freebsd-dev/tools/regression/sockets/kqueue/kqueue.c

369 lines
10 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2004 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/types.h>
#include <sys/event.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
static int curtest = 1;
/*-
* This test uses UNIX domain socket pairs to perform some basic exercising
* of kqueue functionality on sockets. In particular, testing that for read
* and write filters, we see the correct detection of whether reads and
* writes should actually be able to occur.
*
* TODO:
* - Test read/write filters for listen/accept sockets.
* - Handle the XXXRW below regarding datagram sockets.
* - Test that watermark/buffer size "data" fields returned by kqueue are
* correct.
* - Check that kqueue does something sensible when the remote endpoing is
* closed.
*/
#define OK(testname) printf("ok %d - %s\n", curtest, testname); \
curtest++;
static void
fail(int error, const char *func, const char *socktype, const char *rest)
{
printf("not ok %d\n", curtest);
if (socktype == NULL)
printf("# %s(): %s\n", func, strerror(error));
else if (rest == NULL)
printf("# %s(%s): %s\n", func, socktype,
strerror(error));
else
printf("# %s(%s, %s): %s\n", func, socktype, rest,
strerror(error));
exit(-1);
}
static void
fail_assertion(const char *func, const char *socktype, const char *rest,
const char *assertion)
{
printf("not ok %d - %s\n", curtest, assertion);
if (socktype == NULL)
printf("# %s(): assertion %s failed\n", func,
assertion);
else if (rest == NULL)
printf("# %s(%s): assertion %s failed\n", func,
socktype, assertion);
else
printf("# %s(%s, %s): assertion %s failed\n", func,
socktype, rest, assertion);
exit(-1);
}
/*
* Test read kevent on a socket pair: check to make sure endpoint 0 isn't
* readable when we start, then write to endpoint 1 and confirm that endpoint
* 0 is now readable. Drain the write, then check that it's not readable
* again. Use non-blocking kqueue operations and socket operations.
*/
static void
test_evfilt_read(int kq, int fd[2], const char *socktype)
{
struct timespec ts;
struct kevent ke;
ssize_t len;
char ch;
int i;
EV_SET(&ke, fd[0], EVFILT_READ, EV_ADD, 0, 0, NULL);
if (kevent(kq, &ke, 1, NULL, 0, NULL) == -1)
fail(errno, "kevent", socktype, "EVFILT_READ, EV_ADD");
OK("EVFILT_READ, EV_ADD");
/*
* Confirm not readable to begin with, no I/O yet.
*/
ts.tv_sec = 0;
ts.tv_nsec = 0;
i = kevent(kq, NULL, 0, &ke, 1, &ts);
if (i == -1)
fail(errno, "kevent", socktype, "EVFILT_READ");
OK("EVFILT_READ");
if (i != 0)
fail_assertion("kevent", socktype, "EVFILT_READ",
"empty socket unreadable");
OK("empty socket unreadable");
/*
* Write a byte to one end.
*/
ch = 'a';
len = write(fd[1], &ch, sizeof(ch));
if (len == -1)
fail(errno, "write", socktype, NULL);
OK("write one byte");
if (len != sizeof(ch))
fail_assertion("write", socktype, NULL, "write length");
OK("write one byte length");
/*
* Other end should now be readable.
*/
ts.tv_sec = 0;
ts.tv_nsec = 0;
i = kevent(kq, NULL, 0, &ke, 1, &ts);
if (i == -1)
fail(errno, "kevent", socktype, "EVFILT_READ");
OK("EVFILT_READ");
if (i != 1)
fail_assertion("kevent", socktype, "EVFILT_READ",
"non-empty socket unreadable");
OK("non-empty socket unreadable");
/*
* Read a byte to clear the readable state.
*/
len = read(fd[0], &ch, sizeof(ch));
if (len == -1)
fail(errno, "read", socktype, NULL);
OK("read one byte");
if (len != sizeof(ch))
fail_assertion("read", socktype, NULL, "read length");
OK("read one byte length");
/*
* Now re-check for readability.
*/
ts.tv_sec = 0;
ts.tv_nsec = 0;
i = kevent(kq, NULL, 0, &ke, 1, &ts);
if (i == -1)
fail(errno, "kevent", socktype, "EVFILT_READ");
OK("EVFILT_READ");
if (i != 0)
fail_assertion("kevent", socktype, "EVFILT_READ",
"empty socket unreadable");
OK("empty socket unreadable");
EV_SET(&ke, fd[0], EVFILT_READ, EV_DELETE, 0, 0, NULL);
if (kevent(kq, &ke, 1, NULL, 0, NULL) == -1)
fail(errno, "kevent", socktype, "EVFILT_READ, EV_DELETE");
OK("EVFILT_READ, EV_DELETE");
}
static void
test_evfilt_write(int kq, int fd[2], const char *socktype)
{
struct timespec ts;
struct kevent ke;
ssize_t len;
char ch;
int i;
EV_SET(&ke, fd[0], EVFILT_WRITE, EV_ADD, 0, 0, NULL);
if (kevent(kq, &ke, 1, NULL, 0, NULL) == -1)
fail(errno, "kevent", socktype, "EVFILT_WRITE, EV_ADD");
OK("EVFILE_WRITE, EV_ADD");
/*
* Confirm writable to begin with, no I/O yet.
*/
ts.tv_sec = 0;
ts.tv_nsec = 0;
i = kevent(kq, NULL, 0, &ke, 1, &ts);
if (i == -1)
fail(errno, "kevent", socktype, "EVFILT_WRITE");
OK("EVFILE_WRITE");
if (i != 1)
fail_assertion("kevent", socktype, "EVFILT_WRITE",
"empty socket unwritable");
OK("empty socket unwritable");
/*
* Write bytes into the socket until we can't write anymore.
*/
ch = 'a';
while ((len = write(fd[0], &ch, sizeof(ch))) == sizeof(ch)) {};
if (len == -1 && errno != EAGAIN && errno != ENOBUFS)
fail(errno, "write", socktype, NULL);
OK("write");
if (len != -1 && len != sizeof(ch))
fail_assertion("write", socktype, NULL, "write length");
OK("write length");
/*
* Check to make sure the socket is no longer writable.
*/
ts.tv_sec = 0;
ts.tv_nsec = 0;
i = kevent(kq, NULL, 0, &ke, 1, &ts);
if (i == -1)
fail(errno, "kevent", socktype, "EVFILT_WRITE");
OK("EVFILT_WRITE");
if (i != 0)
fail_assertion("kevent", socktype, "EVFILT_WRITE",
"full socket writable");
OK("full socket writable");
EV_SET(&ke, fd[0], EVFILT_WRITE, EV_DELETE, 0, 0, NULL);
if (kevent(kq, &ke, 1, NULL, 0, NULL) == -1)
fail(errno, "kevent", socktype, "EVFILT_WRITE, EV_DELETE");
OK("EVFILT_WRITE, EV_DELETE");
}
/*
* Basic registration exercise for kqueue(2). Create several types/brands of
* sockets, and confirm that we can register for various events on them.
*/
int
main(void)
{
int kq, sv[2];
printf("1..49\n");
kq = kqueue();
if (kq == -1)
fail(errno, "kqueue", NULL, NULL);
OK("kqueue()");
/*
* Create a UNIX domain datagram socket, and attach/test/detach a
* read filter on it.
*/
if (socketpair(PF_UNIX, SOCK_DGRAM, 0, sv) == -1)
fail(errno, "socketpair", "PF_UNIX, SOCK_DGRAM", NULL);
OK("socketpair() 1");
if (fcntl(sv[0], F_SETFL, O_NONBLOCK) != 0)
fail(errno, "fcntl", "PF_UNIX, SOCK_DGRAM", "O_NONBLOCK");
OK("fcntl() 1");
if (fcntl(sv[1], F_SETFL, O_NONBLOCK) != 0)
fail(errno, "fcntl", "PF_UNIX, SOCK_DGRAM", "O_NONBLOCK");
OK("fnctl() 2");
test_evfilt_read(kq, sv, "PF_UNIX, SOCK_DGRAM");
if (close(sv[0]) == -1)
fail(errno, "close", "PF_UNIX/SOCK_DGRAM", "sv[0]");
OK("close() 1");
if (close(sv[1]) == -1)
fail(errno, "close", "PF_UNIX/SOCK_DGRAM", "sv[1]");
OK("close() 2");
#if 0
/*
* XXXRW: We disable the write test in the case of datagram sockets,
* as kqueue can't tell when the remote socket receive buffer is
* full, whereas the UNIX domain socket implementation can tell and
* returns ENOBUFS.
*/
/*
* Create a UNIX domain datagram socket, and attach/test/detach a
* write filter on it.
*/
if (socketpair(PF_UNIX, SOCK_DGRAM, 0, sv) == -1)
fail(errno, "socketpair", "PF_UNIX, SOCK_DGRAM", NULL);
if (fcntl(sv[0], F_SETFL, O_NONBLOCK) != 0)
fail(errno, "fcntl", "PF_UNIX, SOCK_DGRAM", "O_NONBLOCK");
if (fcntl(sv[1], F_SETFL, O_NONBLOCK) != 0)
fail(errno, "fcntl", "PF_UNIX, SOCK_DGRAM", "O_NONBLOCK");
test_evfilt_write(kq, sv, "PF_UNIX, SOCK_DGRAM");
if (close(sv[0]) == -1)
fail(errno, "close", "PF_UNIX/SOCK_DGRAM", "sv[0]");
if (close(sv[1]) == -1)
fail(errno, "close", "PF_UNIX/SOCK_DGRAM", "sv[1]");
#endif
/*
* Create a UNIX domain stream socket, and attach/test/detach a
* read filter on it.
*/
if (socketpair(PF_UNIX, SOCK_STREAM, 0, sv) == -1)
fail(errno, "socketpair", "PF_UNIX, SOCK_STREAM", NULL);
OK("socketpair() 2");
if (fcntl(sv[0], F_SETFL, O_NONBLOCK) != 0)
fail(errno, "fcntl", "PF_UNIX, SOCK_STREAM", "O_NONBLOCK");
OK("fcntl() 3");
if (fcntl(sv[1], F_SETFL, O_NONBLOCK) != 0)
fail(errno, "fcntl", "PF_UNIX, SOCK_STREAM", "O_NONBLOCK");
OK("fcntl() 4");
test_evfilt_read(kq, sv, "PF_UNIX, SOCK_STREAM");
if (close(sv[0]) == -1)
fail(errno, "close", "PF_UNIX/SOCK_STREAM", "sv[0]");
OK("close() 3");
if (close(sv[1]) == -1)
fail(errno, "close", "PF_UNIX/SOCK_STREAM", "sv[1]");
OK("close() 4");
/*
* Create a UNIX domain stream socket, and attach/test/detach a
* write filter on it.
*/
if (socketpair(PF_UNIX, SOCK_STREAM, 0, sv) == -1)
fail(errno, "socketpair", "PF_UNIX, SOCK_STREAM", NULL);
OK("socketpair() 3");
if (fcntl(sv[0], F_SETFL, O_NONBLOCK) != 0)
fail(errno, "fcntl", "PF_UNIX, SOCK_STREAM", "O_NONBLOCK");
OK("fcntl() 5");
if (fcntl(sv[1], F_SETFL, O_NONBLOCK) != 0)
fail(errno, "fcntl", "PF_UNIX, SOCK_STREAM", "O_NONBLOCK");
OK("fcntl() 6");
test_evfilt_write(kq, sv, "PF_UNIX, SOCK_STREAM");
if (close(sv[0]) == -1)
fail(errno, "close", "PF_UNIX/SOCK_STREAM", "sv[0]");
OK("close() 5");
if (close(sv[1]) == -1)
fail(errno, "close", "PF_UNIX/SOCK_STREAM", "sv[1]");
OK("close() 6");
if (close(kq) == -1)
fail(errno, "close", "kq", NULL);
OK("close() 7");
return (0);
}