AHA_4944 0x7678900400000000ull
#define ID_AIC7880 0x8078900400000000ull
#define ID_AIC7880_B 0x8078900478809004ull
#define ID_AHA_2940U 0x8178900400000000ull
#define ID_AHA_3940U 0x8278900400000000ull
#define ID_AHA_2944U 0x8478900400000000ull
#define ID_AHA_3944U 0x8578900400000000ull
#define ID_AHA_398XU 0x8378900400000000ull
#define ID_AHA_4944U 0x8678900400000000ull
#define ID_AHA_2940UB 0x8178900478819004ull
#define ID_AHA_2930U 0x8878900478889004ull
#define ID_AHA_2940U_PRO 0x8778900478879004ull
#define ID_AHA_2940U_CN 0x0078900478009004ull
#define ID_AIC7895 0x7895900478959004ull
#define ID_AIC7895_ARO 0x7890900478939004ull
#define ID_AIC7895_ARO_MASK 0xFFF0FFFFFFFFFFFFull
#define ID_AHA_2940U_DUAL 0x7895900478919004ull
#define ID_AHA_3940AU 0x7895900478929004ull
#define ID_AHA_3944AU 0x7895900478949004ull
#define ID_AIC7890 0x001F9005000F9005ull
#define ID_AIC7890_ARO 0x00139005000F9005ull
#define ID_AAA_131U2 0x0013900500039005ull
#define ID_AHA_2930U2 0x0011900501819005ull
#define ID_AHA_2940U2B 0x00109005A1009005ull
#define ID_AHA_2940U2_OEM 0x0010900521809005ull
#define ID_AHA_2940U2 0x00109005A1809005ull
#define ID_AHA_2950U2B 0x00109005E1009005ull
#define ID_AIC7892 0x008F9005FFFF9005ull
#define ID_AIC7892_ARO 0x00839005FFFF9005ull
#define ID_AHA_29160 0x00809005E2A09005ull
#define ID_AHA_29160_CPQ 0x00809005E2A00E11ull
#define ID_AHA_29160N 0x0080900562A09005ull
#define ID_AHA_29160C 0x0080900562209005ull
#define ID_AHA_29160B 0x00809005E2209005ull
#define ID_AHA_19160B 0x0081900562A19005ull
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
#define ID_AHA_2915_30LP 0x0082900502109005ull
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
#define ID_AIC7896 0x005F9005FFFF9005ull
#define ID_AIC7896_ARO 0x00539005FFFF9005ull
#define ID_AHA_3950U2B_0 0x00509005FFFF9005ull
#define ID_AHA_3950U2B_1 0x00509005F5009005ull
#define ID_AHA_3950U2D_0 0x00519005FFFF9005ull
#define ID_AHA_3950U2D_1 0x00519005B5009005ull
#define ID_AIC7899 0x00CF9005FFFF9005ull
#define ID_AIC7899_ARO 0x00C39005FFFF9005ull
#define ID_AHA_3960D 0x00C09005F6209005ull
#define ID_AHA_3960D_CPQ 0x00C09005F6200E11ull
#define ID_AIC7810 0x1078900400000000ull
#define ID_AIC7815 0x7815900400000000ull
aic7xxx.c: Style nits. Make sure that our selection hardware is disabled as soon as possible after detecting a busfree and even go so far as to disable the selection hardware in advance of an event that will cause a busfree (ABORT or BUS DEVICE RESET message). The concern is that the selection hardware will select a target for which, after processing the bus free, there will be no commands pending. The sequencer idle loop will re-enable the selection should it still be necessary. In ahc_handle_scsiint(), clear SSTAT0 events several PCI transactions (most notably reads) prior to clearing SCSIINT. The newer chips seem to take a bit of time to see the change which can make the clearing of SCSIINT ineffective. Don't bother panicing at the end of ahc_handle_scsiint(). Getting to the final else just means we lost the race with clearing SCSIINT. In ahc_free(), handle init-level 0. This can happen when we fail the attach for RAID devices. While I'm here, also kill the parent dma tag. In ahc_match_scb(), consider initiator ccbs to be any that are not from the target mode group. This fixes a bug where an external target reset CCB was not getting cleaned up by the reset code. Don't bother freezing a ccb in any of our "abort" routines when the status is set to CAM_REQ_CMP. This can happen for a target reset ccb. aic7xxx.reg: Reserve space for a completion queue. This will be used to enhance performance in the near future. aic7xxx.seq: Remove an optimization for the 7890 autoflush bug that turned out to allow, in rare cases, some data to get lost. Implement a simpler, faster, fix for the PCI_2_1 retry bug that hangs the sequencer on an SCB dma for certain chips. Test against SAVED_SCSIID rather than SELID during target reselections. This is how we always did it in the past, but the code was modified while trying to work around an issue with the 7895. SAVED_SCSIID takes into account twin channel adapters such as the 2742T, whereas SELID does not have the channel bit. This caused invalid selection warnings and other strangeness on these cards. aic7xxx_pci.c Use the correct mask for checking the generic aic7892 entry.
2001-02-10 18:04:27 +00:00
#define DEVID_9005_TYPE(id) ((id) & 0xF)
#define DEVID_9005_TYPE_HBA 0x0 /* Standard Card */
#define DEVID_9005_TYPE_AAA 0x3 /* RAID Card */
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
#define DEVID_9005_TYPE_SISL 0x5 /* Container ROMB */
aic7xxx.c: Style nits. Make sure that our selection hardware is disabled as soon as possible after detecting a busfree and even go so far as to disable the selection hardware in advance of an event that will cause a busfree (ABORT or BUS DEVICE RESET message). The concern is that the selection hardware will select a target for which, after processing the bus free, there will be no commands pending. The sequencer idle loop will re-enable the selection should it still be necessary. In ahc_handle_scsiint(), clear SSTAT0 events several PCI transactions (most notably reads) prior to clearing SCSIINT. The newer chips seem to take a bit of time to see the change which can make the clearing of SCSIINT ineffective. Don't bother panicing at the end of ahc_handle_scsiint(). Getting to the final else just means we lost the race with clearing SCSIINT. In ahc_free(), handle init-level 0. This can happen when we fail the attach for RAID devices. While I'm here, also kill the parent dma tag. In ahc_match_scb(), consider initiator ccbs to be any that are not from the target mode group. This fixes a bug where an external target reset CCB was not getting cleaned up by the reset code. Don't bother freezing a ccb in any of our "abort" routines when the status is set to CAM_REQ_CMP. This can happen for a target reset ccb. aic7xxx.reg: Reserve space for a completion queue. This will be used to enhance performance in the near future. aic7xxx.seq: Remove an optimization for the 7890 autoflush bug that turned out to allow, in rare cases, some data to get lost. Implement a simpler, faster, fix for the PCI_2_1 retry bug that hangs the sequencer on an SCB dma for certain chips. Test against SAVED_SCSIID rather than SELID during target reselections. This is how we always did it in the past, but the code was modified while trying to work around an issue with the 7895. SAVED_SCSIID takes into account twin channel adapters such as the 2742T, whereas SELID does not have the channel bit. This caused invalid selection warnings and other strangeness on these cards. aic7xxx_pci.c Use the correct mask for checking the generic aic7892 entry.
2001-02-10 18:04:27 +00:00
#define DEVID_9005_TYPE_MB 0xF /* On Motherboard */
#define DEVID_9005_MAXRATE(id) (((id) & 0x30) >> 4)
#define DEVID_9005_MAXRATE_U160 0x0
#define DEVID_9005_MAXRATE_ULTRA2 0x1
#define DEVID_9005_MAXRATE_ULTRA 0x2
#define DEVID_9005_MAXRATE_FAST 0x3
#define DEVID_9005_MFUNC(id) (((id) & 0x40) >> 6)
#define DEVID_9005_CLASS(id) (((id) & 0xFF00) >> 8)
#define DEVID_9005_CLASS_SPI 0x0 /* Parallel SCSI */
#define SUBID_9005_TYPE(id) ((id) & 0xF)
#define SUBID_9005_TYPE_MB 0xF /* On Motherboard */
#define SUBID_9005_TYPE_CARD 0x0 /* Standard Card */
#define SUBID_9005_TYPE_LCCARD 0x1 /* Low Cost Card */
#define SUBID_9005_TYPE_RAID 0x3 /* Combined with Raid */
aic7xxx.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. Set the user and goal settings prior to setting the current settings. This allows the async update routine to filter out intermediate transfer negotiation updates that may be less than interesting. The Linux OSM uses this to reduce the amount of stuff printed to the console. aic7xxx.seq: Correct an issue with the aic7770 in twin channel mode. We could continually attempt to start a selection even though a selection was already occurring on one channel. This might have the side effect of hanging our selection or causing us to select the wrong device. While here, create a separate polling loop for when we have already started a selection. This should reduce the latency of our response to a (re)selection. The diffs look larger than they really are due to some code rearrangement to optimize out a jmp. aic7xxx_freebsd.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. aic7xxx_inline.h: Get back in sync with perforce revision ID. aic7xxx_pci.c: Identify adapters in ARO mode as such. Ensure that not only the subvendor ID is correct (9005) but also that the controller type field is valid before looking at other information in the subdevice id. Intel seems to have decided that their subdevice id of 8086 is more appropriate for some of their MBs with aic7xxx parts than Adaptec's sanctioned scheme. Add an exclusion entry for SISL (AAC on MB based adapters). Adapters in SISL mode are owned by the RAID controller, so even if a driver for the RAID controller is not present, it isn't safe for us to touch them.
2001-02-21 20:50:36 +00:00
#define SUBID_9005_TYPE_KNOWN(id) \
((((id) & 0xF) == SUBID_9005_TYPE_MB) \
|| (((id) & 0xF) == SUBID_9005_TYPE_CARD) \
|| (((id) & 0xF) == SUBID_9005_TYPE_LCCARD) \
|| (((id) & 0xF) == SUBID_9005_TYPE_RAID))
#define SUBID_9005_MAXRATE(id) (((id) & 0x30) >> 4)
#define SUBID_9005_MAXRATE_ULTRA2 0x0
#define SUBID_9005_MAXRATE_ULTRA 0x1
#define SUBID_9005_MAXRATE_U160 0x2
#define SUBID_9005_MAXRATE_RESERVED 0x3
#define SUBID_9005_SEEPTYPE(id) \
((SUBID_9005_TYPE(id) == SUBID_9005_TYPE_MB) \
? ((id) & 0xC0) >> 6 \
: ((id) & 0x300) >> 8)
#define SUBID_9005_SEEPTYPE_NONE 0x0
#define SUBID_9005_SEEPTYPE_1K 0x1
#define SUBID_9005_SEEPTYPE_2K_4K 0x2
#define SUBID_9005_SEEPTYPE_RESERVED 0x3
#define SUBID_9005_AUTOTERM(id) \
((SUBID_9005_TYPE(id) == SUBID_9005_TYPE_MB) \
? (((id) & 0x400) >> 10) == 0 \
: (((id) & 0x40) >> 6) == 0)
#define SUBID_9005_NUMCHAN(id) \
((SUBID_9005_TYPE(id) == SUBID_9005_TYPE_MB) \
? ((id) & 0x300) >> 8 \
: ((id) & 0xC00) >> 10)
#define SUBID_9005_LEGACYCONN(id) \
((SUBID_9005_TYPE(id) == SUBID_9005_TYPE_MB) \
? 0 \
: ((id) & 0x80) >> 7)
#define SUBID_9005_MFUNCENB(id) \
((SUBID_9005_TYPE(id) == SUBID_9005_TYPE_MB) \
? ((id) & 0x800) >> 11 \
: ((id) & 0x1000) >> 12)
/*
* Informational only. Should use chip register to be
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
* certain, but may be use in identification strings.
*/
#define SUBID_9005_CARD_SCSIWIDTH_MASK 0x2000
#define SUBID_9005_CARD_PCIWIDTH_MASK 0x4000
#define SUBID_9005_CARD_SEDIFF_MASK 0x8000
ahc_eisa.c: ahc_pci.c: Add detach support. Make use of soft allocated on our behalf by newbus. For PCI devices, disable the mapping type we aren't using for extra protection from rogue code. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Sync perforce IDs. aic7xxx_freebsd.c: Capture the eventhandle returned by EVENTHANDER_REGISTER so we can kill the handler off during detach. Use AHC_* constants instead of hard coded numbers in a few more places. Test PPR option state when deciding to "really" negotiate when the CAM_NEGOTIATE flag is passed in a CCB. Make use of core "ahc_pause_and_flushwork" routine in our timeout handler rather than re-inventing this code. Cleanup all of our resources (really!) in ahc_platform_free(). We should be all set to become a module now. Implement the core ahc_detach() routine shared by all of the FreeBSD front-ends. aic7xxx_freebsd.h: Softc storage for our event handler. Null implementation for the ahc_platform_flushwork() OSM callback. FreeBSD doesn't need this as XPT callbacks are safe from all contexts and are done directly in ahc_done(). aic7xxx_inline.h: Implement new lazy interrupt scheme. To avoid an extra PCI bus read, we first check our completion queues to see if any work has completed. If work is available, we assume that this is the source of the interrupt and skip reading INTSTAT. Any remaining interrupt status will be cleared by a second call to the interrupt handler should the interrupt line still be asserted. This drops the interrupt handler down to a single PCI bus read in the common case of I/O completion. This is the same overhead as in the not so distant past, but the extra sanity of perforning a PCI read after clearing the command complete interrupt and before running the completion queue to avoid missing command complete interrupts added a cycle. aic7xxx.c: During initialization, be sure to initialize all scratch ram locations before they are read to avoid parity errors. In this case, we use a new function, ahc_unbusy_tcl() to initialize the scratch ram busy target table. Replace instances of ahc_index_busy_tcl() used to unbusy a tcl without looking at the old value with ahc_unbusy_tcl(). Modify ahc_sent_msg so that it can find single byte messages. ahc_sent_msg is now used to determine if a transfer negotiation attempt resulted in a bus free. Be more careful in filtering out only the SCSI interrupts of interest in ahc_handle_scsiint. Rearrange interrupt clearing code to ensure that at least one PCI transaction occurrs after hitting CLRSINT1 and writting to CLRINT. CLRSINT1 writes take a bit to take effect, and the re-arrangement provides sufficient delay to ensure the write to CLRINT is effective. The old code might report a spurious interrupt on some "fast" chipsets. export ahc-update_target_msg_request for use by OSM code. If a target does not respond to our ATN request, clear it once we move to a non-message phase. This avoids sending a MSG_NOOP in some later message out phase. Use max lun and max target constants instead of hard-coded values. Use softc storage built into our device_t under FreeBSD. Fix a bug in ahc_free() that caused us to delete resources that were not allocated. Clean up any tstate/lstate info in ahc_free(). Clear the powerdown state in ahc_reset() so that registers can be accessed. Add a preliminary function for pausing the chip and processing any posted work. Add a preliminary suspend and resume functions. aic7xxx.h: Limit the number of supported luns to 64. We don't support information unit transfers, so this is the maximum that makes sense for these chips. Add a new flag AHC_ALL_INTERRUPTS that forces the processing of all interrupt state in a single invokation of ahc_intr(). When the flag is not set, we use the lazy interrupt handling scheme. Add data structures to store controller state while we are suspended. Use constants instead of hard coded values where appropriate. Correct some harmless "unsigned/signed" conflicts. aic7xxx.seq: Only perform the SCSIBUSL fix on ULTRA2 or newer controllers. Older controllers seem to be confused by this. In target mode, ignore PHASEMIS during data phases. This bit seems to be flakey on U160 controllers acting in target mode. aic7xxx_pci.c: Add support for the 29160C CPCI adapter. Add definitions for subvendor ID information available for devices with the "9005" vendor id. We currently use this information to determine if a multi-function device doesn't have the second channel hooked up on a board. Add rudimentary power mode code so we can put the controller into the D0 state. In the future this will be an OSM callback so that in FreeBSD we don't duplicate functionality provided by the PCI code. The powerstate code was added after I'd completed my regression tests on this code. Only capture "left over BIOS state" if the POWRDN setting is not set in HCNTRL. In target mode, don't bother sending incremental CRC data.
2000-12-20 01:11:37 +00:00
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
static ahc_device_setup_t ahc_aic785X_setup;
static ahc_device_setup_t ahc_aic7860_setup;
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
static ahc_device_setup_t ahc_apa1480_setup;
static ahc_device_setup_t ahc_aic7870_setup;
static ahc_device_setup_t ahc_aha394X_setup;
static ahc_device_setup_t ahc_aha494X_setup;
static ahc_device_setup_t ahc_aha398X_setup;
static ahc_device_setup_t ahc_aic7880_setup;
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
static ahc_device_setup_t ahc_aha2940Pro_setup;
static ahc_device_setup_t ahc_aha394XU_setup;
static ahc_device_setup_t ahc_aha398XU_setup;
static ahc_device_setup_t ahc_aic7890_setup;
static ahc_device_setup_t ahc_aic7892_setup;
static ahc_device_setup_t ahc_aic7895_setup;
static ahc_device_setup_t ahc_aic7896_setup;
static ahc_device_setup_t ahc_aic7899_setup;
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
static ahc_device_setup_t ahc_aha29160C_setup;
static ahc_device_setup_t ahc_raid_setup;
static ahc_device_setup_t ahc_aha394XX_setup;
static ahc_device_setup_t ahc_aha494XX_setup;
static ahc_device_setup_t ahc_aha398XX_setup;
struct ahc_pci_identity ahc_pci_ident_table [] =
{
/* aic7850 based controllers */
{
ID_AHA_2902_04_10_15_20C_30C,
ID_ALL_MASK,
"Adaptec 2902/04/10/15/20C/30C SCSI adapter",
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
ahc_aic785X_setup
},
/* aic7860 based controllers */
{
ID_AHA_2930CU,
ID_ALL_MASK,
"Adaptec 2930CU SCSI adapter",
ahc_aic7860_setup
},
{
ID_AHA_1480A & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 1480A Ultra SCSI adapter",
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
ahc_apa1480_setup
},
{
ID_AHA_2940AU_0 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2940A Ultra SCSI adapter",
ahc_aic7860_setup
},
{
ID_AHA_2940AU_CN & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2940A/CN Ultra SCSI adapter",
ahc_aic7860_setup
},
{
ID_AHA_2930C_VAR & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
ahc_eisa.c: ahc_pci.c: Prepare for making ahc a module by adding module dependency and version info. aic7770.c: Remove linux header ifdefs. The headers are handled differently in Linux where local includes (those using "'s instead of <>'s) are allowed. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time. aic7xxx.c: Remove linux header ifdefs. current->curr to avoid Linux's use of current as a #define for the current task on some architectures. Add a helper function, ahc_assert_atn(), for use in message phases we handle manually. This hides the fact that U160 chips with the expected phase matching disabled need to have SCSISIGO updated differently. if (ahc_check_residual(scb) != 0) ahc_calc_residual(scb); else ahc_set_residual(scb, 0); becomes: ahc_update_residual(scb); Modify scsi parity error (or CRC error) handling to reflect expected phase being disabled on U160 chips. Move SELTO handling above BUSFREE handling so we can use the new busfree interrupt behavior on U160 chips. In ahc_build_transfer_msg() filter the period and ppr_options prior to deciding whether a PPR message is required. ppr_options may be forced to zero which will effect our decision. Correct a long standing but latent bug in ahc_find_syncrate(). We could choose a DT only rate even though DT transfers were disabled. In the CAM environment this was unlikely as CAM filters our rate to a non-DT value if the device does not support such rates. When displaing controller characteristics, include the speed of the chip. This way we can modify the transfer speed based on optional features that are enabled/disabled in a particular application. Add support for switching from fully blown tagged queing to just using simple queue tags should the device reject an ordered tag. Remove per-target "current" disconnect and tag queuing enable flags. These should be per-device and are not referenced internally be the driver, so we let the OSM track this state if it needs to. Use SCSI-3 message terminology. aic7xxx.h: The real 7850 does not support Ultra modes, but there are several cards that use the generic 7850 PCI ID even though they are using an Ultra capable chip (7859/7860). We start out with the AHC_ULTRA feature set and then check the DEVSTATUS register to determine if the capability is really present. current -> curr ahc_calc_residual() is no longer static allowing it to be called from ahc_update_residual() in aic7xxx_inline.h. Update some serial eeprom definitions for the latest BIOS versions. aic7xxx.reg: Add a combined DATA_PHASE mask to the SCSIPHASE register definition to simplify some sequencer code. aic7xxx.seq: Take advantage of some performance features available only on the U160 chips. The auto-ack feature allows us to ack data-in phases up to the data-fifo size while the sequencer is still setting up the DMA engine. This greatly reduces read transfer latency and simplifies testing for transfer complete (check SCSIEN only). We also disable the expected phase feature, and enable the new bus free interrupt behavior, to avoid a few instructions. Re-arrange the Ultra2+ data phase handling to allow us to do more work in parallel with the data fifo flushing on a read. On an SDTR, ack the message immediately so the target can prepare the next phase or message byte in parallel with our work to honor the message. aic7xxx_93cx6.c: Remove linux header ifdefs. aic7xxx_freebsd.c: current -> curr Add a module event handler. Handle tag downgrades in our ahc_send_async() handler. We won't be able to downgrade to "basic queuing" until CAM is made aware of this queuing type. aic7xxx_freebsd.h: Include cleanups. Define offsetof if required. Correct a few comments. Update prototype of ahc_send_async(). aic7xxx_inline.h: Implement ahc_update_residual(). aic7xxx_pci.c: Remove linux header ifdefs. Correct a few product strings. Enable several U160 performance enhancing features. Modify Ultra capability determination so we will enable Ultra speeds on devices with a 7850 PCI id that happen to really be a 7859 or 7860. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time.
2001-05-15 19:41:12 +00:00
"Adaptec 2930C Ultra SCSI adapter (VAR)",
ahc_aic7860_setup
},
/* aic7870 based controllers */
{
ID_AHA_2940,
ID_ALL_MASK,
"Adaptec 2940 SCSI adapter",
ahc_aic7870_setup
},
{
ID_AHA_3940,
ID_ALL_MASK,
"Adaptec 3940 SCSI adapter",
ahc_aha394X_setup
},
{
ID_AHA_398X,
ID_ALL_MASK,
"Adaptec 398X SCSI RAID adapter",
ahc_aha398X_setup
},
{
ID_AHA_2944,
ID_ALL_MASK,
"Adaptec 2944 SCSI adapter",
ahc_aic7870_setup
},
{
ID_AHA_3944,
ID_ALL_MASK,
"Adaptec 3944 SCSI adapter",
ahc_aha394X_setup
},
{
ID_AHA_4944,
ID_ALL_MASK,
"Adaptec 4944 SCSI adapter",
ahc_aha494X_setup
},
/* aic7880 based controllers */
{
ID_AHA_2940U & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2940 Ultra SCSI adapter",
ahc_aic7880_setup
},
{
ID_AHA_3940U & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 3940 Ultra SCSI adapter",
ahc_aha394XU_setup
},
{
ID_AHA_2944U & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2944 Ultra SCSI adapter",
ahc_aic7880_setup
},
{
ID_AHA_3944U & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 3944 Ultra SCSI adapter",
ahc_aha394XU_setup
},
{
ID_AHA_398XU & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 398X Ultra SCSI RAID adapter",
ahc_aha398XU_setup
},
{
/*
* XXX Don't know the slot numbers
* so we can't identify channels
*/
ID_AHA_4944U & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 4944 Ultra SCSI adapter",
ahc_aic7880_setup
},
{
ID_AHA_2930U & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2930 Ultra SCSI adapter",
ahc_aic7880_setup
},
{
ID_AHA_2940U_PRO & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2940 Pro Ultra SCSI adapter",
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
ahc_aha2940Pro_setup
},
{
ID_AHA_2940U_CN & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2940/CN Ultra SCSI adapter",
ahc_aic7880_setup
},
aic7xxx.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. Set the user and goal settings prior to setting the current settings. This allows the async update routine to filter out intermediate transfer negotiation updates that may be less than interesting. The Linux OSM uses this to reduce the amount of stuff printed to the console. aic7xxx.seq: Correct an issue with the aic7770 in twin channel mode. We could continually attempt to start a selection even though a selection was already occurring on one channel. This might have the side effect of hanging our selection or causing us to select the wrong device. While here, create a separate polling loop for when we have already started a selection. This should reduce the latency of our response to a (re)selection. The diffs look larger than they really are due to some code rearrangement to optimize out a jmp. aic7xxx_freebsd.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. aic7xxx_inline.h: Get back in sync with perforce revision ID. aic7xxx_pci.c: Identify adapters in ARO mode as such. Ensure that not only the subvendor ID is correct (9005) but also that the controller type field is valid before looking at other information in the subdevice id. Intel seems to have decided that their subdevice id of 8086 is more appropriate for some of their MBs with aic7xxx parts than Adaptec's sanctioned scheme. Add an exclusion entry for SISL (AAC on MB based adapters). Adapters in SISL mode are owned by the RAID controller, so even if a driver for the RAID controller is not present, it isn't safe for us to touch them.
2001-02-21 20:50:36 +00:00
/* Ignore all SISL (AAC on MB) based controllers. */
{
ID_9005_SISL_ID,
ID_9005_SISL_MASK,
NULL,
NULL
},
/* aic7890 based controllers */
{
ID_AHA_2930U2,
ID_ALL_MASK,
"Adaptec 2930 Ultra2 SCSI adapter",
ahc_aic7890_setup
},
{
ID_AHA_2940U2B,
ID_ALL_MASK,
"Adaptec 2940B Ultra2 SCSI adapter",
ahc_aic7890_setup
},
{
ID_AHA_2940U2_OEM,
ID_ALL_MASK,
"Adaptec 2940 Ultra2 SCSI adapter (OEM)",
ahc_aic7890_setup
},
{
ID_AHA_2940U2,
ID_ALL_MASK,
"Adaptec 2940 Ultra2 SCSI adapter",
ahc_aic7890_setup
},
{
ID_AHA_2950U2B,
ID_ALL_MASK,
"Adaptec 2950 Ultra2 SCSI adapter",
ahc_aic7890_setup
},
aic7xxx.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. Set the user and goal settings prior to setting the current settings. This allows the async update routine to filter out intermediate transfer negotiation updates that may be less than interesting. The Linux OSM uses this to reduce the amount of stuff printed to the console. aic7xxx.seq: Correct an issue with the aic7770 in twin channel mode. We could continually attempt to start a selection even though a selection was already occurring on one channel. This might have the side effect of hanging our selection or causing us to select the wrong device. While here, create a separate polling loop for when we have already started a selection. This should reduce the latency of our response to a (re)selection. The diffs look larger than they really are due to some code rearrangement to optimize out a jmp. aic7xxx_freebsd.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. aic7xxx_inline.h: Get back in sync with perforce revision ID. aic7xxx_pci.c: Identify adapters in ARO mode as such. Ensure that not only the subvendor ID is correct (9005) but also that the controller type field is valid before looking at other information in the subdevice id. Intel seems to have decided that their subdevice id of 8086 is more appropriate for some of their MBs with aic7xxx parts than Adaptec's sanctioned scheme. Add an exclusion entry for SISL (AAC on MB based adapters). Adapters in SISL mode are owned by the RAID controller, so even if a driver for the RAID controller is not present, it isn't safe for us to touch them.
2001-02-21 20:50:36 +00:00
{
ID_AIC7890_ARO,
ID_ALL_MASK,
"Adaptec aic7890/91 Ultra2 SCSI adapter (ARO)",
ahc_aic7890_setup
},
{
ID_AAA_131U2,
ID_ALL_MASK,
"Adaptec AAA-131 Ultra2 RAID adapter",
ahc_aic7890_setup
},
/* aic7892 based controllers */
{
ID_AHA_29160,
ID_ALL_MASK,
"Adaptec 29160 Ultra160 SCSI adapter",
ahc_aic7892_setup
},
{
ID_AHA_29160_CPQ,
ID_ALL_MASK,
"Adaptec (Compaq OEM) 29160 Ultra160 SCSI adapter",
ahc_aic7892_setup
},
{
ID_AHA_29160N,
ID_ALL_MASK,
"Adaptec 29160N Ultra160 SCSI adapter",
ahc_aic7892_setup
},
ahc_eisa.c: ahc_pci.c: Add detach support. Make use of soft allocated on our behalf by newbus. For PCI devices, disable the mapping type we aren't using for extra protection from rogue code. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Sync perforce IDs. aic7xxx_freebsd.c: Capture the eventhandle returned by EVENTHANDER_REGISTER so we can kill the handler off during detach. Use AHC_* constants instead of hard coded numbers in a few more places. Test PPR option state when deciding to "really" negotiate when the CAM_NEGOTIATE flag is passed in a CCB. Make use of core "ahc_pause_and_flushwork" routine in our timeout handler rather than re-inventing this code. Cleanup all of our resources (really!) in ahc_platform_free(). We should be all set to become a module now. Implement the core ahc_detach() routine shared by all of the FreeBSD front-ends. aic7xxx_freebsd.h: Softc storage for our event handler. Null implementation for the ahc_platform_flushwork() OSM callback. FreeBSD doesn't need this as XPT callbacks are safe from all contexts and are done directly in ahc_done(). aic7xxx_inline.h: Implement new lazy interrupt scheme. To avoid an extra PCI bus read, we first check our completion queues to see if any work has completed. If work is available, we assume that this is the source of the interrupt and skip reading INTSTAT. Any remaining interrupt status will be cleared by a second call to the interrupt handler should the interrupt line still be asserted. This drops the interrupt handler down to a single PCI bus read in the common case of I/O completion. This is the same overhead as in the not so distant past, but the extra sanity of perforning a PCI read after clearing the command complete interrupt and before running the completion queue to avoid missing command complete interrupts added a cycle. aic7xxx.c: During initialization, be sure to initialize all scratch ram locations before they are read to avoid parity errors. In this case, we use a new function, ahc_unbusy_tcl() to initialize the scratch ram busy target table. Replace instances of ahc_index_busy_tcl() used to unbusy a tcl without looking at the old value with ahc_unbusy_tcl(). Modify ahc_sent_msg so that it can find single byte messages. ahc_sent_msg is now used to determine if a transfer negotiation attempt resulted in a bus free. Be more careful in filtering out only the SCSI interrupts of interest in ahc_handle_scsiint. Rearrange interrupt clearing code to ensure that at least one PCI transaction occurrs after hitting CLRSINT1 and writting to CLRINT. CLRSINT1 writes take a bit to take effect, and the re-arrangement provides sufficient delay to ensure the write to CLRINT is effective. The old code might report a spurious interrupt on some "fast" chipsets. export ahc-update_target_msg_request for use by OSM code. If a target does not respond to our ATN request, clear it once we move to a non-message phase. This avoids sending a MSG_NOOP in some later message out phase. Use max lun and max target constants instead of hard-coded values. Use softc storage built into our device_t under FreeBSD. Fix a bug in ahc_free() that caused us to delete resources that were not allocated. Clean up any tstate/lstate info in ahc_free(). Clear the powerdown state in ahc_reset() so that registers can be accessed. Add a preliminary function for pausing the chip and processing any posted work. Add a preliminary suspend and resume functions. aic7xxx.h: Limit the number of supported luns to 64. We don't support information unit transfers, so this is the maximum that makes sense for these chips. Add a new flag AHC_ALL_INTERRUPTS that forces the processing of all interrupt state in a single invokation of ahc_intr(). When the flag is not set, we use the lazy interrupt handling scheme. Add data structures to store controller state while we are suspended. Use constants instead of hard coded values where appropriate. Correct some harmless "unsigned/signed" conflicts. aic7xxx.seq: Only perform the SCSIBUSL fix on ULTRA2 or newer controllers. Older controllers seem to be confused by this. In target mode, ignore PHASEMIS during data phases. This bit seems to be flakey on U160 controllers acting in target mode. aic7xxx_pci.c: Add support for the 29160C CPCI adapter. Add definitions for subvendor ID information available for devices with the "9005" vendor id. We currently use this information to determine if a multi-function device doesn't have the second channel hooked up on a board. Add rudimentary power mode code so we can put the controller into the D0 state. In the future this will be an OSM callback so that in FreeBSD we don't duplicate functionality provided by the PCI code. The powerstate code was added after I'd completed my regression tests on this code. Only capture "left over BIOS state" if the POWRDN setting is not set in HCNTRL. In target mode, don't bother sending incremental CRC data.
2000-12-20 01:11:37 +00:00
{
ID_AHA_29160C,
ID_ALL_MASK,
"Adaptec 29160C Ultra160 SCSI adapter",
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
ahc_aha29160C_setup
ahc_eisa.c: ahc_pci.c: Add detach support. Make use of soft allocated on our behalf by newbus. For PCI devices, disable the mapping type we aren't using for extra protection from rogue code. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Sync perforce IDs. aic7xxx_freebsd.c: Capture the eventhandle returned by EVENTHANDER_REGISTER so we can kill the handler off during detach. Use AHC_* constants instead of hard coded numbers in a few more places. Test PPR option state when deciding to "really" negotiate when the CAM_NEGOTIATE flag is passed in a CCB. Make use of core "ahc_pause_and_flushwork" routine in our timeout handler rather than re-inventing this code. Cleanup all of our resources (really!) in ahc_platform_free(). We should be all set to become a module now. Implement the core ahc_detach() routine shared by all of the FreeBSD front-ends. aic7xxx_freebsd.h: Softc storage for our event handler. Null implementation for the ahc_platform_flushwork() OSM callback. FreeBSD doesn't need this as XPT callbacks are safe from all contexts and are done directly in ahc_done(). aic7xxx_inline.h: Implement new lazy interrupt scheme. To avoid an extra PCI bus read, we first check our completion queues to see if any work has completed. If work is available, we assume that this is the source of the interrupt and skip reading INTSTAT. Any remaining interrupt status will be cleared by a second call to the interrupt handler should the interrupt line still be asserted. This drops the interrupt handler down to a single PCI bus read in the common case of I/O completion. This is the same overhead as in the not so distant past, but the extra sanity of perforning a PCI read after clearing the command complete interrupt and before running the completion queue to avoid missing command complete interrupts added a cycle. aic7xxx.c: During initialization, be sure to initialize all scratch ram locations before they are read to avoid parity errors. In this case, we use a new function, ahc_unbusy_tcl() to initialize the scratch ram busy target table. Replace instances of ahc_index_busy_tcl() used to unbusy a tcl without looking at the old value with ahc_unbusy_tcl(). Modify ahc_sent_msg so that it can find single byte messages. ahc_sent_msg is now used to determine if a transfer negotiation attempt resulted in a bus free. Be more careful in filtering out only the SCSI interrupts of interest in ahc_handle_scsiint. Rearrange interrupt clearing code to ensure that at least one PCI transaction occurrs after hitting CLRSINT1 and writting to CLRINT. CLRSINT1 writes take a bit to take effect, and the re-arrangement provides sufficient delay to ensure the write to CLRINT is effective. The old code might report a spurious interrupt on some "fast" chipsets. export ahc-update_target_msg_request for use by OSM code. If a target does not respond to our ATN request, clear it once we move to a non-message phase. This avoids sending a MSG_NOOP in some later message out phase. Use max lun and max target constants instead of hard-coded values. Use softc storage built into our device_t under FreeBSD. Fix a bug in ahc_free() that caused us to delete resources that were not allocated. Clean up any tstate/lstate info in ahc_free(). Clear the powerdown state in ahc_reset() so that registers can be accessed. Add a preliminary function for pausing the chip and processing any posted work. Add a preliminary suspend and resume functions. aic7xxx.h: Limit the number of supported luns to 64. We don't support information unit transfers, so this is the maximum that makes sense for these chips. Add a new flag AHC_ALL_INTERRUPTS that forces the processing of all interrupt state in a single invokation of ahc_intr(). When the flag is not set, we use the lazy interrupt handling scheme. Add data structures to store controller state while we are suspended. Use constants instead of hard coded values where appropriate. Correct some harmless "unsigned/signed" conflicts. aic7xxx.seq: Only perform the SCSIBUSL fix on ULTRA2 or newer controllers. Older controllers seem to be confused by this. In target mode, ignore PHASEMIS during data phases. This bit seems to be flakey on U160 controllers acting in target mode. aic7xxx_pci.c: Add support for the 29160C CPCI adapter. Add definitions for subvendor ID information available for devices with the "9005" vendor id. We currently use this information to determine if a multi-function device doesn't have the second channel hooked up on a board. Add rudimentary power mode code so we can put the controller into the D0 state. In the future this will be an OSM callback so that in FreeBSD we don't duplicate functionality provided by the PCI code. The powerstate code was added after I'd completed my regression tests on this code. Only capture "left over BIOS state" if the POWRDN setting is not set in HCNTRL. In target mode, don't bother sending incremental CRC data.
2000-12-20 01:11:37 +00:00
},
{
ID_AHA_29160B,
ID_ALL_MASK,
"Adaptec 29160B Ultra160 SCSI adapter",
ahc_aic7892_setup
},
{
ID_AHA_19160B,
ID_ALL_MASK,
"Adaptec 19160B Ultra160 SCSI adapter",
ahc_aic7892_setup
},
aic7xxx.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. Set the user and goal settings prior to setting the current settings. This allows the async update routine to filter out intermediate transfer negotiation updates that may be less than interesting. The Linux OSM uses this to reduce the amount of stuff printed to the console. aic7xxx.seq: Correct an issue with the aic7770 in twin channel mode. We could continually attempt to start a selection even though a selection was already occurring on one channel. This might have the side effect of hanging our selection or causing us to select the wrong device. While here, create a separate polling loop for when we have already started a selection. This should reduce the latency of our response to a (re)selection. The diffs look larger than they really are due to some code rearrangement to optimize out a jmp. aic7xxx_freebsd.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. aic7xxx_inline.h: Get back in sync with perforce revision ID. aic7xxx_pci.c: Identify adapters in ARO mode as such. Ensure that not only the subvendor ID is correct (9005) but also that the controller type field is valid before looking at other information in the subdevice id. Intel seems to have decided that their subdevice id of 8086 is more appropriate for some of their MBs with aic7xxx parts than Adaptec's sanctioned scheme. Add an exclusion entry for SISL (AAC on MB based adapters). Adapters in SISL mode are owned by the RAID controller, so even if a driver for the RAID controller is not present, it isn't safe for us to touch them.
2001-02-21 20:50:36 +00:00
{
ID_AIC7892_ARO,
ID_ALL_MASK,
ahc_eisa.c: ahc_pci.c: Prepare for making ahc a module by adding module dependency and version info. aic7770.c: Remove linux header ifdefs. The headers are handled differently in Linux where local includes (those using "'s instead of <>'s) are allowed. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time. aic7xxx.c: Remove linux header ifdefs. current->curr to avoid Linux's use of current as a #define for the current task on some architectures. Add a helper function, ahc_assert_atn(), for use in message phases we handle manually. This hides the fact that U160 chips with the expected phase matching disabled need to have SCSISIGO updated differently. if (ahc_check_residual(scb) != 0) ahc_calc_residual(scb); else ahc_set_residual(scb, 0); becomes: ahc_update_residual(scb); Modify scsi parity error (or CRC error) handling to reflect expected phase being disabled on U160 chips. Move SELTO handling above BUSFREE handling so we can use the new busfree interrupt behavior on U160 chips. In ahc_build_transfer_msg() filter the period and ppr_options prior to deciding whether a PPR message is required. ppr_options may be forced to zero which will effect our decision. Correct a long standing but latent bug in ahc_find_syncrate(). We could choose a DT only rate even though DT transfers were disabled. In the CAM environment this was unlikely as CAM filters our rate to a non-DT value if the device does not support such rates. When displaing controller characteristics, include the speed of the chip. This way we can modify the transfer speed based on optional features that are enabled/disabled in a particular application. Add support for switching from fully blown tagged queing to just using simple queue tags should the device reject an ordered tag. Remove per-target "current" disconnect and tag queuing enable flags. These should be per-device and are not referenced internally be the driver, so we let the OSM track this state if it needs to. Use SCSI-3 message terminology. aic7xxx.h: The real 7850 does not support Ultra modes, but there are several cards that use the generic 7850 PCI ID even though they are using an Ultra capable chip (7859/7860). We start out with the AHC_ULTRA feature set and then check the DEVSTATUS register to determine if the capability is really present. current -> curr ahc_calc_residual() is no longer static allowing it to be called from ahc_update_residual() in aic7xxx_inline.h. Update some serial eeprom definitions for the latest BIOS versions. aic7xxx.reg: Add a combined DATA_PHASE mask to the SCSIPHASE register definition to simplify some sequencer code. aic7xxx.seq: Take advantage of some performance features available only on the U160 chips. The auto-ack feature allows us to ack data-in phases up to the data-fifo size while the sequencer is still setting up the DMA engine. This greatly reduces read transfer latency and simplifies testing for transfer complete (check SCSIEN only). We also disable the expected phase feature, and enable the new bus free interrupt behavior, to avoid a few instructions. Re-arrange the Ultra2+ data phase handling to allow us to do more work in parallel with the data fifo flushing on a read. On an SDTR, ack the message immediately so the target can prepare the next phase or message byte in parallel with our work to honor the message. aic7xxx_93cx6.c: Remove linux header ifdefs. aic7xxx_freebsd.c: current -> curr Add a module event handler. Handle tag downgrades in our ahc_send_async() handler. We won't be able to downgrade to "basic queuing" until CAM is made aware of this queuing type. aic7xxx_freebsd.h: Include cleanups. Define offsetof if required. Correct a few comments. Update prototype of ahc_send_async(). aic7xxx_inline.h: Implement ahc_update_residual(). aic7xxx_pci.c: Remove linux header ifdefs. Correct a few product strings. Enable several U160 performance enhancing features. Modify Ultra capability determination so we will enable Ultra speeds on devices with a 7850 PCI id that happen to really be a 7859 or 7860. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time.
2001-05-15 19:41:12 +00:00
"Adaptec aic7892 Ultra160 SCSI adapter (ARO)",
aic7xxx.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. Set the user and goal settings prior to setting the current settings. This allows the async update routine to filter out intermediate transfer negotiation updates that may be less than interesting. The Linux OSM uses this to reduce the amount of stuff printed to the console. aic7xxx.seq: Correct an issue with the aic7770 in twin channel mode. We could continually attempt to start a selection even though a selection was already occurring on one channel. This might have the side effect of hanging our selection or causing us to select the wrong device. While here, create a separate polling loop for when we have already started a selection. This should reduce the latency of our response to a (re)selection. The diffs look larger than they really are due to some code rearrangement to optimize out a jmp. aic7xxx_freebsd.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. aic7xxx_inline.h: Get back in sync with perforce revision ID. aic7xxx_pci.c: Identify adapters in ARO mode as such. Ensure that not only the subvendor ID is correct (9005) but also that the controller type field is valid before looking at other information in the subdevice id. Intel seems to have decided that their subdevice id of 8086 is more appropriate for some of their MBs with aic7xxx parts than Adaptec's sanctioned scheme. Add an exclusion entry for SISL (AAC on MB based adapters). Adapters in SISL mode are owned by the RAID controller, so even if a driver for the RAID controller is not present, it isn't safe for us to touch them.
2001-02-21 20:50:36 +00:00
ahc_aic7892_setup
},
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
{
ID_AHA_2915_30LP,
ID_ALL_MASK,
"Adaptec 2915/30LP Ultra160 SCSI adapter",
ahc_aic7892_setup
},
/* aic7895 based controllers */
{
ID_AHA_2940U_DUAL,
ID_ALL_MASK,
"Adaptec 2940/DUAL Ultra SCSI adapter",
ahc_aic7895_setup
},
{
ID_AHA_3940AU,
ID_ALL_MASK,
"Adaptec 3940A Ultra SCSI adapter",
ahc_aic7895_setup
},
{
ID_AHA_3944AU,
ID_ALL_MASK,
"Adaptec 3944A Ultra SCSI adapter",
ahc_aic7895_setup
},
aic7xxx.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. Set the user and goal settings prior to setting the current settings. This allows the async update routine to filter out intermediate transfer negotiation updates that may be less than interesting. The Linux OSM uses this to reduce the amount of stuff printed to the console. aic7xxx.seq: Correct an issue with the aic7770 in twin channel mode. We could continually attempt to start a selection even though a selection was already occurring on one channel. This might have the side effect of hanging our selection or causing us to select the wrong device. While here, create a separate polling loop for when we have already started a selection. This should reduce the latency of our response to a (re)selection. The diffs look larger than they really are due to some code rearrangement to optimize out a jmp. aic7xxx_freebsd.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. aic7xxx_inline.h: Get back in sync with perforce revision ID. aic7xxx_pci.c: Identify adapters in ARO mode as such. Ensure that not only the subvendor ID is correct (9005) but also that the controller type field is valid before looking at other information in the subdevice id. Intel seems to have decided that their subdevice id of 8086 is more appropriate for some of their MBs with aic7xxx parts than Adaptec's sanctioned scheme. Add an exclusion entry for SISL (AAC on MB based adapters). Adapters in SISL mode are owned by the RAID controller, so even if a driver for the RAID controller is not present, it isn't safe for us to touch them.
2001-02-21 20:50:36 +00:00
{
ID_AIC7895_ARO,
ID_AIC7895_ARO_MASK,
"Adaptec aic7895 Ultra SCSI adapter (ARO)",
ahc_aic7895_setup
},
/* aic7896/97 based controllers */
{
ID_AHA_3950U2B_0,
ID_ALL_MASK,
"Adaptec 3950B Ultra2 SCSI adapter",
ahc_aic7896_setup
},
{
ID_AHA_3950U2B_1,
ID_ALL_MASK,
"Adaptec 3950B Ultra2 SCSI adapter",
ahc_aic7896_setup
},
{
ID_AHA_3950U2D_0,
ID_ALL_MASK,
"Adaptec 3950D Ultra2 SCSI adapter",
ahc_aic7896_setup
},
{
ID_AHA_3950U2D_1,
ID_ALL_MASK,
"Adaptec 3950D Ultra2 SCSI adapter",
ahc_aic7896_setup
},
aic7xxx.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. Set the user and goal settings prior to setting the current settings. This allows the async update routine to filter out intermediate transfer negotiation updates that may be less than interesting. The Linux OSM uses this to reduce the amount of stuff printed to the console. aic7xxx.seq: Correct an issue with the aic7770 in twin channel mode. We could continually attempt to start a selection even though a selection was already occurring on one channel. This might have the side effect of hanging our selection or causing us to select the wrong device. While here, create a separate polling loop for when we have already started a selection. This should reduce the latency of our response to a (re)selection. The diffs look larger than they really are due to some code rearrangement to optimize out a jmp. aic7xxx_freebsd.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. aic7xxx_inline.h: Get back in sync with perforce revision ID. aic7xxx_pci.c: Identify adapters in ARO mode as such. Ensure that not only the subvendor ID is correct (9005) but also that the controller type field is valid before looking at other information in the subdevice id. Intel seems to have decided that their subdevice id of 8086 is more appropriate for some of their MBs with aic7xxx parts than Adaptec's sanctioned scheme. Add an exclusion entry for SISL (AAC on MB based adapters). Adapters in SISL mode are owned by the RAID controller, so even if a driver for the RAID controller is not present, it isn't safe for us to touch them.
2001-02-21 20:50:36 +00:00
{
ID_AIC7896_ARO,
ID_ALL_MASK,
"Adaptec aic7896/97 Ultra2 SCSI adapter (ARO)",
ahc_aic7896_setup
},
/* aic7899 based controllers */
{
ID_AHA_3960D,
ID_ALL_MASK,
"Adaptec 3960D Ultra160 SCSI adapter",
ahc_aic7899_setup
},
{
ID_AHA_3960D_CPQ,
ID_ALL_MASK,
"Adaptec (Compaq OEM) 3960D Ultra160 SCSI adapter",
ahc_aic7899_setup
},
aic7xxx.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. Set the user and goal settings prior to setting the current settings. This allows the async update routine to filter out intermediate transfer negotiation updates that may be less than interesting. The Linux OSM uses this to reduce the amount of stuff printed to the console. aic7xxx.seq: Correct an issue with the aic7770 in twin channel mode. We could continually attempt to start a selection even though a selection was already occurring on one channel. This might have the side effect of hanging our selection or causing us to select the wrong device. While here, create a separate polling loop for when we have already started a selection. This should reduce the latency of our response to a (re)selection. The diffs look larger than they really are due to some code rearrangement to optimize out a jmp. aic7xxx_freebsd.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. aic7xxx_inline.h: Get back in sync with perforce revision ID. aic7xxx_pci.c: Identify adapters in ARO mode as such. Ensure that not only the subvendor ID is correct (9005) but also that the controller type field is valid before looking at other information in the subdevice id. Intel seems to have decided that their subdevice id of 8086 is more appropriate for some of their MBs with aic7xxx parts than Adaptec's sanctioned scheme. Add an exclusion entry for SISL (AAC on MB based adapters). Adapters in SISL mode are owned by the RAID controller, so even if a driver for the RAID controller is not present, it isn't safe for us to touch them.
2001-02-21 20:50:36 +00:00
{
ID_AIC7899_ARO,
ID_ALL_MASK,
"Adaptec aic7899 Ultra160 SCSI adapter (ARO)",
ahc_aic7899_setup
},
/* Generic chip probes for devices we don't know 'exactly' */
{
ID_AIC7850 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7850 SCSI adapter",
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
ahc_aic785X_setup
},
{
ID_AIC7855 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7855 SCSI adapter",
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
ahc_aic785X_setup
},
{
ID_AIC7859 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
ahc_eisa.c: ahc_pci.c: Prepare for making ahc a module by adding module dependency and version info. aic7770.c: Remove linux header ifdefs. The headers are handled differently in Linux where local includes (those using "'s instead of <>'s) are allowed. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time. aic7xxx.c: Remove linux header ifdefs. current->curr to avoid Linux's use of current as a #define for the current task on some architectures. Add a helper function, ahc_assert_atn(), for use in message phases we handle manually. This hides the fact that U160 chips with the expected phase matching disabled need to have SCSISIGO updated differently. if (ahc_check_residual(scb) != 0) ahc_calc_residual(scb); else ahc_set_residual(scb, 0); becomes: ahc_update_residual(scb); Modify scsi parity error (or CRC error) handling to reflect expected phase being disabled on U160 chips. Move SELTO handling above BUSFREE handling so we can use the new busfree interrupt behavior on U160 chips. In ahc_build_transfer_msg() filter the period and ppr_options prior to deciding whether a PPR message is required. ppr_options may be forced to zero which will effect our decision. Correct a long standing but latent bug in ahc_find_syncrate(). We could choose a DT only rate even though DT transfers were disabled. In the CAM environment this was unlikely as CAM filters our rate to a non-DT value if the device does not support such rates. When displaing controller characteristics, include the speed of the chip. This way we can modify the transfer speed based on optional features that are enabled/disabled in a particular application. Add support for switching from fully blown tagged queing to just using simple queue tags should the device reject an ordered tag. Remove per-target "current" disconnect and tag queuing enable flags. These should be per-device and are not referenced internally be the driver, so we let the OSM track this state if it needs to. Use SCSI-3 message terminology. aic7xxx.h: The real 7850 does not support Ultra modes, but there are several cards that use the generic 7850 PCI ID even though they are using an Ultra capable chip (7859/7860). We start out with the AHC_ULTRA feature set and then check the DEVSTATUS register to determine if the capability is really present. current -> curr ahc_calc_residual() is no longer static allowing it to be called from ahc_update_residual() in aic7xxx_inline.h. Update some serial eeprom definitions for the latest BIOS versions. aic7xxx.reg: Add a combined DATA_PHASE mask to the SCSIPHASE register definition to simplify some sequencer code. aic7xxx.seq: Take advantage of some performance features available only on the U160 chips. The auto-ack feature allows us to ack data-in phases up to the data-fifo size while the sequencer is still setting up the DMA engine. This greatly reduces read transfer latency and simplifies testing for transfer complete (check SCSIEN only). We also disable the expected phase feature, and enable the new bus free interrupt behavior, to avoid a few instructions. Re-arrange the Ultra2+ data phase handling to allow us to do more work in parallel with the data fifo flushing on a read. On an SDTR, ack the message immediately so the target can prepare the next phase or message byte in parallel with our work to honor the message. aic7xxx_93cx6.c: Remove linux header ifdefs. aic7xxx_freebsd.c: current -> curr Add a module event handler. Handle tag downgrades in our ahc_send_async() handler. We won't be able to downgrade to "basic queuing" until CAM is made aware of this queuing type. aic7xxx_freebsd.h: Include cleanups. Define offsetof if required. Correct a few comments. Update prototype of ahc_send_async(). aic7xxx_inline.h: Implement ahc_update_residual(). aic7xxx_pci.c: Remove linux header ifdefs. Correct a few product strings. Enable several U160 performance enhancing features. Modify Ultra capability determination so we will enable Ultra speeds on devices with a 7850 PCI id that happen to really be a 7859 or 7860. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time.
2001-05-15 19:41:12 +00:00
"Adaptec aic7859 SCSI adapter",
ahc_aic7860_setup
},
{
ID_AIC7860 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
ahc_eisa.c: ahc_pci.c: Prepare for making ahc a module by adding module dependency and version info. aic7770.c: Remove linux header ifdefs. The headers are handled differently in Linux where local includes (those using "'s instead of <>'s) are allowed. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time. aic7xxx.c: Remove linux header ifdefs. current->curr to avoid Linux's use of current as a #define for the current task on some architectures. Add a helper function, ahc_assert_atn(), for use in message phases we handle manually. This hides the fact that U160 chips with the expected phase matching disabled need to have SCSISIGO updated differently. if (ahc_check_residual(scb) != 0) ahc_calc_residual(scb); else ahc_set_residual(scb, 0); becomes: ahc_update_residual(scb); Modify scsi parity error (or CRC error) handling to reflect expected phase being disabled on U160 chips. Move SELTO handling above BUSFREE handling so we can use the new busfree interrupt behavior on U160 chips. In ahc_build_transfer_msg() filter the period and ppr_options prior to deciding whether a PPR message is required. ppr_options may be forced to zero which will effect our decision. Correct a long standing but latent bug in ahc_find_syncrate(). We could choose a DT only rate even though DT transfers were disabled. In the CAM environment this was unlikely as CAM filters our rate to a non-DT value if the device does not support such rates. When displaing controller characteristics, include the speed of the chip. This way we can modify the transfer speed based on optional features that are enabled/disabled in a particular application. Add support for switching from fully blown tagged queing to just using simple queue tags should the device reject an ordered tag. Remove per-target "current" disconnect and tag queuing enable flags. These should be per-device and are not referenced internally be the driver, so we let the OSM track this state if it needs to. Use SCSI-3 message terminology. aic7xxx.h: The real 7850 does not support Ultra modes, but there are several cards that use the generic 7850 PCI ID even though they are using an Ultra capable chip (7859/7860). We start out with the AHC_ULTRA feature set and then check the DEVSTATUS register to determine if the capability is really present. current -> curr ahc_calc_residual() is no longer static allowing it to be called from ahc_update_residual() in aic7xxx_inline.h. Update some serial eeprom definitions for the latest BIOS versions. aic7xxx.reg: Add a combined DATA_PHASE mask to the SCSIPHASE register definition to simplify some sequencer code. aic7xxx.seq: Take advantage of some performance features available only on the U160 chips. The auto-ack feature allows us to ack data-in phases up to the data-fifo size while the sequencer is still setting up the DMA engine. This greatly reduces read transfer latency and simplifies testing for transfer complete (check SCSIEN only). We also disable the expected phase feature, and enable the new bus free interrupt behavior, to avoid a few instructions. Re-arrange the Ultra2+ data phase handling to allow us to do more work in parallel with the data fifo flushing on a read. On an SDTR, ack the message immediately so the target can prepare the next phase or message byte in parallel with our work to honor the message. aic7xxx_93cx6.c: Remove linux header ifdefs. aic7xxx_freebsd.c: current -> curr Add a module event handler. Handle tag downgrades in our ahc_send_async() handler. We won't be able to downgrade to "basic queuing" until CAM is made aware of this queuing type. aic7xxx_freebsd.h: Include cleanups. Define offsetof if required. Correct a few comments. Update prototype of ahc_send_async(). aic7xxx_inline.h: Implement ahc_update_residual(). aic7xxx_pci.c: Remove linux header ifdefs. Correct a few product strings. Enable several U160 performance enhancing features. Modify Ultra capability determination so we will enable Ultra speeds on devices with a 7850 PCI id that happen to really be a 7859 or 7860. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time.
2001-05-15 19:41:12 +00:00
"Adaptec aic7860 Ultra SCSI adapter",
ahc_aic7860_setup
},
{
ID_AIC7870 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7870 SCSI adapter",
ahc_aic7870_setup
},
{
ID_AIC7880 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7880 Ultra SCSI adapter",
ahc_aic7880_setup
},
{
aic7xxx.c: Style nits. Make sure that our selection hardware is disabled as soon as possible after detecting a busfree and even go so far as to disable the selection hardware in advance of an event that will cause a busfree (ABORT or BUS DEVICE RESET message). The concern is that the selection hardware will select a target for which, after processing the bus free, there will be no commands pending. The sequencer idle loop will re-enable the selection should it still be necessary. In ahc_handle_scsiint(), clear SSTAT0 events several PCI transactions (most notably reads) prior to clearing SCSIINT. The newer chips seem to take a bit of time to see the change which can make the clearing of SCSIINT ineffective. Don't bother panicing at the end of ahc_handle_scsiint(). Getting to the final else just means we lost the race with clearing SCSIINT. In ahc_free(), handle init-level 0. This can happen when we fail the attach for RAID devices. While I'm here, also kill the parent dma tag. In ahc_match_scb(), consider initiator ccbs to be any that are not from the target mode group. This fixes a bug where an external target reset CCB was not getting cleaned up by the reset code. Don't bother freezing a ccb in any of our "abort" routines when the status is set to CAM_REQ_CMP. This can happen for a target reset ccb. aic7xxx.reg: Reserve space for a completion queue. This will be used to enhance performance in the near future. aic7xxx.seq: Remove an optimization for the 7890 autoflush bug that turned out to allow, in rare cases, some data to get lost. Implement a simpler, faster, fix for the PCI_2_1 retry bug that hangs the sequencer on an SCB dma for certain chips. Test against SAVED_SCSIID rather than SELID during target reselections. This is how we always did it in the past, but the code was modified while trying to work around an issue with the 7895. SAVED_SCSIID takes into account twin channel adapters such as the 2742T, whereas SELID does not have the channel bit. This caused invalid selection warnings and other strangeness on these cards. aic7xxx_pci.c Use the correct mask for checking the generic aic7892 entry.
2001-02-10 18:04:27 +00:00
ID_AIC7890 & ID_9005_GENERIC_MASK,
ID_9005_GENERIC_MASK,
"Adaptec aic7890/91 Ultra2 SCSI adapter",
ahc_aic7890_setup
},
{
aic7xxx.c: Style nits. Make sure that our selection hardware is disabled as soon as possible after detecting a busfree and even go so far as to disable the selection hardware in advance of an event that will cause a busfree (ABORT or BUS DEVICE RESET message). The concern is that the selection hardware will select a target for which, after processing the bus free, there will be no commands pending. The sequencer idle loop will re-enable the selection should it still be necessary. In ahc_handle_scsiint(), clear SSTAT0 events several PCI transactions (most notably reads) prior to clearing SCSIINT. The newer chips seem to take a bit of time to see the change which can make the clearing of SCSIINT ineffective. Don't bother panicing at the end of ahc_handle_scsiint(). Getting to the final else just means we lost the race with clearing SCSIINT. In ahc_free(), handle init-level 0. This can happen when we fail the attach for RAID devices. While I'm here, also kill the parent dma tag. In ahc_match_scb(), consider initiator ccbs to be any that are not from the target mode group. This fixes a bug where an external target reset CCB was not getting cleaned up by the reset code. Don't bother freezing a ccb in any of our "abort" routines when the status is set to CAM_REQ_CMP. This can happen for a target reset ccb. aic7xxx.reg: Reserve space for a completion queue. This will be used to enhance performance in the near future. aic7xxx.seq: Remove an optimization for the 7890 autoflush bug that turned out to allow, in rare cases, some data to get lost. Implement a simpler, faster, fix for the PCI_2_1 retry bug that hangs the sequencer on an SCB dma for certain chips. Test against SAVED_SCSIID rather than SELID during target reselections. This is how we always did it in the past, but the code was modified while trying to work around an issue with the 7895. SAVED_SCSIID takes into account twin channel adapters such as the 2742T, whereas SELID does not have the channel bit. This caused invalid selection warnings and other strangeness on these cards. aic7xxx_pci.c Use the correct mask for checking the generic aic7892 entry.
2001-02-10 18:04:27 +00:00
ID_AIC7892 & ID_9005_GENERIC_MASK,
ID_9005_GENERIC_MASK,
"Adaptec aic7892 Ultra160 SCSI adapter",
ahc_aic7892_setup
},
{
ID_AIC7895 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7895 Ultra SCSI adapter",
ahc_aic7895_setup
},
{
aic7xxx.c: Style nits. Make sure that our selection hardware is disabled as soon as possible after detecting a busfree and even go so far as to disable the selection hardware in advance of an event that will cause a busfree (ABORT or BUS DEVICE RESET message). The concern is that the selection hardware will select a target for which, after processing the bus free, there will be no commands pending. The sequencer idle loop will re-enable the selection should it still be necessary. In ahc_handle_scsiint(), clear SSTAT0 events several PCI transactions (most notably reads) prior to clearing SCSIINT. The newer chips seem to take a bit of time to see the change which can make the clearing of SCSIINT ineffective. Don't bother panicing at the end of ahc_handle_scsiint(). Getting to the final else just means we lost the race with clearing SCSIINT. In ahc_free(), handle init-level 0. This can happen when we fail the attach for RAID devices. While I'm here, also kill the parent dma tag. In ahc_match_scb(), consider initiator ccbs to be any that are not from the target mode group. This fixes a bug where an external target reset CCB was not getting cleaned up by the reset code. Don't bother freezing a ccb in any of our "abort" routines when the status is set to CAM_REQ_CMP. This can happen for a target reset ccb. aic7xxx.reg: Reserve space for a completion queue. This will be used to enhance performance in the near future. aic7xxx.seq: Remove an optimization for the 7890 autoflush bug that turned out to allow, in rare cases, some data to get lost. Implement a simpler, faster, fix for the PCI_2_1 retry bug that hangs the sequencer on an SCB dma for certain chips. Test against SAVED_SCSIID rather than SELID during target reselections. This is how we always did it in the past, but the code was modified while trying to work around an issue with the 7895. SAVED_SCSIID takes into account twin channel adapters such as the 2742T, whereas SELID does not have the channel bit. This caused invalid selection warnings and other strangeness on these cards. aic7xxx_pci.c Use the correct mask for checking the generic aic7892 entry.
2001-02-10 18:04:27 +00:00
ID_AIC7896 & ID_9005_GENERIC_MASK,
ID_9005_GENERIC_MASK,
"Adaptec aic7896/97 Ultra2 SCSI adapter",
ahc_aic7896_setup
},
{
aic7xxx.c: Style nits. Make sure that our selection hardware is disabled as soon as possible after detecting a busfree and even go so far as to disable the selection hardware in advance of an event that will cause a busfree (ABORT or BUS DEVICE RESET message). The concern is that the selection hardware will select a target for which, after processing the bus free, there will be no commands pending. The sequencer idle loop will re-enable the selection should it still be necessary. In ahc_handle_scsiint(), clear SSTAT0 events several PCI transactions (most notably reads) prior to clearing SCSIINT. The newer chips seem to take a bit of time to see the change which can make the clearing of SCSIINT ineffective. Don't bother panicing at the end of ahc_handle_scsiint(). Getting to the final else just means we lost the race with clearing SCSIINT. In ahc_free(), handle init-level 0. This can happen when we fail the attach for RAID devices. While I'm here, also kill the parent dma tag. In ahc_match_scb(), consider initiator ccbs to be any that are not from the target mode group. This fixes a bug where an external target reset CCB was not getting cleaned up by the reset code. Don't bother freezing a ccb in any of our "abort" routines when the status is set to CAM_REQ_CMP. This can happen for a target reset ccb. aic7xxx.reg: Reserve space for a completion queue. This will be used to enhance performance in the near future. aic7xxx.seq: Remove an optimization for the 7890 autoflush bug that turned out to allow, in rare cases, some data to get lost. Implement a simpler, faster, fix for the PCI_2_1 retry bug that hangs the sequencer on an SCB dma for certain chips. Test against SAVED_SCSIID rather than SELID during target reselections. This is how we always did it in the past, but the code was modified while trying to work around an issue with the 7895. SAVED_SCSIID takes into account twin channel adapters such as the 2742T, whereas SELID does not have the channel bit. This caused invalid selection warnings and other strangeness on these cards. aic7xxx_pci.c Use the correct mask for checking the generic aic7892 entry.
2001-02-10 18:04:27 +00:00
ID_AIC7899 & ID_9005_GENERIC_MASK,
ID_9005_GENERIC_MASK,
"Adaptec aic7899 Ultra160 SCSI adapter",
ahc_aic7899_setup
},
{
ID_AIC7810 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7810 RAID memory controller",
ahc_raid_setup
},
{
ID_AIC7815 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7815 RAID memory controller",
ahc_raid_setup
}
};
ahc_eisa.c: ahc_pci.c: Add detach support. Make use of soft allocated on our behalf by newbus. For PCI devices, disable the mapping type we aren't using for extra protection from rogue code. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Sync perforce IDs. aic7xxx_freebsd.c: Capture the eventhandle returned by EVENTHANDER_REGISTER so we can kill the handler off during detach. Use AHC_* constants instead of hard coded numbers in a few more places. Test PPR option state when deciding to "really" negotiate when the CAM_NEGOTIATE flag is passed in a CCB. Make use of core "ahc_pause_and_flushwork" routine in our timeout handler rather than re-inventing this code. Cleanup all of our resources (really!) in ahc_platform_free(). We should be all set to become a module now. Implement the core ahc_detach() routine shared by all of the FreeBSD front-ends. aic7xxx_freebsd.h: Softc storage for our event handler. Null implementation for the ahc_platform_flushwork() OSM callback. FreeBSD doesn't need this as XPT callbacks are safe from all contexts and are done directly in ahc_done(). aic7xxx_inline.h: Implement new lazy interrupt scheme. To avoid an extra PCI bus read, we first check our completion queues to see if any work has completed. If work is available, we assume that this is the source of the interrupt and skip reading INTSTAT. Any remaining interrupt status will be cleared by a second call to the interrupt handler should the interrupt line still be asserted. This drops the interrupt handler down to a single PCI bus read in the common case of I/O completion. This is the same overhead as in the not so distant past, but the extra sanity of perforning a PCI read after clearing the command complete interrupt and before running the completion queue to avoid missing command complete interrupts added a cycle. aic7xxx.c: During initialization, be sure to initialize all scratch ram locations before they are read to avoid parity errors. In this case, we use a new function, ahc_unbusy_tcl() to initialize the scratch ram busy target table. Replace instances of ahc_index_busy_tcl() used to unbusy a tcl without looking at the old value with ahc_unbusy_tcl(). Modify ahc_sent_msg so that it can find single byte messages. ahc_sent_msg is now used to determine if a transfer negotiation attempt resulted in a bus free. Be more careful in filtering out only the SCSI interrupts of interest in ahc_handle_scsiint. Rearrange interrupt clearing code to ensure that at least one PCI transaction occurrs after hitting CLRSINT1 and writting to CLRINT. CLRSINT1 writes take a bit to take effect, and the re-arrangement provides sufficient delay to ensure the write to CLRINT is effective. The old code might report a spurious interrupt on some "fast" chipsets. export ahc-update_target_msg_request for use by OSM code. If a target does not respond to our ATN request, clear it once we move to a non-message phase. This avoids sending a MSG_NOOP in some later message out phase. Use max lun and max target constants instead of hard-coded values. Use softc storage built into our device_t under FreeBSD. Fix a bug in ahc_free() that caused us to delete resources that were not allocated. Clean up any tstate/lstate info in ahc_free(). Clear the powerdown state in ahc_reset() so that registers can be accessed. Add a preliminary function for pausing the chip and processing any posted work. Add a preliminary suspend and resume functions. aic7xxx.h: Limit the number of supported luns to 64. We don't support information unit transfers, so this is the maximum that makes sense for these chips. Add a new flag AHC_ALL_INTERRUPTS that forces the processing of all interrupt state in a single invokation of ahc_intr(). When the flag is not set, we use the lazy interrupt handling scheme. Add data structures to store controller state while we are suspended. Use constants instead of hard coded values where appropriate. Correct some harmless "unsigned/signed" conflicts. aic7xxx.seq: Only perform the SCSIBUSL fix on ULTRA2 or newer controllers. Older controllers seem to be confused by this. In target mode, ignore PHASEMIS during data phases. This bit seems to be flakey on U160 controllers acting in target mode. aic7xxx_pci.c: Add support for the 29160C CPCI adapter. Add definitions for subvendor ID information available for devices with the "9005" vendor id. We currently use this information to determine if a multi-function device doesn't have the second channel hooked up on a board. Add rudimentary power mode code so we can put the controller into the D0 state. In the future this will be an OSM callback so that in FreeBSD we don't duplicate functionality provided by the PCI code. The powerstate code was added after I'd completed my regression tests on this code. Only capture "left over BIOS state" if the POWRDN setting is not set in HCNTRL. In target mode, don't bother sending incremental CRC data.
2000-12-20 01:11:37 +00:00
const u_int ahc_num_pci_devs = NUM_ELEMENTS(ahc_pci_ident_table);
#define AHC_394X_SLOT_CHANNEL_A 4
#define AHC_394X_SLOT_CHANNEL_B 5
#define AHC_398X_SLOT_CHANNEL_A 4
#define AHC_398X_SLOT_CHANNEL_B 8
#define AHC_398X_SLOT_CHANNEL_C 12
#define AHC_494X_SLOT_CHANNEL_A 4
#define AHC_494X_SLOT_CHANNEL_B 5
#define AHC_494X_SLOT_CHANNEL_C 6
#define AHC_494X_SLOT_CHANNEL_D 7
#define DEVCONFIG 0x40
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
#define PCIERRGENDIS 0x80000000ul
#define SCBSIZE32 0x00010000ul /* aic789X only */
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
#define REXTVALID 0x00001000ul /* ultra cards only */
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
#define MPORTMODE 0x00000400ul /* aic7870+ only */
#define RAMPSM 0x00000200ul /* aic7870+ only */
#define VOLSENSE 0x00000100ul
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
#define PCI64BIT 0x00000080ul /* 64Bit PCI bus (Ultra2 Only)*/
#define SCBRAMSEL 0x00000080ul
#define MRDCEN 0x00000040ul
#define EXTSCBTIME 0x00000020ul /* aic7870 only */
#define EXTSCBPEN 0x00000010ul /* aic7870 only */
#define BERREN 0x00000008ul
#define DACEN 0x00000004ul
#define STPWLEVEL 0x00000002ul
#define DIFACTNEGEN 0x00000001ul /* aic7870 only */
#define CSIZE_LATTIME 0x0c
#define CACHESIZE 0x0000003ful /* only 5 bits */
#define LATTIME 0x0000ff00ul
/* PCI STATUS definitions */
#define DPE 0x80
#define SSE 0x40
#define RMA 0x20
#define RTA 0x10
#define STA 0x08
#define DPR 0x01
static int ahc_9005_subdevinfo_valid(uint16_t device, uint16_t vendor,
uint16_t subdevice, uint16_t subvendor);
static int ahc_ext_scbram_present(struct ahc_softc *ahc);
static void ahc_scbram_config(struct ahc_softc *ahc, int enable,
int pcheck, int fast, int large);
static void ahc_probe_ext_scbram(struct ahc_softc *ahc);
static void check_extport(struct ahc_softc *ahc, u_int *sxfrctl1);
static void ahc_parse_pci_eeprom(struct ahc_softc *ahc,
struct seeprom_config *sc);
static void configure_termination(struct ahc_softc *ahc,
struct seeprom_descriptor *sd,
u_int adapter_control,
u_int *sxfrctl1);
static void ahc_new_term_detect(struct ahc_softc *ahc,
int *enableSEC_low,
int *enableSEC_high,
int *enablePRI_low,
int *enablePRI_high,
int *eeprom_present);
static void aic787X_cable_detect(struct ahc_softc *ahc, int *internal50_present,
int *internal68_present,
int *externalcable_present,
int *eeprom_present);
static void aic785X_cable_detect(struct ahc_softc *ahc, int *internal50_present,
int *externalcable_present,
int *eeprom_present);
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
static void write_brdctl(struct ahc_softc *ahc, uint8_t value);
static uint8_t read_brdctl(struct ahc_softc *ahc);
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
static void ahc_pci_intr(struct ahc_softc *ahc);
static int ahc_pci_chip_init(struct ahc_softc *ahc);
static int ahc_pci_suspend(struct ahc_softc *ahc);
static int ahc_pci_resume(struct ahc_softc *ahc);
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
static int
ahc_9005_subdevinfo_valid(uint16_t device, uint16_t vendor,
uint16_t subdevice, uint16_t subvendor)
{
int result;
/* Default to invalid. */
result = 0;
if (vendor == 0x9005
&& subvendor == 0x9005
&& subdevice != device
&& SUBID_9005_TYPE_KNOWN(subdevice) != 0) {
switch (SUBID_9005_TYPE(subdevice)) {
case SUBID_9005_TYPE_MB:
break;
case SUBID_9005_TYPE_CARD:
case SUBID_9005_TYPE_LCCARD:
/*
* Currently only trust Adaptec cards to
* get the sub device info correct.
*/
if (DEVID_9005_TYPE(device) == DEVID_9005_TYPE_HBA)
result = 1;
break;
case SUBID_9005_TYPE_RAID:
break;
default:
break;
}
}
return (result);
}
struct ahc_pci_identity *
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
ahc_find_pci_device(aic_dev_softc_t pci)
{
uint64_t full_id;
uint16_t device;
uint16_t vendor;
uint16_t subdevice;
uint16_t subvendor;
struct ahc_pci_identity *entry;
u_int i;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
vendor = aic_pci_read_config(pci, PCIR_DEVVENDOR, /*bytes*/2);
device = aic_pci_read_config(pci, PCIR_DEVICE, /*bytes*/2);
subvendor = aic_pci_read_config(pci, PCIR_SUBVEND_0, /*bytes*/2);
subdevice = aic_pci_read_config(pci, PCIR_SUBDEV_0, /*bytes*/2);
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
full_id = ahc_compose_id(device, vendor, subdevice, subvendor);
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
/*
* If the second function is not hooked up, ignore it.
* Unfortunately, not all MB vendors implement the
* subdevice ID as per the Adaptec spec, so do our best
* to sanity check it prior to accepting the subdevice
* ID as valid.
*/
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
if (aic_get_pci_function(pci) > 0
&& ahc_9005_subdevinfo_valid(device, vendor, subdevice, subvendor)
&& SUBID_9005_MFUNCENB(subdevice) == 0)
ahc_eisa.c: ahc_pci.c: Add detach support. Make use of soft allocated on our behalf by newbus. For PCI devices, disable the mapping type we aren't using for extra protection from rogue code. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Sync perforce IDs. aic7xxx_freebsd.c: Capture the eventhandle returned by EVENTHANDER_REGISTER so we can kill the handler off during detach. Use AHC_* constants instead of hard coded numbers in a few more places. Test PPR option state when deciding to "really" negotiate when the CAM_NEGOTIATE flag is passed in a CCB. Make use of core "ahc_pause_and_flushwork" routine in our timeout handler rather than re-inventing this code. Cleanup all of our resources (really!) in ahc_platform_free(). We should be all set to become a module now. Implement the core ahc_detach() routine shared by all of the FreeBSD front-ends. aic7xxx_freebsd.h: Softc storage for our event handler. Null implementation for the ahc_platform_flushwork() OSM callback. FreeBSD doesn't need this as XPT callbacks are safe from all contexts and are done directly in ahc_done(). aic7xxx_inline.h: Implement new lazy interrupt scheme. To avoid an extra PCI bus read, we first check our completion queues to see if any work has completed. If work is available, we assume that this is the source of the interrupt and skip reading INTSTAT. Any remaining interrupt status will be cleared by a second call to the interrupt handler should the interrupt line still be asserted. This drops the interrupt handler down to a single PCI bus read in the common case of I/O completion. This is the same overhead as in the not so distant past, but the extra sanity of perforning a PCI read after clearing the command complete interrupt and before running the completion queue to avoid missing command complete interrupts added a cycle. aic7xxx.c: During initialization, be sure to initialize all scratch ram locations before they are read to avoid parity errors. In this case, we use a new function, ahc_unbusy_tcl() to initialize the scratch ram busy target table. Replace instances of ahc_index_busy_tcl() used to unbusy a tcl without looking at the old value with ahc_unbusy_tcl(). Modify ahc_sent_msg so that it can find single byte messages. ahc_sent_msg is now used to determine if a transfer negotiation attempt resulted in a bus free. Be more careful in filtering out only the SCSI interrupts of interest in ahc_handle_scsiint. Rearrange interrupt clearing code to ensure that at least one PCI transaction occurrs after hitting CLRSINT1 and writting to CLRINT. CLRSINT1 writes take a bit to take effect, and the re-arrangement provides sufficient delay to ensure the write to CLRINT is effective. The old code might report a spurious interrupt on some "fast" chipsets. export ahc-update_target_msg_request for use by OSM code. If a target does not respond to our ATN request, clear it once we move to a non-message phase. This avoids sending a MSG_NOOP in some later message out phase. Use max lun and max target constants instead of hard-coded values. Use softc storage built into our device_t under FreeBSD. Fix a bug in ahc_free() that caused us to delete resources that were not allocated. Clean up any tstate/lstate info in ahc_free(). Clear the powerdown state in ahc_reset() so that registers can be accessed. Add a preliminary function for pausing the chip and processing any posted work. Add a preliminary suspend and resume functions. aic7xxx.h: Limit the number of supported luns to 64. We don't support information unit transfers, so this is the maximum that makes sense for these chips. Add a new flag AHC_ALL_INTERRUPTS that forces the processing of all interrupt state in a single invokation of ahc_intr(). When the flag is not set, we use the lazy interrupt handling scheme. Add data structures to store controller state while we are suspended. Use constants instead of hard coded values where appropriate. Correct some harmless "unsigned/signed" conflicts. aic7xxx.seq: Only perform the SCSIBUSL fix on ULTRA2 or newer controllers. Older controllers seem to be confused by this. In target mode, ignore PHASEMIS during data phases. This bit seems to be flakey on U160 controllers acting in target mode. aic7xxx_pci.c: Add support for the 29160C CPCI adapter. Add definitions for subvendor ID information available for devices with the "9005" vendor id. We currently use this information to determine if a multi-function device doesn't have the second channel hooked up on a board. Add rudimentary power mode code so we can put the controller into the D0 state. In the future this will be an OSM callback so that in FreeBSD we don't duplicate functionality provided by the PCI code. The powerstate code was added after I'd completed my regression tests on this code. Only capture "left over BIOS state" if the POWRDN setting is not set in HCNTRL. In target mode, don't bother sending incremental CRC data.
2000-12-20 01:11:37 +00:00
return (NULL);
for (i = 0; i < ahc_num_pci_devs; i++) {
entry = &ahc_pci_ident_table[i];
aic7xxx.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. Set the user and goal settings prior to setting the current settings. This allows the async update routine to filter out intermediate transfer negotiation updates that may be less than interesting. The Linux OSM uses this to reduce the amount of stuff printed to the console. aic7xxx.seq: Correct an issue with the aic7770 in twin channel mode. We could continually attempt to start a selection even though a selection was already occurring on one channel. This might have the side effect of hanging our selection or causing us to select the wrong device. While here, create a separate polling loop for when we have already started a selection. This should reduce the latency of our response to a (re)selection. The diffs look larger than they really are due to some code rearrangement to optimize out a jmp. aic7xxx_freebsd.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. aic7xxx_inline.h: Get back in sync with perforce revision ID. aic7xxx_pci.c: Identify adapters in ARO mode as such. Ensure that not only the subvendor ID is correct (9005) but also that the controller type field is valid before looking at other information in the subdevice id. Intel seems to have decided that their subdevice id of 8086 is more appropriate for some of their MBs with aic7xxx parts than Adaptec's sanctioned scheme. Add an exclusion entry for SISL (AAC on MB based adapters). Adapters in SISL mode are owned by the RAID controller, so even if a driver for the RAID controller is not present, it isn't safe for us to touch them.
2001-02-21 20:50:36 +00:00
if (entry->full_id == (full_id & entry->id_mask)) {
/* Honor exclusion entries. */
if (entry->name == NULL)
return (NULL);
return (entry);
aic7xxx.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. Set the user and goal settings prior to setting the current settings. This allows the async update routine to filter out intermediate transfer negotiation updates that may be less than interesting. The Linux OSM uses this to reduce the amount of stuff printed to the console. aic7xxx.seq: Correct an issue with the aic7770 in twin channel mode. We could continually attempt to start a selection even though a selection was already occurring on one channel. This might have the side effect of hanging our selection or causing us to select the wrong device. While here, create a separate polling loop for when we have already started a selection. This should reduce the latency of our response to a (re)selection. The diffs look larger than they really are due to some code rearrangement to optimize out a jmp. aic7xxx_freebsd.c: Use the target offset rather than the target Id to reference the untagged SCB array. The offset and id are identical save in the twin channel case. This should correct several issues with the 2742T. aic7xxx_inline.h: Get back in sync with perforce revision ID. aic7xxx_pci.c: Identify adapters in ARO mode as such. Ensure that not only the subvendor ID is correct (9005) but also that the controller type field is valid before looking at other information in the subdevice id. Intel seems to have decided that their subdevice id of 8086 is more appropriate for some of their MBs with aic7xxx parts than Adaptec's sanctioned scheme. Add an exclusion entry for SISL (AAC on MB based adapters). Adapters in SISL mode are owned by the RAID controller, so even if a driver for the RAID controller is not present, it isn't safe for us to touch them.
2001-02-21 20:50:36 +00:00
}
}
return (NULL);
}
int
ahc_pci_config(struct ahc_softc *ahc, struct ahc_pci_identity *entry)
{
u_int command;
u_int our_id;
u_int sxfrctl1;
u_int scsiseq;
u_int dscommand0;
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
uint32_t devconfig;
int error;
uint8_t sblkctl;
our_id = 0;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = entry->setup(ahc);
if (error != 0)
return (error);
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->chip |= AHC_PCI;
ahc->description = entry->name;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_power_state_change(ahc, AIC_POWER_STATE_D0);
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
error = ahc_pci_map_registers(ahc);
if (error != 0)
return (error);
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
/*
* Before we continue probing the card, ensure that
* its interrupts are *disabled*. We don't want
* a misstep to hang the machine in an interrupt
* storm.
*/
ahc_intr_enable(ahc, FALSE);
ahc_eisa.c: ahc_pci.c: Add detach support. Make use of soft allocated on our behalf by newbus. For PCI devices, disable the mapping type we aren't using for extra protection from rogue code. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Sync perforce IDs. aic7xxx_freebsd.c: Capture the eventhandle returned by EVENTHANDER_REGISTER so we can kill the handler off during detach. Use AHC_* constants instead of hard coded numbers in a few more places. Test PPR option state when deciding to "really" negotiate when the CAM_NEGOTIATE flag is passed in a CCB. Make use of core "ahc_pause_and_flushwork" routine in our timeout handler rather than re-inventing this code. Cleanup all of our resources (really!) in ahc_platform_free(). We should be all set to become a module now. Implement the core ahc_detach() routine shared by all of the FreeBSD front-ends. aic7xxx_freebsd.h: Softc storage for our event handler. Null implementation for the ahc_platform_flushwork() OSM callback. FreeBSD doesn't need this as XPT callbacks are safe from all contexts and are done directly in ahc_done(). aic7xxx_inline.h: Implement new lazy interrupt scheme. To avoid an extra PCI bus read, we first check our completion queues to see if any work has completed. If work is available, we assume that this is the source of the interrupt and skip reading INTSTAT. Any remaining interrupt status will be cleared by a second call to the interrupt handler should the interrupt line still be asserted. This drops the interrupt handler down to a single PCI bus read in the common case of I/O completion. This is the same overhead as in the not so distant past, but the extra sanity of perforning a PCI read after clearing the command complete interrupt and before running the completion queue to avoid missing command complete interrupts added a cycle. aic7xxx.c: During initialization, be sure to initialize all scratch ram locations before they are read to avoid parity errors. In this case, we use a new function, ahc_unbusy_tcl() to initialize the scratch ram busy target table. Replace instances of ahc_index_busy_tcl() used to unbusy a tcl without looking at the old value with ahc_unbusy_tcl(). Modify ahc_sent_msg so that it can find single byte messages. ahc_sent_msg is now used to determine if a transfer negotiation attempt resulted in a bus free. Be more careful in filtering out only the SCSI interrupts of interest in ahc_handle_scsiint. Rearrange interrupt clearing code to ensure that at least one PCI transaction occurrs after hitting CLRSINT1 and writting to CLRINT. CLRSINT1 writes take a bit to take effect, and the re-arrangement provides sufficient delay to ensure the write to CLRINT is effective. The old code might report a spurious interrupt on some "fast" chipsets. export ahc-update_target_msg_request for use by OSM code. If a target does not respond to our ATN request, clear it once we move to a non-message phase. This avoids sending a MSG_NOOP in some later message out phase. Use max lun and max target constants instead of hard-coded values. Use softc storage built into our device_t under FreeBSD. Fix a bug in ahc_free() that caused us to delete resources that were not allocated. Clean up any tstate/lstate info in ahc_free(). Clear the powerdown state in ahc_reset() so that registers can be accessed. Add a preliminary function for pausing the chip and processing any posted work. Add a preliminary suspend and resume functions. aic7xxx.h: Limit the number of supported luns to 64. We don't support information unit transfers, so this is the maximum that makes sense for these chips. Add a new flag AHC_ALL_INTERRUPTS that forces the processing of all interrupt state in a single invokation of ahc_intr(). When the flag is not set, we use the lazy interrupt handling scheme. Add data structures to store controller state while we are suspended. Use constants instead of hard coded values where appropriate. Correct some harmless "unsigned/signed" conflicts. aic7xxx.seq: Only perform the SCSIBUSL fix on ULTRA2 or newer controllers. Older controllers seem to be confused by this. In target mode, ignore PHASEMIS during data phases. This bit seems to be flakey on U160 controllers acting in target mode. aic7xxx_pci.c: Add support for the 29160C CPCI adapter. Add definitions for subvendor ID information available for devices with the "9005" vendor id. We currently use this information to determine if a multi-function device doesn't have the second channel hooked up on a board. Add rudimentary power mode code so we can put the controller into the D0 state. In the future this will be an OSM callback so that in FreeBSD we don't duplicate functionality provided by the PCI code. The powerstate code was added after I'd completed my regression tests on this code. Only capture "left over BIOS state" if the POWRDN setting is not set in HCNTRL. In target mode, don't bother sending incremental CRC data.
2000-12-20 01:11:37 +00:00
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
devconfig = aic_pci_read_config(ahc->dev_softc, DEVCONFIG, /*bytes*/4);
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
/*
* If we need to support high memory, enable dual
* address cycles. This bit must be set to enable
* high address bit generation even if we are on a
* 64bit bus (PCI64BIT set in devconfig).
*/
if ((ahc->flags & AHC_39BIT_ADDRESSING) != 0) {
if (bootverbose)
printf("%s: Enabling 39Bit Addressing\n",
ahc_name(ahc));
devconfig |= DACEN;
}
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
/* Ensure that pci error generation, a test feature, is disabled. */
devconfig |= PCIERRGENDIS;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_write_config(ahc->dev_softc, DEVCONFIG, devconfig, /*bytes*/4);
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
/* Ensure busmastering is enabled */
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
command = aic_pci_read_config(ahc->dev_softc, PCIR_COMMAND, /*bytes*/2);
command |= PCIM_CMD_BUSMASTEREN;
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_write_config(ahc->dev_softc, PCIR_COMMAND, command, /*bytes*/2);
/* On all PCI adapters, we allow SCB paging */
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->flags |= AHC_PAGESCBS;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = ahc_softc_init(ahc);
if (error != 0)
return (error);
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
/*
* Disable PCI parity error checking. Users typically
* do this to work around broken PCI chipsets that get
* the parity timing wrong and thus generate lots of spurious
* errors. The chip only allows us to disable *all* parity
* error reporting when doing this, so CIO bus, scb ram, and
* scratch ram parity errors will be ignored too.
*/
if ((ahc->flags & AHC_DISABLE_PCI_PERR) != 0)
ahc->seqctl |= FAILDIS;
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
aic7770.c: aic7xxx_pci.c: Enable board generation of interrupts only once our handler is in place and all other setup has occurred. aic7xxx.c: More conversion of data types to ahc_* names. tmode_tstate and tmode_lstate are the latest victims. Clean up the check condition path by branching early rather than indenting a giant block of code. Add support for target mode initiated sync negotiation. The code has been tested by forcing the feature on for all devices, but for the moment is left inaccesible until a decent mechanism for controlling the behavior is complete. Implementing this feature required the removal of the old "target message request" mechanism. The old method required setting one of the 16 bit fields to initiate negotiation with a particular target. This had the nice effect of being easy to change the request and have it effect the next command. We now set the MK_MESSAGE bit on any new command when negotiation is required. When the negotiation is successful, we walk through and clean up the bit on any pending commands. Since we have to walk the commands to reset the SCSI syncrate values so no additional work is required. The only drawback of this approach is that the negotiation is deferred until the next command is queued to the controller. On the plus side, we regain two bytes of sequencer scratch ram and 6 sequencer instructions. When cleaning up a target mode instance, never remove the "master" target mode state object. The master contains all of the saved SEEPROM settings that control things like transfer negotiations. This data will be cloned as the defaults if a target mode instance is re-instantiated. Correct a bug in ahc_set_width(). We neglected to update the pending scbs to reflect the new parameters. Since wide negotiation is almost always followed by sync negotiation it is doubtful that this had any real effect. When in the target role, don't complain about "Target Initiated" negotiation requests when an initiator negotiates with us. Defer enabling board interrupts until after ahc_intr_enable() is called. Pull all info that used to be in ahc_timeout for the FreeBSD OSM into ahc_dump_card_state(). This info should be printed out on all platforms. aic7xxx.h: Add the SCB_AUTO_NEGOITATE scb flag. This allows us to discern the reason the MK_MESSAGE flag is set in the hscb control byte. We only want to clear MK_MESSAGE in ahc_update_pending_scbs() if the MK_MESSAGE was set due to an auto transfer negotiation. Add the auto_negotiate bitfield for each tstate so that behavior can be controlled for each of our enabled SCSI IDs. Use a bus interrupt handler vector in our softc rather than hard coding the PCI interrupt handler. This makes it easier to build the different bus attachments to the aic7xxx driver as modules. aic7xxx.reg: Remove the TARGET_MSG_REQUEST definition for sequencer ram. aic7xxx.seq: Fix a few target mode bugs: o If MK_MESSAGE is set in an SCB, transition to message in phase and notify the kernel so that message delivery can occur. This is currently only used for target mode initiated transfer negotiation. o Allow a continue target I/O to compile without executing a status phase or disconnecting. If we have not been granted the disconnect privledge but this transfer is larger than MAXPHYS, it may take several CTIOs to get the job done. Remove the tests of the TARGET_MSG_REQUEST field in scratch ram. aic7xxx_freebsd.c: Add support for CTIOs that don't disconnect. We now defer the clearing of our pending target state until we see a CTIO for that device that has completed sucessfully. Be sure to return early if we are in a target only role and see an initiator only CCB type in our action routine. If a CTIO has the CAM_DIS_DISCONNECT flag set, propogate this flag to the SCB. This flag has no effect if we've been asked to deliver status as well. We will complete the command and release the bus in that case. Handle the new auto_negotiate field in the tstate correctly. Make sure that SCBs for "immediate" (i.e. to continue a non disconnected transaction) CTIO requests get a proper mapping in the SCB lookup table. Without this, we'll complain when the transaction completes. Update ahc_timeout() to reflect the changes to ahc_dump_card_state(). aic7xxx_inline.h: Use ahc->bus_intr rather than ahc_pci_intr.
2001-03-29 00:36:35 +00:00
ahc->bus_intr = ahc_pci_intr;
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->bus_chip_init = ahc_pci_chip_init;
ahc->bus_suspend = ahc_pci_suspend;
ahc->bus_resume = ahc_pci_resume;
aic7770.c: aic7xxx_pci.c: Enable board generation of interrupts only once our handler is in place and all other setup has occurred. aic7xxx.c: More conversion of data types to ahc_* names. tmode_tstate and tmode_lstate are the latest victims. Clean up the check condition path by branching early rather than indenting a giant block of code. Add support for target mode initiated sync negotiation. The code has been tested by forcing the feature on for all devices, but for the moment is left inaccesible until a decent mechanism for controlling the behavior is complete. Implementing this feature required the removal of the old "target message request" mechanism. The old method required setting one of the 16 bit fields to initiate negotiation with a particular target. This had the nice effect of being easy to change the request and have it effect the next command. We now set the MK_MESSAGE bit on any new command when negotiation is required. When the negotiation is successful, we walk through and clean up the bit on any pending commands. Since we have to walk the commands to reset the SCSI syncrate values so no additional work is required. The only drawback of this approach is that the negotiation is deferred until the next command is queued to the controller. On the plus side, we regain two bytes of sequencer scratch ram and 6 sequencer instructions. When cleaning up a target mode instance, never remove the "master" target mode state object. The master contains all of the saved SEEPROM settings that control things like transfer negotiations. This data will be cloned as the defaults if a target mode instance is re-instantiated. Correct a bug in ahc_set_width(). We neglected to update the pending scbs to reflect the new parameters. Since wide negotiation is almost always followed by sync negotiation it is doubtful that this had any real effect. When in the target role, don't complain about "Target Initiated" negotiation requests when an initiator negotiates with us. Defer enabling board interrupts until after ahc_intr_enable() is called. Pull all info that used to be in ahc_timeout for the FreeBSD OSM into ahc_dump_card_state(). This info should be printed out on all platforms. aic7xxx.h: Add the SCB_AUTO_NEGOITATE scb flag. This allows us to discern the reason the MK_MESSAGE flag is set in the hscb control byte. We only want to clear MK_MESSAGE in ahc_update_pending_scbs() if the MK_MESSAGE was set due to an auto transfer negotiation. Add the auto_negotiate bitfield for each tstate so that behavior can be controlled for each of our enabled SCSI IDs. Use a bus interrupt handler vector in our softc rather than hard coding the PCI interrupt handler. This makes it easier to build the different bus attachments to the aic7xxx driver as modules. aic7xxx.reg: Remove the TARGET_MSG_REQUEST definition for sequencer ram. aic7xxx.seq: Fix a few target mode bugs: o If MK_MESSAGE is set in an SCB, transition to message in phase and notify the kernel so that message delivery can occur. This is currently only used for target mode initiated transfer negotiation. o Allow a continue target I/O to compile without executing a status phase or disconnecting. If we have not been granted the disconnect privledge but this transfer is larger than MAXPHYS, it may take several CTIOs to get the job done. Remove the tests of the TARGET_MSG_REQUEST field in scratch ram. aic7xxx_freebsd.c: Add support for CTIOs that don't disconnect. We now defer the clearing of our pending target state until we see a CTIO for that device that has completed sucessfully. Be sure to return early if we are in a target only role and see an initiator only CCB type in our action routine. If a CTIO has the CAM_DIS_DISCONNECT flag set, propogate this flag to the SCB. This flag has no effect if we've been asked to deliver status as well. We will complete the command and release the bus in that case. Handle the new auto_negotiate field in the tstate correctly. Make sure that SCBs for "immediate" (i.e. to continue a non disconnected transaction) CTIO requests get a proper mapping in the SCB lookup table. Without this, we'll complain when the transaction completes. Update ahc_timeout() to reflect the changes to ahc_dump_card_state(). aic7xxx_inline.h: Use ahc->bus_intr rather than ahc_pci_intr.
2001-03-29 00:36:35 +00:00
/* Remember how the card was setup in case there is no SEEPROM */
ahc_eisa.c: ahc_pci.c: Add detach support. Make use of soft allocated on our behalf by newbus. For PCI devices, disable the mapping type we aren't using for extra protection from rogue code. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Sync perforce IDs. aic7xxx_freebsd.c: Capture the eventhandle returned by EVENTHANDER_REGISTER so we can kill the handler off during detach. Use AHC_* constants instead of hard coded numbers in a few more places. Test PPR option state when deciding to "really" negotiate when the CAM_NEGOTIATE flag is passed in a CCB. Make use of core "ahc_pause_and_flushwork" routine in our timeout handler rather than re-inventing this code. Cleanup all of our resources (really!) in ahc_platform_free(). We should be all set to become a module now. Implement the core ahc_detach() routine shared by all of the FreeBSD front-ends. aic7xxx_freebsd.h: Softc storage for our event handler. Null implementation for the ahc_platform_flushwork() OSM callback. FreeBSD doesn't need this as XPT callbacks are safe from all contexts and are done directly in ahc_done(). aic7xxx_inline.h: Implement new lazy interrupt scheme. To avoid an extra PCI bus read, we first check our completion queues to see if any work has completed. If work is available, we assume that this is the source of the interrupt and skip reading INTSTAT. Any remaining interrupt status will be cleared by a second call to the interrupt handler should the interrupt line still be asserted. This drops the interrupt handler down to a single PCI bus read in the common case of I/O completion. This is the same overhead as in the not so distant past, but the extra sanity of perforning a PCI read after clearing the command complete interrupt and before running the completion queue to avoid missing command complete interrupts added a cycle. aic7xxx.c: During initialization, be sure to initialize all scratch ram locations before they are read to avoid parity errors. In this case, we use a new function, ahc_unbusy_tcl() to initialize the scratch ram busy target table. Replace instances of ahc_index_busy_tcl() used to unbusy a tcl without looking at the old value with ahc_unbusy_tcl(). Modify ahc_sent_msg so that it can find single byte messages. ahc_sent_msg is now used to determine if a transfer negotiation attempt resulted in a bus free. Be more careful in filtering out only the SCSI interrupts of interest in ahc_handle_scsiint. Rearrange interrupt clearing code to ensure that at least one PCI transaction occurrs after hitting CLRSINT1 and writting to CLRINT. CLRSINT1 writes take a bit to take effect, and the re-arrangement provides sufficient delay to ensure the write to CLRINT is effective. The old code might report a spurious interrupt on some "fast" chipsets. export ahc-update_target_msg_request for use by OSM code. If a target does not respond to our ATN request, clear it once we move to a non-message phase. This avoids sending a MSG_NOOP in some later message out phase. Use max lun and max target constants instead of hard-coded values. Use softc storage built into our device_t under FreeBSD. Fix a bug in ahc_free() that caused us to delete resources that were not allocated. Clean up any tstate/lstate info in ahc_free(). Clear the powerdown state in ahc_reset() so that registers can be accessed. Add a preliminary function for pausing the chip and processing any posted work. Add a preliminary suspend and resume functions. aic7xxx.h: Limit the number of supported luns to 64. We don't support information unit transfers, so this is the maximum that makes sense for these chips. Add a new flag AHC_ALL_INTERRUPTS that forces the processing of all interrupt state in a single invokation of ahc_intr(). When the flag is not set, we use the lazy interrupt handling scheme. Add data structures to store controller state while we are suspended. Use constants instead of hard coded values where appropriate. Correct some harmless "unsigned/signed" conflicts. aic7xxx.seq: Only perform the SCSIBUSL fix on ULTRA2 or newer controllers. Older controllers seem to be confused by this. In target mode, ignore PHASEMIS during data phases. This bit seems to be flakey on U160 controllers acting in target mode. aic7xxx_pci.c: Add support for the 29160C CPCI adapter. Add definitions for subvendor ID information available for devices with the "9005" vendor id. We currently use this information to determine if a multi-function device doesn't have the second channel hooked up on a board. Add rudimentary power mode code so we can put the controller into the D0 state. In the future this will be an OSM callback so that in FreeBSD we don't duplicate functionality provided by the PCI code. The powerstate code was added after I'd completed my regression tests on this code. Only capture "left over BIOS state" if the POWRDN setting is not set in HCNTRL. In target mode, don't bother sending incremental CRC data.
2000-12-20 01:11:37 +00:00
if ((ahc_inb(ahc, HCNTRL) & POWRDN) == 0) {
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
ahc_pause(ahc);
ahc_eisa.c: ahc_pci.c: Add detach support. Make use of soft allocated on our behalf by newbus. For PCI devices, disable the mapping type we aren't using for extra protection from rogue code. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Sync perforce IDs. aic7xxx_freebsd.c: Capture the eventhandle returned by EVENTHANDER_REGISTER so we can kill the handler off during detach. Use AHC_* constants instead of hard coded numbers in a few more places. Test PPR option state when deciding to "really" negotiate when the CAM_NEGOTIATE flag is passed in a CCB. Make use of core "ahc_pause_and_flushwork" routine in our timeout handler rather than re-inventing this code. Cleanup all of our resources (really!) in ahc_platform_free(). We should be all set to become a module now. Implement the core ahc_detach() routine shared by all of the FreeBSD front-ends. aic7xxx_freebsd.h: Softc storage for our event handler. Null implementation for the ahc_platform_flushwork() OSM callback. FreeBSD doesn't need this as XPT callbacks are safe from all contexts and are done directly in ahc_done(). aic7xxx_inline.h: Implement new lazy interrupt scheme. To avoid an extra PCI bus read, we first check our completion queues to see if any work has completed. If work is available, we assume that this is the source of the interrupt and skip reading INTSTAT. Any remaining interrupt status will be cleared by a second call to the interrupt handler should the interrupt line still be asserted. This drops the interrupt handler down to a single PCI bus read in the common case of I/O completion. This is the same overhead as in the not so distant past, but the extra sanity of perforning a PCI read after clearing the command complete interrupt and before running the completion queue to avoid missing command complete interrupts added a cycle. aic7xxx.c: During initialization, be sure to initialize all scratch ram locations before they are read to avoid parity errors. In this case, we use a new function, ahc_unbusy_tcl() to initialize the scratch ram busy target table. Replace instances of ahc_index_busy_tcl() used to unbusy a tcl without looking at the old value with ahc_unbusy_tcl(). Modify ahc_sent_msg so that it can find single byte messages. ahc_sent_msg is now used to determine if a transfer negotiation attempt resulted in a bus free. Be more careful in filtering out only the SCSI interrupts of interest in ahc_handle_scsiint. Rearrange interrupt clearing code to ensure that at least one PCI transaction occurrs after hitting CLRSINT1 and writting to CLRINT. CLRSINT1 writes take a bit to take effect, and the re-arrangement provides sufficient delay to ensure the write to CLRINT is effective. The old code might report a spurious interrupt on some "fast" chipsets. export ahc-update_target_msg_request for use by OSM code. If a target does not respond to our ATN request, clear it once we move to a non-message phase. This avoids sending a MSG_NOOP in some later message out phase. Use max lun and max target constants instead of hard-coded values. Use softc storage built into our device_t under FreeBSD. Fix a bug in ahc_free() that caused us to delete resources that were not allocated. Clean up any tstate/lstate info in ahc_free(). Clear the powerdown state in ahc_reset() so that registers can be accessed. Add a preliminary function for pausing the chip and processing any posted work. Add a preliminary suspend and resume functions. aic7xxx.h: Limit the number of supported luns to 64. We don't support information unit transfers, so this is the maximum that makes sense for these chips. Add a new flag AHC_ALL_INTERRUPTS that forces the processing of all interrupt state in a single invokation of ahc_intr(). When the flag is not set, we use the lazy interrupt handling scheme. Add data structures to store controller state while we are suspended. Use constants instead of hard coded values where appropriate. Correct some harmless "unsigned/signed" conflicts. aic7xxx.seq: Only perform the SCSIBUSL fix on ULTRA2 or newer controllers. Older controllers seem to be confused by this. In target mode, ignore PHASEMIS during data phases. This bit seems to be flakey on U160 controllers acting in target mode. aic7xxx_pci.c: Add support for the 29160C CPCI adapter. Add definitions for subvendor ID information available for devices with the "9005" vendor id. We currently use this information to determine if a multi-function device doesn't have the second channel hooked up on a board. Add rudimentary power mode code so we can put the controller into the D0 state. In the future this will be an OSM callback so that in FreeBSD we don't duplicate functionality provided by the PCI code. The powerstate code was added after I'd completed my regression tests on this code. Only capture "left over BIOS state" if the POWRDN setting is not set in HCNTRL. In target mode, don't bother sending incremental CRC data.
2000-12-20 01:11:37 +00:00
if ((ahc->features & AHC_ULTRA2) != 0)
our_id = ahc_inb(ahc, SCSIID_ULTRA2) & OID;
else
our_id = ahc_inb(ahc, SCSIID) & OID;
sxfrctl1 = ahc_inb(ahc, SXFRCTL1) & STPWEN;
scsiseq = ahc_inb(ahc, SCSISEQ);
} else {
sxfrctl1 = STPWEN;
our_id = 7;
scsiseq = 0;
}
error = ahc_reset(ahc, /*reinit*/FALSE);
if (error != 0)
return (ENXIO);
if ((ahc->features & AHC_DT) != 0) {
u_int sfunct;
/* Perform ALT-Mode Setup */
sfunct = ahc_inb(ahc, SFUNCT) & ~ALT_MODE;
ahc_outb(ahc, SFUNCT, sfunct | ALT_MODE);
ahc_eisa.c: ahc_pci.c: Prepare for making ahc a module by adding module dependency and version info. aic7770.c: Remove linux header ifdefs. The headers are handled differently in Linux where local includes (those using "'s instead of <>'s) are allowed. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time. aic7xxx.c: Remove linux header ifdefs. current->curr to avoid Linux's use of current as a #define for the current task on some architectures. Add a helper function, ahc_assert_atn(), for use in message phases we handle manually. This hides the fact that U160 chips with the expected phase matching disabled need to have SCSISIGO updated differently. if (ahc_check_residual(scb) != 0) ahc_calc_residual(scb); else ahc_set_residual(scb, 0); becomes: ahc_update_residual(scb); Modify scsi parity error (or CRC error) handling to reflect expected phase being disabled on U160 chips. Move SELTO handling above BUSFREE handling so we can use the new busfree interrupt behavior on U160 chips. In ahc_build_transfer_msg() filter the period and ppr_options prior to deciding whether a PPR message is required. ppr_options may be forced to zero which will effect our decision. Correct a long standing but latent bug in ahc_find_syncrate(). We could choose a DT only rate even though DT transfers were disabled. In the CAM environment this was unlikely as CAM filters our rate to a non-DT value if the device does not support such rates. When displaing controller characteristics, include the speed of the chip. This way we can modify the transfer speed based on optional features that are enabled/disabled in a particular application. Add support for switching from fully blown tagged queing to just using simple queue tags should the device reject an ordered tag. Remove per-target "current" disconnect and tag queuing enable flags. These should be per-device and are not referenced internally be the driver, so we let the OSM track this state if it needs to. Use SCSI-3 message terminology. aic7xxx.h: The real 7850 does not support Ultra modes, but there are several cards that use the generic 7850 PCI ID even though they are using an Ultra capable chip (7859/7860). We start out with the AHC_ULTRA feature set and then check the DEVSTATUS register to determine if the capability is really present. current -> curr ahc_calc_residual() is no longer static allowing it to be called from ahc_update_residual() in aic7xxx_inline.h. Update some serial eeprom definitions for the latest BIOS versions. aic7xxx.reg: Add a combined DATA_PHASE mask to the SCSIPHASE register definition to simplify some sequencer code. aic7xxx.seq: Take advantage of some performance features available only on the U160 chips. The auto-ack feature allows us to ack data-in phases up to the data-fifo size while the sequencer is still setting up the DMA engine. This greatly reduces read transfer latency and simplifies testing for transfer complete (check SCSIEN only). We also disable the expected phase feature, and enable the new bus free interrupt behavior, to avoid a few instructions. Re-arrange the Ultra2+ data phase handling to allow us to do more work in parallel with the data fifo flushing on a read. On an SDTR, ack the message immediately so the target can prepare the next phase or message byte in parallel with our work to honor the message. aic7xxx_93cx6.c: Remove linux header ifdefs. aic7xxx_freebsd.c: current -> curr Add a module event handler. Handle tag downgrades in our ahc_send_async() handler. We won't be able to downgrade to "basic queuing" until CAM is made aware of this queuing type. aic7xxx_freebsd.h: Include cleanups. Define offsetof if required. Correct a few comments. Update prototype of ahc_send_async(). aic7xxx_inline.h: Implement ahc_update_residual(). aic7xxx_pci.c: Remove linux header ifdefs. Correct a few product strings. Enable several U160 performance enhancing features. Modify Ultra capability determination so we will enable Ultra speeds on devices with a 7850 PCI id that happen to really be a 7859 or 7860. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time.
2001-05-15 19:41:12 +00:00
ahc_outb(ahc, OPTIONMODE,
OPTIONMODE_DEFAULTS|AUTOACKEN|BUSFREEREV|EXPPHASEDIS);
ahc_outb(ahc, SFUNCT, sfunct);
/* Normal mode setup */
ahc_outb(ahc, CRCCONTROL1, CRCVALCHKEN|CRCENDCHKEN|CRCREQCHKEN
ahc_eisa.c: ahc_pci.c: Add detach support. Make use of soft allocated on our behalf by newbus. For PCI devices, disable the mapping type we aren't using for extra protection from rogue code. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Sync perforce IDs. aic7xxx_freebsd.c: Capture the eventhandle returned by EVENTHANDER_REGISTER so we can kill the handler off during detach. Use AHC_* constants instead of hard coded numbers in a few more places. Test PPR option state when deciding to "really" negotiate when the CAM_NEGOTIATE flag is passed in a CCB. Make use of core "ahc_pause_and_flushwork" routine in our timeout handler rather than re-inventing this code. Cleanup all of our resources (really!) in ahc_platform_free(). We should be all set to become a module now. Implement the core ahc_detach() routine shared by all of the FreeBSD front-ends. aic7xxx_freebsd.h: Softc storage for our event handler. Null implementation for the ahc_platform_flushwork() OSM callback. FreeBSD doesn't need this as XPT callbacks are safe from all contexts and are done directly in ahc_done(). aic7xxx_inline.h: Implement new lazy interrupt scheme. To avoid an extra PCI bus read, we first check our completion queues to see if any work has completed. If work is available, we assume that this is the source of the interrupt and skip reading INTSTAT. Any remaining interrupt status will be cleared by a second call to the interrupt handler should the interrupt line still be asserted. This drops the interrupt handler down to a single PCI bus read in the common case of I/O completion. This is the same overhead as in the not so distant past, but the extra sanity of perforning a PCI read after clearing the command complete interrupt and before running the completion queue to avoid missing command complete interrupts added a cycle. aic7xxx.c: During initialization, be sure to initialize all scratch ram locations before they are read to avoid parity errors. In this case, we use a new function, ahc_unbusy_tcl() to initialize the scratch ram busy target table. Replace instances of ahc_index_busy_tcl() used to unbusy a tcl without looking at the old value with ahc_unbusy_tcl(). Modify ahc_sent_msg so that it can find single byte messages. ahc_sent_msg is now used to determine if a transfer negotiation attempt resulted in a bus free. Be more careful in filtering out only the SCSI interrupts of interest in ahc_handle_scsiint. Rearrange interrupt clearing code to ensure that at least one PCI transaction occurrs after hitting CLRSINT1 and writting to CLRINT. CLRSINT1 writes take a bit to take effect, and the re-arrangement provides sufficient delay to ensure the write to CLRINT is effective. The old code might report a spurious interrupt on some "fast" chipsets. export ahc-update_target_msg_request for use by OSM code. If a target does not respond to our ATN request, clear it once we move to a non-message phase. This avoids sending a MSG_NOOP in some later message out phase. Use max lun and max target constants instead of hard-coded values. Use softc storage built into our device_t under FreeBSD. Fix a bug in ahc_free() that caused us to delete resources that were not allocated. Clean up any tstate/lstate info in ahc_free(). Clear the powerdown state in ahc_reset() so that registers can be accessed. Add a preliminary function for pausing the chip and processing any posted work. Add a preliminary suspend and resume functions. aic7xxx.h: Limit the number of supported luns to 64. We don't support information unit transfers, so this is the maximum that makes sense for these chips. Add a new flag AHC_ALL_INTERRUPTS that forces the processing of all interrupt state in a single invokation of ahc_intr(). When the flag is not set, we use the lazy interrupt handling scheme. Add data structures to store controller state while we are suspended. Use constants instead of hard coded values where appropriate. Correct some harmless "unsigned/signed" conflicts. aic7xxx.seq: Only perform the SCSIBUSL fix on ULTRA2 or newer controllers. Older controllers seem to be confused by this. In target mode, ignore PHASEMIS during data phases. This bit seems to be flakey on U160 controllers acting in target mode. aic7xxx_pci.c: Add support for the 29160C CPCI adapter. Add definitions for subvendor ID information available for devices with the "9005" vendor id. We currently use this information to determine if a multi-function device doesn't have the second channel hooked up on a board. Add rudimentary power mode code so we can put the controller into the D0 state. In the future this will be an OSM callback so that in FreeBSD we don't duplicate functionality provided by the PCI code. The powerstate code was added after I'd completed my regression tests on this code. Only capture "left over BIOS state" if the POWRDN setting is not set in HCNTRL. In target mode, don't bother sending incremental CRC data.
2000-12-20 01:11:37 +00:00
|TARGCRCENDEN);
}
dscommand0 = ahc_inb(ahc, DSCOMMAND0);
dscommand0 |= MPARCKEN|CACHETHEN;
if ((ahc->features & AHC_ULTRA2) != 0) {
/*
* DPARCKEN doesn't work correctly on
* some MBs so don't use it.
*/
dscommand0 &= ~DPARCKEN;
}
/*
* Handle chips that must have cache line
* streaming (dis/en)abled.
*/
if ((ahc->bugs & AHC_CACHETHEN_DIS_BUG) != 0)
dscommand0 |= CACHETHEN;
if ((ahc->bugs & AHC_CACHETHEN_BUG) != 0)
dscommand0 &= ~CACHETHEN;
ahc_outb(ahc, DSCOMMAND0, dscommand0);
ahc->pci_cachesize =
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_read_config(ahc->dev_softc, CSIZE_LATTIME,
/*bytes*/1) & CACHESIZE;
ahc->pci_cachesize *= 4;
if ((ahc->bugs & AHC_PCI_2_1_RETRY_BUG) != 0
&& ahc->pci_cachesize == 4) {
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_write_config(ahc->dev_softc, CSIZE_LATTIME,
0, /*bytes*/1);
ahc->pci_cachesize = 0;
}
ahc_eisa.c: ahc_pci.c: Prepare for making ahc a module by adding module dependency and version info. aic7770.c: Remove linux header ifdefs. The headers are handled differently in Linux where local includes (those using "'s instead of <>'s) are allowed. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time. aic7xxx.c: Remove linux header ifdefs. current->curr to avoid Linux's use of current as a #define for the current task on some architectures. Add a helper function, ahc_assert_atn(), for use in message phases we handle manually. This hides the fact that U160 chips with the expected phase matching disabled need to have SCSISIGO updated differently. if (ahc_check_residual(scb) != 0) ahc_calc_residual(scb); else ahc_set_residual(scb, 0); becomes: ahc_update_residual(scb); Modify scsi parity error (or CRC error) handling to reflect expected phase being disabled on U160 chips. Move SELTO handling above BUSFREE handling so we can use the new busfree interrupt behavior on U160 chips. In ahc_build_transfer_msg() filter the period and ppr_options prior to deciding whether a PPR message is required. ppr_options may be forced to zero which will effect our decision. Correct a long standing but latent bug in ahc_find_syncrate(). We could choose a DT only rate even though DT transfers were disabled. In the CAM environment this was unlikely as CAM filters our rate to a non-DT value if the device does not support such rates. When displaing controller characteristics, include the speed of the chip. This way we can modify the transfer speed based on optional features that are enabled/disabled in a particular application. Add support for switching from fully blown tagged queing to just using simple queue tags should the device reject an ordered tag. Remove per-target "current" disconnect and tag queuing enable flags. These should be per-device and are not referenced internally be the driver, so we let the OSM track this state if it needs to. Use SCSI-3 message terminology. aic7xxx.h: The real 7850 does not support Ultra modes, but there are several cards that use the generic 7850 PCI ID even though they are using an Ultra capable chip (7859/7860). We start out with the AHC_ULTRA feature set and then check the DEVSTATUS register to determine if the capability is really present. current -> curr ahc_calc_residual() is no longer static allowing it to be called from ahc_update_residual() in aic7xxx_inline.h. Update some serial eeprom definitions for the latest BIOS versions. aic7xxx.reg: Add a combined DATA_PHASE mask to the SCSIPHASE register definition to simplify some sequencer code. aic7xxx.seq: Take advantage of some performance features available only on the U160 chips. The auto-ack feature allows us to ack data-in phases up to the data-fifo size while the sequencer is still setting up the DMA engine. This greatly reduces read transfer latency and simplifies testing for transfer complete (check SCSIEN only). We also disable the expected phase feature, and enable the new bus free interrupt behavior, to avoid a few instructions. Re-arrange the Ultra2+ data phase handling to allow us to do more work in parallel with the data fifo flushing on a read. On an SDTR, ack the message immediately so the target can prepare the next phase or message byte in parallel with our work to honor the message. aic7xxx_93cx6.c: Remove linux header ifdefs. aic7xxx_freebsd.c: current -> curr Add a module event handler. Handle tag downgrades in our ahc_send_async() handler. We won't be able to downgrade to "basic queuing" until CAM is made aware of this queuing type. aic7xxx_freebsd.h: Include cleanups. Define offsetof if required. Correct a few comments. Update prototype of ahc_send_async(). aic7xxx_inline.h: Implement ahc_update_residual(). aic7xxx_pci.c: Remove linux header ifdefs. Correct a few product strings. Enable several U160 performance enhancing features. Modify Ultra capability determination so we will enable Ultra speeds on devices with a 7850 PCI id that happen to really be a 7859 or 7860. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time.
2001-05-15 19:41:12 +00:00
/*
* We cannot perform ULTRA speeds without the presence
ahc_eisa.c: ahc_pci.c: Prepare for making ahc a module by adding module dependency and version info. aic7770.c: Remove linux header ifdefs. The headers are handled differently in Linux where local includes (those using "'s instead of <>'s) are allowed. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time. aic7xxx.c: Remove linux header ifdefs. current->curr to avoid Linux's use of current as a #define for the current task on some architectures. Add a helper function, ahc_assert_atn(), for use in message phases we handle manually. This hides the fact that U160 chips with the expected phase matching disabled need to have SCSISIGO updated differently. if (ahc_check_residual(scb) != 0) ahc_calc_residual(scb); else ahc_set_residual(scb, 0); becomes: ahc_update_residual(scb); Modify scsi parity error (or CRC error) handling to reflect expected phase being disabled on U160 chips. Move SELTO handling above BUSFREE handling so we can use the new busfree interrupt behavior on U160 chips. In ahc_build_transfer_msg() filter the period and ppr_options prior to deciding whether a PPR message is required. ppr_options may be forced to zero which will effect our decision. Correct a long standing but latent bug in ahc_find_syncrate(). We could choose a DT only rate even though DT transfers were disabled. In the CAM environment this was unlikely as CAM filters our rate to a non-DT value if the device does not support such rates. When displaing controller characteristics, include the speed of the chip. This way we can modify the transfer speed based on optional features that are enabled/disabled in a particular application. Add support for switching from fully blown tagged queing to just using simple queue tags should the device reject an ordered tag. Remove per-target "current" disconnect and tag queuing enable flags. These should be per-device and are not referenced internally be the driver, so we let the OSM track this state if it needs to. Use SCSI-3 message terminology. aic7xxx.h: The real 7850 does not support Ultra modes, but there are several cards that use the generic 7850 PCI ID even though they are using an Ultra capable chip (7859/7860). We start out with the AHC_ULTRA feature set and then check the DEVSTATUS register to determine if the capability is really present. current -> curr ahc_calc_residual() is no longer static allowing it to be called from ahc_update_residual() in aic7xxx_inline.h. Update some serial eeprom definitions for the latest BIOS versions. aic7xxx.reg: Add a combined DATA_PHASE mask to the SCSIPHASE register definition to simplify some sequencer code. aic7xxx.seq: Take advantage of some performance features available only on the U160 chips. The auto-ack feature allows us to ack data-in phases up to the data-fifo size while the sequencer is still setting up the DMA engine. This greatly reduces read transfer latency and simplifies testing for transfer complete (check SCSIEN only). We also disable the expected phase feature, and enable the new bus free interrupt behavior, to avoid a few instructions. Re-arrange the Ultra2+ data phase handling to allow us to do more work in parallel with the data fifo flushing on a read. On an SDTR, ack the message immediately so the target can prepare the next phase or message byte in parallel with our work to honor the message. aic7xxx_93cx6.c: Remove linux header ifdefs. aic7xxx_freebsd.c: current -> curr Add a module event handler. Handle tag downgrades in our ahc_send_async() handler. We won't be able to downgrade to "basic queuing" until CAM is made aware of this queuing type. aic7xxx_freebsd.h: Include cleanups. Define offsetof if required. Correct a few comments. Update prototype of ahc_send_async(). aic7xxx_inline.h: Implement ahc_update_residual(). aic7xxx_pci.c: Remove linux header ifdefs. Correct a few product strings. Enable several U160 performance enhancing features. Modify Ultra capability determination so we will enable Ultra speeds on devices with a 7850 PCI id that happen to really be a 7859 or 7860. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time.
2001-05-15 19:41:12 +00:00
* of the external precision resistor.
*/
if ((ahc->features & AHC_ULTRA) != 0) {
uint32_t devconfig;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
devconfig = aic_pci_read_config(ahc->dev_softc,
ahc_eisa.c: ahc_pci.c: Prepare for making ahc a module by adding module dependency and version info. aic7770.c: Remove linux header ifdefs. The headers are handled differently in Linux where local includes (those using "'s instead of <>'s) are allowed. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time. aic7xxx.c: Remove linux header ifdefs. current->curr to avoid Linux's use of current as a #define for the current task on some architectures. Add a helper function, ahc_assert_atn(), for use in message phases we handle manually. This hides the fact that U160 chips with the expected phase matching disabled need to have SCSISIGO updated differently. if (ahc_check_residual(scb) != 0) ahc_calc_residual(scb); else ahc_set_residual(scb, 0); becomes: ahc_update_residual(scb); Modify scsi parity error (or CRC error) handling to reflect expected phase being disabled on U160 chips. Move SELTO handling above BUSFREE handling so we can use the new busfree interrupt behavior on U160 chips. In ahc_build_transfer_msg() filter the period and ppr_options prior to deciding whether a PPR message is required. ppr_options may be forced to zero which will effect our decision. Correct a long standing but latent bug in ahc_find_syncrate(). We could choose a DT only rate even though DT transfers were disabled. In the CAM environment this was unlikely as CAM filters our rate to a non-DT value if the device does not support such rates. When displaing controller characteristics, include the speed of the chip. This way we can modify the transfer speed based on optional features that are enabled/disabled in a particular application. Add support for switching from fully blown tagged queing to just using simple queue tags should the device reject an ordered tag. Remove per-target "current" disconnect and tag queuing enable flags. These should be per-device and are not referenced internally be the driver, so we let the OSM track this state if it needs to. Use SCSI-3 message terminology. aic7xxx.h: The real 7850 does not support Ultra modes, but there are several cards that use the generic 7850 PCI ID even though they are using an Ultra capable chip (7859/7860). We start out with the AHC_ULTRA feature set and then check the DEVSTATUS register to determine if the capability is really present. current -> curr ahc_calc_residual() is no longer static allowing it to be called from ahc_update_residual() in aic7xxx_inline.h. Update some serial eeprom definitions for the latest BIOS versions. aic7xxx.reg: Add a combined DATA_PHASE mask to the SCSIPHASE register definition to simplify some sequencer code. aic7xxx.seq: Take advantage of some performance features available only on the U160 chips. The auto-ack feature allows us to ack data-in phases up to the data-fifo size while the sequencer is still setting up the DMA engine. This greatly reduces read transfer latency and simplifies testing for transfer complete (check SCSIEN only). We also disable the expected phase feature, and enable the new bus free interrupt behavior, to avoid a few instructions. Re-arrange the Ultra2+ data phase handling to allow us to do more work in parallel with the data fifo flushing on a read. On an SDTR, ack the message immediately so the target can prepare the next phase or message byte in parallel with our work to honor the message. aic7xxx_93cx6.c: Remove linux header ifdefs. aic7xxx_freebsd.c: current -> curr Add a module event handler. Handle tag downgrades in our ahc_send_async() handler. We won't be able to downgrade to "basic queuing" until CAM is made aware of this queuing type. aic7xxx_freebsd.h: Include cleanups. Define offsetof if required. Correct a few comments. Update prototype of ahc_send_async(). aic7xxx_inline.h: Implement ahc_update_residual(). aic7xxx_pci.c: Remove linux header ifdefs. Correct a few product strings. Enable several U160 performance enhancing features. Modify Ultra capability determination so we will enable Ultra speeds on devices with a 7850 PCI id that happen to really be a 7859 or 7860. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time.
2001-05-15 19:41:12 +00:00
DEVCONFIG, /*bytes*/4);
if ((devconfig & REXTVALID) == 0)
ahc->features &= ~AHC_ULTRA;
}
/* See if we have a SEEPROM and perform auto-term */
check_extport(ahc, &sxfrctl1);
/*
* Take the LED out of diagnostic mode
*/
sblkctl = ahc_inb(ahc, SBLKCTL);
ahc_outb(ahc, SBLKCTL, (sblkctl & ~(DIAGLEDEN|DIAGLEDON)));
if ((ahc->features & AHC_ULTRA2) != 0) {
aic7xxx.c: Filter incoming transfer negotiation requests to ensure they never exceed the settings specified by the user. In restart sequencer attempt to deal with a bug in the aic7895. If a third party reset occurs at just the right time, the stack register can lock up. When restarting the sequencer after handling the SCSI reset, poke SEQADDR1 before resting the sequencers program counter. When something strange happens, dump the card's transaction state via ahc_dump_card_state(). This should aid in debugging. Handle request sense transactions via the QINFIFO instead of attaching them to the waiting queue directly. The waiting queue consumes card SCB resources and, in the pathological case of every target on the bus beating our selection attemps and issuing a check condition, could have caused us to run out of SCBs. I have never seen this happen, and only early cards with 3 or 4 SCBs had any real chance of ever getting into this state. Add additional sequencer interrupt codes to support firmware diagnostics. The diagnostic code is enabled with the AHC_DEBUG_SEQUENCER kernel option. Make it possible to switch into and out of target mode on the fly. The card comes up by default as an initiator but will switch into target mode as soon as an enable lun operation is performed. As always, target mode behavior is gated by the AHC_TMODE_ENABLE kernel option so most users will not be affected by this change. In ahc_update_target_msg_request(), also issue a new request if the ppr_options have changed. Never issue a PPR as a target. It is forbidden by the spec. Correct a bug in ahc_parse_msg() that prevented us from responding to PPR messages as a target. Mark SCBs that are on the untagged queue with a flag instead of checking several fields in the SCB to see if the SCB should be on the queue. This makes it easier for things like automatic request sense requests to be queued without touching the untagged queues even though they are untagged requests. When dealing with ignore wide residue messages that occur in the middle of a transfer, reset HADDR, not SHADDR for non-ultra2 chips. Although SHADDR is where the firmware fetches the ending transfer address for a save data pointers request, it is readonly. Setting HADDR has the side effect of also updating SHADDR. Cleanup the output of ahc_dump_card_state() by nulling out the free scb list in the non-paging case. The free list is only used if we must page SCBs. Correct the transmission of cdbs > 12 bytes in length. When swapping HSCBs prior to notifing the sequencer of the new transaction, the bus address pointer for the cdb must also be recalculated to reflect its new location. We now defer the calculation of the cdb address until just before queing it to the card. When pulling transfer negotiation settings out of scratch ram, convert 5MHz/clock doubled settings to 10MHz. Add a new function ahc_qinfifo_requeue_tail() for use by error recovery actions and auto-request sense operations. These operations always occur when the sequencer is paused, so we can avoid the extra expense incurred in the normal SCB queue method. Use the BMOV instruction for all single byte moves on controllers that support it. The bmov instruction is twice as fast as an AND with an immediate of 0xFF as is used on older controllers. Correct a few bugs in ahc_dump_card_state(). If we have hardware assisted queue registers, use them to get the sequencer's idea of the head of the queue. When enumerating the untagged queue, it helps to use the correct index for the queue. aic7xxx.h: Indicate via a feature flag, which controllers can take on both the target and the initiator role at the same time. Add the AHC_SEQUENCER_DEBUG flag. Add the SCB_CDB32_PTR flag used for dealing with cdbs with lengths between 13 and 32 bytes. Add new prototypes. aic7xxx.reg: Allow the SCSIBUSL register to be written to. This is required to fix a selection timeout problem on the 7892/99. Cleanup the sequencer interrupt codes so that all debugging codes are grouped at the end of the list. Correct the definition of the ULTRA_ENB and DISC_DSB locations in scratch ram. This prevented the driver from properly honoring these settings when no serial eeprom was available. Remove an unused sequencer flag. aic7xxx.seq: Just before a potential select-out, clear the SCSIBUSL register. Occasionally, during a selection timeout, the contents of the register may be presented on the bus, causing much confusion. Add sequencer diagnostic code to detect software and or hardware bugs. The code attempts to verify most list operations so any corruption is caught before it occurs. We also track information about why a particular reconnection request was rejected. Don't clobber the digital REQ/ACK filter setting in SXFRCTL0 when clearing the channel. Fix a target mode bug that would cause us to return busy status instead of queue full in respnse to a tagged transaction. Cleanup the overrun case. It turns out that by simply butting the chip in bitbucket mode, it will ack any bytes until the phase changes. This drasticaly simplifies things. Prior to leaving the data phase, make sure that the S/G preload queue is empty. Remove code to place a request sense request on the waiting queue. This is all handled by the kernel now. Change the semantics of "findSCB". In the past, findSCB ensured that a freshly paged in SCB appeared on the disconnected list. The problem with this is that there is no guarantee that the paged in SCB is for a disconnected transation. We now defer any list manipulation to the caller who usually discards the SCB via the free list. Inline some busy target table operations. Add a critical section to protect adding an SCB to the disconnected list. aic7xxx_freebsd.c: Handle changes in the transfer negotiation setting API to filter incoming requests. No filtering is necessary for "goal" requests from the XPT. Set the SCB_CDB32_PTR flag when queing a transaction with a large cdb. In ahc_timeout, only take action if the active SCB is the timedout SCB. This deals with the case of two transactions to the same device with different timeout values. Use ahc_qinfifo_requeu_tail() instead of home grown version. aic7xxx_inline.h: Honor SCB_CDB32_PTR when queuing a new request. aic7xxx_pci.c: Use the maximum data fifo threshold for all chips.
2000-10-31 18:43:29 +00:00
ahc_outb(ahc, DFF_THRSH, RD_DFTHRSH_MAX|WR_DFTHRSH_MAX);
} else {
ahc_outb(ahc, DSPCISTATUS, DFTHRSH_100);
}
if (ahc->flags & AHC_USEDEFAULTS) {
/*
* PCI Adapter default setup
* Should only be used if the adapter does not have
* a SEEPROM.
*/
/* See if someone else set us up already */
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
if ((ahc->flags & AHC_NO_BIOS_INIT) == 0
&& scsiseq != 0) {
printf("%s: Using left over BIOS settings\n",
ahc_name(ahc));
ahc->flags &= ~AHC_USEDEFAULTS;
aic7xxx.c: Style nits. Make sure that our selection hardware is disabled as soon as possible after detecting a busfree and even go so far as to disable the selection hardware in advance of an event that will cause a busfree (ABORT or BUS DEVICE RESET message). The concern is that the selection hardware will select a target for which, after processing the bus free, there will be no commands pending. The sequencer idle loop will re-enable the selection should it still be necessary. In ahc_handle_scsiint(), clear SSTAT0 events several PCI transactions (most notably reads) prior to clearing SCSIINT. The newer chips seem to take a bit of time to see the change which can make the clearing of SCSIINT ineffective. Don't bother panicing at the end of ahc_handle_scsiint(). Getting to the final else just means we lost the race with clearing SCSIINT. In ahc_free(), handle init-level 0. This can happen when we fail the attach for RAID devices. While I'm here, also kill the parent dma tag. In ahc_match_scb(), consider initiator ccbs to be any that are not from the target mode group. This fixes a bug where an external target reset CCB was not getting cleaned up by the reset code. Don't bother freezing a ccb in any of our "abort" routines when the status is set to CAM_REQ_CMP. This can happen for a target reset ccb. aic7xxx.reg: Reserve space for a completion queue. This will be used to enhance performance in the near future. aic7xxx.seq: Remove an optimization for the 7890 autoflush bug that turned out to allow, in rare cases, some data to get lost. Implement a simpler, faster, fix for the PCI_2_1 retry bug that hangs the sequencer on an SCB dma for certain chips. Test against SAVED_SCSIID rather than SELID during target reselections. This is how we always did it in the past, but the code was modified while trying to work around an issue with the 7895. SAVED_SCSIID takes into account twin channel adapters such as the 2742T, whereas SELID does not have the channel bit. This caused invalid selection warnings and other strangeness on these cards. aic7xxx_pci.c Use the correct mask for checking the generic aic7892 entry.
2001-02-10 18:04:27 +00:00
ahc->flags |= AHC_BIOS_ENABLED;
} else {
/*
* Assume only one connector and always turn
* on termination.
*/
our_id = 0x07;
sxfrctl1 = STPWEN;
}
ahc_outb(ahc, SCSICONF, our_id|ENSPCHK|RESET_SCSI);
ahc->our_id = our_id;
}
/*
* Take a look to see if we have external SRAM.
* We currently do not attempt to use SRAM that is
* shared among multiple controllers.
*/
ahc_probe_ext_scbram(ahc);
/*
* Record our termination setting for the
* generic initialization routine.
*/
if ((sxfrctl1 & STPWEN) != 0)
ahc->flags |= AHC_TERM_ENB_A;
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
/*
* Save chip register configuration data for chip resets
* that occur during runtime and resume events.
*/
ahc->bus_softc.pci_softc.devconfig =
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_read_config(ahc->dev_softc, DEVCONFIG, /*bytes*/4);
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->bus_softc.pci_softc.command =
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_read_config(ahc->dev_softc, PCIR_COMMAND, /*bytes*/1);
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->bus_softc.pci_softc.csize_lattime =
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_read_config(ahc->dev_softc, CSIZE_LATTIME, /*bytes*/1);
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->bus_softc.pci_softc.dscommand0 = ahc_inb(ahc, DSCOMMAND0);
ahc->bus_softc.pci_softc.dspcistatus = ahc_inb(ahc, DSPCISTATUS);
if ((ahc->features & AHC_DT) != 0) {
u_int sfunct;
sfunct = ahc_inb(ahc, SFUNCT) & ~ALT_MODE;
ahc_outb(ahc, SFUNCT, sfunct | ALT_MODE);
ahc->bus_softc.pci_softc.optionmode = ahc_inb(ahc, OPTIONMODE);
ahc->bus_softc.pci_softc.targcrccnt = ahc_inw(ahc, TARGCRCCNT);
ahc_outb(ahc, SFUNCT, sfunct);
ahc->bus_softc.pci_softc.crccontrol1 =
ahc_inb(ahc, CRCCONTROL1);
}
if ((ahc->features & AHC_MULTI_FUNC) != 0)
ahc->bus_softc.pci_softc.scbbaddr = ahc_inb(ahc, SCBBADDR);
if ((ahc->features & AHC_ULTRA2) != 0)
ahc->bus_softc.pci_softc.dff_thrsh = ahc_inb(ahc, DFF_THRSH);
/* Core initialization */
error = ahc_init(ahc);
if (error != 0)
return (error);
aic7770.c: aic7xxx_pci.c: Enable board generation of interrupts only once our handler is in place and all other setup has occurred. aic7xxx.c: More conversion of data types to ahc_* names. tmode_tstate and tmode_lstate are the latest victims. Clean up the check condition path by branching early rather than indenting a giant block of code. Add support for target mode initiated sync negotiation. The code has been tested by forcing the feature on for all devices, but for the moment is left inaccesible until a decent mechanism for controlling the behavior is complete. Implementing this feature required the removal of the old "target message request" mechanism. The old method required setting one of the 16 bit fields to initiate negotiation with a particular target. This had the nice effect of being easy to change the request and have it effect the next command. We now set the MK_MESSAGE bit on any new command when negotiation is required. When the negotiation is successful, we walk through and clean up the bit on any pending commands. Since we have to walk the commands to reset the SCSI syncrate values so no additional work is required. The only drawback of this approach is that the negotiation is deferred until the next command is queued to the controller. On the plus side, we regain two bytes of sequencer scratch ram and 6 sequencer instructions. When cleaning up a target mode instance, never remove the "master" target mode state object. The master contains all of the saved SEEPROM settings that control things like transfer negotiations. This data will be cloned as the defaults if a target mode instance is re-instantiated. Correct a bug in ahc_set_width(). We neglected to update the pending scbs to reflect the new parameters. Since wide negotiation is almost always followed by sync negotiation it is doubtful that this had any real effect. When in the target role, don't complain about "Target Initiated" negotiation requests when an initiator negotiates with us. Defer enabling board interrupts until after ahc_intr_enable() is called. Pull all info that used to be in ahc_timeout for the FreeBSD OSM into ahc_dump_card_state(). This info should be printed out on all platforms. aic7xxx.h: Add the SCB_AUTO_NEGOITATE scb flag. This allows us to discern the reason the MK_MESSAGE flag is set in the hscb control byte. We only want to clear MK_MESSAGE in ahc_update_pending_scbs() if the MK_MESSAGE was set due to an auto transfer negotiation. Add the auto_negotiate bitfield for each tstate so that behavior can be controlled for each of our enabled SCSI IDs. Use a bus interrupt handler vector in our softc rather than hard coding the PCI interrupt handler. This makes it easier to build the different bus attachments to the aic7xxx driver as modules. aic7xxx.reg: Remove the TARGET_MSG_REQUEST definition for sequencer ram. aic7xxx.seq: Fix a few target mode bugs: o If MK_MESSAGE is set in an SCB, transition to message in phase and notify the kernel so that message delivery can occur. This is currently only used for target mode initiated transfer negotiation. o Allow a continue target I/O to compile without executing a status phase or disconnecting. If we have not been granted the disconnect privledge but this transfer is larger than MAXPHYS, it may take several CTIOs to get the job done. Remove the tests of the TARGET_MSG_REQUEST field in scratch ram. aic7xxx_freebsd.c: Add support for CTIOs that don't disconnect. We now defer the clearing of our pending target state until we see a CTIO for that device that has completed sucessfully. Be sure to return early if we are in a target only role and see an initiator only CCB type in our action routine. If a CTIO has the CAM_DIS_DISCONNECT flag set, propogate this flag to the SCB. This flag has no effect if we've been asked to deliver status as well. We will complete the command and release the bus in that case. Handle the new auto_negotiate field in the tstate correctly. Make sure that SCBs for "immediate" (i.e. to continue a non disconnected transaction) CTIO requests get a proper mapping in the SCB lookup table. Without this, we'll complain when the transaction completes. Update ahc_timeout() to reflect the changes to ahc_dump_card_state(). aic7xxx_inline.h: Use ahc->bus_intr rather than ahc_pci_intr.
2001-03-29 00:36:35 +00:00
/*
* Allow interrupts now that we are completely setup.
*/
ahc_eisa.c: ahc_pci.c: Prepare for making ahc a module by adding module dependency and version info. aic7770.c: Remove linux header ifdefs. The headers are handled differently in Linux where local includes (those using "'s instead of <>'s) are allowed. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time. aic7xxx.c: Remove linux header ifdefs. current->curr to avoid Linux's use of current as a #define for the current task on some architectures. Add a helper function, ahc_assert_atn(), for use in message phases we handle manually. This hides the fact that U160 chips with the expected phase matching disabled need to have SCSISIGO updated differently. if (ahc_check_residual(scb) != 0) ahc_calc_residual(scb); else ahc_set_residual(scb, 0); becomes: ahc_update_residual(scb); Modify scsi parity error (or CRC error) handling to reflect expected phase being disabled on U160 chips. Move SELTO handling above BUSFREE handling so we can use the new busfree interrupt behavior on U160 chips. In ahc_build_transfer_msg() filter the period and ppr_options prior to deciding whether a PPR message is required. ppr_options may be forced to zero which will effect our decision. Correct a long standing but latent bug in ahc_find_syncrate(). We could choose a DT only rate even though DT transfers were disabled. In the CAM environment this was unlikely as CAM filters our rate to a non-DT value if the device does not support such rates. When displaing controller characteristics, include the speed of the chip. This way we can modify the transfer speed based on optional features that are enabled/disabled in a particular application. Add support for switching from fully blown tagged queing to just using simple queue tags should the device reject an ordered tag. Remove per-target "current" disconnect and tag queuing enable flags. These should be per-device and are not referenced internally be the driver, so we let the OSM track this state if it needs to. Use SCSI-3 message terminology. aic7xxx.h: The real 7850 does not support Ultra modes, but there are several cards that use the generic 7850 PCI ID even though they are using an Ultra capable chip (7859/7860). We start out with the AHC_ULTRA feature set and then check the DEVSTATUS register to determine if the capability is really present. current -> curr ahc_calc_residual() is no longer static allowing it to be called from ahc_update_residual() in aic7xxx_inline.h. Update some serial eeprom definitions for the latest BIOS versions. aic7xxx.reg: Add a combined DATA_PHASE mask to the SCSIPHASE register definition to simplify some sequencer code. aic7xxx.seq: Take advantage of some performance features available only on the U160 chips. The auto-ack feature allows us to ack data-in phases up to the data-fifo size while the sequencer is still setting up the DMA engine. This greatly reduces read transfer latency and simplifies testing for transfer complete (check SCSIEN only). We also disable the expected phase feature, and enable the new bus free interrupt behavior, to avoid a few instructions. Re-arrange the Ultra2+ data phase handling to allow us to do more work in parallel with the data fifo flushing on a read. On an SDTR, ack the message immediately so the target can prepare the next phase or message byte in parallel with our work to honor the message. aic7xxx_93cx6.c: Remove linux header ifdefs. aic7xxx_freebsd.c: current -> curr Add a module event handler. Handle tag downgrades in our ahc_send_async() handler. We won't be able to downgrade to "basic queuing" until CAM is made aware of this queuing type. aic7xxx_freebsd.h: Include cleanups. Define offsetof if required. Correct a few comments. Update prototype of ahc_send_async(). aic7xxx_inline.h: Implement ahc_update_residual(). aic7xxx_pci.c: Remove linux header ifdefs. Correct a few product strings. Enable several U160 performance enhancing features. Modify Ultra capability determination so we will enable Ultra speeds on devices with a 7850 PCI id that happen to really be a 7859 or 7860. Don't map our interrupt until after we are fully setup to handle interrupts. Our interrupt line may be shared so an interrupt could occur at any time.
2001-05-15 19:41:12 +00:00
error = ahc_pci_map_int(ahc);
if (error != 0)
return (error);
ahc_lock(ahc);
/*
* Link this softc in with all other ahc instances.
*/
ahc_softc_insert(ahc);
ahc_unlock(ahc);
return (0);
}
/*
* Test for the presence of external sram in an
* "unshared" configuration.
*/
static int
ahc_ext_scbram_present(struct ahc_softc *ahc)
{
aic7xxx.c: Filter incoming transfer negotiation requests to ensure they never exceed the settings specified by the user. In restart sequencer attempt to deal with a bug in the aic7895. If a third party reset occurs at just the right time, the stack register can lock up. When restarting the sequencer after handling the SCSI reset, poke SEQADDR1 before resting the sequencers program counter. When something strange happens, dump the card's transaction state via ahc_dump_card_state(). This should aid in debugging. Handle request sense transactions via the QINFIFO instead of attaching them to the waiting queue directly. The waiting queue consumes card SCB resources and, in the pathological case of every target on the bus beating our selection attemps and issuing a check condition, could have caused us to run out of SCBs. I have never seen this happen, and only early cards with 3 or 4 SCBs had any real chance of ever getting into this state. Add additional sequencer interrupt codes to support firmware diagnostics. The diagnostic code is enabled with the AHC_DEBUG_SEQUENCER kernel option. Make it possible to switch into and out of target mode on the fly. The card comes up by default as an initiator but will switch into target mode as soon as an enable lun operation is performed. As always, target mode behavior is gated by the AHC_TMODE_ENABLE kernel option so most users will not be affected by this change. In ahc_update_target_msg_request(), also issue a new request if the ppr_options have changed. Never issue a PPR as a target. It is forbidden by the spec. Correct a bug in ahc_parse_msg() that prevented us from responding to PPR messages as a target. Mark SCBs that are on the untagged queue with a flag instead of checking several fields in the SCB to see if the SCB should be on the queue. This makes it easier for things like automatic request sense requests to be queued without touching the untagged queues even though they are untagged requests. When dealing with ignore wide residue messages that occur in the middle of a transfer, reset HADDR, not SHADDR for non-ultra2 chips. Although SHADDR is where the firmware fetches the ending transfer address for a save data pointers request, it is readonly. Setting HADDR has the side effect of also updating SHADDR. Cleanup the output of ahc_dump_card_state() by nulling out the free scb list in the non-paging case. The free list is only used if we must page SCBs. Correct the transmission of cdbs > 12 bytes in length. When swapping HSCBs prior to notifing the sequencer of the new transaction, the bus address pointer for the cdb must also be recalculated to reflect its new location. We now defer the calculation of the cdb address until just before queing it to the card. When pulling transfer negotiation settings out of scratch ram, convert 5MHz/clock doubled settings to 10MHz. Add a new function ahc_qinfifo_requeue_tail() for use by error recovery actions and auto-request sense operations. These operations always occur when the sequencer is paused, so we can avoid the extra expense incurred in the normal SCB queue method. Use the BMOV instruction for all single byte moves on controllers that support it. The bmov instruction is twice as fast as an AND with an immediate of 0xFF as is used on older controllers. Correct a few bugs in ahc_dump_card_state(). If we have hardware assisted queue registers, use them to get the sequencer's idea of the head of the queue. When enumerating the untagged queue, it helps to use the correct index for the queue. aic7xxx.h: Indicate via a feature flag, which controllers can take on both the target and the initiator role at the same time. Add the AHC_SEQUENCER_DEBUG flag. Add the SCB_CDB32_PTR flag used for dealing with cdbs with lengths between 13 and 32 bytes. Add new prototypes. aic7xxx.reg: Allow the SCSIBUSL register to be written to. This is required to fix a selection timeout problem on the 7892/99. Cleanup the sequencer interrupt codes so that all debugging codes are grouped at the end of the list. Correct the definition of the ULTRA_ENB and DISC_DSB locations in scratch ram. This prevented the driver from properly honoring these settings when no serial eeprom was available. Remove an unused sequencer flag. aic7xxx.seq: Just before a potential select-out, clear the SCSIBUSL register. Occasionally, during a selection timeout, the contents of the register may be presented on the bus, causing much confusion. Add sequencer diagnostic code to detect software and or hardware bugs. The code attempts to verify most list operations so any corruption is caught before it occurs. We also track information about why a particular reconnection request was rejected. Don't clobber the digital REQ/ACK filter setting in SXFRCTL0 when clearing the channel. Fix a target mode bug that would cause us to return busy status instead of queue full in respnse to a tagged transaction. Cleanup the overrun case. It turns out that by simply butting the chip in bitbucket mode, it will ack any bytes until the phase changes. This drasticaly simplifies things. Prior to leaving the data phase, make sure that the S/G preload queue is empty. Remove code to place a request sense request on the waiting queue. This is all handled by the kernel now. Change the semantics of "findSCB". In the past, findSCB ensured that a freshly paged in SCB appeared on the disconnected list. The problem with this is that there is no guarantee that the paged in SCB is for a disconnected transation. We now defer any list manipulation to the caller who usually discards the SCB via the free list. Inline some busy target table operations. Add a critical section to protect adding an SCB to the disconnected list. aic7xxx_freebsd.c: Handle changes in the transfer negotiation setting API to filter incoming requests. No filtering is necessary for "goal" requests from the XPT. Set the SCB_CDB32_PTR flag when queing a transaction with a large cdb. In ahc_timeout, only take action if the active SCB is the timedout SCB. This deals with the case of two transactions to the same device with different timeout values. Use ahc_qinfifo_requeu_tail() instead of home grown version. aic7xxx_inline.h: Honor SCB_CDB32_PTR when queuing a new request. aic7xxx_pci.c: Use the maximum data fifo threshold for all chips.
2000-10-31 18:43:29 +00:00
u_int chip;
int ramps;
int single_user;
uint32_t devconfig;
aic7xxx.c: Filter incoming transfer negotiation requests to ensure they never exceed the settings specified by the user. In restart sequencer attempt to deal with a bug in the aic7895. If a third party reset occurs at just the right time, the stack register can lock up. When restarting the sequencer after handling the SCSI reset, poke SEQADDR1 before resting the sequencers program counter. When something strange happens, dump the card's transaction state via ahc_dump_card_state(). This should aid in debugging. Handle request sense transactions via the QINFIFO instead of attaching them to the waiting queue directly. The waiting queue consumes card SCB resources and, in the pathological case of every target on the bus beating our selection attemps and issuing a check condition, could have caused us to run out of SCBs. I have never seen this happen, and only early cards with 3 or 4 SCBs had any real chance of ever getting into this state. Add additional sequencer interrupt codes to support firmware diagnostics. The diagnostic code is enabled with the AHC_DEBUG_SEQUENCER kernel option. Make it possible to switch into and out of target mode on the fly. The card comes up by default as an initiator but will switch into target mode as soon as an enable lun operation is performed. As always, target mode behavior is gated by the AHC_TMODE_ENABLE kernel option so most users will not be affected by this change. In ahc_update_target_msg_request(), also issue a new request if the ppr_options have changed. Never issue a PPR as a target. It is forbidden by the spec. Correct a bug in ahc_parse_msg() that prevented us from responding to PPR messages as a target. Mark SCBs that are on the untagged queue with a flag instead of checking several fields in the SCB to see if the SCB should be on the queue. This makes it easier for things like automatic request sense requests to be queued without touching the untagged queues even though they are untagged requests. When dealing with ignore wide residue messages that occur in the middle of a transfer, reset HADDR, not SHADDR for non-ultra2 chips. Although SHADDR is where the firmware fetches the ending transfer address for a save data pointers request, it is readonly. Setting HADDR has the side effect of also updating SHADDR. Cleanup the output of ahc_dump_card_state() by nulling out the free scb list in the non-paging case. The free list is only used if we must page SCBs. Correct the transmission of cdbs > 12 bytes in length. When swapping HSCBs prior to notifing the sequencer of the new transaction, the bus address pointer for the cdb must also be recalculated to reflect its new location. We now defer the calculation of the cdb address until just before queing it to the card. When pulling transfer negotiation settings out of scratch ram, convert 5MHz/clock doubled settings to 10MHz. Add a new function ahc_qinfifo_requeue_tail() for use by error recovery actions and auto-request sense operations. These operations always occur when the sequencer is paused, so we can avoid the extra expense incurred in the normal SCB queue method. Use the BMOV instruction for all single byte moves on controllers that support it. The bmov instruction is twice as fast as an AND with an immediate of 0xFF as is used on older controllers. Correct a few bugs in ahc_dump_card_state(). If we have hardware assisted queue registers, use them to get the sequencer's idea of the head of the queue. When enumerating the untagged queue, it helps to use the correct index for the queue. aic7xxx.h: Indicate via a feature flag, which controllers can take on both the target and the initiator role at the same time. Add the AHC_SEQUENCER_DEBUG flag. Add the SCB_CDB32_PTR flag used for dealing with cdbs with lengths between 13 and 32 bytes. Add new prototypes. aic7xxx.reg: Allow the SCSIBUSL register to be written to. This is required to fix a selection timeout problem on the 7892/99. Cleanup the sequencer interrupt codes so that all debugging codes are grouped at the end of the list. Correct the definition of the ULTRA_ENB and DISC_DSB locations in scratch ram. This prevented the driver from properly honoring these settings when no serial eeprom was available. Remove an unused sequencer flag. aic7xxx.seq: Just before a potential select-out, clear the SCSIBUSL register. Occasionally, during a selection timeout, the contents of the register may be presented on the bus, causing much confusion. Add sequencer diagnostic code to detect software and or hardware bugs. The code attempts to verify most list operations so any corruption is caught before it occurs. We also track information about why a particular reconnection request was rejected. Don't clobber the digital REQ/ACK filter setting in SXFRCTL0 when clearing the channel. Fix a target mode bug that would cause us to return busy status instead of queue full in respnse to a tagged transaction. Cleanup the overrun case. It turns out that by simply butting the chip in bitbucket mode, it will ack any bytes until the phase changes. This drasticaly simplifies things. Prior to leaving the data phase, make sure that the S/G preload queue is empty. Remove code to place a request sense request on the waiting queue. This is all handled by the kernel now. Change the semantics of "findSCB". In the past, findSCB ensured that a freshly paged in SCB appeared on the disconnected list. The problem with this is that there is no guarantee that the paged in SCB is for a disconnected transation. We now defer any list manipulation to the caller who usually discards the SCB via the free list. Inline some busy target table operations. Add a critical section to protect adding an SCB to the disconnected list. aic7xxx_freebsd.c: Handle changes in the transfer negotiation setting API to filter incoming requests. No filtering is necessary for "goal" requests from the XPT. Set the SCB_CDB32_PTR flag when queing a transaction with a large cdb. In ahc_timeout, only take action if the active SCB is the timedout SCB. This deals with the case of two transactions to the same device with different timeout values. Use ahc_qinfifo_requeu_tail() instead of home grown version. aic7xxx_inline.h: Honor SCB_CDB32_PTR when queuing a new request. aic7xxx_pci.c: Use the maximum data fifo threshold for all chips.
2000-10-31 18:43:29 +00:00
chip = ahc->chip & AHC_CHIPID_MASK;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
devconfig = aic_pci_read_config(ahc->dev_softc,
DEVCONFIG, /*bytes*/4);
single_user = (devconfig & MPORTMODE) != 0;
if ((ahc->features & AHC_ULTRA2) != 0)
ramps = (ahc_inb(ahc, DSCOMMAND0) & RAMPS) != 0;
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
else if (chip == AHC_AIC7895 || chip == AHC_AIC7895C)
/*
* External SCBRAM arbitration is flakey
* on these chips. Unfortunately this means
* we don't use the extra SCB ram space on the
* 3940AUW.
*/
ramps = 0;
aic7xxx.c: Filter incoming transfer negotiation requests to ensure they never exceed the settings specified by the user. In restart sequencer attempt to deal with a bug in the aic7895. If a third party reset occurs at just the right time, the stack register can lock up. When restarting the sequencer after handling the SCSI reset, poke SEQADDR1 before resting the sequencers program counter. When something strange happens, dump the card's transaction state via ahc_dump_card_state(). This should aid in debugging. Handle request sense transactions via the QINFIFO instead of attaching them to the waiting queue directly. The waiting queue consumes card SCB resources and, in the pathological case of every target on the bus beating our selection attemps and issuing a check condition, could have caused us to run out of SCBs. I have never seen this happen, and only early cards with 3 or 4 SCBs had any real chance of ever getting into this state. Add additional sequencer interrupt codes to support firmware diagnostics. The diagnostic code is enabled with the AHC_DEBUG_SEQUENCER kernel option. Make it possible to switch into and out of target mode on the fly. The card comes up by default as an initiator but will switch into target mode as soon as an enable lun operation is performed. As always, target mode behavior is gated by the AHC_TMODE_ENABLE kernel option so most users will not be affected by this change. In ahc_update_target_msg_request(), also issue a new request if the ppr_options have changed. Never issue a PPR as a target. It is forbidden by the spec. Correct a bug in ahc_parse_msg() that prevented us from responding to PPR messages as a target. Mark SCBs that are on the untagged queue with a flag instead of checking several fields in the SCB to see if the SCB should be on the queue. This makes it easier for things like automatic request sense requests to be queued without touching the untagged queues even though they are untagged requests. When dealing with ignore wide residue messages that occur in the middle of a transfer, reset HADDR, not SHADDR for non-ultra2 chips. Although SHADDR is where the firmware fetches the ending transfer address for a save data pointers request, it is readonly. Setting HADDR has the side effect of also updating SHADDR. Cleanup the output of ahc_dump_card_state() by nulling out the free scb list in the non-paging case. The free list is only used if we must page SCBs. Correct the transmission of cdbs > 12 bytes in length. When swapping HSCBs prior to notifing the sequencer of the new transaction, the bus address pointer for the cdb must also be recalculated to reflect its new location. We now defer the calculation of the cdb address until just before queing it to the card. When pulling transfer negotiation settings out of scratch ram, convert 5MHz/clock doubled settings to 10MHz. Add a new function ahc_qinfifo_requeue_tail() for use by error recovery actions and auto-request sense operations. These operations always occur when the sequencer is paused, so we can avoid the extra expense incurred in the normal SCB queue method. Use the BMOV instruction for all single byte moves on controllers that support it. The bmov instruction is twice as fast as an AND with an immediate of 0xFF as is used on older controllers. Correct a few bugs in ahc_dump_card_state(). If we have hardware assisted queue registers, use them to get the sequencer's idea of the head of the queue. When enumerating the untagged queue, it helps to use the correct index for the queue. aic7xxx.h: Indicate via a feature flag, which controllers can take on both the target and the initiator role at the same time. Add the AHC_SEQUENCER_DEBUG flag. Add the SCB_CDB32_PTR flag used for dealing with cdbs with lengths between 13 and 32 bytes. Add new prototypes. aic7xxx.reg: Allow the SCSIBUSL register to be written to. This is required to fix a selection timeout problem on the 7892/99. Cleanup the sequencer interrupt codes so that all debugging codes are grouped at the end of the list. Correct the definition of the ULTRA_ENB and DISC_DSB locations in scratch ram. This prevented the driver from properly honoring these settings when no serial eeprom was available. Remove an unused sequencer flag. aic7xxx.seq: Just before a potential select-out, clear the SCSIBUSL register. Occasionally, during a selection timeout, the contents of the register may be presented on the bus, causing much confusion. Add sequencer diagnostic code to detect software and or hardware bugs. The code attempts to verify most list operations so any corruption is caught before it occurs. We also track information about why a particular reconnection request was rejected. Don't clobber the digital REQ/ACK filter setting in SXFRCTL0 when clearing the channel. Fix a target mode bug that would cause us to return busy status instead of queue full in respnse to a tagged transaction. Cleanup the overrun case. It turns out that by simply butting the chip in bitbucket mode, it will ack any bytes until the phase changes. This drasticaly simplifies things. Prior to leaving the data phase, make sure that the S/G preload queue is empty. Remove code to place a request sense request on the waiting queue. This is all handled by the kernel now. Change the semantics of "findSCB". In the past, findSCB ensured that a freshly paged in SCB appeared on the disconnected list. The problem with this is that there is no guarantee that the paged in SCB is for a disconnected transation. We now defer any list manipulation to the caller who usually discards the SCB via the free list. Inline some busy target table operations. Add a critical section to protect adding an SCB to the disconnected list. aic7xxx_freebsd.c: Handle changes in the transfer negotiation setting API to filter incoming requests. No filtering is necessary for "goal" requests from the XPT. Set the SCB_CDB32_PTR flag when queing a transaction with a large cdb. In ahc_timeout, only take action if the active SCB is the timedout SCB. This deals with the case of two transactions to the same device with different timeout values. Use ahc_qinfifo_requeu_tail() instead of home grown version. aic7xxx_inline.h: Honor SCB_CDB32_PTR when queuing a new request. aic7xxx_pci.c: Use the maximum data fifo threshold for all chips.
2000-10-31 18:43:29 +00:00
else if (chip >= AHC_AIC7870)
ramps = (devconfig & RAMPSM) != 0;
else
ramps = 0;
if (ramps && single_user)
return (1);
return (0);
}
/*
* Enable external scbram.
*/
static void
ahc_scbram_config(struct ahc_softc *ahc, int enable, int pcheck,
int fast, int large)
{
uint32_t devconfig;
if (ahc->features & AHC_MULTI_FUNC) {
/*
* Set the SCB Base addr (highest address bit)
* depending on which channel we are.
*/
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
ahc_outb(ahc, SCBBADDR, aic_get_pci_function(ahc->dev_softc));
}
ahc->flags &= ~AHC_LSCBS_ENABLED;
if (large)
ahc->flags |= AHC_LSCBS_ENABLED;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
devconfig = aic_pci_read_config(ahc->dev_softc, DEVCONFIG, /*bytes*/4);
if ((ahc->features & AHC_ULTRA2) != 0) {
u_int dscommand0;
dscommand0 = ahc_inb(ahc, DSCOMMAND0);
if (enable)
dscommand0 &= ~INTSCBRAMSEL;
else
dscommand0 |= INTSCBRAMSEL;
if (large)
dscommand0 &= ~USCBSIZE32;
else
dscommand0 |= USCBSIZE32;
ahc_outb(ahc, DSCOMMAND0, dscommand0);
} else {
if (fast)
devconfig &= ~EXTSCBTIME;
else
devconfig |= EXTSCBTIME;
if (enable)
devconfig &= ~SCBRAMSEL;
else
devconfig |= SCBRAMSEL;
if (large)
devconfig &= ~SCBSIZE32;
else
devconfig |= SCBSIZE32;
}
if (pcheck)
devconfig |= EXTSCBPEN;
else
devconfig &= ~EXTSCBPEN;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_write_config(ahc->dev_softc, DEVCONFIG, devconfig, /*bytes*/4);
}
/*
* Take a look to see if we have external SRAM.
* We currently do not attempt to use SRAM that is
* shared among multiple controllers.
*/
static void
ahc_probe_ext_scbram(struct ahc_softc *ahc)
{
int num_scbs;
int test_num_scbs;
int enable;
int pcheck;
int fast;
int large;
enable = FALSE;
pcheck = FALSE;
fast = FALSE;
large = FALSE;
num_scbs = 0;
if (ahc_ext_scbram_present(ahc) == 0)
goto done;
/*
* Probe for the best parameters to use.
*/
ahc_scbram_config(ahc, /*enable*/TRUE, pcheck, fast, large);
num_scbs = ahc_probe_scbs(ahc);
if (num_scbs == 0) {
/* The SRAM wasn't really present. */
goto done;
}
enable = TRUE;
/*
* Clear any outstanding parity error
* and ensure that parity error reporting
* is enabled.
*/
ahc_outb(ahc, SEQCTL, 0);
ahc_outb(ahc, CLRINT, CLRPARERR);
ahc_outb(ahc, CLRINT, CLRBRKADRINT);
/* Now see if we can do parity */
ahc_scbram_config(ahc, enable, /*pcheck*/TRUE, fast, large);
num_scbs = ahc_probe_scbs(ahc);
if ((ahc_inb(ahc, INTSTAT) & BRKADRINT) == 0
|| (ahc_inb(ahc, ERROR) & MPARERR) == 0)
pcheck = TRUE;
/* Clear any resulting parity error */
ahc_outb(ahc, CLRINT, CLRPARERR);
ahc_outb(ahc, CLRINT, CLRBRKADRINT);
/* Now see if we can do fast timing */
ahc_scbram_config(ahc, enable, pcheck, /*fast*/TRUE, large);
test_num_scbs = ahc_probe_scbs(ahc);
if (test_num_scbs == num_scbs
&& ((ahc_inb(ahc, INTSTAT) & BRKADRINT) == 0
|| (ahc_inb(ahc, ERROR) & MPARERR) == 0))
fast = TRUE;
/*
* See if we can use large SCBs and still maintain
* the same overall count of SCBs.
*/
if ((ahc->features & AHC_LARGE_SCBS) != 0) {
ahc_scbram_config(ahc, enable, pcheck, fast, /*large*/TRUE);
test_num_scbs = ahc_probe_scbs(ahc);
if (test_num_scbs >= num_scbs) {
large = TRUE;
num_scbs = test_num_scbs;
if (num_scbs >= 64) {
/*
* We have enough space to move the
* "busy targets table" into SCB space
* and make it qualify all the way to the
* lun level.
*/
ahc->flags |= AHC_SCB_BTT;
}
}
}
done:
/*
* Disable parity error reporting until we
* can load instruction ram.
*/
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS);
/* Clear any latched parity error */
ahc_outb(ahc, CLRINT, CLRPARERR);
ahc_outb(ahc, CLRINT, CLRBRKADRINT);
if (bootverbose && enable) {
printf("%s: External SRAM, %s access%s, %dbytes/SCB\n",
ahc_name(ahc), fast ? "fast" : "slow",
pcheck ? ", parity checking enabled" : "",
large ? 64 : 32);
}
ahc_scbram_config(ahc, enable, pcheck, fast, large);
}
/*
* Perform some simple tests that should catch situations where
* our registers are invalidly mapped.
*/
int
ahc_pci_test_register_access(struct ahc_softc *ahc)
{
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
int error;
u_int status1;
uint32_t cmd;
uint8_t hcntrl;
error = EIO;
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
/*
* Enable PCI error interrupt status, but suppress NMIs
* generated by SERR raised due to target aborts.
*/
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
cmd = aic_pci_read_config(ahc->dev_softc, PCIR_COMMAND, /*bytes*/2);
aic_pci_write_config(ahc->dev_softc, PCIR_COMMAND,
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
cmd & ~PCIM_CMD_SERRESPEN, /*bytes*/2);
/*
* First a simple test to see if any
* registers can be read. Reading
* HCNTRL has no side effects and has
* at least one bit that is guaranteed to
* be zero so it is a good register to
* use for this test.
*/
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
hcntrl = ahc_inb(ahc, HCNTRL);
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
if (hcntrl == 0xFF)
goto fail;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
if ((hcntrl & CHIPRST) != 0) {
/*
* The chip has not been initialized since
* PCI/EISA/VLB bus reset. Don't trust
* "left over BIOS data".
*/
ahc->flags |= AHC_NO_BIOS_INIT;
}
/*
* Next create a situation where write combining
* or read prefetching could be initiated by the
* CPU or host bridge. Our device does not support
* either, so look for data corruption and/or flagged
* PCI errors. First pause without causing another
* chip reset.
*/
hcntrl &= ~CHIPRST;
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
ahc_outb(ahc, HCNTRL, hcntrl|PAUSE);
while (ahc_is_paused(ahc) == 0)
;
/* Clear any PCI errors that occurred before our driver attached. */
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
status1 = aic_pci_read_config(ahc->dev_softc,
PCIR_STATUS + 1, /*bytes*/1);
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_write_config(ahc->dev_softc, PCIR_STATUS + 1,
status1, /*bytes*/1);
ahc_outb(ahc, CLRINT, CLRPARERR);
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
ahc_outb(ahc, SEQCTL, PERRORDIS);
ahc_outb(ahc, SCBPTR, 0);
ahc_outl(ahc, SCB_BASE, 0x5aa555aa);
if (ahc_inl(ahc, SCB_BASE) != 0x5aa555aa)
goto fail;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
status1 = aic_pci_read_config(ahc->dev_softc,
PCIR_STATUS + 1, /*bytes*/1);
if ((status1 & STA) != 0)
goto fail;
error = 0;
fail:
/* Silently clear any latched errors. */
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
status1 = aic_pci_read_config(ahc->dev_softc,
PCIR_STATUS + 1, /*bytes*/1);
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_write_config(ahc->dev_softc, PCIR_STATUS + 1,
status1, /*bytes*/1);
ahc_outb(ahc, CLRINT, CLRPARERR);
aic7xxx.reg: Add a constant for the controller's stack size and the maximum scsi offset. aic7xxx.seq: Style nit. The source is implied to be the destination unless overridden in an "and" instruction. Update target mode code for changes in identify seen sequencer flags. aic7xxx_pci.c: Ensure that the PCIERRGENDIS bit is set in the PCIERRGEN config space register. Perhaps this is a reason for the spurios parity errors reported on U160 controllers. Honor the AHC_NO_BIOS_INIT flag. Allow PCI interrupt reporting to be disabled, by clearing the PERRRESEN bit in the command register. This option is now enabled via a new softc flag: AHC_DISABLE_PCI_PERR. Disable SERR and pause the controller prior to performing our mmapped I/O test. This should handle the case of controllers that do not "auto-access pause". For legacy controllers, use SCB ram instead of scratch ram since the latter may contain settings left over from the BIOS that we will use if an seeprom is not found. Make use of new ahc_inl/outl() inlines. aic7xxx.h: Reformat a few comments to follow driver style. Add a controller flags that indicate that a controller has not been initialized by the BIOS and whether to disable PCI parity errors.. Remove stack probing softc members. Add a few more syncrate constants that are useful in speed fallback calculations. Add the SHOW_MASKED_ERRORS debug flag. aic7xxx.h: aic7xxx.c: Implement the SCB_SILENT flag. This is useful for hushing up the driver during DV or other operations that we expect to cause transmission errors. The messages will still print if the SHOW_MASKED_ERRORS debug option is enabled. aic7xxx_inline.h: Implement ahc_[in|out][w|l|q]. This removes the need for manual 'or and shift" type operations throughout the driver. aic7xxx.c: Move SELTO dignostic so that the SCB is still valid when we use it for printing path information. If we are narrow, limit syncrate to Ultra2. Don't clobber ppr_options when forcing a renegotiation. The current ppr_options may be referenced while queuing new commands. Don't set our width to unknown when forcing negotiation on narrow controllers. This will confuse the negotiation code into negotiating with a wide message on narrow controllers. Add an "asserting atn" diagnostic with controller/target information. Remove the probe_stack code. The stack is always 4 deep on legacy controllers, so probing is pointless. This also avoids an issue where probing the stack would upset the aic7770. In ahc_reset(), record whether or not we found the controller in a reset state. If the controller was already reset, assume that no BIOS has initialized the controller and ignore left over scratch ram settings. Fix an ifdef bug that caused sequencer debugging to be enabled always. Clear the ultraenb flag in our tstate during startup. The ultraenbled'ness of a device is recorded in the user transfer settings. tstate->ultraenb bitmask indicates which devices we have negotiated an ultra speed with. Just after initialization, we are async. Setting the ultraenb flag while async seems to be harmless, but it was confusing to see the ULTRAENB flag set in the SCB. Enhance residual diagnostic to indicate if the residual if for sense information or normal data transfers. Indicate the features, bugs, and flags set in the softc that are used to control firmware patch download when booting verbose. In ahc_dump_card_state() fix a logic reversal. The SCSIPHASE register only exists on U160 controllers. The SCSISIGI register exists on all controllers. Not the other way around. Also print out the ERROR register. Allow ahc_dump_card_state() to be called when the sequencer is not paused. Add dump card state markers as in the U320 driver.
2003-01-20 20:44:55 +00:00
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS);
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_write_config(ahc->dev_softc, PCIR_COMMAND, cmd, /*bytes*/2);
return (error);
}
/*
* Check the external port logic for a serial eeprom
* and termination/cable detection contrls.
*/
static void
check_extport(struct ahc_softc *ahc, u_int *sxfrctl1)
{
struct seeprom_descriptor sd;
struct seeprom_config *sc;
int have_seeprom;
int have_autoterm;
sd.sd_ahc = ahc;
sd.sd_control_offset = SEECTL;
sd.sd_status_offset = SEECTL;
sd.sd_dataout_offset = SEECTL;
sc = ahc->seep_config;
/*
* For some multi-channel devices, the c46 is simply too
* small to work. For the other controller types, we can
* get our information from either SEEPROM type. Set the
* type to start our probe with accordingly.
*/
if (ahc->flags & AHC_LARGE_SEEPROM)
sd.sd_chip = C56_66;
else
sd.sd_chip = C46;
sd.sd_MS = SEEMS;
sd.sd_RDY = SEERDY;
sd.sd_CS = SEECS;
sd.sd_CK = SEECK;
sd.sd_DO = SEEDO;
sd.sd_DI = SEEDI;
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
have_seeprom = ahc_acquire_seeprom(ahc, &sd);
if (have_seeprom) {
if (bootverbose)
printf("%s: Reading SEEPROM...", ahc_name(ahc));
for (;;) {
u_int start_addr;
start_addr = 32 * (ahc->channel - 'A');
have_seeprom = ahc_read_seeprom(&sd, (uint16_t *)sc,
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
start_addr,
sizeof(*sc)/2);
if (have_seeprom)
have_seeprom = ahc_verify_cksum(sc);
if (have_seeprom != 0 || sd.sd_chip == C56_66) {
if (bootverbose) {
if (have_seeprom == 0)
printf ("checksum error\n");
else
printf ("done.\n");
}
break;
}
sd.sd_chip = C56_66;
}
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
ahc_release_seeprom(&sd);
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
/* Remember the SEEPROM type for later */
if (sd.sd_chip == C56_66)
ahc->flags |= AHC_LARGE_SEEPROM;
}
if (!have_seeprom) {
/*
* Pull scratch ram settings and treat them as
* if they are the contents of an seeprom if
* the 'ADPT' signature is found in SCB2.
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
* We manually compose the data as 16bit values
* to avoid endian issues.
*/
ahc_outb(ahc, SCBPTR, 2);
if (ahc_inb(ahc, SCB_BASE) == 'A'
&& ahc_inb(ahc, SCB_BASE + 1) == 'D'
&& ahc_inb(ahc, SCB_BASE + 2) == 'P'
&& ahc_inb(ahc, SCB_BASE + 3) == 'T') {
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
uint16_t *sc_data;
int i;
sc_data = (uint16_t *)sc;
for (i = 0; i < 32; i++, sc_data++) {
int j;
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
j = i * 2;
*sc_data = ahc_inb(ahc, SRAM_BASE + j)
| ahc_inb(ahc, SRAM_BASE + j + 1) << 8;
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
}
have_seeprom = ahc_verify_cksum(sc);
if (have_seeprom)
ahc->flags |= AHC_SCB_CONFIG_USED;
}
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
/*
* Clear any SCB parity errors in case this data and
* its associated parity was not initialized by the BIOS
*/
ahc_outb(ahc, CLRINT, CLRPARERR);
ahc_outb(ahc, CLRINT, CLRBRKADRINT);
}
if (!have_seeprom) {
if (bootverbose)
printf("%s: No SEEPROM available.\n", ahc_name(ahc));
ahc->flags |= AHC_USEDEFAULTS;
free(ahc->seep_config, M_DEVBUF);
ahc->seep_config = NULL;
sc = NULL;
} else {
ahc_parse_pci_eeprom(ahc, sc);
}
/*
* Cards that have the external logic necessary to talk to
* a SEEPROM, are almost certain to have the remaining logic
* necessary for auto-termination control. This assumption
* hasn't failed yet...
*/
have_autoterm = have_seeprom;
/*
* Some low-cost chips have SEEPROM and auto-term control built
* in, instead of using a GAL. They can tell us directly
* if the termination logic is enabled.
*/
if ((ahc->features & AHC_SPIOCAP) != 0) {
if ((ahc_inb(ahc, SPIOCAP) & SSPIOCPS) == 0)
have_autoterm = FALSE;
}
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
if (have_autoterm) {
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->flags |= AHC_HAS_TERM_LOGIC;
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
ahc_acquire_seeprom(ahc, &sd);
configure_termination(ahc, &sd, sc->adapter_control, sxfrctl1);
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
ahc_release_seeprom(&sd);
} else if (have_seeprom) {
*sxfrctl1 &= ~STPWEN;
if ((sc->adapter_control & CFSTERM) != 0)
*sxfrctl1 |= STPWEN;
if (bootverbose)
printf("%s: Low byte termination %sabled\n",
ahc_name(ahc),
(*sxfrctl1 & STPWEN) ? "en" : "dis");
}
}
static void
ahc_parse_pci_eeprom(struct ahc_softc *ahc, struct seeprom_config *sc)
{
/*
* Put the data we've collected down into SRAM
* where ahc_init will find it.
*/
int i;
int max_targ = sc->max_targets & CFMAXTARG;
u_int scsi_conf;
uint16_t discenable;
uint16_t ultraenb;
discenable = 0;
ultraenb = 0;
if ((sc->adapter_control & CFULTRAEN) != 0) {
/*
* Determine if this adapter has a "newstyle"
* SEEPROM format.
*/
for (i = 0; i < max_targ; i++) {
if ((sc->device_flags[i] & CFSYNCHISULTRA) != 0) {
ahc->flags |= AHC_NEWEEPROM_FMT;
break;
}
}
}
for (i = 0; i < max_targ; i++) {
u_int scsirate;
uint16_t target_mask;
target_mask = 0x01 << i;
if (sc->device_flags[i] & CFDISC)
discenable |= target_mask;
if ((ahc->flags & AHC_NEWEEPROM_FMT) != 0) {
if ((sc->device_flags[i] & CFSYNCHISULTRA) != 0)
ultraenb |= target_mask;
} else if ((sc->adapter_control & CFULTRAEN) != 0) {
ultraenb |= target_mask;
}
if ((sc->device_flags[i] & CFXFER) == 0x04
&& (ultraenb & target_mask) != 0) {
/* Treat 10MHz as a non-ultra speed */
sc->device_flags[i] &= ~CFXFER;
ultraenb &= ~target_mask;
}
if ((ahc->features & AHC_ULTRA2) != 0) {
u_int offset;
if (sc->device_flags[i] & CFSYNCH)
offset = MAX_OFFSET_ULTRA2;
else
offset = 0;
ahc_outb(ahc, TARG_OFFSET + i, offset);
/*
* The ultra enable bits contain the
* high bit of the ultra2 sync rate
* field.
*/
scsirate = (sc->device_flags[i] & CFXFER)
| ((ultraenb & target_mask) ? 0x8 : 0x0);
if (sc->device_flags[i] & CFWIDEB)
scsirate |= WIDEXFER;
} else {
scsirate = (sc->device_flags[i] & CFXFER) << 4;
if (sc->device_flags[i] & CFSYNCH)
scsirate |= SOFS;
if (sc->device_flags[i] & CFWIDEB)
scsirate |= WIDEXFER;
}
ahc_outb(ahc, TARG_SCSIRATE + i, scsirate);
}
ahc->our_id = sc->brtime_id & CFSCSIID;
scsi_conf = (ahc->our_id & 0x7);
if (sc->adapter_control & CFSPARITY)
scsi_conf |= ENSPCHK;
if (sc->adapter_control & CFRESETB)
scsi_conf |= RESET_SCSI;
ahc->flags |= (sc->adapter_control & CFBOOTCHAN) >> CFBOOTCHANSHIFT;
if (sc->bios_control & CFEXTEND)
ahc->flags |= AHC_EXTENDED_TRANS_A;
if (sc->bios_control & CFBIOSEN)
ahc->flags |= AHC_BIOS_ENABLED;
if (ahc->features & AHC_ULTRA
&& (ahc->flags & AHC_NEWEEPROM_FMT) == 0) {
/* Should we enable Ultra mode? */
if (!(sc->adapter_control & CFULTRAEN))
/* Treat us as a non-ultra card */
ultraenb = 0;
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
}
if (sc->signature == CFSIGNATURE
|| sc->signature == CFSIGNATURE2) {
uint32_t devconfig;
/* Honor the STPWLEVEL settings */
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
devconfig = aic_pci_read_config(ahc->dev_softc,
DEVCONFIG, /*bytes*/4);
devconfig &= ~STPWLEVEL;
if ((sc->bios_control & CFSTPWLEVEL) != 0)
devconfig |= STPWLEVEL;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_write_config(ahc->dev_softc, DEVCONFIG,
devconfig, /*bytes*/4);
}
/* Set SCSICONF info */
ahc_outb(ahc, SCSICONF, scsi_conf);
ahc_outb(ahc, DISC_DSB, ~(discenable & 0xff));
ahc_outb(ahc, DISC_DSB + 1, ~((discenable >> 8) & 0xff));
ahc_outb(ahc, ULTRA_ENB, ultraenb & 0xff);
ahc_outb(ahc, ULTRA_ENB + 1, (ultraenb >> 8) & 0xff);
}
static void
configure_termination(struct ahc_softc *ahc,
struct seeprom_descriptor *sd,
u_int adapter_control,
u_int *sxfrctl1)
{
uint8_t brddat;
brddat = 0;
/*
* Update the settings in sxfrctl1 to match the
* termination settings
*/
*sxfrctl1 = 0;
/*
* SEECS must be on for the GALS to latch
* the data properly. Be sure to leave MS
* on or we will release the seeprom.
*/
SEEPROM_OUTB(sd, sd->sd_MS | sd->sd_CS);
if ((adapter_control & CFAUTOTERM) != 0
|| (ahc->features & AHC_NEW_TERMCTL) != 0) {
int internal50_present;
int internal68_present;
int externalcable_present;
int eeprom_present;
int enableSEC_low;
int enableSEC_high;
int enablePRI_low;
int enablePRI_high;
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
int sum;
enableSEC_low = 0;
enableSEC_high = 0;
enablePRI_low = 0;
enablePRI_high = 0;
if ((ahc->features & AHC_NEW_TERMCTL) != 0) {
ahc_new_term_detect(ahc, &enableSEC_low,
&enableSEC_high,
&enablePRI_low,
&enablePRI_high,
&eeprom_present);
if ((adapter_control & CFSEAUTOTERM) == 0) {
if (bootverbose)
printf("%s: Manual SE Termination\n",
ahc_name(ahc));
enableSEC_low = (adapter_control & CFSELOWTERM);
enableSEC_high =
(adapter_control & CFSEHIGHTERM);
}
if ((adapter_control & CFAUTOTERM) == 0) {
if (bootverbose)
printf("%s: Manual LVD Termination\n",
ahc_name(ahc));
enablePRI_low = (adapter_control & CFSTERM);
enablePRI_high = (adapter_control & CFWSTERM);
}
/* Make the table calculations below happy */
internal50_present = 0;
internal68_present = 1;
externalcable_present = 1;
} else if ((ahc->features & AHC_SPIOCAP) != 0) {
aic785X_cable_detect(ahc, &internal50_present,
&externalcable_present,
&eeprom_present);
/* Can never support a wide connector. */
internal68_present = 0;
} else {
aic787X_cable_detect(ahc, &internal50_present,
&internal68_present,
&externalcable_present,
&eeprom_present);
}
if ((ahc->features & AHC_WIDE) == 0)
internal68_present = 0;
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
if (bootverbose
&& (ahc->features & AHC_ULTRA2) == 0) {
printf("%s: internal 50 cable %s present",
ahc_name(ahc),
internal50_present ? "is":"not");
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
if ((ahc->features & AHC_WIDE) != 0)
printf(", internal 68 cable %s present",
internal68_present ? "is":"not");
printf("\n%s: external cable %s present\n",
ahc_name(ahc),
externalcable_present ? "is":"not");
}
if (bootverbose)
printf("%s: BIOS eeprom %s present\n",
ahc_name(ahc), eeprom_present ? "is" : "not");
if ((ahc->flags & AHC_INT50_SPEEDFLEX) != 0) {
/*
* The 50 pin connector is a separate bus,
* so force it to always be terminated.
* In the future, perform current sensing
* to determine if we are in the middle of
* a properly terminated bus.
*/
internal50_present = 0;
}
/*
* Now set the termination based on what
* we found.
* Flash Enable = BRDDAT7
* Secondary High Term Enable = BRDDAT6
* Secondary Low Term Enable = BRDDAT5 (7890)
* Primary High Term Enable = BRDDAT4 (7890)
*/
if ((ahc->features & AHC_ULTRA2) == 0
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
&& (internal50_present != 0)
&& (internal68_present != 0)
&& (externalcable_present != 0)) {
printf("%s: Illegal cable configuration!!. "
"Only two connectors on the "
"adapter may be used at a "
"time!\n", ahc_name(ahc));
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
/*
* Pretend there are no cables in the hope
* that having all of the termination on
* gives us a more stable bus.
*/
internal50_present = 0;
internal68_present = 0;
externalcable_present = 0;
}
if ((ahc->features & AHC_WIDE) != 0
&& ((externalcable_present == 0)
|| (internal68_present == 0)
|| (enableSEC_high != 0))) {
brddat |= BRDDAT6;
if (bootverbose) {
if ((ahc->flags & AHC_INT50_SPEEDFLEX) != 0)
printf("%s: 68 pin termination "
"Enabled\n", ahc_name(ahc));
else
printf("%s: %sHigh byte termination "
"Enabled\n", ahc_name(ahc),
enableSEC_high ? "Secondary "
: "");
}
}
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
sum = internal50_present + internal68_present
+ externalcable_present;
if (sum < 2 || (enableSEC_low != 0)) {
if ((ahc->features & AHC_ULTRA2) != 0)
brddat |= BRDDAT5;
else
*sxfrctl1 |= STPWEN;
if (bootverbose) {
if ((ahc->flags & AHC_INT50_SPEEDFLEX) != 0)
printf("%s: 50 pin termination "
"Enabled\n", ahc_name(ahc));
else
printf("%s: %sLow byte termination "
"Enabled\n", ahc_name(ahc),
enableSEC_low ? "Secondary "
: "");
}
}
if (enablePRI_low != 0) {
*sxfrctl1 |= STPWEN;
if (bootverbose)
printf("%s: Primary Low Byte termination "
"Enabled\n", ahc_name(ahc));
}
/*
* Setup STPWEN before setting up the rest of
* the termination per the tech note on the U160 cards.
*/
ahc_outb(ahc, SXFRCTL1, *sxfrctl1);
if (enablePRI_high != 0) {
brddat |= BRDDAT4;
if (bootverbose)
printf("%s: Primary High Byte "
"termination Enabled\n",
ahc_name(ahc));
}
write_brdctl(ahc, brddat);
} else {
if ((adapter_control & CFSTERM) != 0) {
*sxfrctl1 |= STPWEN;
if (bootverbose)
printf("%s: %sLow byte termination Enabled\n",
ahc_name(ahc),
(ahc->features & AHC_ULTRA2) ? "Primary "
: "");
}
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
if ((adapter_control & CFWSTERM) != 0
&& (ahc->features & AHC_WIDE) != 0) {
brddat |= BRDDAT6;
if (bootverbose)
printf("%s: %sHigh byte termination Enabled\n",
ahc_name(ahc),
(ahc->features & AHC_ULTRA2)
? "Secondary " : "");
}
/*
* Setup STPWEN before setting up the rest of
* the termination per the tech note on the U160 cards.
*/
ahc_outb(ahc, SXFRCTL1, *sxfrctl1);
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
if ((ahc->features & AHC_WIDE) != 0)
write_brdctl(ahc, brddat);
}
SEEPROM_OUTB(sd, sd->sd_MS); /* Clear CS */
}
static void
ahc_new_term_detect(struct ahc_softc *ahc, int *enableSEC_low,
int *enableSEC_high, int *enablePRI_low,
int *enablePRI_high, int *eeprom_present)
{
uint8_t brdctl;
/*
* BRDDAT7 = Eeprom
* BRDDAT6 = Enable Secondary High Byte termination
* BRDDAT5 = Enable Secondary Low Byte termination
* BRDDAT4 = Enable Primary high byte termination
* BRDDAT3 = Enable Primary low byte termination
*/
brdctl = read_brdctl(ahc);
*eeprom_present = brdctl & BRDDAT7;
*enableSEC_high = (brdctl & BRDDAT6);
*enableSEC_low = (brdctl & BRDDAT5);
*enablePRI_high = (brdctl & BRDDAT4);
*enablePRI_low = (brdctl & BRDDAT3);
}
static void
aic787X_cable_detect(struct ahc_softc *ahc, int *internal50_present,
int *internal68_present, int *externalcable_present,
int *eeprom_present)
{
uint8_t brdctl;
/*
* First read the status of our cables.
* Set the rom bank to 0 since the
* bank setting serves as a multiplexor
* for the cable detection logic.
* BRDDAT5 controls the bank switch.
*/
write_brdctl(ahc, 0);
/*
* Now read the state of the internal
* connectors. BRDDAT6 is INT50 and
* BRDDAT7 is INT68.
*/
brdctl = read_brdctl(ahc);
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
*internal50_present = (brdctl & BRDDAT6) ? 0 : 1;
*internal68_present = (brdctl & BRDDAT7) ? 0 : 1;
/*
* Set the rom bank to 1 and determine
* the other signals.
*/
write_brdctl(ahc, BRDDAT5);
/*
* Now read the state of the external
* connectors. BRDDAT6 is EXT68 and
* BRDDAT7 is EPROMPS.
*/
brdctl = read_brdctl(ahc);
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
*externalcable_present = (brdctl & BRDDAT6) ? 0 : 1;
*eeprom_present = (brdctl & BRDDAT7) ? 1 : 0;
}
static void
aic785X_cable_detect(struct ahc_softc *ahc, int *internal50_present,
int *externalcable_present, int *eeprom_present)
{
uint8_t brdctl;
uint8_t spiocap;
spiocap = ahc_inb(ahc, SPIOCAP);
spiocap &= ~SOFTCMDEN;
spiocap |= EXT_BRDCTL;
ahc_outb(ahc, SPIOCAP, spiocap);
ahc_outb(ahc, BRDCTL, BRDRW|BRDCS);
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc_flush_device_writes(ahc);
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_delay(500);
ahc_outb(ahc, BRDCTL, 0);
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc_flush_device_writes(ahc);
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_delay(500);
brdctl = ahc_inb(ahc, BRDCTL);
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
*internal50_present = (brdctl & BRDDAT5) ? 0 : 1;
*externalcable_present = (brdctl & BRDDAT6) ? 0 : 1;
*eeprom_present = (ahc_inb(ahc, SPIOCAP) & EEPROM) ? 1 : 0;
}
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
int
ahc_acquire_seeprom(struct ahc_softc *ahc, struct seeprom_descriptor *sd)
{
int wait;
if ((ahc->features & AHC_SPIOCAP) != 0
&& (ahc_inb(ahc, SPIOCAP) & SEEPROM) == 0)
return (0);
/*
* Request access of the memory port. When access is
* granted, SEERDY will go high. We use a 1 second
* timeout which should be near 1 second more than
* is needed. Reason: after the chip reset, there
* should be no contention.
*/
SEEPROM_OUTB(sd, sd->sd_MS);
wait = 1000; /* 1 second timeout in msec */
while (--wait && ((SEEPROM_STATUS_INB(sd) & sd->sd_RDY) == 0)) {
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_delay(1000); /* delay 1 msec */
}
if ((SEEPROM_STATUS_INB(sd) & sd->sd_RDY) == 0) {
SEEPROM_OUTB(sd, 0);
return (0);
}
return(1);
}
Major update to the aic7xxx driver: ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
2002-04-24 16:58:51 +00:00
void
ahc_release_seeprom(struct seeprom_descriptor *sd)
{
/* Release access to the memory port and the serial EEPROM. */
SEEPROM_OUTB(sd, 0);
}
static void
write_brdctl(struct ahc_softc *ahc, uint8_t value)
{
uint8_t brdctl;
if ((ahc->chip & AHC_CHIPID_MASK) == AHC_AIC7895) {
brdctl = BRDSTB;
if (ahc->channel == 'B')
brdctl |= BRDCS;
} else if ((ahc->features & AHC_ULTRA2) != 0) {
brdctl = 0;
} else {
brdctl = BRDSTB|BRDCS;
}
ahc_outb(ahc, BRDCTL, brdctl);
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
ahc_flush_device_writes(ahc);
brdctl |= value;
ahc_outb(ahc, BRDCTL, brdctl);
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
ahc_flush_device_writes(ahc);
if ((ahc->features & AHC_ULTRA2) != 0)
brdctl |= BRDSTB_ULTRA2;
else
brdctl &= ~BRDSTB;
ahc_outb(ahc, BRDCTL, brdctl);
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
ahc_flush_device_writes(ahc);
if ((ahc->features & AHC_ULTRA2) != 0)
brdctl = 0;
else
brdctl &= ~BRDCS;
ahc_outb(ahc, BRDCTL, brdctl);
}
static uint8_t
read_brdctl(struct ahc_softc *ahc)
{
uint8_t brdctl;
uint8_t value;
if ((ahc->chip & AHC_CHIPID_MASK) == AHC_AIC7895) {
brdctl = BRDRW;
if (ahc->channel == 'B')
brdctl |= BRDCS;
} else if ((ahc->features & AHC_ULTRA2) != 0) {
brdctl = BRDRW_ULTRA2;
} else {
brdctl = BRDRW|BRDCS;
}
ahc_outb(ahc, BRDCTL, brdctl);
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
ahc_flush_device_writes(ahc);
value = ahc_inb(ahc, BRDCTL);
ahc_outb(ahc, BRDCTL, 0);
return (value);
}
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
static void
ahc_pci_intr(struct ahc_softc *ahc)
{
Add Perforce RCSIDs for easy revision correlation to my local tree. ahc_pci.c: Bring back the AHC_ALLOW_MEMIO option at least until the memory mapped I/O problem on the SuperMicro 370DR3 is better understood. aic7xxx.c: If we see a spurious SCSI interrupt, attempt to clear it and continue by unpausing the sequencer. Change the interface to ahc_send_async(). Some async messages need to be broadcast to all the luns of a target or all the targets of a bus. This is easier to achieve by passing explicit channel, target, and lun parameters instead of attempting to construct a device info struct to match. Filter the sync parameters for the PPR message in exactly the same way we do for an old fashioned SDTR message. Correct some typos and correct a panic message. Handle rejected PPR messages. In ahc_handle_msg_reject(), let ahc_build_transfer_msg() build any additional transfer messages instead of doing this inline. aic7xxx.h: Increase the size of both msgout_buf and msgin_buf to better accomodate PPR messages. aic7xxx_freebsd.c: Update for change in ahc_send_async() parameters. aic7xxx_freebsd.h Update for change in ahc_send_async() parameters. Honor AHC_ALLOW_MEMIO. aic7xxx_pci.c: Check the error register before going into full blown PCI interrupt handling. This avoids a few costly PCI configuration space reads when we run our PCI interrupt handler because another device sharing our interrupt line is more active than we are. Also unpause the sequencer after processing a PCI interrupt.
2000-09-22 22:18:05 +00:00
u_int error;
u_int status1;
error = ahc_inb(ahc, ERROR);
if ((error & PCIERRSTAT) == 0)
return;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
status1 = aic_pci_read_config(ahc->dev_softc,
PCIR_STATUS + 1, /*bytes*/1);
if ((status1 & ~DPE) != 0
|| (ahc->flags & AHC_DISABLE_PCI_PERR) == 0) {
printf("%s: PCI error Interrupt at seqaddr = 0x%x\n",
ahc_name(ahc),
ahc_inb(ahc, SEQADDR0) | (ahc_inb(ahc, SEQADDR1) << 8));
}
Add Perforce RCSIDs for easy revision correlation to my local tree. ahc_pci.c: Bring back the AHC_ALLOW_MEMIO option at least until the memory mapped I/O problem on the SuperMicro 370DR3 is better understood. aic7xxx.c: If we see a spurious SCSI interrupt, attempt to clear it and continue by unpausing the sequencer. Change the interface to ahc_send_async(). Some async messages need to be broadcast to all the luns of a target or all the targets of a bus. This is easier to achieve by passing explicit channel, target, and lun parameters instead of attempting to construct a device info struct to match. Filter the sync parameters for the PPR message in exactly the same way we do for an old fashioned SDTR message. Correct some typos and correct a panic message. Handle rejected PPR messages. In ahc_handle_msg_reject(), let ahc_build_transfer_msg() build any additional transfer messages instead of doing this inline. aic7xxx.h: Increase the size of both msgout_buf and msgin_buf to better accomodate PPR messages. aic7xxx_freebsd.c: Update for change in ahc_send_async() parameters. aic7xxx_freebsd.h Update for change in ahc_send_async() parameters. Honor AHC_ALLOW_MEMIO. aic7xxx_pci.c: Check the error register before going into full blown PCI interrupt handling. This avoids a few costly PCI configuration space reads when we run our PCI interrupt handler because another device sharing our interrupt line is more active than we are. Also unpause the sequencer after processing a PCI interrupt.
2000-09-22 22:18:05 +00:00
if (status1 & DPE
&& (ahc->flags & AHC_DISABLE_PCI_PERR) == 0) {
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->pci_target_perr_count++;
printf("%s: Data Parity Error Detected during address "
"or write data phase\n", ahc_name(ahc));
}
if (status1 & SSE) {
printf("%s: Signal System Error Detected\n", ahc_name(ahc));
}
if (status1 & RMA) {
printf("%s: Received a Master Abort\n", ahc_name(ahc));
}
if (status1 & RTA) {
printf("%s: Received a Target Abort\n", ahc_name(ahc));
}
if (status1 & STA) {
printf("%s: Signaled a Target Abort\n", ahc_name(ahc));
}
if (status1 & DPR) {
printf("%s: Data Parity Error has been reported via PERR#\n",
ahc_name(ahc));
}
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
/* Clear latched errors. */
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_write_config(ahc->dev_softc, PCIR_STATUS + 1,
status1, /*bytes*/1);
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
if ((status1 & (DPE|SSE|RMA|RTA|STA|DPR)) == 0) {
printf("%s: Latched PCIERR interrupt with "
"no status bits set\n", ahc_name(ahc));
} else {
ahc_outb(ahc, CLRINT, CLRPARERR);
}
Add Perforce RCSIDs for easy revision correlation to my local tree. ahc_pci.c: Bring back the AHC_ALLOW_MEMIO option at least until the memory mapped I/O problem on the SuperMicro 370DR3 is better understood. aic7xxx.c: If we see a spurious SCSI interrupt, attempt to clear it and continue by unpausing the sequencer. Change the interface to ahc_send_async(). Some async messages need to be broadcast to all the luns of a target or all the targets of a bus. This is easier to achieve by passing explicit channel, target, and lun parameters instead of attempting to construct a device info struct to match. Filter the sync parameters for the PPR message in exactly the same way we do for an old fashioned SDTR message. Correct some typos and correct a panic message. Handle rejected PPR messages. In ahc_handle_msg_reject(), let ahc_build_transfer_msg() build any additional transfer messages instead of doing this inline. aic7xxx.h: Increase the size of both msgout_buf and msgin_buf to better accomodate PPR messages. aic7xxx_freebsd.c: Update for change in ahc_send_async() parameters. aic7xxx_freebsd.h Update for change in ahc_send_async() parameters. Honor AHC_ALLOW_MEMIO. aic7xxx_pci.c: Check the error register before going into full blown PCI interrupt handling. This avoids a few costly PCI configuration space reads when we run our PCI interrupt handler because another device sharing our interrupt line is more active than we are. Also unpause the sequencer after processing a PCI interrupt.
2000-09-22 22:18:05 +00:00
if (ahc->pci_target_perr_count > AHC_PCI_TARGET_PERR_THRESH
&& (ahc->flags & AHC_DISABLE_PCI_PERR) == 0) {
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
printf(
"%s: WARNING WARNING WARNING WARNING\n"
"%s: Too many PCI parity errors observed as a target.\n"
"%s: Some device on this PCI bus is generating bad parity.\n"
"%s: This is an error *observed by*, not *generated by*, %s.\n"
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
"%s: PCI parity error checking has been disabled.\n"
"%s: WARNING WARNING WARNING WARNING\n",
ahc_name(ahc), ahc_name(ahc), ahc_name(ahc),
ahc_name(ahc), ahc_name(ahc), ahc_name(ahc),
ahc_name(ahc));
ahc->seqctl |= FAILDIS;
ahc->flags |= AHC_DISABLE_PCI_PERR;
ahc_outb(ahc, SEQCTL, ahc->seqctl);
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
}
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
ahc_unpause(ahc);
}
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
static int
ahc_pci_chip_init(struct ahc_softc *ahc)
{
ahc_outb(ahc, DSCOMMAND0, ahc->bus_softc.pci_softc.dscommand0);
ahc_outb(ahc, DSPCISTATUS, ahc->bus_softc.pci_softc.dspcistatus);
if ((ahc->features & AHC_DT) != 0) {
u_int sfunct;
sfunct = ahc_inb(ahc, SFUNCT) & ~ALT_MODE;
ahc_outb(ahc, SFUNCT, sfunct | ALT_MODE);
ahc_outb(ahc, OPTIONMODE, ahc->bus_softc.pci_softc.optionmode);
ahc_outw(ahc, TARGCRCCNT, ahc->bus_softc.pci_softc.targcrccnt);
ahc_outb(ahc, SFUNCT, sfunct);
ahc_outb(ahc, CRCCONTROL1,
ahc->bus_softc.pci_softc.crccontrol1);
}
if ((ahc->features & AHC_MULTI_FUNC) != 0)
ahc_outb(ahc, SCBBADDR, ahc->bus_softc.pci_softc.scbbaddr);
if ((ahc->features & AHC_ULTRA2) != 0)
ahc_outb(ahc, DFF_THRSH, ahc->bus_softc.pci_softc.dff_thrsh);
return (ahc_chip_init(ahc));
}
static int
ahc_pci_suspend(struct ahc_softc *ahc)
{
return (ahc_suspend(ahc));
}
static int
ahc_pci_resume(struct ahc_softc *ahc)
{
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_power_state_change(ahc, AIC_POWER_STATE_D0);
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
/*
* We assume that the OS has restored our register
* mappings, etc. Just update the config space registers
* that the OS doesn't know about and rely on our chip
* reset handler to handle the rest.
*/
aic_pci_write_config(ahc->dev_softc, DEVCONFIG,
ahc->bus_softc.pci_softc.devconfig, /*bytes*/4);
aic_pci_write_config(ahc->dev_softc, PCIR_COMMAND,
ahc->bus_softc.pci_softc.command, /*bytes*/1);
aic_pci_write_config(ahc->dev_softc, CSIZE_LATTIME,
ahc->bus_softc.pci_softc.csize_lattime,
/*bytes*/1);
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
if ((ahc->flags & AHC_HAS_TERM_LOGIC) != 0) {
struct seeprom_descriptor sd;
u_int sxfrctl1;
sd.sd_ahc = ahc;
sd.sd_control_offset = SEECTL;
sd.sd_status_offset = SEECTL;
sd.sd_dataout_offset = SEECTL;
ahc_acquire_seeprom(ahc, &sd);
configure_termination(ahc, &sd,
ahc->seep_config->adapter_control,
&sxfrctl1);
ahc_release_seeprom(&sd);
}
return (ahc_resume(ahc));
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aic785X_setup(struct ahc_softc *ahc)
{
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_dev_softc_t pci;
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
uint8_t rev;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
pci = ahc->dev_softc;
ahc->channel = 'A';
ahc->chip = AHC_AIC7850;
ahc->features = AHC_AIC7850_FE;
ahc->bugs |= AHC_TMODE_WIDEODD_BUG|AHC_CACHETHEN_BUG|AHC_PCI_MWI_BUG;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
rev = aic_pci_read_config(pci, PCIR_REVID, /*bytes*/1);
This is an MFC candidate. ahc_eisa.c: Change aic7770_map_int to take an additional irq parameter. Although we can get the irq from the eisa dev under FreeBSD, we can't do this under linux, so the OSM interface must supply this. ahc_pci.c: Move ahc_power_state_change() to the OSM. This allows us to use a platform supplied function that does the same thing. -current will move to the FreeBSD native API in the near future. aic7770.c: Sync up with core changes to support Linux EISA. We now store a 2 bit primary channel number rather than a bit flag that only allows b to be the primary channel. Adjust for this change. aic7xxx.c: Namespace and staticization cleanup. All exported symbols use an "ahc_" prefix to avoid collisions with other modules. Correct a logic bug that prevented us from dropping ATN during some exceptional conditions during message processing. Take advantage of a new flag managed by the sequencer that indicates if an SCB fetch is in progress. If so, the currently selected SCB needs to be returned to the free list to prevent an SCB leak. This leak is a rarity and would only occur if a bus reset or timeout resulting in a bus reset occurred in the middle of an SCB fetch. Don't attempt to perform ULTRA transfers on ultra capable adapters missing the external precision resistor required for ultra speeds. I've never encountered an adapter configured this way, but better safe than sorry. Handle the case of 5MHz user sync rate set as "0" instead of 0x1c in scratch ram. If we lookup a period of 0 in our table (async), clear the scsi offset. aic7xxx.h: Adjust for the primary channel being represented as a 2 bit integer in the flags member of the ahc softc. Cleanup the flags definitions so that comment blocks are not cramped. Update seeprom definitions to correctly reflect the fact that the primary channel is represented as a 2 bit integer. Add AHC_ULTRA_DIASABLED softc flag to denote controllers missing the external precision resistor. aic7xxx.reg: Add DFCACHETH to the definition of DFSTATUS for completness sake. Add SEQ_FLAGS2 which currently only contains the SCB_DMA (SCB DMA in progress) flag. aic7xxx.seq: Correct a problem when one lun has a disconnected untagged transaction and another lun has disconnected tagged transactions. Just because an entry is found in the untagged table doesn't mean that it will match. If the match on the lun fails, cleanup the SCB (return it to the disconnected list or free it), and snoop for a tag message. Before this change, we reported an unsolicited reselection. This bug was introduced about a month ago during an overly aggressive optimization pass on the reselection code. When cleaning up an SCB, we can't just blindly free the SCB. In the paging case, if the SCB came off of the disconnected list, its state may never have been updated in host memory. So, check the disconnected bit in SCB_CONTROL and return the SCB to the disconnected list if appropriate. Manage the SCB_DMA flag of SEQ_FLAGS2. More carefully shutdown the S/G dma engine in all cases by using a subroutine. Supposedly not doing this can cause an arbiter hang on some ULTRA2 chips. Formatting cleanup. On some chips, at least the aic7856, the transition from MREQPEND to HDONE can take a full 4 clock cycles. Test HDONE one more time to avoid this race. We only want our FIFO hung recovery code to execute when the engine is really hung. aic7xxx_93cx6.c: Sync perforce ids. aic7xxx_freebsd.c: Adjust for the primary channel being a 2 bit integer rather than a flag for 'B' channel being the primary. Namespace cleanup. Unpause the sequencer in one error recovery path that neglected to do so. This could have caused us to perform a bus reset when a recovery message might have otherwise been successful. aic7xxx_freebsd.h: Use AHC_PCI_CONFIG for controlling compilation of PCI support consistently throughout the driver. Move ahc_power_state_change() to OSM. aic7xxx_inline.h Namespace cleanup. Adjust our interrupt handler so it will work in the edge interrupt case. We must process all interrupt sources when the interrupt fires or risk not ever getting an interrupt again. This involves marking the fact that we are relying on an edge interrupt in ahc->flags and checking for this condition in addition to the AHC_ALL_INTERRUPTS flag. This fixes hangs on the 284X and any other aic7770 installation where level interrupts are not available. aic7xxx_pci.c: Move the powerstate manipulation code into the OSM. Several OSes now provide this functionality natively. Take another shot at using the data stored in scratch ram if the SCB2 signature is correct and no SEEPROM data is available. In the past this failed if external SCB ram was configured because the memory port was locked. We now release the memory port prior to testing the values in SCB2 and re-acquire it prior to doing termination control. Adjust for new 2 bit primary channel setting. Trust the STPWLEVEL setting on v 3.X BIOSes too. Configure any 785X ID in the same fashion and assume that any device with a rev id of 1 or higher has the PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00
if (rev >= 1)
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->bugs |= AHC_PCI_2_1_RETRY_BUG;
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->instruction_ram_size = 512;
return (0);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aic7860_setup(struct ahc_softc *ahc)
{
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_dev_softc_t pci;
uint8_t rev;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
pci = ahc->dev_softc;
ahc->channel = 'A';
ahc->chip = AHC_AIC7860;
ahc->features = AHC_AIC7860_FE;
ahc->bugs |= AHC_TMODE_WIDEODD_BUG|AHC_CACHETHEN_BUG|AHC_PCI_MWI_BUG;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
rev = aic_pci_read_config(pci, PCIR_REVID, /*bytes*/1);
if (rev >= 1)
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->bugs |= AHC_PCI_2_1_RETRY_BUG;
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->instruction_ram_size = 512;
return (0);
}
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_apa1480_setup(struct ahc_softc *ahc)
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
{
int error;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = ahc_aic7860_setup(ahc);
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
if (error != 0)
return (error);
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->features |= AHC_REMOVABLE;
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
return (0);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aic7870_setup(struct ahc_softc *ahc)
{
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'A';
ahc->chip = AHC_AIC7870;
ahc->features = AHC_AIC7870_FE;
ahc->bugs |= AHC_TMODE_WIDEODD_BUG|AHC_CACHETHEN_BUG|AHC_PCI_MWI_BUG;
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->instruction_ram_size = 512;
return (0);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aha394X_setup(struct ahc_softc *ahc)
{
int error;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = ahc_aic7870_setup(ahc);
if (error == 0)
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = ahc_aha394XX_setup(ahc);
return (error);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aha398X_setup(struct ahc_softc *ahc)
{
int error;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = ahc_aic7870_setup(ahc);
if (error == 0)
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = ahc_aha398XX_setup(ahc);
return (error);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aha494X_setup(struct ahc_softc *ahc)
{
int error;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = ahc_aic7870_setup(ahc);
if (error == 0)
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = ahc_aha494XX_setup(ahc);
return (error);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aic7880_setup(struct ahc_softc *ahc)
{
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_dev_softc_t pci;
uint8_t rev;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
pci = ahc->dev_softc;
ahc->channel = 'A';
ahc->chip = AHC_AIC7880;
ahc->features = AHC_AIC7880_FE;
ahc->bugs |= AHC_TMODE_WIDEODD_BUG;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
rev = aic_pci_read_config(pci, PCIR_REVID, /*bytes*/1);
if (rev >= 1) {
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->bugs |= AHC_PCI_2_1_RETRY_BUG;
} else {
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->bugs |= AHC_CACHETHEN_BUG|AHC_PCI_MWI_BUG;
}
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->instruction_ram_size = 512;
return (0);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aha2940Pro_setup(struct ahc_softc *ahc)
{
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->flags |= AHC_INT50_SPEEDFLEX;
return (ahc_aic7880_setup(ahc));
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aha394XU_setup(struct ahc_softc *ahc)
{
int error;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = ahc_aic7880_setup(ahc);
if (error == 0)
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = ahc_aha394XX_setup(ahc);
return (error);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aha398XU_setup(struct ahc_softc *ahc)
{
int error;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = ahc_aic7880_setup(ahc);
if (error == 0)
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = ahc_aha398XX_setup(ahc);
return (error);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aic7890_setup(struct ahc_softc *ahc)
{
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_dev_softc_t pci;
uint8_t rev;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
pci = ahc->dev_softc;
ahc->channel = 'A';
ahc->chip = AHC_AIC7890;
ahc->features = AHC_AIC7890_FE;
ahc->flags |= AHC_NEWEEPROM_FMT;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
rev = aic_pci_read_config(pci, PCIR_REVID, /*bytes*/1);
if (rev == 0)
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->bugs |= AHC_AUTOFLUSH_BUG|AHC_CACHETHEN_BUG;
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->instruction_ram_size = 768;
return (0);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aic7892_setup(struct ahc_softc *ahc)
{
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'A';
ahc->chip = AHC_AIC7892;
ahc->features = AHC_AIC7892_FE;
ahc->flags |= AHC_NEWEEPROM_FMT;
ahc->bugs |= AHC_SCBCHAN_UPLOAD_BUG;
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->instruction_ram_size = 1024;
return (0);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aic7895_setup(struct ahc_softc *ahc)
{
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_dev_softc_t pci;
uint8_t rev;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
pci = ahc->dev_softc;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
ahc->channel = aic_get_pci_function(pci) == 1 ? 'B' : 'A';
/*
* The 'C' revision of the aic7895 has a few additional features.
*/
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
rev = aic_pci_read_config(pci, PCIR_REVID, /*bytes*/1);
if (rev >= 4) {
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->chip = AHC_AIC7895C;
ahc->features = AHC_AIC7895C_FE;
} else {
u_int command;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->chip = AHC_AIC7895;
ahc->features = AHC_AIC7895_FE;
/*
* The BIOS disables the use of MWI transactions
* since it does not have the MWI bug work around
* we have. Disabling MWI reduces performance, so
* turn it on again.
*/
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
command = aic_pci_read_config(pci, PCIR_COMMAND, /*bytes*/1);
command |= PCIM_CMD_MWRICEN;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_write_config(pci, PCIR_COMMAND, command, /*bytes*/1);
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->bugs |= AHC_PCI_MWI_BUG;
}
/*
* XXX Does CACHETHEN really not work??? What about PCI retry?
* on C level chips. Need to test, but for now, play it safe.
*/
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->bugs |= AHC_TMODE_WIDEODD_BUG|AHC_PCI_2_1_RETRY_BUG
| AHC_CACHETHEN_BUG;
#if 0
uint32_t devconfig;
/*
* Cachesize must also be zero due to stray DAC
* problem when sitting behind some bridges.
*/
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_write_config(pci, CSIZE_LATTIME, 0, /*bytes*/1);
devconfig = aic_pci_read_config(pci, DEVCONFIG, /*bytes*/1);
devconfig |= MRDCEN;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_pci_write_config(pci, DEVCONFIG, devconfig, /*bytes*/1);
#endif
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->flags |= AHC_NEWEEPROM_FMT;
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->instruction_ram_size = 512;
return (0);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aic7896_setup(struct ahc_softc *ahc)
{
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_dev_softc_t pci;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
pci = ahc->dev_softc;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
ahc->channel = aic_get_pci_function(pci) == 1 ? 'B' : 'A';
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->chip = AHC_AIC7896;
ahc->features = AHC_AIC7896_FE;
ahc->flags |= AHC_NEWEEPROM_FMT;
ahc->bugs |= AHC_CACHETHEN_DIS_BUG;
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->instruction_ram_size = 768;
return (0);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aic7899_setup(struct ahc_softc *ahc)
{
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_dev_softc_t pci;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
pci = ahc->dev_softc;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
ahc->channel = aic_get_pci_function(pci) == 1 ? 'B' : 'A';
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->chip = AHC_AIC7899;
ahc->features = AHC_AIC7899_FE;
ahc->flags |= AHC_NEWEEPROM_FMT;
ahc->bugs |= AHC_SCBCHAN_UPLOAD_BUG;
aic7xxx.c: aic7xxx.h: Split out core chip initialization into ahc_chip_init(). This will allow us to reset the chip correctly at times other than initial chip setup. aic7770.c aic7xxx_pci.c: Flesh out bus chip init methods for our two bus attachments and use these, in addition to bus suspend/resume hooks to get the core in better shape for handling these events. When disabling PCI parity error checking, use FAILDIS. Although the chip docs indicate that clearing PERRESPEN should also work, it does not. Auto-disable pci parity error checking after informing the user of AHC_PCI_TARGET_PERR_THRESH number of parity errors observed as a target. aic7xxx.h: aic7xxx_pci.c aic7770.c aic7xxx.c Add the instruction_ram_size softc field. Remove the now unused stack_size softc field. Modify ahc_loadseq to return a failure code and to actually check the downloaded instruction count against the limit set in our softc. Modify callers of ahc_loadseq to handle load failures as appropriate. Set instruction RAM sizes for each chip type. aic7xxx_pci.c: Add some delay in the aic785X termination control code. This may fix problems with the 2930. Be consistent in how we access config space registers. 16bit registers are accessed using 16bit ops. aic7xxx.c: Correct spelling errors. Have ahc_force_renegotiation() take a devinfo as is done in the U320 driver. Use this argument to correct a bug in the selection timeout handler where we forced a renegotiation with the last device that had set SAVED_SCSIID. SAVED_SCSIID is only updated once a selection is *sucessfull* and so is stale for any selection timeout. Cleanup the setup of the devinfo for busfree events. We now use this devinfo for a call to ahc_force_renegotiation() at the bottom of the routine, so it must be initialized in all cases. In ahc_pause_and_flushwork(), adjust the loop so that it will exit in the hot-eject case even if the INT_PEND mask is something other than 0xFF (as it is in this driver). Correct a wrapping string constant. Call ahc_fini_scbdata() after shutdown so that any ahc_chip_init() routine that might access SCB data will not access free'd memory. Correctly setup our buffer tag to indicate that 39bit addressing is available if in 39bit addressing mode. Rearrange some variable declarations based on type size. aic7xxx.c aic7xxx.h: aic7xxx.reg: Consistently use MAX_OFFSET for the user max syncrate set from non-volatile storage. This ensures that the offset does not conflict with AHC_OFFSET_UNKNOWN. Change AHC_OFFSET_UNKNOWN to 0xFF. This is a value that the curr->offset can never be, unlike '0' which we previously used. This fixes code that only checks for a non-zero offset to determine if a sync negotiation is required since it will fire in the unknown case even if the goal is async. Change MAX_OFFSET to 0x7f which is the max offset U160 aic7xxx controllers can negotiate. This ensures that curr->offset will not match AHC_OFFSET_UNKNOWN. aic7xxx_inline.h: Have our inline interrupt handler return with a value indicating whether we serviced a real interrupt. This is required for Linux support. Return earlier if the interrupt is not for us.
2003-05-03 23:55:38 +00:00
ahc->instruction_ram_size = 1024;
return (0);
}
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aha29160C_setup(struct ahc_softc *ahc)
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
{
int error;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
error = ahc_aic7899_setup(ahc);
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
if (error != 0)
return (error);
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->features |= AHC_REMOVABLE;
ahc_eisa.c: Initialize rid to 0. This doesn't seem to make any difference (the driver doesn't care what rid it gets and no-one seems to check rid's value), but follows standard conventions. Pass in our device_t to ahc_alloc(). We now use device_T softc storage, so passing NULL results in a panic. Set the unit number in our softc so that the driver core can retrieve it. ahc_pci.c: Set the unit number in our softc so that the driver core can retrieve it. aic7770.c: Insert our softc into the list of softcs when initialization is successful. aic7xxx.c: Remove a workaround for an aic7895 bug we will never trigger. Add additional diagnostic info to ahc_dump_card_state(). Always panic the system if a sequencer assertion fails. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Replace a hard coded number with a constant. Guard against looping forever in ahc_pause_and_flushwork(). A hot eject or card failure may make the intstat register return 0xFF, so limit the number of interrupts we'll process. Correct the code in ahc_search_qinfifo() that guarantees that the sequencer will see an abort collision if the qinfifo is modified when a DMA is in progress. We now do this fixup after modifying the queue. This guarantees that the HSCB we place at the head of the queue is not the same as the old head. Using "next hscb" (guaranteed not to be the same as the first SCB) before clearing the queue could free up the original head hscb to be used during a remove operation placing it again at the head of the qinfifo. aic7xxx.h: Reduce the maximum number of outstanding commands to 253 from 254. To handle our output queue correctly on machines that only support 32bit stores, we must clear the array 4 bytes at a time. To avoid colliding with a DMA write from the sequencer, we must be sure that 4 slots are empty when we write to clear the queue. This reduces us to 253 SCBs: 1 that just completed and the known three additional empty slots in the queue that preceed it. Yahoo was able to force this race on one of their systems. Interrupts were disabled for such a time that the entire output queue was filled (254 entries complete without any processing), and our 32bit write to clear the status clobbered one entry. Add a feature tag for devices that are removable. aic7xxx.reg: Never use the sequencer interrupt value of 0xF0. We need to guanrantee that an INTSTAT value of 0xFF can only occur during card failure or a hot-eject. Align the busy targets table with the begining of scratch space. This seems to appease a chip bug in the aic7895. aic7xxx.seq: Be sure to disable select-out after a bus free event that occurs early in a selection. If we don't disable select-out, we will believe that it is enabled even though a new selection will never occur. Move the clearing of SELDI to just before a jump. This appeases another chip bug of the aic7895. Make the target mode command loop a bit more efficient. AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. Properly cleanup the last SCB we tested against should we fail to properly find an SCB for a reselection. Add some additional sequencer debugging code. aic7xxx_freebsd.c: Limit the driver to 253 outstanding commands per adapter. Guard against overflow in timeout handling. aic7xxx_inline.h: AHC_SCB_BTT is a "flag" not a "feature". Check the right field in the softc. aic7xxx_pci.c: Set the removable feature for the apa1480 cardbus and the 29160C Compact PCI card. Don't report high byte termination information for narrow cards. Use a PCI read rather than a questionable delay when fetching/setting termination settings.
2001-01-22 21:03:48 +00:00
return (0);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_raid_setup(struct ahc_softc *ahc)
{
printf("RAID functionality unsupported\n");
return (ENXIO);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aha394XX_setup(struct ahc_softc *ahc)
{
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_dev_softc_t pci;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
pci = ahc->dev_softc;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
switch (aic_get_pci_slot(pci)) {
case AHC_394X_SLOT_CHANNEL_A:
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'A';
break;
case AHC_394X_SLOT_CHANNEL_B:
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'B';
break;
default:
printf("adapter at unexpected slot %d\n"
"unable to map to a channel\n",
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_get_pci_slot(pci));
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'A';
}
return (0);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aha398XX_setup(struct ahc_softc *ahc)
{
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_dev_softc_t pci;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
pci = ahc->dev_softc;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
switch (aic_get_pci_slot(pci)) {
case AHC_398X_SLOT_CHANNEL_A:
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'A';
break;
case AHC_398X_SLOT_CHANNEL_B:
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'B';
break;
case AHC_398X_SLOT_CHANNEL_C:
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'C';
break;
default:
printf("adapter at unexpected slot %d\n"
"unable to map to a channel\n",
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_get_pci_slot(pci));
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'A';
break;
}
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->flags |= AHC_LARGE_SEEPROM;
return (0);
}
static int
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc_aha494XX_setup(struct ahc_softc *ahc)
{
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_dev_softc_t pci;
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
pci = ahc->dev_softc;
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
switch (aic_get_pci_slot(pci)) {
case AHC_494X_SLOT_CHANNEL_A:
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'A';
break;
case AHC_494X_SLOT_CHANNEL_B:
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'B';
break;
case AHC_494X_SLOT_CHANNEL_C:
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'C';
break;
case AHC_494X_SLOT_CHANNEL_D:
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'D';
break;
default:
printf("adapter at unexpected slot %d\n"
"unable to map to a channel\n",
ahc_eisa.c: ahc_pci.c: ahd_pci.c: aic7xxx.c: aic79xx.c: aic_osm_lib.c: aic_osm_lib.h: Use common OSM routines from aic_osm_lib for bus dma operations, delay routines, accessing CCBs, byte swapping, etc. aic7xxx_pci.c: Provide a better description for the 2915/30LP on attach. aic7xxx.c: aic79xx.c: aic7770.c: aic79xx_pci.c: aic7xxx_pci.c: aic7xxx_93cx6.c: Move FBSDID behind an ifdef so that these core files will still compile under other OSes. aic79xx.h: aic79xx_pci.c: aic79xx.seq: To speed up non-packetized CDB delivery in Rev B, all CDB acks are "released" to the output sync as soon as the command phase starts. There is only one problem with this approach. If the target changes phase before all data are sent, we have left over acks that can go out on the bus in a data phase. Due to other chip contraints, this only happens if the target goes to data-in, but if the acks go out before we can test SDONE, we'll think that the transfer has completed successfully. Work around this by taking advantage of the 400ns or 800ns dead time between command phase and the REQ of the new phase. If the transfer has completed successfully, SCSIEN should fall *long* before we see a phase change. We thus treat any phasemiss that occurs before SCSIEN falls as an incomplete transfer. aic79xx.h: Add the AHD_FAST_CDB_DELIVERY feature. aic79xx_pci.c: Set AHD_FAST_CDB_DELIVERY for all Rev. B parts. aic79xx.seq: Test for PHASEMIS in the command phase for all AHD_FAST_CDB_DELIVERY controlelrs. ahd_pci.c: ahc_pci.c: aic7xxx.h: aic79xx.h: Move definition of controller BAR offsets to core header files. aic7xxx.c: aic79xx.c: In the softc free routine, leave removal of a softc from the global list of softcs to the OSM (the caller of this routine). This allows us to avoid holding the softc list_lock during device destruction where we may have to sleep waiting for our recovery thread to halt. ahc_pci.c: Use ahc_pci_test_register access to validate I/O mapped in addition to the tests already performed for memory mapped access. Remove unused ahc_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. ahd_pci.c: Remove reduntant definition of controller BAR offsets. These are also defined in aic79xx.h. Remove unused ahd_power_state_change() function. The PCI layer in both 4.X and 5.X now offer this functionality. aic7xxx.c: aic79xx.c: aic79xx.h: aic7xxx.h: aic7xxx_osm.c: aic79xx_osm.c: Move timeout handling to the driver cores. In the case of the aic79xx driver, the algorithm has been enhanced to try target resets before performing a bus reset. For the aic7xxx driver, the algorithm is unchanged. Although the drivers do not currently sleep during recovery (recovery is timeout driven), the cores do expect all processing to be performed via a recovery thread. Our timeout handlers are now little stubs that wakeup the recovery thread. aic79xx.c: aic79xx.h: aic79xx_inline.h: Change shared_data allocation to use a map_node so that the sentinel hscb can use this map node in ahd_swap_with_next_hscb. This routine now swaps the hscb_map pointer in additon to the hscb contents so that any sync operations occur on the correct map. physaddr -> busaddr Pointed out by: Jason Thorpe <thorpej@wasabisystems.com> aic79xx.c: Make more use of the in/out/w/l/q macros for accessing byte registers in the chip. Correct some issues in the ahd_flush_qoutfifo() routine. o Run the qoutfifo only once the command channel DMA engine has been halted. This closes a window where we might have missed some entries. o Change ahd_run_data_fifo() to not loop to completion. If we happen to start on the wrong FIFO and the other FIFO has a snapshot savepointers, we might deadlock. This required our delay between FIFO tests to be moved to the ahd_flush_qoutfifo() routine. o Update/add comments. o Remove spurious test for COMPLETE_DMA list being empty when completing transactions from the GSFIFO with residuals. The SCB must be put on the COMPLETE_DMA scb list unconditionally. o When halting command channel DMA activity, we must disable the DMA channel in all cases but an update of the QOUTFIFO. The latter case is required so that the sequencer will update its position in the QOUTFIFO. Previously, we left the channel enabled for all "push" DMAs. This left us vulnerable to the sequencer handling an SCB push long after that SCB was already processed manually by this routine. o Correct the polarity of tests involving ahd_scb_active_in_fifo(). This routine returns non-zero for true. Return to processing bad status completions through the qoutfifo. This reduces the time that the sequencer is kept paused when handling transactions with bad status or underruns. When waiting for the controller to quiece selections, add a delay to our loop. Otherwise we may fail to wait long enough for the sequencer to comply. On H2A4 hardware, use the slow slewrate for non-paced transfers. This mirrors what the Adaptec Windows drivers do. On the Rev B. only slow down the CRC timing for older U160 devices that might need the slower timing. We define "older" as devices that do not support packetized protocol. Wait up to 5000 * 5us for the SEEPROM to become unbusy. Write ops seem to take much longer than read ops. aic79xx.seq: For controllers with the FAINT_LED bug, turn the diagnostic led feature on during selection and reselection. This covers the non-packetized case. The LED will be disabled for non-packetized transfers once we return to the top level idle loop. Add more comments about the busy LED workaround. Extend a critical section around the entire command channel idle loop process. Previously the portion of this handler that directly manipulated the linked list of completed SCBs was not protected. This is the likely cause of the recent reports of commands being completed twice by the driver. Extend critical sections across the test for, and the longjump to, longjump routines. This prevents the firmware from trying to jump to a longjmp handler that was just cleared by the host. Improve the locations of several critical section begin and end points. Typically these changes remove instructions that did not need to be inside a critical section. Close the "busfree after selection, but before busfree interrupts can be enabled" race to just a single sequencer instruction. We now test the BSY line explicitly before clearing the busfree status and enabling the busfree interrupt. Close a race condition in the processing of HS_MAILBOX updates. We now clear the "updated" status before the copy. This ensures that we don't accidentally clear the status incorrectly when the host sneaks in an update just after our last copy, but before we clear the status. This race has never been observed. Don't re-enable SCSIEN if we lose the race to disable SCSIEN in our interrupt handler's workaround for the RevA data-valid too early issue. aic79xx_inline.h: Add comments indicating that the order in which bytes are read or written in ahd_inw and ahd_outw is important. This allows us to use these inlines when accessing registers with side-effects. aic79xx_pci.c: The 29320 and the 29320B are 7902 not 7901 based products. Correct the driver banner. aic7xxx.h: Enable the use of the auto-access pause feature on the aic7870 and aic7880. It was disabled due to an oversight. aic7xxx.reg: Move TARG_IMMEDIATE_SCB to alias LAST_MSG to avoid leaving garbage in MWI_RESIDUAL. This prevents spurious overflows whn operating target mode on controllers that require the MWI_RESIDUAL work-around. aic7xxx.seq: AHC_TMODE_WIDEODD_BUG is a bug, not a softc flag. Reference the correct softc field when testing for its presence. Set the NOT_IDENTIFIED and NO_CDB_SENT bits in SEQ_FLAGS to indicate that the nexus is invalid in await busfree. aic7xxx_93cx6.c: Add support for the C56/C66 versions of the EWEN and EWDS commands. aic7xxx.c: aic7xxx_pci.c: Move test for the validity of left over BIOS data to ahc_test_register_access(). This guarantees that any left over CHIPRST value is not clobbered by our register access test and lost to the test that was in ahc_reset.
2003-12-17 00:02:10 +00:00
aic_get_pci_slot(pci));
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->channel = 'A';
}
ahc_pci.c: If bus_dma will give us addresses > 32 bits, setup our dma tag to accept up to 39bit addresses. aic7770.c: Update the softc directly rather than use an intermediate "probe_config" structure. aic7xxx.c: Complete core work to support 39bit addresses for bulk data dma operations. Controller data structures still must reside under the 4GB boundary to reduce code/data size in the sequencer and related data structures. This has been tested under Linux IA64 and will be tested on IA64 for FreeBSD as soon as our port can run there. Add bus dmamap synchronization calls around manipulation of all controller/kernel shared host data structures. Implement data pointer reinitialation for a second data phase in a single connection in the kernel rather than bloat the sequencer. This is an extremely rare operation (does it ever happen?) and the sequencer implementation was flawed for some of the newest chips. Don't ever allow our target role to initiate a PPR. This is forbidden by the SCSI spec. Add a few missing endian conversions in the ignore wide pointers code. The core has been tested on the PPC under Linux and should work for FreeBSD PPC. As soon as I can test the OSM layer for FreeBSD PPC, I will. Move some of ahc_softc_init() into ahc_alloc() now that the probe_config structure is gone. Add a 4GB boundary condition on all of our dma tags. 32bit DAC under PCI only works on a single 4GB "page". Although we can cross 4GB on a true 64bit bus, the card won't always be installed in one and we can save code space and cost in implementing high address support by assuming the high DWORD address will never change. Add diagnostics to ahc_search_qinfifo(). Correct a target mode issue with bus resets. To avoid an interrupt storm from a malicious third party holding the reset line, the sequencer would defer re-enabling the reset interrupt until either a select-out or select-in. Unfortunately, the select-in enable bit is cleared by a bus reset, so a second reset will render the card deaf to an initiator's attempts to contact it. We now re-enable bus reset interrupts immediately if the target role is enabled. aic7xxx.h: Remove struct ahc_probe_config. SCB's now contain a pointer to the sg_map_node so we can perfrom bus dma sync operations on the SG list prior to queuing a command. aic7xxx.reg: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Add the DSCOMMAND1 register which is used to access the high DWORD of address bits. Add the data pointer reinitialize sequencer interrupt code. aic7xxx.seq: Register the Perforce ID for this file with the VERSION keyword so it is printed in generated files. Remove code to re-enable the bus reset interrupt after a select-in. In target mode we cannot defer this operation as ENSELI is cleared by a bus reset. Complete 39bit support. Generate a sequencer inteerrupt rather than handle the data pointers re-initialitation in the sequencer. Inline the "seen identify" assertion to save a few cycles. Short circuit the update of our residual data if we have fully completed a transfer. The residual is correct from our last S/G load operation. Short circuit full SDPTR processing if the residual is 0. Just mark the transfer as complete. aic7xxx_93cx6.c: Synchronize perforce IDs. aic7xxx_freebsd.c: Complete untested 39bit support. Add missing endia conversions. Clear our residuals prior to starting a command. The update residual code in the core only sets the residual if there is one. aic7xxx_freebsd.h: Modeify ahc_dmamap_sync() macros to take an offset and a length. This is how sync operations are performed in NetBSD, and we should update our bus dma implementation to match. aic7xxx_inline.h: Add data structure synchronization helper functions. Fix a bug in ahc_intr() where we would not clear our unsolicited interrupt counter after running our PCI interrupt handler. This may have been the cause of the spurious PCI interrupt messages. aic7xxx_pci.c: Adjust for loss of probe_config structure. Guard against bogus 9005 subdevice information as seen on some IBM MB configurations. Add 39bit address support. MFC after: 10 days
2001-07-18 21:39:48 +00:00
ahc->flags |= AHC_LARGE_SEEPROM;
return (0);
}