freebsd-dev/sys/kern/pic_if.m

125 lines
3.0 KiB
Mathematica
Raw Normal View History

Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
#-
# Copyright (c) 2012 Jakub Wojciech Klama <jceel@FreeBSD.org>
# Copyright (c) 2015 Svatopluk Kraus
# Copyright (c) 2015 Michal Meloun
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#
# $FreeBSD$
#
#include <sys/bus.h>
#include <sys/cpuset.h>
#include <machine/frame.h>
#include <machine/intr.h>
INTERFACE pic;
CODE {
static int null_pic_bind(device_t dev, struct intr_irqsrc *isrc)
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
{
return (EOPNOTSUPP);
}
static void null_pic_disable_intr(device_t dev, struct intr_irqsrc *isrc)
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
{
return;
}
static void null_pic_enable_intr(device_t dev, struct intr_irqsrc *isrc)
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
{
return;
}
static void null_pic_init_secondary(device_t dev)
{
return;
}
static void null_pic_ipi_send(device_t dev, cpuset_t cpus, u_int ipi)
{
return;
}
};
METHOD int register {
device_t dev;
struct intr_irqsrc *isrc;
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
boolean_t *is_percpu;
};
METHOD int unregister {
device_t dev;
struct intr_irqsrc *isrc;
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
};
METHOD void disable_intr {
device_t dev;
struct intr_irqsrc *isrc;
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
} DEFAULT null_pic_disable_intr;
METHOD void disable_source {
device_t dev;
struct intr_irqsrc *isrc;
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
};
METHOD void enable_source {
device_t dev;
struct intr_irqsrc *isrc;
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
};
METHOD void enable_intr {
device_t dev;
struct intr_irqsrc *isrc;
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
} DEFAULT null_pic_enable_intr;
METHOD void pre_ithread {
device_t dev;
struct intr_irqsrc *isrc;
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
};
METHOD void post_ithread {
device_t dev;
struct intr_irqsrc *isrc;
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
};
METHOD void post_filter {
device_t dev;
struct intr_irqsrc *isrc;
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
};
METHOD int bind {
device_t dev;
struct intr_irqsrc *isrc;
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
} DEFAULT null_pic_bind;
METHOD void init_secondary {
device_t dev;
} DEFAULT null_pic_init_secondary;
METHOD void ipi_send {
device_t dev;
struct intr_irqsrc *isrc;
Import ARM_INTRNG, the "next generation" interrupt architecture for arm and armv6 architecures. The primary enhancement over the old design is support for hierarchical interrupt controllers (such as a gpio driver which can receive interrupts from a root PIC and act as a PIC itself for clients interested in handling a change of gpio pin state as an interrupt). The new code also provides an infrastructure for mapping interrupts described in metadata in the form of a "controller reference plus interrupt number" tuple into the simple "0-n" flat numeric space understood by rman and the bus resource mechanisms. Use of the new code is enabled by setting the ARM_INTRNG option, and by making a few simple changes to the platform's support code. In addition each existing PIC driver needs changes to be ready for INTRNG; this commit contains the changes for the arm/gic driver, which most armv6 SoCs use, but it does not enable the new code yet on any platform. This project has been many years in the making, starting as a GSoC project by Jakub Klama (jceel@) in 2012. That didn't get committed right away and the source base evolved out from under it to some degree. In 2014 I rebased the diffs to then -current and did some enhancements in the area of mapping interrupt numbers and storing associated fdt data, then the project went cold again for a while. Eventually Svata Kraus took that work in progress and did another big round of work on it, removing most of the remaining rough edges. Finally I took that and made one more pass through it, mostly disabling the "INTR_SOLO" feature for now, pending further design discussions on how to most efficiently dispatch a pending interrupt through more than one layer of PIC. The current code with the INTR_SOLO feature disabled uses approximate 100 extra cpu cycles for each cascaded PIC the interrupt has to be passed to, so what's left to do is about efficiency, not correct operation. Differential Revision: https://reviews.freebsd.org/D2047
2015-10-18 18:26:19 +00:00
cpuset_t cpus;
} DEFAULT null_pic_ipi_send;