freebsd-dev/sys/dev/mii/miivar.h

258 lines
8.5 KiB
C
Raw Normal View History

This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
/* $NetBSD: miivar.h,v 1.8 1999/04/23 04:24:32 thorpej Exp $ */
/*-
* Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
1999-08-28 01:08:13 +00:00
* $FreeBSD$
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
*/
#ifndef _DEV_MII_MIIVAR_H_
#define _DEV_MII_MIIVAR_H_
#include <sys/queue.h>
/*
2002-04-29 06:48:20 +00:00
* Media Independent Interface configuration defintions.
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
*/
struct mii_softc;
/*
* Callbacks from MII layer into network interface device driver.
*/
2002-03-20 02:08:01 +00:00
typedef int (*mii_readreg_t)(struct device *, int, int);
typedef void (*mii_writereg_t)(struct device *, int, int, int);
typedef void (*mii_statchg_t)(struct device *);
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
/*
* A network interface driver has one of these structures in its softc.
* It is the interface from the network interface driver to the MII
* layer.
*/
struct mii_data {
struct ifmedia mii_media; /* media information */
struct ifnet *mii_ifp; /* pointer back to network interface */
/*
* For network interfaces with multiple PHYs, a list of all
* PHYs is required so they can all be notified when a media
* request is made.
*/
LIST_HEAD(mii_listhead, mii_softc) mii_phys;
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
int mii_instance;
/*
* PHY driver fills this in with active media status.
*/
int mii_media_status;
int mii_media_active;
/*
* Calls from MII layer into network interface driver.
*/
mii_readreg_t mii_readreg;
mii_writereg_t mii_writereg;
mii_statchg_t mii_statchg;
};
typedef struct mii_data mii_data_t;
/*
* This call is used by the MII layer to call into the PHY driver
* to perform a `service request'.
*/
2002-03-20 02:08:01 +00:00
typedef int (*mii_downcall_t)(struct mii_softc *, struct mii_data *, int);
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
/*
* Requests that can be made to the downcall.
*/
#define MII_TICK 1 /* once-per-second tick */
#define MII_MEDIACHG 2 /* user changed media; perform the switch */
#define MII_POLLSTAT 3 /* user requested media status; fill it in */
/*
* Each PHY driver's softc has one of these as the first member.
* XXX This would be better named "phy_softc", but this is the name
* XXX BSDI used, and we would like to have the same interface.
*/
struct mii_softc {
device_t mii_dev; /* generic device glue */
Add a NetBSD-compatible mii_attach(), which is intended to eventually replace mii_phy_probe() altogether. Compared to the latter the advantages of mii_attach() are: - intended to be called multiple times in order to attach PHYs in multiple passes (f.e. in order to only use sub-ranges of the 0 to MII_NPHY - 1 range) - being able to pass along the capability mask from the NIC to the PHY drivers - being able to specify at which address (phyloc) to probe for a PHY (instead of always probing at all addresses from 0 to MII_NPHY - 1) - being able to specify which PHY instance (offloc) to attach - being able to pass along MIIF_* flags from the NIC to the PHY drivers (f.e. as required to indicated to the PHY drivers that flow control is supported by the NIC driver, which actually is the motivation for this change). While at it, I used the opportunity to get rid of some hacks in mii(4) like miibus_probe() generally doing work besides sheer probing and the "EVIL HACK" (which will vanish entirely along with mii_phy_probe()) by passing the struct ifnet pointer via an argument of mii_attach() as well as to fix some resource leaks in mii(4) in case something fails. Commits which will update the PHY drivers to honor the MII flags passed down from the NIC drivers and take advantage of mii_attach() to get rid of certain types of hacks in NIC and PHY drivers as well as a conversion of the remaining uses of mii_phy_probe() will follow shortly. Reviewed by: jhb, yongari Obtained from: NetBSD (partially)
2010-10-14 22:01:40 +00:00
LIST_ENTRY(mii_softc) mii_list; /* entry on parent's PHY list */
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
int mii_phy; /* our MII address */
int mii_inst; /* instance for ifmedia */
mii_downcall_t mii_service; /* our downcall */
struct mii_data *mii_pdata; /* pointer to parent's mii_data */
int mii_flags; /* misc. flags; see below */
int mii_capabilities; /* capabilities from BMSR */
2002-04-29 06:48:20 +00:00
int mii_extcapabilities; /* extended capabilities */
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
int mii_ticks; /* MII_TICK counter */
2002-04-29 06:48:20 +00:00
int mii_anegticks; /* ticks before retrying aneg */
int mii_media_active; /* last active media */
int mii_media_status; /* last active status */
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
};
typedef struct mii_softc mii_softc_t;
/* mii_flags */
Add a NetBSD-compatible mii_attach(), which is intended to eventually replace mii_phy_probe() altogether. Compared to the latter the advantages of mii_attach() are: - intended to be called multiple times in order to attach PHYs in multiple passes (f.e. in order to only use sub-ranges of the 0 to MII_NPHY - 1 range) - being able to pass along the capability mask from the NIC to the PHY drivers - being able to specify at which address (phyloc) to probe for a PHY (instead of always probing at all addresses from 0 to MII_NPHY - 1) - being able to specify which PHY instance (offloc) to attach - being able to pass along MIIF_* flags from the NIC to the PHY drivers (f.e. as required to indicated to the PHY drivers that flow control is supported by the NIC driver, which actually is the motivation for this change). While at it, I used the opportunity to get rid of some hacks in mii(4) like miibus_probe() generally doing work besides sheer probing and the "EVIL HACK" (which will vanish entirely along with mii_phy_probe()) by passing the struct ifnet pointer via an argument of mii_attach() as well as to fix some resource leaks in mii(4) in case something fails. Commits which will update the PHY drivers to honor the MII flags passed down from the NIC drivers and take advantage of mii_attach() to get rid of certain types of hacks in NIC and PHY drivers as well as a conversion of the remaining uses of mii_phy_probe() will follow shortly. Reviewed by: jhb, yongari Obtained from: NetBSD (partially)
2010-10-14 22:01:40 +00:00
#define MIIF_INITDONE 0x00000001 /* has been initialized (mii_data) */
#define MIIF_NOISOLATE 0x00000002 /* do not isolate the PHY */
#define MIIF_NOLOOP 0x00000004 /* no loopback capability */
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control support in mii(4): - Merge generic flow control advertisement (which can be enabled by passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD, IFM_FLOW isn't implemented as a global option via the "don't care mask" but instead as a media specific option this. This has the following advantages: o allows flow control advertisement with autonegotiation to be turned on and off via ifconfig(8) with the default typically being off (though MIIF_FORCEPAUSE has been added causing flow control to be always advertised, allowing to easily MFC this changes for drivers that previously used home-grown support for flow control that behaved that way without breaking POLA) o allows to deal with PHY drivers where flow control advertisement with manual selection doesn't work or at least isn't implemented, like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4), by setting MIIF_NOMANPAUSE o the available combinations of media options are readily available from the `ifconfig -m` output - Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so these are understood by ifconfig(8). o Make the master/slave support in mii(4) actually usable: - Change IFM_ETH_MASTER from being implemented as a global option via the "don't care mask" to a media specific one as it actually is only applicable to IFM_1000_T to date. - Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to actually configure manually selected slave mode (like we also do in the PHY specific implementations). - Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it is understood by ifconfig(8). o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4), e1000phy(4) and ip1000phy(4) to use the generic flow control support instead of home-grown solutions via IFM_FLAGs. This includes changing these PHY drivers and smcphy(4) to no longer unconditionally advertise support for flow control but only if the selected media has IFM_FLOW set (or MIIF_FORCEPAUSE is set) and implemented for these media variants, i.e. typically only for copper. o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0 and some IFM_FLAGn. o Switch brgphy(4) to add at least the the supported copper media based on the contents of the BMSR via mii_phy_add_media() instead of hardcoding them. The latter approach seems to have developed historically, besides causing unnecessary code duplication it was also undesirable because brgphy_mii_phy_auto() already based the capability advertisement on the contents of the BMSR though. o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not just BCM5701. Apparently this was a misinterpretation of a workaround in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but this doesn't mean we can't set these as well on other PHYs for manual media selection. o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so IFM_1000_T master mode support now is generally available with all PHY drivers. o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's not applicable there. Reviewed by: yongari (plus additional testing) Obtained from: NetBSD (partially), OpenBSD (partially) MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
#define MIIF_DOINGAUTO 0x00000008 /* doing autonegotiation (mii_softc) */
Add a NetBSD-compatible mii_attach(), which is intended to eventually replace mii_phy_probe() altogether. Compared to the latter the advantages of mii_attach() are: - intended to be called multiple times in order to attach PHYs in multiple passes (f.e. in order to only use sub-ranges of the 0 to MII_NPHY - 1 range) - being able to pass along the capability mask from the NIC to the PHY drivers - being able to specify at which address (phyloc) to probe for a PHY (instead of always probing at all addresses from 0 to MII_NPHY - 1) - being able to specify which PHY instance (offloc) to attach - being able to pass along MIIF_* flags from the NIC to the PHY drivers (f.e. as required to indicated to the PHY drivers that flow control is supported by the NIC driver, which actually is the motivation for this change). While at it, I used the opportunity to get rid of some hacks in mii(4) like miibus_probe() generally doing work besides sheer probing and the "EVIL HACK" (which will vanish entirely along with mii_phy_probe()) by passing the struct ifnet pointer via an argument of mii_attach() as well as to fix some resource leaks in mii(4) in case something fails. Commits which will update the PHY drivers to honor the MII flags passed down from the NIC drivers and take advantage of mii_attach() to get rid of certain types of hacks in NIC and PHY drivers as well as a conversion of the remaining uses of mii_phy_probe() will follow shortly. Reviewed by: jhb, yongari Obtained from: NetBSD (partially)
2010-10-14 22:01:40 +00:00
#define MIIF_AUTOTSLEEP 0x00000010 /* use tsleep(), not callout() */
#define MIIF_HAVEFIBER 0x00000020 /* from parent: has fiber interface */
#define MIIF_HAVE_GTCR 0x00000040 /* has 100base-T2/1000base-T CR */
#define MIIF_IS_1000X 0x00000080 /* is a 1000BASE-X device */
#define MIIF_DOPAUSE 0x00000100 /* advertise PAUSE capability */
#define MIIF_IS_HPNA 0x00000200 /* is a HomePNA device */
#define MIIF_FORCEANEG 0x00000400 /* force auto-negotiation */
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control support in mii(4): - Merge generic flow control advertisement (which can be enabled by passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD, IFM_FLOW isn't implemented as a global option via the "don't care mask" but instead as a media specific option this. This has the following advantages: o allows flow control advertisement with autonegotiation to be turned on and off via ifconfig(8) with the default typically being off (though MIIF_FORCEPAUSE has been added causing flow control to be always advertised, allowing to easily MFC this changes for drivers that previously used home-grown support for flow control that behaved that way without breaking POLA) o allows to deal with PHY drivers where flow control advertisement with manual selection doesn't work or at least isn't implemented, like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4), by setting MIIF_NOMANPAUSE o the available combinations of media options are readily available from the `ifconfig -m` output - Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so these are understood by ifconfig(8). o Make the master/slave support in mii(4) actually usable: - Change IFM_ETH_MASTER from being implemented as a global option via the "don't care mask" to a media specific one as it actually is only applicable to IFM_1000_T to date. - Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to actually configure manually selected slave mode (like we also do in the PHY specific implementations). - Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it is understood by ifconfig(8). o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4), e1000phy(4) and ip1000phy(4) to use the generic flow control support instead of home-grown solutions via IFM_FLAGs. This includes changing these PHY drivers and smcphy(4) to no longer unconditionally advertise support for flow control but only if the selected media has IFM_FLOW set (or MIIF_FORCEPAUSE is set) and implemented for these media variants, i.e. typically only for copper. o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0 and some IFM_FLAGn. o Switch brgphy(4) to add at least the the supported copper media based on the contents of the BMSR via mii_phy_add_media() instead of hardcoding them. The latter approach seems to have developed historically, besides causing unnecessary code duplication it was also undesirable because brgphy_mii_phy_auto() already based the capability advertisement on the contents of the BMSR though. o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not just BCM5701. Apparently this was a misinterpretation of a workaround in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but this doesn't mean we can't set these as well on other PHYs for manual media selection. o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so IFM_1000_T master mode support now is generally available with all PHY drivers. o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's not applicable there. Reviewed by: yongari (plus additional testing) Obtained from: NetBSD (partially), OpenBSD (partially) MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
#define MIIF_NOMANPAUSE 0x00100000 /* no manual PAUSE selection */
#define MIIF_FORCEPAUSE 0x00200000 /* force PAUSE advertisment */
Add a NetBSD-compatible mii_attach(), which is intended to eventually replace mii_phy_probe() altogether. Compared to the latter the advantages of mii_attach() are: - intended to be called multiple times in order to attach PHYs in multiple passes (f.e. in order to only use sub-ranges of the 0 to MII_NPHY - 1 range) - being able to pass along the capability mask from the NIC to the PHY drivers - being able to specify at which address (phyloc) to probe for a PHY (instead of always probing at all addresses from 0 to MII_NPHY - 1) - being able to specify which PHY instance (offloc) to attach - being able to pass along MIIF_* flags from the NIC to the PHY drivers (f.e. as required to indicated to the PHY drivers that flow control is supported by the NIC driver, which actually is the motivation for this change). While at it, I used the opportunity to get rid of some hacks in mii(4) like miibus_probe() generally doing work besides sheer probing and the "EVIL HACK" (which will vanish entirely along with mii_phy_probe()) by passing the struct ifnet pointer via an argument of mii_attach() as well as to fix some resource leaks in mii(4) in case something fails. Commits which will update the PHY drivers to honor the MII flags passed down from the NIC drivers and take advantage of mii_attach() to get rid of certain types of hacks in NIC and PHY drivers as well as a conversion of the remaining uses of mii_phy_probe() will follow shortly. Reviewed by: jhb, yongari Obtained from: NetBSD (partially)
2010-10-14 22:01:40 +00:00
#define MIIF_MACPRIV0 0x01000000 /* private to the MAC driver */
#define MIIF_MACPRIV1 0x02000000 /* private to the MAC driver */
#define MIIF_MACPRIV2 0x04000000 /* private to the MAC driver */
#define MIIF_PHYPRIV0 0x10000000 /* private to the PHY driver */
#define MIIF_PHYPRIV1 0x20000000 /* private to the PHY driver */
#define MIIF_PHYPRIV2 0x40000000 /* private to the PHY driver */
/* Default mii_anegticks values */
#define MII_ANEGTICKS 5
#define MII_ANEGTICKS_GIGE 17
#define MIIF_INHERIT_MASK (MIIF_NOISOLATE|MIIF_NOLOOP|MIIF_AUTOTSLEEP)
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
Add a NetBSD-compatible mii_attach(), which is intended to eventually replace mii_phy_probe() altogether. Compared to the latter the advantages of mii_attach() are: - intended to be called multiple times in order to attach PHYs in multiple passes (f.e. in order to only use sub-ranges of the 0 to MII_NPHY - 1 range) - being able to pass along the capability mask from the NIC to the PHY drivers - being able to specify at which address (phyloc) to probe for a PHY (instead of always probing at all addresses from 0 to MII_NPHY - 1) - being able to specify which PHY instance (offloc) to attach - being able to pass along MIIF_* flags from the NIC to the PHY drivers (f.e. as required to indicated to the PHY drivers that flow control is supported by the NIC driver, which actually is the motivation for this change). While at it, I used the opportunity to get rid of some hacks in mii(4) like miibus_probe() generally doing work besides sheer probing and the "EVIL HACK" (which will vanish entirely along with mii_phy_probe()) by passing the struct ifnet pointer via an argument of mii_attach() as well as to fix some resource leaks in mii(4) in case something fails. Commits which will update the PHY drivers to honor the MII flags passed down from the NIC drivers and take advantage of mii_attach() to get rid of certain types of hacks in NIC and PHY drivers as well as a conversion of the remaining uses of mii_phy_probe() will follow shortly. Reviewed by: jhb, yongari Obtained from: NetBSD (partially)
2010-10-14 22:01:40 +00:00
/*
* Special `locators' passed to mii_attach(). If one of these is not
* an `any' value, we look for *that* PHY and configure it. If both
2010-10-31 22:41:53 +00:00
* are not `any', that is an error, and mii_attach() will fail.
Add a NetBSD-compatible mii_attach(), which is intended to eventually replace mii_phy_probe() altogether. Compared to the latter the advantages of mii_attach() are: - intended to be called multiple times in order to attach PHYs in multiple passes (f.e. in order to only use sub-ranges of the 0 to MII_NPHY - 1 range) - being able to pass along the capability mask from the NIC to the PHY drivers - being able to specify at which address (phyloc) to probe for a PHY (instead of always probing at all addresses from 0 to MII_NPHY - 1) - being able to specify which PHY instance (offloc) to attach - being able to pass along MIIF_* flags from the NIC to the PHY drivers (f.e. as required to indicated to the PHY drivers that flow control is supported by the NIC driver, which actually is the motivation for this change). While at it, I used the opportunity to get rid of some hacks in mii(4) like miibus_probe() generally doing work besides sheer probing and the "EVIL HACK" (which will vanish entirely along with mii_phy_probe()) by passing the struct ifnet pointer via an argument of mii_attach() as well as to fix some resource leaks in mii(4) in case something fails. Commits which will update the PHY drivers to honor the MII flags passed down from the NIC drivers and take advantage of mii_attach() to get rid of certain types of hacks in NIC and PHY drivers as well as a conversion of the remaining uses of mii_phy_probe() will follow shortly. Reviewed by: jhb, yongari Obtained from: NetBSD (partially)
2010-10-14 22:01:40 +00:00
*/
#define MII_OFFSET_ANY -1
#define MII_PHY_ANY -1
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
/*
* Used to attach a PHY to a parent.
*/
struct mii_attach_args {
struct mii_data *mii_data; /* pointer to parent data */
int mii_phyno; /* MII address */
int mii_id1; /* PHY ID register 1 */
int mii_id2; /* PHY ID register 2 */
int mii_capmask; /* capability mask from BMSR */
};
typedef struct mii_attach_args mii_attach_args_t;
/*
* Used to match a PHY.
*/
struct mii_phydesc {
u_int32_t mpd_oui; /* the PHY's OUI */
u_int32_t mpd_model; /* the PHY's model */
const char *mpd_name; /* the PHY's name */
};
#define MII_PHY_DESC(a, b) { MII_OUI_ ## a, MII_MODEL_ ## a ## _ ## b, \
MII_STR_ ## a ## _ ## b }
#define MII_PHY_END { 0, 0, NULL }
/*
* An array of these structures map MII media types to BMCR/ANAR settings.
*/
struct mii_media {
int mm_bmcr; /* BMCR settings for this media */
int mm_anar; /* ANAR settings for this media */
int mm_gtcr; /* 100base-T2 or 1000base-T CR */
};
#define MII_MEDIA_NONE 0
#define MII_MEDIA_10_T 1
#define MII_MEDIA_10_T_FDX 2
#define MII_MEDIA_100_T4 3
#define MII_MEDIA_100_TX 4
#define MII_MEDIA_100_TX_FDX 5
#define MII_MEDIA_1000_X 6
#define MII_MEDIA_1000_X_FDX 7
#define MII_MEDIA_1000_T 8
#define MII_MEDIA_1000_T_FDX 9
#define MII_NMEDIA 10
#ifdef _KERNEL
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
#define PHY_READ(p, r) \
MIIBUS_READREG((p)->mii_dev, (p)->mii_phy, (r))
#define PHY_WRITE(p, r, v) \
MIIBUS_WRITEREG((p)->mii_dev, (p)->mii_phy, (r), (v))
Add a NetBSD-compatible mii_attach(), which is intended to eventually replace mii_phy_probe() altogether. Compared to the latter the advantages of mii_attach() are: - intended to be called multiple times in order to attach PHYs in multiple passes (f.e. in order to only use sub-ranges of the 0 to MII_NPHY - 1 range) - being able to pass along the capability mask from the NIC to the PHY drivers - being able to specify at which address (phyloc) to probe for a PHY (instead of always probing at all addresses from 0 to MII_NPHY - 1) - being able to specify which PHY instance (offloc) to attach - being able to pass along MIIF_* flags from the NIC to the PHY drivers (f.e. as required to indicated to the PHY drivers that flow control is supported by the NIC driver, which actually is the motivation for this change). While at it, I used the opportunity to get rid of some hacks in mii(4) like miibus_probe() generally doing work besides sheer probing and the "EVIL HACK" (which will vanish entirely along with mii_phy_probe()) by passing the struct ifnet pointer via an argument of mii_attach() as well as to fix some resource leaks in mii(4) in case something fails. Commits which will update the PHY drivers to honor the MII flags passed down from the NIC drivers and take advantage of mii_attach() to get rid of certain types of hacks in NIC and PHY drivers as well as a conversion of the remaining uses of mii_phy_probe() will follow shortly. Reviewed by: jhb, yongari Obtained from: NetBSD (partially)
2010-10-14 22:01:40 +00:00
enum miibus_device_ivars {
MIIBUS_IVAR_FLAGS
};
/*
* Simplified accessors for miibus
*/
#define MIIBUS_ACCESSOR(var, ivar, type) \
__BUS_ACCESSOR(miibus, var, MIIBUS, ivar, type)
MIIBUS_ACCESSOR(flags, FLAGS, int)
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
extern devclass_t miibus_devclass;
extern driver_t miibus_driver;
2002-03-20 02:08:01 +00:00
int miibus_probe(device_t);
int miibus_attach(device_t);
int miibus_detach(device_t);
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
Add a NetBSD-compatible mii_attach(), which is intended to eventually replace mii_phy_probe() altogether. Compared to the latter the advantages of mii_attach() are: - intended to be called multiple times in order to attach PHYs in multiple passes (f.e. in order to only use sub-ranges of the 0 to MII_NPHY - 1 range) - being able to pass along the capability mask from the NIC to the PHY drivers - being able to specify at which address (phyloc) to probe for a PHY (instead of always probing at all addresses from 0 to MII_NPHY - 1) - being able to specify which PHY instance (offloc) to attach - being able to pass along MIIF_* flags from the NIC to the PHY drivers (f.e. as required to indicated to the PHY drivers that flow control is supported by the NIC driver, which actually is the motivation for this change). While at it, I used the opportunity to get rid of some hacks in mii(4) like miibus_probe() generally doing work besides sheer probing and the "EVIL HACK" (which will vanish entirely along with mii_phy_probe()) by passing the struct ifnet pointer via an argument of mii_attach() as well as to fix some resource leaks in mii(4) in case something fails. Commits which will update the PHY drivers to honor the MII flags passed down from the NIC drivers and take advantage of mii_attach() to get rid of certain types of hacks in NIC and PHY drivers as well as a conversion of the remaining uses of mii_phy_probe() will follow shortly. Reviewed by: jhb, yongari Obtained from: NetBSD (partially)
2010-10-14 22:01:40 +00:00
int mii_attach(device_t, device_t *, struct ifnet *, ifm_change_cb_t,
ifm_stat_cb_t, int, int, int, int);
void mii_down(struct mii_data *);
2002-03-20 02:08:01 +00:00
int mii_mediachg(struct mii_data *);
void mii_tick(struct mii_data *);
void mii_pollstat(struct mii_data *);
void mii_phy_add_media(struct mii_softc *);
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
int mii_phy_auto(struct mii_softc *);
int mii_phy_detach(device_t dev);
void mii_phy_down(struct mii_softc *);
o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control support in mii(4): - Merge generic flow control advertisement (which can be enabled by passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD, IFM_FLOW isn't implemented as a global option via the "don't care mask" but instead as a media specific option this. This has the following advantages: o allows flow control advertisement with autonegotiation to be turned on and off via ifconfig(8) with the default typically being off (though MIIF_FORCEPAUSE has been added causing flow control to be always advertised, allowing to easily MFC this changes for drivers that previously used home-grown support for flow control that behaved that way without breaking POLA) o allows to deal with PHY drivers where flow control advertisement with manual selection doesn't work or at least isn't implemented, like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4), by setting MIIF_NOMANPAUSE o the available combinations of media options are readily available from the `ifconfig -m` output - Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so these are understood by ifconfig(8). o Make the master/slave support in mii(4) actually usable: - Change IFM_ETH_MASTER from being implemented as a global option via the "don't care mask" to a media specific one as it actually is only applicable to IFM_1000_T to date. - Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to actually configure manually selected slave mode (like we also do in the PHY specific implementations). - Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it is understood by ifconfig(8). o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4), e1000phy(4) and ip1000phy(4) to use the generic flow control support instead of home-grown solutions via IFM_FLAGs. This includes changing these PHY drivers and smcphy(4) to no longer unconditionally advertise support for flow control but only if the selected media has IFM_FLOW set (or MIIF_FORCEPAUSE is set) and implemented for these media variants, i.e. typically only for copper. o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0 and some IFM_FLAGn. o Switch brgphy(4) to add at least the the supported copper media based on the contents of the BMSR via mii_phy_add_media() instead of hardcoding them. The latter approach seems to have developed historically, besides causing unnecessary code duplication it was also undesirable because brgphy_mii_phy_auto() already based the capability advertisement on the contents of the BMSR though. o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not just BCM5701. Apparently this was a misinterpretation of a workaround in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but this doesn't mean we can't set these as well on other PHYs for manual media selection. o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so IFM_1000_T master mode support now is generally available with all PHY drivers. o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's not applicable there. Reviewed by: yongari (plus additional testing) Obtained from: NetBSD (partially), OpenBSD (partially) MFC after: 2 weeks
2010-11-14 13:26:10 +00:00
u_int mii_phy_flowstatus(struct mii_softc *);
2002-03-20 02:08:01 +00:00
void mii_phy_reset(struct mii_softc *);
void mii_phy_setmedia(struct mii_softc *sc);
2002-03-20 02:08:01 +00:00
void mii_phy_update(struct mii_softc *, int);
int mii_phy_tick(struct mii_softc *);
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
const struct mii_phydesc * mii_phy_match(const struct mii_attach_args *ma,
const struct mii_phydesc *mpd);
const struct mii_phydesc * mii_phy_match_gen(const struct mii_attach_args *ma,
const struct mii_phydesc *mpd, size_t endlen);
int mii_phy_dev_probe(device_t dev, const struct mii_phydesc *mpd, int mrv);
2002-03-20 02:08:01 +00:00
void ukphy_status(struct mii_softc *);
#endif /* _KERNEL */
This commit adds support for the NetBSD MII abstraction layer and MII-compliant PHY drivers. Many 10/100 ethernet NICs available today either use an MII transceiver or have built-in transceivers that can be programmed using an MII interface. It makes sense then to separate this support out into common code instead of duplicating it in all of the NIC drivers. The mii code also handles all of the media detection, selection and reporting via the ifmedia interface. This is basically the same code from NetBSD's /sys/dev/mii, except it's been adapted to FreeBSD's bus architecture. The advantage to this is that it automatically allows everything to be turned into a loadable module. There are some common functions for use in drivers once an miibus has been attached (mii_mediachg(), mii_pollstat(), mii_tick()) as well as individual PHY drivers. There is also a generic driver for all PHYs that aren't handled by a specific driver. It's possible to do this because all 10/100 PHYs implement the same general register set in addition to their vendor-specific register sets, so for the most part you can use one driver for pretty much any PHY. There are a couple of oddball exceptions though, hence the need to have specific drivers. There are two layers: the generic "miibus" layer and the PHY driver layer. The drivers are child devices of "miibus" and the "miibus" is a child of a given NIC driver. The "miibus" code and the PHY drivers can actually be compiled and kldoaded as completely separate modules or compiled together into one module. For the moment I'm using the latter approach since the code is relatively small. Currently there are only three PHY drivers here: the generic driver, the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding others later as I convert various NIC drivers to use this code. I realize that I'm cvs adding this stuff instead of importing it onto a separate vendor branch, but in my opinion the import approach doesn't really offer any significant advantage: I'm going to be maintaining this stuff and writing my own PHY drivers one way or the other.
1999-08-21 17:40:53 +00:00
#endif /* _DEV_MII_MIIVAR_H_ */