freebsd-dev/utils/TableGen/CodeGenTarget.h

263 lines
8.8 KiB
C
Raw Normal View History

2009-06-02 17:52:33 +00:00
//===- CodeGenTarget.h - Target Class Wrapper -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines wrappers for the Target class and related global
// functionality. This makes it easier to access the data and provides a single
// place that needs to check it for validity. All of these classes throw
// exceptions on error conditions.
//
//===----------------------------------------------------------------------===//
#ifndef CODEGEN_TARGET_H
#define CODEGEN_TARGET_H
#include "CodeGenRegisters.h"
#include "CodeGenInstruction.h"
2010-05-27 15:15:58 +00:00
#include "Record.h"
2010-03-21 10:49:05 +00:00
#include "llvm/Support/raw_ostream.h"
2009-06-02 17:52:33 +00:00
#include <algorithm>
namespace llvm {
struct CodeGenRegister;
class CodeGenTarget;
// SelectionDAG node properties.
// SDNPMemOperand: indicates that a node touches memory and therefore must
// have an associated memory operand that describes the access.
enum SDNP {
SDNPCommutative,
SDNPAssociative,
SDNPHasChain,
SDNPOutFlag,
SDNPInFlag,
SDNPOptInFlag,
SDNPMayLoad,
SDNPMayStore,
SDNPSideEffect,
2010-03-21 10:49:05 +00:00
SDNPMemOperand,
SDNPVariadic
2009-06-02 17:52:33 +00:00
};
/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
/// record corresponds to.
MVT::SimpleValueType getValueType(Record *Rec);
std::string getName(MVT::SimpleValueType T);
std::string getEnumName(MVT::SimpleValueType T);
/// getQualifiedName - Return the name of the specified record, with a
/// namespace qualifier if the record contains one.
std::string getQualifiedName(const Record *R);
/// CodeGenTarget - This class corresponds to the Target class in the .td files.
///
class CodeGenTarget {
Record *TargetRec;
2010-03-21 10:49:05 +00:00
mutable DenseMap<const Record*, CodeGenInstruction*> Instructions;
2009-06-02 17:52:33 +00:00
mutable std::vector<CodeGenRegister> Registers;
2010-05-27 15:15:58 +00:00
mutable std::vector<Record*> SubRegIndices;
2009-06-02 17:52:33 +00:00
mutable std::vector<CodeGenRegisterClass> RegisterClasses;
mutable std::vector<MVT::SimpleValueType> LegalValueTypes;
void ReadRegisters() const;
2010-05-27 15:15:58 +00:00
void ReadSubRegIndices() const;
2009-06-02 17:52:33 +00:00
void ReadRegisterClasses() const;
void ReadInstructions() const;
void ReadLegalValueTypes() const;
2010-03-21 10:49:05 +00:00
mutable std::vector<const CodeGenInstruction*> InstrsByEnum;
2009-06-02 17:52:33 +00:00
public:
CodeGenTarget();
Record *getTargetRecord() const { return TargetRec; }
const std::string &getName() const;
/// getInstNamespace - Return the target-specific instruction namespace.
///
std::string getInstNamespace() const;
/// getInstructionSet - Return the InstructionSet object.
///
Record *getInstructionSet() const;
2009-10-14 17:57:32 +00:00
/// getAsmParser - Return the AssemblyParser definition for this target.
///
Record *getAsmParser() const;
2009-06-02 17:52:33 +00:00
/// getAsmWriter - Return the AssemblyWriter definition for this target.
///
Record *getAsmWriter() const;
const std::vector<CodeGenRegister> &getRegisters() const {
if (Registers.empty()) ReadRegisters();
return Registers;
}
2010-05-27 15:15:58 +00:00
const std::vector<Record*> &getSubRegIndices() const {
if (SubRegIndices.empty()) ReadSubRegIndices();
return SubRegIndices;
}
// Map a SubRegIndex Record to its number.
unsigned getSubRegIndexNo(Record *idx) const {
if (SubRegIndices.empty()) ReadSubRegIndices();
std::vector<Record*>::const_iterator i =
std::find(SubRegIndices.begin(), SubRegIndices.end(), idx);
assert(i != SubRegIndices.end() && "Not a SubRegIndex");
return (i - SubRegIndices.begin()) + 1;
}
2009-06-02 17:52:33 +00:00
const std::vector<CodeGenRegisterClass> &getRegisterClasses() const {
if (RegisterClasses.empty()) ReadRegisterClasses();
return RegisterClasses;
}
2010-05-27 15:15:58 +00:00
2009-06-02 17:52:33 +00:00
const CodeGenRegisterClass &getRegisterClass(Record *R) const {
const std::vector<CodeGenRegisterClass> &RC = getRegisterClasses();
for (unsigned i = 0, e = RC.size(); i != e; ++i)
if (RC[i].TheDef == R)
return RC[i];
assert(0 && "Didn't find the register class");
abort();
}
/// getRegisterClassForRegister - Find the register class that contains the
/// specified physical register. If the register is not in a register
/// class, return null. If the register is in multiple classes, and the
/// classes have a superset-subset relationship and the same set of
/// types, return the superclass. Otherwise return null.
const CodeGenRegisterClass *getRegisterClassForRegister(Record *R) const {
const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
const CodeGenRegisterClass *FoundRC = 0;
for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
const CodeGenRegisterClass &RC = RegisterClasses[i];
for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) {
if (R != RC.Elements[ei])
continue;
// If a register's classes have different types, return null.
if (FoundRC && RC.getValueTypes() != FoundRC->getValueTypes())
return 0;
// If this is the first class that contains the register,
// make a note of it and go on to the next class.
if (!FoundRC) {
FoundRC = &RC;
break;
}
std::vector<Record *> Elements(RC.Elements);
std::vector<Record *> FoundElements(FoundRC->Elements);
std::sort(Elements.begin(), Elements.end());
std::sort(FoundElements.begin(), FoundElements.end());
// Check to see if the previously found class that contains
// the register is a subclass of the current class. If so,
// prefer the superclass.
if (std::includes(Elements.begin(), Elements.end(),
FoundElements.begin(), FoundElements.end())) {
FoundRC = &RC;
break;
}
// Check to see if the previously found class that contains
// the register is a superclass of the current class. If so,
// prefer the superclass.
if (std::includes(FoundElements.begin(), FoundElements.end(),
Elements.begin(), Elements.end()))
break;
// Multiple classes, and neither is a superclass of the other.
// Return null.
return 0;
}
}
return FoundRC;
}
/// getRegisterVTs - Find the union of all possible SimpleValueTypes for the
/// specified physical register.
2010-03-16 16:51:38 +00:00
std::vector<MVT::SimpleValueType> getRegisterVTs(Record *R) const;
2009-06-02 17:52:33 +00:00
const std::vector<MVT::SimpleValueType> &getLegalValueTypes() const {
if (LegalValueTypes.empty()) ReadLegalValueTypes();
return LegalValueTypes;
}
/// isLegalValueType - Return true if the specified value type is natively
/// supported by the target (i.e. there are registers that directly hold it).
bool isLegalValueType(MVT::SimpleValueType VT) const {
const std::vector<MVT::SimpleValueType> &LegalVTs = getLegalValueTypes();
for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
if (LegalVTs[i] == VT) return true;
return false;
}
2010-03-21 10:49:05 +00:00
private:
DenseMap<const Record*, CodeGenInstruction*> &getInstructions() const {
2009-06-02 17:52:33 +00:00
if (Instructions.empty()) ReadInstructions();
return Instructions;
}
2010-03-21 10:49:05 +00:00
public:
CodeGenInstruction &getInstruction(const Record *InstRec) const {
2009-06-02 17:52:33 +00:00
if (Instructions.empty()) ReadInstructions();
2010-03-21 10:49:05 +00:00
DenseMap<const Record*, CodeGenInstruction*>::iterator I =
Instructions.find(InstRec);
assert(I != Instructions.end() && "Not an instruction");
return *I->second;
2009-06-02 17:52:33 +00:00
}
/// getInstructionsByEnumValue - Return all of the instructions defined by the
/// target, ordered by their enum value.
2010-03-21 10:49:05 +00:00
const std::vector<const CodeGenInstruction*> &
getInstructionsByEnumValue() const {
if (InstrsByEnum.empty()) ComputeInstrsByEnum();
return InstrsByEnum;
}
2009-06-02 17:52:33 +00:00
2010-03-21 10:49:05 +00:00
typedef std::vector<const CodeGenInstruction*>::const_iterator inst_iterator;
inst_iterator inst_begin() const{return getInstructionsByEnumValue().begin();}
inst_iterator inst_end() const { return getInstructionsByEnumValue().end(); }
2009-06-02 17:52:33 +00:00
/// isLittleEndianEncoding - are instruction bit patterns defined as [0..n]?
///
bool isLittleEndianEncoding() const;
2010-03-21 10:49:05 +00:00
private:
void ComputeInstrsByEnum() const;
2009-06-02 17:52:33 +00:00
};
/// ComplexPattern - ComplexPattern info, corresponding to the ComplexPattern
/// tablegen class in TargetSelectionDAG.td
class ComplexPattern {
MVT::SimpleValueType Ty;
unsigned NumOperands;
std::string SelectFunc;
std::vector<Record*> RootNodes;
unsigned Properties; // Node properties
public:
2009-11-18 14:58:34 +00:00
ComplexPattern() : NumOperands(0) {}
2009-06-02 17:52:33 +00:00
ComplexPattern(Record *R);
MVT::SimpleValueType getValueType() const { return Ty; }
unsigned getNumOperands() const { return NumOperands; }
const std::string &getSelectFunc() const { return SelectFunc; }
const std::vector<Record*> &getRootNodes() const {
return RootNodes;
}
bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
};
} // End llvm namespace
#endif