freebsd-dev/sys/amd64/include/md_var.h

120 lines
4.2 KiB
C
Raw Normal View History

/*-
* Copyright (c) 1995 Bruce D. Evans.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1999-08-28 01:08:13 +00:00
* $FreeBSD$
*/
#ifndef _MACHINE_MD_VAR_H_
#define _MACHINE_MD_VAR_H_
/*
* Miscellaneous machine-dependent declarations.
*/
extern long Maxmem;
extern u_int basemem;
extern int busdma_swi_pending;
extern u_int cpu_exthigh;
extern u_int cpu_feature;
extern u_int cpu_feature2;
extern u_int amd_feature;
extern u_int amd_feature2;
extern u_int amd_pminfo;
extern u_int via_feature_rng;
extern u_int via_feature_xcrypt;
extern u_int cpu_clflush_line_size;
extern u_int cpu_fxsr;
extern u_int cpu_high;
extern u_int cpu_id;
Add support for the extended FPU states on amd64, both for native 64bit and 32bit ABIs. As a side-effect, it enables AVX on capable CPUs. In particular: - Query the CPU support for XSAVE, list of the supported extensions and the required size of FPU save area. The hw.use_xsave tunable is provided for disabling XSAVE, and hw.xsave_mask may be used to select the enabled extensions. - Remove the FPU save area from PCB and dynamically allocate the (run-time sized) user save area on the top of the kernel stack, right above the PCB. Reorganize the thread0 PCB initialization to postpone it after BSP is queried for save area size. - The dumppcb, stoppcbs and susppcbs now do not carry the FPU state as well. FPU state is only useful for suspend, where it is saved in dynamically allocated suspfpusave area. - Use XSAVE and XRSTOR to save/restore FPU state, if supported and enabled. - Define new mcontext_t flag _MC_HASFPXSTATE, indicating that mcontext_t has a valid pointer to out-of-struct extended FPU state. Signal handlers are supplied with stack-allocated fpu state. The sigreturn(2) and setcontext(2) syscall honour the flag, allowing the signal handlers to inspect and manipilate extended state in the interrupted context. - The getcontext(2) never returns extended state, since there is no place in the fixed-sized mcontext_t to place variable-sized save area. And, since mcontext_t is embedded into ucontext_t, makes it impossible to fix in a reasonable way. Instead of extending getcontext(2) syscall, provide a sysarch(2) facility to query extended FPU state. - Add ptrace(2) support for getting and setting extended state; while there, implement missed PT_I386_{GET,SET}XMMREGS for 32bit binaries. - Change fpu_kern KPI to not expose struct fpu_kern_ctx layout to consumers, making it opaque. Internally, struct fpu_kern_ctx now contains a space for the extended state. Convert in-kernel consumers of fpu_kern KPI both on i386 and amd64. First version of the support for AVX was submitted by Tim Bird <tim.bird am sony com> on behalf of Sony. This version was written from scratch. Tested by: pho (previous version), Yamagi Burmeister <lists yamagi org> MFC after: 1 month
2012-01-21 17:45:27 +00:00
extern u_int cpu_max_ext_state_size;
extern u_int cpu_mxcsr_mask;
extern u_int cpu_procinfo;
extern u_int cpu_procinfo2;
extern char cpu_vendor[];
extern u_int cpu_vendor_id;
extern char kstack[];
Mega-commit for Linux emulator update.. This has been stress tested under netscape-2.0 for Linux running all the Java stuff. The scrollbars are now working, at least on my machine. (whew! :-) I'm uncomfortable with the size of this commit, but it's too inter-dependant to easily seperate out. The main changes: COMPAT_LINUX is *GONE*. Most of the code has been moved out of the i386 machine dependent section into the linux emulator itself. The int 0x80 syscall code was almost identical to the lcall 7,0 code and a minor tweak allows them to both be used with the same C code. All kernels can now just modload the lkm and it'll DTRT without having to rebuild the kernel first. Like IBCS2, you can statically compile it in with "options LINUX". A pile of new syscalls implemented, including getdents(), llseek(), readv(), writev(), msync(), personality(). The Linux-ELF libraries want to use some of these. linux_select() now obeys Linux semantics, ie: returns the time remaining of the timeout value rather than leaving it the original value. Quite a few bugs removed, including incorrect arguments being used in syscalls.. eg: mixups between passing the sigset as an int, vs passing it as a pointer and doing a copyin(), missing return values, unhandled cases, SIOC* ioctls, etc. The build for the code has changed. i386/conf/files now knows how to build linux_genassym and generate linux_assym.h on the fly. Supporting changes elsewhere in the kernel: The user-mode signal trampoline has moved from the U area to immediately below the top of the stack (below PS_STRINGS). This allows the different binary emulations to have their own signal trampoline code (which gets rid of the hardwired syscall 103 (sigreturn on BSD, syslog on Linux)) and so that the emulator can provide the exact "struct sigcontext *" argument to the program's signal handlers. The sigstack's "ss_flags" now uses SS_DISABLE and SS_ONSTACK flags, which have the same values as the re-used SA_DISABLE and SA_ONSTACK which are intended for sigaction only. This enables the support of a SA_RESETHAND flag to sigaction to implement the gross SYSV and Linux SA_ONESHOT signal semantics where the signal handler is reset when it's triggered. makesyscalls.sh no longer appends the struct sysentvec on the end of the generated init_sysent.c code. It's a lot saner to have it in a seperate file rather than trying to update the structure inside the awk script. :-) At exec time, the dozen bytes or so of signal trampoline code are copied to the top of the user's stack, rather than obtaining the trampoline code the old way by getting a clone of the parent's user area. This allows Linux and native binaries to freely exec each other without getting trampolines mixed up.
1996-03-02 19:38:20 +00:00
extern char sigcode[];
extern int szsigcode;
Introduce minidumps. Full physical memory crash dumps are still available via the debug.minidump sysctl and tunable. Traditional dumps store all physical memory. This was once a good thing when machines had a maximum of 64M of ram and 1GB of kvm. These days, machines often have many gigabytes of ram and a smaller amount of kvm. libkvm+kgdb don't have a way to access physical ram that is not mapped into kvm at the time of the crash dump, so the extra ram being dumped is mostly wasted. Minidumps invert the process. Instead of dumping physical memory in in order to guarantee that all of kvm's backing is dumped, minidumps instead dump only memory that is actively mapped into kvm. amd64 has a direct map region that things like UMA use. Obviously we cannot dump all of the direct map region because that is effectively an old style all-physical-memory dump. Instead, introduce a bitmap and two helper routines (dump_add_page(pa) and dump_drop_page(pa)) that allow certain critical direct map pages to be included in the dump. uma_machdep.c's allocator is the intended consumer. Dumps are a custom format. At the very beginning of the file is a header, then a copy of the message buffer, then the bitmap of pages present in the dump, then the final level of the kvm page table trees (2MB mappings are expanded into a 4K page mappings), then the sparse physical pages according to the bitmap. libkvm can now conveniently access the kvm page table entries. Booting my test 8GB machine, forcing it into ddb and forcing a dump leads to a 48MB minidump. While this is a best case, I expect minidumps to be in the 100MB-500MB range. Obviously, never larger than physical memory of course. minidumps are on by default. It would want be necessary to turn them off if it was necessary to debug corrupt kernel page table management as that would mess up minidumps as well. Both minidumps and regular dumps are supported on the same machine.
2006-04-21 04:24:50 +00:00
extern uint64_t *vm_page_dump;
extern int vm_page_dump_size;
extern int workaround_erratum383;
extern int _udatasel;
extern int _ucodesel;
extern int _ucode32sel;
extern int _ufssel;
extern int _ugssel;
Add support for the extended FPU states on amd64, both for native 64bit and 32bit ABIs. As a side-effect, it enables AVX on capable CPUs. In particular: - Query the CPU support for XSAVE, list of the supported extensions and the required size of FPU save area. The hw.use_xsave tunable is provided for disabling XSAVE, and hw.xsave_mask may be used to select the enabled extensions. - Remove the FPU save area from PCB and dynamically allocate the (run-time sized) user save area on the top of the kernel stack, right above the PCB. Reorganize the thread0 PCB initialization to postpone it after BSP is queried for save area size. - The dumppcb, stoppcbs and susppcbs now do not carry the FPU state as well. FPU state is only useful for suspend, where it is saved in dynamically allocated suspfpusave area. - Use XSAVE and XRSTOR to save/restore FPU state, if supported and enabled. - Define new mcontext_t flag _MC_HASFPXSTATE, indicating that mcontext_t has a valid pointer to out-of-struct extended FPU state. Signal handlers are supplied with stack-allocated fpu state. The sigreturn(2) and setcontext(2) syscall honour the flag, allowing the signal handlers to inspect and manipilate extended state in the interrupted context. - The getcontext(2) never returns extended state, since there is no place in the fixed-sized mcontext_t to place variable-sized save area. And, since mcontext_t is embedded into ucontext_t, makes it impossible to fix in a reasonable way. Instead of extending getcontext(2) syscall, provide a sysarch(2) facility to query extended FPU state. - Add ptrace(2) support for getting and setting extended state; while there, implement missed PT_I386_{GET,SET}XMMREGS for 32bit binaries. - Change fpu_kern KPI to not expose struct fpu_kern_ctx layout to consumers, making it opaque. Internally, struct fpu_kern_ctx now contains a space for the extended state. Convert in-kernel consumers of fpu_kern KPI both on i386 and amd64. First version of the support for AVX was submitted by Tim Bird <tim.bird am sony com> on behalf of Sony. This version was written from scratch. Tested by: pho (previous version), Yamagi Burmeister <lists yamagi org> MFC after: 1 month
2012-01-21 17:45:27 +00:00
extern int use_xsave;
extern uint64_t xsave_mask;
2002-03-20 05:48:58 +00:00
typedef void alias_for_inthand_t(u_int cs, u_int ef, u_int esp, u_int ss);
Add support for the extended FPU states on amd64, both for native 64bit and 32bit ABIs. As a side-effect, it enables AVX on capable CPUs. In particular: - Query the CPU support for XSAVE, list of the supported extensions and the required size of FPU save area. The hw.use_xsave tunable is provided for disabling XSAVE, and hw.xsave_mask may be used to select the enabled extensions. - Remove the FPU save area from PCB and dynamically allocate the (run-time sized) user save area on the top of the kernel stack, right above the PCB. Reorganize the thread0 PCB initialization to postpone it after BSP is queried for save area size. - The dumppcb, stoppcbs and susppcbs now do not carry the FPU state as well. FPU state is only useful for suspend, where it is saved in dynamically allocated suspfpusave area. - Use XSAVE and XRSTOR to save/restore FPU state, if supported and enabled. - Define new mcontext_t flag _MC_HASFPXSTATE, indicating that mcontext_t has a valid pointer to out-of-struct extended FPU state. Signal handlers are supplied with stack-allocated fpu state. The sigreturn(2) and setcontext(2) syscall honour the flag, allowing the signal handlers to inspect and manipilate extended state in the interrupted context. - The getcontext(2) never returns extended state, since there is no place in the fixed-sized mcontext_t to place variable-sized save area. And, since mcontext_t is embedded into ucontext_t, makes it impossible to fix in a reasonable way. Instead of extending getcontext(2) syscall, provide a sysarch(2) facility to query extended FPU state. - Add ptrace(2) support for getting and setting extended state; while there, implement missed PT_I386_{GET,SET}XMMREGS for 32bit binaries. - Change fpu_kern KPI to not expose struct fpu_kern_ctx layout to consumers, making it opaque. Internally, struct fpu_kern_ctx now contains a space for the extended state. Convert in-kernel consumers of fpu_kern KPI both on i386 and amd64. First version of the support for AVX was submitted by Tim Bird <tim.bird am sony com> on behalf of Sony. This version was written from scratch. Tested by: pho (previous version), Yamagi Burmeister <lists yamagi org> MFC after: 1 month
2012-01-21 17:45:27 +00:00
struct pcb;
struct savefpu;
struct thread;
struct reg;
struct fpreg;
struct dbreg;
Introduce minidumps. Full physical memory crash dumps are still available via the debug.minidump sysctl and tunable. Traditional dumps store all physical memory. This was once a good thing when machines had a maximum of 64M of ram and 1GB of kvm. These days, machines often have many gigabytes of ram and a smaller amount of kvm. libkvm+kgdb don't have a way to access physical ram that is not mapped into kvm at the time of the crash dump, so the extra ram being dumped is mostly wasted. Minidumps invert the process. Instead of dumping physical memory in in order to guarantee that all of kvm's backing is dumped, minidumps instead dump only memory that is actively mapped into kvm. amd64 has a direct map region that things like UMA use. Obviously we cannot dump all of the direct map region because that is effectively an old style all-physical-memory dump. Instead, introduce a bitmap and two helper routines (dump_add_page(pa) and dump_drop_page(pa)) that allow certain critical direct map pages to be included in the dump. uma_machdep.c's allocator is the intended consumer. Dumps are a custom format. At the very beginning of the file is a header, then a copy of the message buffer, then the bitmap of pages present in the dump, then the final level of the kvm page table trees (2MB mappings are expanded into a 4K page mappings), then the sparse physical pages according to the bitmap. libkvm can now conveniently access the kvm page table entries. Booting my test 8GB machine, forcing it into ddb and forcing a dump leads to a 48MB minidump. While this is a best case, I expect minidumps to be in the 100MB-500MB range. Obviously, never larger than physical memory of course. minidumps are on by default. It would want be necessary to turn them off if it was necessary to debug corrupt kernel page table management as that would mess up minidumps as well. Both minidumps and regular dumps are supported on the same machine.
2006-04-21 04:24:50 +00:00
struct dumperinfo;
Add support for the extended FPU states on amd64, both for native 64bit and 32bit ABIs. As a side-effect, it enables AVX on capable CPUs. In particular: - Query the CPU support for XSAVE, list of the supported extensions and the required size of FPU save area. The hw.use_xsave tunable is provided for disabling XSAVE, and hw.xsave_mask may be used to select the enabled extensions. - Remove the FPU save area from PCB and dynamically allocate the (run-time sized) user save area on the top of the kernel stack, right above the PCB. Reorganize the thread0 PCB initialization to postpone it after BSP is queried for save area size. - The dumppcb, stoppcbs and susppcbs now do not carry the FPU state as well. FPU state is only useful for suspend, where it is saved in dynamically allocated suspfpusave area. - Use XSAVE and XRSTOR to save/restore FPU state, if supported and enabled. - Define new mcontext_t flag _MC_HASFPXSTATE, indicating that mcontext_t has a valid pointer to out-of-struct extended FPU state. Signal handlers are supplied with stack-allocated fpu state. The sigreturn(2) and setcontext(2) syscall honour the flag, allowing the signal handlers to inspect and manipilate extended state in the interrupted context. - The getcontext(2) never returns extended state, since there is no place in the fixed-sized mcontext_t to place variable-sized save area. And, since mcontext_t is embedded into ucontext_t, makes it impossible to fix in a reasonable way. Instead of extending getcontext(2) syscall, provide a sysarch(2) facility to query extended FPU state. - Add ptrace(2) support for getting and setting extended state; while there, implement missed PT_I386_{GET,SET}XMMREGS for 32bit binaries. - Change fpu_kern KPI to not expose struct fpu_kern_ctx layout to consumers, making it opaque. Internally, struct fpu_kern_ctx now contains a space for the extended state. Convert in-kernel consumers of fpu_kern KPI both on i386 and amd64. First version of the support for AVX was submitted by Tim Bird <tim.bird am sony com> on behalf of Sony. This version was written from scratch. Tested by: pho (previous version), Yamagi Burmeister <lists yamagi org> MFC after: 1 month
2012-01-21 17:45:27 +00:00
void *alloc_fpusave(int flags);
void amd64_syscall(struct thread *td, int traced);
2002-03-20 05:48:58 +00:00
void busdma_swi(void);
void cpu_setregs(void);
Add support for the extended FPU states on amd64, both for native 64bit and 32bit ABIs. As a side-effect, it enables AVX on capable CPUs. In particular: - Query the CPU support for XSAVE, list of the supported extensions and the required size of FPU save area. The hw.use_xsave tunable is provided for disabling XSAVE, and hw.xsave_mask may be used to select the enabled extensions. - Remove the FPU save area from PCB and dynamically allocate the (run-time sized) user save area on the top of the kernel stack, right above the PCB. Reorganize the thread0 PCB initialization to postpone it after BSP is queried for save area size. - The dumppcb, stoppcbs and susppcbs now do not carry the FPU state as well. FPU state is only useful for suspend, where it is saved in dynamically allocated suspfpusave area. - Use XSAVE and XRSTOR to save/restore FPU state, if supported and enabled. - Define new mcontext_t flag _MC_HASFPXSTATE, indicating that mcontext_t has a valid pointer to out-of-struct extended FPU state. Signal handlers are supplied with stack-allocated fpu state. The sigreturn(2) and setcontext(2) syscall honour the flag, allowing the signal handlers to inspect and manipilate extended state in the interrupted context. - The getcontext(2) never returns extended state, since there is no place in the fixed-sized mcontext_t to place variable-sized save area. And, since mcontext_t is embedded into ucontext_t, makes it impossible to fix in a reasonable way. Instead of extending getcontext(2) syscall, provide a sysarch(2) facility to query extended FPU state. - Add ptrace(2) support for getting and setting extended state; while there, implement missed PT_I386_{GET,SET}XMMREGS for 32bit binaries. - Change fpu_kern KPI to not expose struct fpu_kern_ctx layout to consumers, making it opaque. Internally, struct fpu_kern_ctx now contains a space for the extended state. Convert in-kernel consumers of fpu_kern KPI both on i386 and amd64. First version of the support for AVX was submitted by Tim Bird <tim.bird am sony com> on behalf of Sony. This version was written from scratch. Tested by: pho (previous version), Yamagi Burmeister <lists yamagi org> MFC after: 1 month
2012-01-21 17:45:27 +00:00
void ctx_fpusave(void *);
2002-03-20 05:48:58 +00:00
void doreti_iret(void) __asm(__STRING(doreti_iret));
void doreti_iret_fault(void) __asm(__STRING(doreti_iret_fault));
void ld_ds(void) __asm(__STRING(ld_ds));
void ld_es(void) __asm(__STRING(ld_es));
void ld_fs(void) __asm(__STRING(ld_fs));
void ld_gs(void) __asm(__STRING(ld_gs));
void ld_fsbase(void) __asm(__STRING(ld_fsbase));
void ld_gsbase(void) __asm(__STRING(ld_gsbase));
void ds_load_fault(void) __asm(__STRING(ds_load_fault));
void es_load_fault(void) __asm(__STRING(es_load_fault));
void fs_load_fault(void) __asm(__STRING(fs_load_fault));
void gs_load_fault(void) __asm(__STRING(gs_load_fault));
void fsbase_load_fault(void) __asm(__STRING(fsbase_load_fault));
void gsbase_load_fault(void) __asm(__STRING(gsbase_load_fault));
Introduce minidumps. Full physical memory crash dumps are still available via the debug.minidump sysctl and tunable. Traditional dumps store all physical memory. This was once a good thing when machines had a maximum of 64M of ram and 1GB of kvm. These days, machines often have many gigabytes of ram and a smaller amount of kvm. libkvm+kgdb don't have a way to access physical ram that is not mapped into kvm at the time of the crash dump, so the extra ram being dumped is mostly wasted. Minidumps invert the process. Instead of dumping physical memory in in order to guarantee that all of kvm's backing is dumped, minidumps instead dump only memory that is actively mapped into kvm. amd64 has a direct map region that things like UMA use. Obviously we cannot dump all of the direct map region because that is effectively an old style all-physical-memory dump. Instead, introduce a bitmap and two helper routines (dump_add_page(pa) and dump_drop_page(pa)) that allow certain critical direct map pages to be included in the dump. uma_machdep.c's allocator is the intended consumer. Dumps are a custom format. At the very beginning of the file is a header, then a copy of the message buffer, then the bitmap of pages present in the dump, then the final level of the kvm page table trees (2MB mappings are expanded into a 4K page mappings), then the sparse physical pages according to the bitmap. libkvm can now conveniently access the kvm page table entries. Booting my test 8GB machine, forcing it into ddb and forcing a dump leads to a 48MB minidump. While this is a best case, I expect minidumps to be in the 100MB-500MB range. Obviously, never larger than physical memory of course. minidumps are on by default. It would want be necessary to turn them off if it was necessary to debug corrupt kernel page table management as that would mess up minidumps as well. Both minidumps and regular dumps are supported on the same machine.
2006-04-21 04:24:50 +00:00
void dump_add_page(vm_paddr_t);
void dump_drop_page(vm_paddr_t);
void initializecpu(void);
void initializecpucache(void);
2002-03-20 05:48:58 +00:00
void fillw(int /*u_short*/ pat, void *base, size_t cnt);
void fpstate_drop(struct thread *td);
int is_physical_memory(vm_paddr_t addr);
int isa_nmi(int cd);
void pagecopy(void *from, void *to);
void pagezero(void *addr);
void setidt(int idx, alias_for_inthand_t *func, int typ, int dpl, int ist);
int user_dbreg_trap(void);
Introduce minidumps. Full physical memory crash dumps are still available via the debug.minidump sysctl and tunable. Traditional dumps store all physical memory. This was once a good thing when machines had a maximum of 64M of ram and 1GB of kvm. These days, machines often have many gigabytes of ram and a smaller amount of kvm. libkvm+kgdb don't have a way to access physical ram that is not mapped into kvm at the time of the crash dump, so the extra ram being dumped is mostly wasted. Minidumps invert the process. Instead of dumping physical memory in in order to guarantee that all of kvm's backing is dumped, minidumps instead dump only memory that is actively mapped into kvm. amd64 has a direct map region that things like UMA use. Obviously we cannot dump all of the direct map region because that is effectively an old style all-physical-memory dump. Instead, introduce a bitmap and two helper routines (dump_add_page(pa) and dump_drop_page(pa)) that allow certain critical direct map pages to be included in the dump. uma_machdep.c's allocator is the intended consumer. Dumps are a custom format. At the very beginning of the file is a header, then a copy of the message buffer, then the bitmap of pages present in the dump, then the final level of the kvm page table trees (2MB mappings are expanded into a 4K page mappings), then the sparse physical pages according to the bitmap. libkvm can now conveniently access the kvm page table entries. Booting my test 8GB machine, forcing it into ddb and forcing a dump leads to a 48MB minidump. While this is a best case, I expect minidumps to be in the 100MB-500MB range. Obviously, never larger than physical memory of course. minidumps are on by default. It would want be necessary to turn them off if it was necessary to debug corrupt kernel page table management as that would mess up minidumps as well. Both minidumps and regular dumps are supported on the same machine.
2006-04-21 04:24:50 +00:00
void minidumpsys(struct dumperinfo *);
Add support for the extended FPU states on amd64, both for native 64bit and 32bit ABIs. As a side-effect, it enables AVX on capable CPUs. In particular: - Query the CPU support for XSAVE, list of the supported extensions and the required size of FPU save area. The hw.use_xsave tunable is provided for disabling XSAVE, and hw.xsave_mask may be used to select the enabled extensions. - Remove the FPU save area from PCB and dynamically allocate the (run-time sized) user save area on the top of the kernel stack, right above the PCB. Reorganize the thread0 PCB initialization to postpone it after BSP is queried for save area size. - The dumppcb, stoppcbs and susppcbs now do not carry the FPU state as well. FPU state is only useful for suspend, where it is saved in dynamically allocated suspfpusave area. - Use XSAVE and XRSTOR to save/restore FPU state, if supported and enabled. - Define new mcontext_t flag _MC_HASFPXSTATE, indicating that mcontext_t has a valid pointer to out-of-struct extended FPU state. Signal handlers are supplied with stack-allocated fpu state. The sigreturn(2) and setcontext(2) syscall honour the flag, allowing the signal handlers to inspect and manipilate extended state in the interrupted context. - The getcontext(2) never returns extended state, since there is no place in the fixed-sized mcontext_t to place variable-sized save area. And, since mcontext_t is embedded into ucontext_t, makes it impossible to fix in a reasonable way. Instead of extending getcontext(2) syscall, provide a sysarch(2) facility to query extended FPU state. - Add ptrace(2) support for getting and setting extended state; while there, implement missed PT_I386_{GET,SET}XMMREGS for 32bit binaries. - Change fpu_kern KPI to not expose struct fpu_kern_ctx layout to consumers, making it opaque. Internally, struct fpu_kern_ctx now contains a space for the extended state. Convert in-kernel consumers of fpu_kern KPI both on i386 and amd64. First version of the support for AVX was submitted by Tim Bird <tim.bird am sony com> on behalf of Sony. This version was written from scratch. Tested by: pho (previous version), Yamagi Burmeister <lists yamagi org> MFC after: 1 month
2012-01-21 17:45:27 +00:00
struct savefpu *get_pcb_user_save_td(struct thread *td);
struct savefpu *get_pcb_user_save_pcb(struct pcb *pcb);
struct pcb *get_pcb_td(struct thread *td);
#endif /* !_MACHINE_MD_VAR_H_ */