freebsd-dev/include/sys/zil.h

518 lines
18 KiB
C
Raw Normal View History

2008-11-20 20:01:55 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2017 by Delphix. All rights reserved.
2008-11-20 20:01:55 +00:00
*/
/* Portions Copyright 2010 Robert Milkowski */
2008-11-20 20:01:55 +00:00
#ifndef _SYS_ZIL_H
#define _SYS_ZIL_H
#include <sys/types.h>
#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/dmu.h>
#ifdef __cplusplus
extern "C" {
#endif
struct dsl_pool;
struct dsl_dataset;
2008-11-20 20:01:55 +00:00
/*
* Intent log format:
*
* Each objset has its own intent log. The log header (zil_header_t)
* for objset N's intent log is kept in the Nth object of the SPA's
* intent_log objset. The log header points to a chain of log blocks,
* each of which contains log records (i.e., transactions) followed by
* a log block trailer (zil_trailer_t). The format of a log record
* depends on the record (or transaction) type, but all records begin
* with a common structure that defines the type, length, and txg.
*/
/*
* Intent log header - this on disk structure holds fields to manage
* the log. All fields are 64 bit to easily handle cross architectures.
*/
typedef struct zil_header {
uint64_t zh_claim_txg; /* txg in which log blocks were claimed */
uint64_t zh_replay_seq; /* highest replayed sequence number */
blkptr_t zh_log; /* log chain */
uint64_t zh_claim_blk_seq; /* highest claimed block sequence number */
2009-07-02 22:44:48 +00:00
uint64_t zh_flags; /* header flags */
uint64_t zh_claim_lr_seq; /* highest claimed lr sequence number */
uint64_t zh_pad[3];
2008-11-20 20:01:55 +00:00
} zil_header_t;
2009-07-02 22:44:48 +00:00
/*
* zh_flags bit settings
*/
#define ZIL_REPLAY_NEEDED 0x1 /* replay needed - internal only */
#define ZIL_CLAIM_LR_SEQ_VALID 0x2 /* zh_claim_lr_seq field is valid */
2009-07-02 22:44:48 +00:00
2008-11-20 20:01:55 +00:00
/*
* Log block chaining.
*
* Log blocks are chained together. Originally they were chained at the
* end of the block. For performance reasons the chain was moved to the
* beginning of the block which allows writes for only the data being used.
* The older position is supported for backwards compatability.
2008-11-20 20:01:55 +00:00
*
* The zio_eck_t contains a zec_cksum which for the intent log is
2008-11-20 20:01:55 +00:00
* the sequence number of this log block. A seq of 0 is invalid.
* The zec_cksum is checked by the SPA against the sequence
2008-11-20 20:01:55 +00:00
* number passed in the blk_cksum field of the blkptr_t
*/
typedef struct zil_chain {
uint64_t zc_pad;
blkptr_t zc_next_blk; /* next block in chain */
uint64_t zc_nused; /* bytes in log block used */
zio_eck_t zc_eck; /* block trailer */
} zil_chain_t;
2008-11-20 20:01:55 +00:00
#define ZIL_MIN_BLKSZ 4096ULL
/*
* ziltest is by and large an ugly hack, but very useful in
* checking replay without tedious work.
* When running ziltest we want to keep all itx's and so maintain
* a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
* We subtract TXG_CONCURRENT_STATES to allow for common code.
*/
#define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
2008-11-20 20:01:55 +00:00
/*
* The words of a log block checksum.
*/
#define ZIL_ZC_GUID_0 0
#define ZIL_ZC_GUID_1 1
#define ZIL_ZC_OBJSET 2
#define ZIL_ZC_SEQ 3
typedef enum zil_create {
Z_FILE,
Z_DIR,
Z_XATTRDIR,
} zil_create_t;
/*
* size of xvattr log section.
* its composed of lr_attr_t + xvattr bitmap + 2 64 bit timestamps
* for create time and a single 64 bit integer for all of the attributes,
* and 4 64 bit integers (32 bytes) for the scanstamp.
*
*/
#define ZIL_XVAT_SIZE(mapsize) \
sizeof (lr_attr_t) + (sizeof (uint32_t) * (mapsize - 1)) + \
(sizeof (uint64_t) * 7)
/*
* Size of ACL in log. The ACE data is padded out to properly align
* on 8 byte boundary.
*/
#define ZIL_ACE_LENGTH(x) (roundup(x, sizeof (uint64_t)))
/*
* Intent log transaction types and record structures
*/
#define TX_CREATE 1 /* Create file */
#define TX_MKDIR 2 /* Make directory */
#define TX_MKXATTR 3 /* Make XATTR directory */
#define TX_SYMLINK 4 /* Create symbolic link to a file */
#define TX_REMOVE 5 /* Remove file */
#define TX_RMDIR 6 /* Remove directory */
#define TX_LINK 7 /* Create hard link to a file */
#define TX_RENAME 8 /* Rename a file */
#define TX_WRITE 9 /* File write */
#define TX_TRUNCATE 10 /* Truncate a file */
#define TX_SETATTR 11 /* Set file attributes */
#define TX_ACL_V0 12 /* Set old formatted ACL */
#define TX_ACL 13 /* Set ACL */
#define TX_CREATE_ACL 14 /* create with ACL */
#define TX_CREATE_ATTR 15 /* create + attrs */
#define TX_CREATE_ACL_ATTR 16 /* create with ACL + attrs */
#define TX_MKDIR_ACL 17 /* mkdir with ACL */
#define TX_MKDIR_ATTR 18 /* mkdir with attr */
#define TX_MKDIR_ACL_ATTR 19 /* mkdir with ACL + attrs */
#define TX_WRITE2 20 /* dmu_sync EALREADY write */
#define TX_MAX_TYPE 21 /* Max transaction type */
2008-11-20 20:01:55 +00:00
/*
* The transactions for mkdir, symlink, remove, rmdir, link, and rename
* may have the following bit set, indicating the original request
* specified case-insensitive handling of names.
*/
#define TX_CI ((uint64_t)0x1 << 63) /* case-insensitive behavior requested */
/*
* Transactions for write, truncate, setattr, acl_v0, and acl can be logged
* out of order. For convenience in the code, all such records must have
* lr_foid at the same offset.
*/
#define TX_OOO(txtype) \
((txtype) == TX_WRITE || \
(txtype) == TX_TRUNCATE || \
(txtype) == TX_SETATTR || \
(txtype) == TX_ACL_V0 || \
(txtype) == TX_ACL || \
(txtype) == TX_WRITE2)
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 01:25:34 +00:00
/*
* The number of dnode slots consumed by the object is stored in the 8
* unused upper bits of the object ID. We subtract 1 from the value
* stored on disk for compatibility with implementations that don't
* support large dnodes. The slot count for a single-slot dnode will
* contain 0 for those bits to preserve the log record format for
* "small" dnodes.
*/
#define LR_FOID_GET_SLOTS(oid) (BF64_GET((oid), 56, 8) + 1)
#define LR_FOID_SET_SLOTS(oid, x) BF64_SET((oid), 56, 8, (x) - 1)
#define LR_FOID_GET_OBJ(oid) BF64_GET((oid), 0, DN_MAX_OBJECT_SHIFT)
#define LR_FOID_SET_OBJ(oid, x) BF64_SET((oid), 0, DN_MAX_OBJECT_SHIFT, (x))
2008-11-20 20:01:55 +00:00
/*
* Format of log records.
* The fields are carefully defined to allow them to be aligned
* and sized the same on sparc & intel architectures.
* Each log record has a common structure at the beginning.
*
* The log record on disk (lrc_seq) holds the sequence number of all log
* records which is used to ensure we don't replay the same record.
2008-11-20 20:01:55 +00:00
*/
typedef struct { /* common log record header */
uint64_t lrc_txtype; /* intent log transaction type */
uint64_t lrc_reclen; /* transaction record length */
uint64_t lrc_txg; /* dmu transaction group number */
uint64_t lrc_seq; /* see comment above */
} lr_t;
/*
* Common start of all out-of-order record types (TX_OOO() above).
*/
typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_foid; /* object id */
} lr_ooo_t;
2008-11-20 20:01:55 +00:00
/*
* Handle option extended vattr attributes.
*
* Whenever new attributes are added the version number
* will need to be updated as will code in
* zfs_log.c and zfs_replay.c
*/
typedef struct {
uint32_t lr_attr_masksize; /* number of elements in array */
uint32_t lr_attr_bitmap; /* First entry of array */
/* remainder of array and any additional fields */
} lr_attr_t;
/*
* log record for creates without optional ACL.
* This log record does support optional xvattr_t attributes.
*/
typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_doid; /* object id of directory */
uint64_t lr_foid; /* object id of created file object */
uint64_t lr_mode; /* mode of object */
uint64_t lr_uid; /* uid of object */
uint64_t lr_gid; /* gid of object */
uint64_t lr_gen; /* generation (txg of creation) */
uint64_t lr_crtime[2]; /* creation time */
uint64_t lr_rdev; /* rdev of object to create */
/* name of object to create follows this */
/* for symlinks, link content follows name */
/* for creates with xvattr data, the name follows the xvattr info */
} lr_create_t;
/*
* FUID ACL record will be an array of ACEs from the original ACL.
* If this array includes ephemeral IDs, the record will also include
* an array of log-specific FUIDs to replace the ephemeral IDs.
* Only one copy of each unique domain will be present, so the log-specific
* FUIDs will use an index into a compressed domain table. On replay this
* information will be used to construct real FUIDs (and bypass idmap,
* since it may not be available).
*/
/*
* Log record for creates with optional ACL
* This log record is also used for recording any FUID
* information needed for replaying the create. If the
* file doesn't have any actual ACEs then the lr_aclcnt
* would be zero.
*
* After lr_acl_flags, there are a lr_acl_bytes number of variable sized ace's.
* If create is also setting xvattr's, then acl data follows xvattr.
* If ACE FUIDs are needed then they will follow the xvattr_t. Following
* the FUIDs will be the domain table information. The FUIDs for the owner
* and group will be in lr_create. Name follows ACL data.
2008-11-20 20:01:55 +00:00
*/
typedef struct {
lr_create_t lr_create; /* common create portion */
uint64_t lr_aclcnt; /* number of ACEs in ACL */
uint64_t lr_domcnt; /* number of unique domains */
uint64_t lr_fuidcnt; /* number of real fuids */
uint64_t lr_acl_bytes; /* number of bytes in ACL */
uint64_t lr_acl_flags; /* ACL flags */
} lr_acl_create_t;
typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_doid; /* obj id of directory */
/* name of object to remove follows this */
} lr_remove_t;
typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_doid; /* obj id of directory */
uint64_t lr_link_obj; /* obj id of link */
/* name of object to link follows this */
} lr_link_t;
typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_sdoid; /* obj id of source directory */
uint64_t lr_tdoid; /* obj id of target directory */
/* 2 strings: names of source and destination follow this */
} lr_rename_t;
typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_foid; /* file object to write */
uint64_t lr_offset; /* offset to write to */
uint64_t lr_length; /* user data length to write */
uint64_t lr_blkoff; /* no longer used */
2008-11-20 20:01:55 +00:00
blkptr_t lr_blkptr; /* spa block pointer for replay */
/* write data will follow for small writes */
} lr_write_t;
typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_foid; /* object id of file to truncate */
uint64_t lr_offset; /* offset to truncate from */
uint64_t lr_length; /* length to truncate */
} lr_truncate_t;
typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_foid; /* file object to change attributes */
uint64_t lr_mask; /* mask of attributes to set */
uint64_t lr_mode; /* mode to set */
uint64_t lr_uid; /* uid to set */
uint64_t lr_gid; /* gid to set */
uint64_t lr_size; /* size to set */
uint64_t lr_atime[2]; /* access time */
uint64_t lr_mtime[2]; /* modification time */
/* optional attribute lr_attr_t may be here */
} lr_setattr_t;
typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_foid; /* obj id of file */
uint64_t lr_aclcnt; /* number of acl entries */
/* lr_aclcnt number of ace_t entries follow this */
} lr_acl_v0_t;
typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_foid; /* obj id of file */
uint64_t lr_aclcnt; /* number of ACEs in ACL */
uint64_t lr_domcnt; /* number of unique domains */
uint64_t lr_fuidcnt; /* number of real fuids */
uint64_t lr_acl_bytes; /* number of bytes in ACL */
uint64_t lr_acl_flags; /* ACL flags */
/* lr_acl_bytes number of variable sized ace's follows */
} lr_acl_t;
/*
* ZIL structure definitions, interface function prototype and globals.
*/
/*
2009-07-02 22:44:48 +00:00
* Writes are handled in three different ways:
*
* WR_INDIRECT:
* In this mode, if we need to commit the write later, then the block
* is immediately written into the file system (using dmu_sync),
* and a pointer to the block is put into the log record.
* When the txg commits the block is linked in.
* This saves additionally writing the data into the log record.
* There are a few requirements for this to occur:
* - write is greater than zfs/zvol_immediate_write_sz
* - not using slogs (as slogs are assumed to always be faster
* than writing into the main pool)
* - the write occupies only one block
* WR_COPIED:
* If we know we'll immediately be committing the
* transaction (FSYNC or FDSYNC), then we allocate a larger
2009-07-02 22:44:48 +00:00
* log record here for the data and copy the data in.
* WR_NEED_COPY:
* Otherwise we don't allocate a buffer, and *if* we need to
* flush the write later then a buffer is allocated and
* we retrieve the data using the dmu.
2008-11-20 20:01:55 +00:00
*/
typedef enum {
WR_INDIRECT, /* indirect - a large write (dmu_sync() data */
/* and put blkptr in log, rather than actual data) */
WR_COPIED, /* immediate - data is copied into lr_write_t */
WR_NEED_COPY, /* immediate - data needs to be copied if pushed */
WR_NUM_STATES /* number of states */
2008-11-20 20:01:55 +00:00
} itx_wr_state_t;
Only commit the ZIL once in zpl_writepages() (msync() case). Currently, using msync() results in the following code path: sys_msync -> zpl_fsync -> filemap_write_and_wait_range -> zpl_writepages -> write_cache_pages -> zpl_putpage In such a code path, zil_commit() is called as part of zpl_putpage(). This means that for each page, the write is handed to the DMU, the ZIL is committed, and only then do we move on to the next page. As one might imagine, this results in atrocious performance where there is a large number of pages to write: instead of committing a batch of N writes, we do N commits containing one page each. In some extreme cases this can result in msync() being ~700 times slower than it should be, as well as very inefficient use of ZIL resources. This patch fixes this issue by making sure that the requested writes are batched and then committed only once. Unfortunately, the implementation is somewhat non-trivial because there is no way to run write_cache_pages in SYNC mode (so that we get all pages) without making it wait on the writeback tag for each page. The solution implemented here is composed of two parts: - I added a new callback system to the ZIL, which allows the caller to be notified when its ITX gets written to stable storage. One nice thing is that the callback is called not only in zil_commit() but in zil_sync() as well, which means that the caller doesn't have to care whether the write ended up in the ZIL or the DMU: it will get notified as soon as it's safe, period. This is an improvement over dmu_tx_callback_register() that was used previously, which only supports DMU writes. The rationale for this change is to allow zpl_putpage() to be notified when a ZIL commit is completed without having to block on zil_commit() itself. - zpl_writepages() now calls write_cache_pages in non-SYNC mode, which will prevent (1) write_cache_pages from blocking, and (2) zpl_putpage from issuing ZIL commits. zpl_writepages() will issue the commit itself instead of relying on zpl_putpage() to do it, thus nicely batching the writes. Note, however, that we still have to call write_cache_pages() again in SYNC mode because there is an edge case documented in the implementation of write_cache_pages() whereas it will not give us all dirty pages when running in non-SYNC mode. Thus we need to run it at least once in SYNC mode to make sure we honor persistency guarantees. This only happens when the pages are modified at the same time msync() is running, which should be rare. In most cases there won't be any additional pages and this second call will do nothing. Note that this change also fixes a bug related to #907 whereas calling msync() on pages that were already handed over to the DMU in a previous writepages() call would make msync() block until the next TXG sync instead of returning as soon as the ZIL commit is complete. The new callback system fixes that problem. Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1849 Closes #907
2013-11-10 15:00:11 +00:00
typedef void (*zil_callback_t)(void *data);
2008-11-20 20:01:55 +00:00
typedef struct itx {
list_node_t itx_node; /* linkage on zl_itx_list */
void *itx_private; /* type-specific opaque data */
itx_wr_state_t itx_wr_state; /* write state */
uint8_t itx_sync; /* synchronous transaction */
Only commit the ZIL once in zpl_writepages() (msync() case). Currently, using msync() results in the following code path: sys_msync -> zpl_fsync -> filemap_write_and_wait_range -> zpl_writepages -> write_cache_pages -> zpl_putpage In such a code path, zil_commit() is called as part of zpl_putpage(). This means that for each page, the write is handed to the DMU, the ZIL is committed, and only then do we move on to the next page. As one might imagine, this results in atrocious performance where there is a large number of pages to write: instead of committing a batch of N writes, we do N commits containing one page each. In some extreme cases this can result in msync() being ~700 times slower than it should be, as well as very inefficient use of ZIL resources. This patch fixes this issue by making sure that the requested writes are batched and then committed only once. Unfortunately, the implementation is somewhat non-trivial because there is no way to run write_cache_pages in SYNC mode (so that we get all pages) without making it wait on the writeback tag for each page. The solution implemented here is composed of two parts: - I added a new callback system to the ZIL, which allows the caller to be notified when its ITX gets written to stable storage. One nice thing is that the callback is called not only in zil_commit() but in zil_sync() as well, which means that the caller doesn't have to care whether the write ended up in the ZIL or the DMU: it will get notified as soon as it's safe, period. This is an improvement over dmu_tx_callback_register() that was used previously, which only supports DMU writes. The rationale for this change is to allow zpl_putpage() to be notified when a ZIL commit is completed without having to block on zil_commit() itself. - zpl_writepages() now calls write_cache_pages in non-SYNC mode, which will prevent (1) write_cache_pages from blocking, and (2) zpl_putpage from issuing ZIL commits. zpl_writepages() will issue the commit itself instead of relying on zpl_putpage() to do it, thus nicely batching the writes. Note, however, that we still have to call write_cache_pages() again in SYNC mode because there is an edge case documented in the implementation of write_cache_pages() whereas it will not give us all dirty pages when running in non-SYNC mode. Thus we need to run it at least once in SYNC mode to make sure we honor persistency guarantees. This only happens when the pages are modified at the same time msync() is running, which should be rare. In most cases there won't be any additional pages and this second call will do nothing. Note that this change also fixes a bug related to #907 whereas calling msync() on pages that were already handed over to the DMU in a previous writepages() call would make msync() block until the next TXG sync instead of returning as soon as the ZIL commit is complete. The new callback system fixes that problem. Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1849 Closes #907
2013-11-10 15:00:11 +00:00
zil_callback_t itx_callback; /* Called when the itx is persistent */
void *itx_callback_data; /* User data for the callback */
2008-11-20 20:01:55 +00:00
uint64_t itx_sod; /* record size on disk */
uint64_t itx_oid; /* object id */
2008-11-20 20:01:55 +00:00
lr_t itx_lr; /* common part of log record */
/* followed by type-specific part of lr_xx_t and its immediate data */
} itx_t;
/*
* Used for zil kstat.
*/
typedef struct zil_stats {
/*
* Number of times a ZIL commit (e.g. fsync) has been requested.
*/
kstat_named_t zil_commit_count;
/*
* Number of times the ZIL has been flushed to stable storage.
* This is less than zil_commit_count when commits are "merged"
* (see the documentation above zil_commit()).
*/
kstat_named_t zil_commit_writer_count;
/*
* Number of transactions (reads, writes, renames, etc.)
* that have been commited.
*/
kstat_named_t zil_itx_count;
/*
* See the documentation for itx_wr_state_t above.
* Note that "bytes" accumulates the length of the transactions
* (i.e. data), not the actual log record sizes.
*/
kstat_named_t zil_itx_indirect_count;
kstat_named_t zil_itx_indirect_bytes;
kstat_named_t zil_itx_copied_count;
kstat_named_t zil_itx_copied_bytes;
kstat_named_t zil_itx_needcopy_count;
kstat_named_t zil_itx_needcopy_bytes;
/*
* Transactions which have been allocated to the "normal"
* (i.e. not slog) storage pool. Note that "bytes" accumulate
* the actual log record sizes - which do not include the actual
* data in case of indirect writes.
*/
kstat_named_t zil_itx_metaslab_normal_count;
kstat_named_t zil_itx_metaslab_normal_bytes;
/*
* Transactions which have been allocated to the "slog" storage pool.
* If there are no separate log devices, this is the same as the
* "normal" pool.
*/
kstat_named_t zil_itx_metaslab_slog_count;
kstat_named_t zil_itx_metaslab_slog_bytes;
} zil_stats_t;
extern zil_stats_t zil_stats;
#define ZIL_STAT_INCR(stat, val) \
atomic_add_64(&zil_stats.stat.value.ui64, (val));
#define ZIL_STAT_BUMP(stat) \
ZIL_STAT_INCR(stat, 1);
typedef int zil_parse_blk_func_t(zilog_t *zilog, blkptr_t *bp, void *arg,
2008-11-20 20:01:55 +00:00
uint64_t txg);
typedef int zil_parse_lr_func_t(zilog_t *zilog, lr_t *lr, void *arg,
2008-11-20 20:01:55 +00:00
uint64_t txg);
typedef int (*const zil_replay_func_t)(void *, char *, boolean_t);
2008-11-20 20:01:55 +00:00
typedef int zil_get_data_t(void *arg, lr_write_t *lr, char *dbuf, zio_t *zio);
extern int zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
2008-11-20 20:01:55 +00:00
zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg);
extern void zil_init(void);
extern void zil_fini(void);
extern zilog_t *zil_alloc(objset_t *os, zil_header_t *zh_phys);
extern void zil_free(zilog_t *zilog);
extern zilog_t *zil_open(objset_t *os, zil_get_data_t *get_data);
extern void zil_close(zilog_t *zilog);
2009-01-15 21:59:39 +00:00
extern void zil_replay(objset_t *os, void *arg,
zil_replay_func_t replay_func[TX_MAX_TYPE]);
extern boolean_t zil_replaying(zilog_t *zilog, dmu_tx_t *tx);
2008-11-20 20:01:55 +00:00
extern void zil_destroy(zilog_t *zilog, boolean_t keep_first);
extern void zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx);
2008-11-20 20:01:55 +00:00
extern itx_t *zil_itx_create(uint64_t txtype, size_t lrsize);
extern void zil_itx_destroy(itx_t *itx);
extern void zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx);
2008-11-20 20:01:55 +00:00
extern void zil_commit(zilog_t *zilog, uint64_t oid);
2008-11-20 20:01:55 +00:00
extern int zil_vdev_offline(const char *osname, void *txarg);
extern int zil_claim(struct dsl_pool *dp,
struct dsl_dataset *ds, void *txarg);
extern int zil_check_log_chain(struct dsl_pool *dp,
struct dsl_dataset *ds, void *tx);
2008-11-20 20:01:55 +00:00
extern void zil_sync(zilog_t *zilog, dmu_tx_t *tx);
extern void zil_clean(zilog_t *zilog, uint64_t synced_txg);
2008-11-20 20:01:55 +00:00
extern int zil_suspend(const char *osname, void **cookiep);
extern void zil_resume(void *cookie);
2008-11-20 20:01:55 +00:00
extern void zil_add_block(zilog_t *zilog, const blkptr_t *bp);
extern int zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp);
extern void zil_set_sync(zilog_t *zilog, uint64_t syncval);
extern void zil_set_logbias(zilog_t *zilog, uint64_t slogval);
2008-11-20 20:01:55 +00:00
extern int zil_replay_disable;
2008-11-20 20:01:55 +00:00
#ifdef __cplusplus
}
#endif
#endif /* _SYS_ZIL_H */