freebsd-dev/sys/dev/ath/ath_hal/ar5212/ar5212_misc.c

1074 lines
30 KiB
C
Raw Normal View History

2008-11-28 00:03:41 +00:00
/*
Overhaul regulatory support: o remove HAL_CHANNEL; convert the hal to use net80211 channels; this mostly involves mechanical changes to variable names and channel attribute macros o gut HAL_CHANNEL_PRIVATE as most of the contents are now redundant with the net80211 channel available o change api for ath_hal_init_channels: no more reglass id's, no more outdoor indication (was a noop), anM contents o add ath_hal_getchannels to have the hal construct a channel list without altering runtime state; this is used to retrieve the calibration list for the device in ath_getradiocaps o add ath_hal_set_channels to take a channel list and regulatory data from above and construct internal state to match (maps frequencies for 900MHz cards, setup for CTL lookups, etc) o compact the private channel table: we keep one private channel per frequency instead of one per HAL_CHANNEL; this gives a big space savings and potentially improves ani and calibration by sharing state (to be seen; didn't see anything in testing); a new config option AH_MAXCHAN controls the table size (default to 96 which was chosen to be ~3x the largest expected size) o shrink ani state and change to mirror private channel table (one entry per frequency indexed by ic_devdata) o move ani state flags to private channel state o remove country codes; use net80211 definitions instead o remove GSM regulatory support; it's no longer needed now that we pass in channel lists from above o consolidate ADHOC_NO_11A attribute with DISALLOW_ADHOC_11A o simplify initial channel list construction based on the EEPROM contents; we preserve country code support for now but may want to just fallback to a WWR sku and dispatch the discovered country code up to user space so the channel list can be constructed using the master regdomain tables o defer to net80211 for max antenna gain o eliminate sorting of internal channel table; now that we use ic_devdata as an index, table lookups are O(1) o remove internal copy of the country code; the public one is sufficient o remove AH_SUPPORT_11D conditional compilation; we always support 11d o remove ath_hal_ispublicsafetysku; not needed any more o remove ath_hal_isgsmsku; no more GSM stuff o move Conformance Test Limit (CTL) state from private channel to a lookup using per-band pointers cached in the private state block o remove regulatory class id support; was unused and belongs in net80211 o fix channel list construction to set IEEE80211_CHAN_NOADHOC, IEEE80211_CHAN_NOHOSTAP, and IEEE80211_CHAN_4MSXMIT o remove private channel flags CHANNEL_DFS and CHANNEL_4MS_LIMIT; these are now set in the constructed net80211 channel o store CHANNEL_NFCREQUIRED (Noise Floor Required) channel attribute in one of the driver-private flag bits of the net80211 channel o move 900MHz frequency mapping into the hal; the mapped frequency is stored in the private channel and used throughout the hal (no more mapping in the driver and/or net80211) o remove ath_hal_mhz2ieee; it's no longer needed as net80211 does the calculation and available in the net80211 channel o change noise floor calibration logic to work with compacted private channel table setup; this may require revisiting as we no longer can distinguish channel attributes (e.g. 11b vs 11g vs turbo) but since the data is used only to calculate status data we can live with it for now o change ah_getChipPowerLimits internal method to operate on a single channel instead of all channels in the private channel table o add ath_hal_gethwchannel to map a net80211 channel to a h/w frequency (always the same except for 900MHz channels) o add HAL_EEBADREG and HAL_EEBADCC status codes to better identify regulatory problems o remove CTRY_DEBUG and CTRY_DEFAULT enum's; these come from net80211 now o change ath_hal_getwirelessmodes to really return wireless modes supported by the hardware (was previously applying regulatory constraints) o return channel interference status with IEEE80211_CHANSTATE_CWINT (should change to a callback so hal api's can take const pointers) o remove some #define's no longer needed with the inclusion of <net80211/_ieee80211.h> Sponsored by: Carlson Wireless
2009-01-28 18:00:22 +00:00
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
2008-11-28 00:03:41 +00:00
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
2008-12-11 04:03:50 +00:00
* $FreeBSD$
2008-11-28 00:03:41 +00:00
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#ifdef AH_DEBUG
#include "ah_desc.h" /* NB: for HAL_PHYERR* */
#endif
#include "ar5212/ar5212.h"
#include "ar5212/ar5212reg.h"
#include "ar5212/ar5212phy.h"
#include "ah_eeprom_v3.h"
#define AR_NUM_GPIO 6 /* 6 GPIO pins */
#define AR_GPIOD_MASK 0x0000002F /* GPIO data reg r/w mask */
void
ar5212GetMacAddress(struct ath_hal *ah, uint8_t *mac)
{
struct ath_hal_5212 *ahp = AH5212(ah);
OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
}
HAL_BOOL
ar5212SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
{
struct ath_hal_5212 *ahp = AH5212(ah);
OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
return AH_TRUE;
}
void
ar5212GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
{
struct ath_hal_5212 *ahp = AH5212(ah);
OS_MEMCPY(mask, ahp->ah_bssidmask, IEEE80211_ADDR_LEN);
}
HAL_BOOL
ar5212SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
{
struct ath_hal_5212 *ahp = AH5212(ah);
/* save it since it must be rewritten on reset */
OS_MEMCPY(ahp->ah_bssidmask, mask, IEEE80211_ADDR_LEN);
OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
return AH_TRUE;
}
/*
* Attempt to change the cards operating regulatory domain to the given value
*/
HAL_BOOL
ar5212SetRegulatoryDomain(struct ath_hal *ah,
uint16_t regDomain, HAL_STATUS *status)
{
HAL_STATUS ecode;
if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
ecode = HAL_EINVAL;
goto bad;
}
if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
ecode = HAL_EEWRITE;
goto bad;
}
#ifdef AH_SUPPORT_WRITE_REGDOMAIN
if (ath_hal_eepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: set regulatory domain to %u (0x%x)\n",
__func__, regDomain, regDomain);
AH_PRIVATE(ah)->ah_currentRD = regDomain;
return AH_TRUE;
}
#endif
ecode = HAL_EIO;
bad:
if (status)
*status = ecode;
return AH_FALSE;
}
2008-11-28 00:03:41 +00:00
/*
* Return the wireless modes (a,b,g,t) supported by hardware.
*
* This value is what is actually supported by the hardware
* and is unaffected by regulatory/country code settings.
*/
u_int
ar5212GetWirelessModes(struct ath_hal *ah)
{
u_int mode = 0;
if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
mode = HAL_MODE_11A;
if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
mode |= HAL_MODE_TURBO | HAL_MODE_108A;
if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
mode |= HAL_MODE_11A_HALF_RATE;
if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
mode |= HAL_MODE_11A_QUARTER_RATE;
2008-11-28 00:03:41 +00:00
}
if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
mode |= HAL_MODE_11B;
if (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) &&
AH_PRIVATE(ah)->ah_subvendorid != AR_SUBVENDOR_ID_NOG) {
mode |= HAL_MODE_11G;
if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO2DISABLE))
mode |= HAL_MODE_108G;
if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
mode |= HAL_MODE_11G_HALF_RATE;
if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
mode |= HAL_MODE_11G_QUARTER_RATE;
2008-11-28 00:03:41 +00:00
}
return mode;
}
/*
* Set the interrupt and GPIO values so the ISR can disable RF
* on a switch signal. Assumes GPIO port and interrupt polarity
* are set prior to call.
*/
void
ar5212EnableRfKill(struct ath_hal *ah)
{
uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
/*
* Configure the desired GPIO port for input
* and enable baseband rf silence.
*/
ath_hal_gpioCfgInput(ah, select);
OS_REG_SET_BIT(ah, AR_PHY(0), 0x00002000);
/*
* If radio disable switch connection to GPIO bit x is enabled
* program GPIO interrupt.
* If rfkill bit on eeprom is 1, setupeeprommap routine has already
* verified that it is a later version of eeprom, it has a place for
* rfkill bit and it is set to 1, indicating that GPIO bit x hardware
* connection is present.
*/
ath_hal_gpioSetIntr(ah, select,
(ath_hal_gpioGet(ah, select) == polarity ? !polarity : polarity));
}
/*
* Change the LED blinking pattern to correspond to the connectivity
*/
void
ar5212SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
{
static const uint32_t ledbits[8] = {
AR_PCICFG_LEDCTL_NONE, /* HAL_LED_INIT */
AR_PCICFG_LEDCTL_PEND, /* HAL_LED_SCAN */
AR_PCICFG_LEDCTL_PEND, /* HAL_LED_AUTH */
AR_PCICFG_LEDCTL_ASSOC, /* HAL_LED_ASSOC*/
AR_PCICFG_LEDCTL_ASSOC, /* HAL_LED_RUN */
AR_PCICFG_LEDCTL_NONE,
AR_PCICFG_LEDCTL_NONE,
AR_PCICFG_LEDCTL_NONE,
};
uint32_t bits;
bits = OS_REG_READ(ah, AR_PCICFG);
if (IS_2417(ah)) {
/*
* Enable LED for Nala. There is a bit marked reserved
* that must be set and we also turn on the power led.
* Because we mark s/w LED control setting the control
* status bits below is meangless (the driver must flash
* the LED(s) using the GPIO lines).
*/
bits = (bits &~ AR_PCICFG_LEDMODE)
| SM(AR_PCICFG_LEDMODE_POWON, AR_PCICFG_LEDMODE)
#if 0
| SM(AR_PCICFG_LEDMODE_NETON, AR_PCICFG_LEDMODE)
#endif
| 0x08000000;
}
bits = (bits &~ AR_PCICFG_LEDCTL)
| SM(ledbits[state & 0x7], AR_PCICFG_LEDCTL);
OS_REG_WRITE(ah, AR_PCICFG, bits);
}
/*
* Change association related fields programmed into the hardware.
* Writing a valid BSSID to the hardware effectively enables the hardware
* to synchronize its TSF to the correct beacons and receive frames coming
* from that BSSID. It is called by the SME JOIN operation.
*/
void
ar5212WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
{
struct ath_hal_5212 *ahp = AH5212(ah);
/* XXX save bssid for possible re-use on reset */
OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
}
/*
* Get the current hardware tsf for stamlme
*/
uint64_t
ar5212GetTsf64(struct ath_hal *ah)
{
uint32_t low1, low2, u32;
/* sync multi-word read */
low1 = OS_REG_READ(ah, AR_TSF_L32);
u32 = OS_REG_READ(ah, AR_TSF_U32);
low2 = OS_REG_READ(ah, AR_TSF_L32);
if (low2 < low1) { /* roll over */
/*
* If we are not preempted this will work. If we are
* then we re-reading AR_TSF_U32 does no good as the
* low bits will be meaningless. Likewise reading
* L32, U32, U32, then comparing the last two reads
* to check for rollover doesn't help if preempted--so
* we take this approach as it costs one less PCI read
* which can be noticeable when doing things like
* timestamping packets in monitor mode.
2008-11-28 00:03:41 +00:00
*/
u32++;
}
return (((uint64_t) u32) << 32) | ((uint64_t) low2);
}
/*
* Get the current hardware tsf for stamlme
*/
uint32_t
ar5212GetTsf32(struct ath_hal *ah)
{
return OS_REG_READ(ah, AR_TSF_L32);
}
/*
* Reset the current hardware tsf for stamlme.
*/
void
ar5212ResetTsf(struct ath_hal *ah)
{
uint32_t val = OS_REG_READ(ah, AR_BEACON);
OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
/*
* When resetting the TSF, write twice to the
* corresponding register; each write to the RESET_TSF bit toggles
* the internal signal to cause a reset of the TSF - but if the signal
* is left high, it will reset the TSF on the next chip reset also!
* writing the bit an even number of times fixes this issue
*/
OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
}
/*
* Set or clear hardware basic rate bit
* Set hardware basic rate set if basic rate is found
* and basic rate is equal or less than 2Mbps
*/
void
ar5212SetBasicRate(struct ath_hal *ah, HAL_RATE_SET *rs)
{
Overhaul regulatory support: o remove HAL_CHANNEL; convert the hal to use net80211 channels; this mostly involves mechanical changes to variable names and channel attribute macros o gut HAL_CHANNEL_PRIVATE as most of the contents are now redundant with the net80211 channel available o change api for ath_hal_init_channels: no more reglass id's, no more outdoor indication (was a noop), anM contents o add ath_hal_getchannels to have the hal construct a channel list without altering runtime state; this is used to retrieve the calibration list for the device in ath_getradiocaps o add ath_hal_set_channels to take a channel list and regulatory data from above and construct internal state to match (maps frequencies for 900MHz cards, setup for CTL lookups, etc) o compact the private channel table: we keep one private channel per frequency instead of one per HAL_CHANNEL; this gives a big space savings and potentially improves ani and calibration by sharing state (to be seen; didn't see anything in testing); a new config option AH_MAXCHAN controls the table size (default to 96 which was chosen to be ~3x the largest expected size) o shrink ani state and change to mirror private channel table (one entry per frequency indexed by ic_devdata) o move ani state flags to private channel state o remove country codes; use net80211 definitions instead o remove GSM regulatory support; it's no longer needed now that we pass in channel lists from above o consolidate ADHOC_NO_11A attribute with DISALLOW_ADHOC_11A o simplify initial channel list construction based on the EEPROM contents; we preserve country code support for now but may want to just fallback to a WWR sku and dispatch the discovered country code up to user space so the channel list can be constructed using the master regdomain tables o defer to net80211 for max antenna gain o eliminate sorting of internal channel table; now that we use ic_devdata as an index, table lookups are O(1) o remove internal copy of the country code; the public one is sufficient o remove AH_SUPPORT_11D conditional compilation; we always support 11d o remove ath_hal_ispublicsafetysku; not needed any more o remove ath_hal_isgsmsku; no more GSM stuff o move Conformance Test Limit (CTL) state from private channel to a lookup using per-band pointers cached in the private state block o remove regulatory class id support; was unused and belongs in net80211 o fix channel list construction to set IEEE80211_CHAN_NOADHOC, IEEE80211_CHAN_NOHOSTAP, and IEEE80211_CHAN_4MSXMIT o remove private channel flags CHANNEL_DFS and CHANNEL_4MS_LIMIT; these are now set in the constructed net80211 channel o store CHANNEL_NFCREQUIRED (Noise Floor Required) channel attribute in one of the driver-private flag bits of the net80211 channel o move 900MHz frequency mapping into the hal; the mapped frequency is stored in the private channel and used throughout the hal (no more mapping in the driver and/or net80211) o remove ath_hal_mhz2ieee; it's no longer needed as net80211 does the calculation and available in the net80211 channel o change noise floor calibration logic to work with compacted private channel table setup; this may require revisiting as we no longer can distinguish channel attributes (e.g. 11b vs 11g vs turbo) but since the data is used only to calculate status data we can live with it for now o change ah_getChipPowerLimits internal method to operate on a single channel instead of all channels in the private channel table o add ath_hal_gethwchannel to map a net80211 channel to a h/w frequency (always the same except for 900MHz channels) o add HAL_EEBADREG and HAL_EEBADCC status codes to better identify regulatory problems o remove CTRY_DEBUG and CTRY_DEFAULT enum's; these come from net80211 now o change ath_hal_getwirelessmodes to really return wireless modes supported by the hardware (was previously applying regulatory constraints) o return channel interference status with IEEE80211_CHANSTATE_CWINT (should change to a callback so hal api's can take const pointers) o remove some #define's no longer needed with the inclusion of <net80211/_ieee80211.h> Sponsored by: Carlson Wireless
2009-01-28 18:00:22 +00:00
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2008-11-28 00:03:41 +00:00
uint32_t reg;
uint8_t xset;
int i;
Overhaul regulatory support: o remove HAL_CHANNEL; convert the hal to use net80211 channels; this mostly involves mechanical changes to variable names and channel attribute macros o gut HAL_CHANNEL_PRIVATE as most of the contents are now redundant with the net80211 channel available o change api for ath_hal_init_channels: no more reglass id's, no more outdoor indication (was a noop), anM contents o add ath_hal_getchannels to have the hal construct a channel list without altering runtime state; this is used to retrieve the calibration list for the device in ath_getradiocaps o add ath_hal_set_channels to take a channel list and regulatory data from above and construct internal state to match (maps frequencies for 900MHz cards, setup for CTL lookups, etc) o compact the private channel table: we keep one private channel per frequency instead of one per HAL_CHANNEL; this gives a big space savings and potentially improves ani and calibration by sharing state (to be seen; didn't see anything in testing); a new config option AH_MAXCHAN controls the table size (default to 96 which was chosen to be ~3x the largest expected size) o shrink ani state and change to mirror private channel table (one entry per frequency indexed by ic_devdata) o move ani state flags to private channel state o remove country codes; use net80211 definitions instead o remove GSM regulatory support; it's no longer needed now that we pass in channel lists from above o consolidate ADHOC_NO_11A attribute with DISALLOW_ADHOC_11A o simplify initial channel list construction based on the EEPROM contents; we preserve country code support for now but may want to just fallback to a WWR sku and dispatch the discovered country code up to user space so the channel list can be constructed using the master regdomain tables o defer to net80211 for max antenna gain o eliminate sorting of internal channel table; now that we use ic_devdata as an index, table lookups are O(1) o remove internal copy of the country code; the public one is sufficient o remove AH_SUPPORT_11D conditional compilation; we always support 11d o remove ath_hal_ispublicsafetysku; not needed any more o remove ath_hal_isgsmsku; no more GSM stuff o move Conformance Test Limit (CTL) state from private channel to a lookup using per-band pointers cached in the private state block o remove regulatory class id support; was unused and belongs in net80211 o fix channel list construction to set IEEE80211_CHAN_NOADHOC, IEEE80211_CHAN_NOHOSTAP, and IEEE80211_CHAN_4MSXMIT o remove private channel flags CHANNEL_DFS and CHANNEL_4MS_LIMIT; these are now set in the constructed net80211 channel o store CHANNEL_NFCREQUIRED (Noise Floor Required) channel attribute in one of the driver-private flag bits of the net80211 channel o move 900MHz frequency mapping into the hal; the mapped frequency is stored in the private channel and used throughout the hal (no more mapping in the driver and/or net80211) o remove ath_hal_mhz2ieee; it's no longer needed as net80211 does the calculation and available in the net80211 channel o change noise floor calibration logic to work with compacted private channel table setup; this may require revisiting as we no longer can distinguish channel attributes (e.g. 11b vs 11g vs turbo) but since the data is used only to calculate status data we can live with it for now o change ah_getChipPowerLimits internal method to operate on a single channel instead of all channels in the private channel table o add ath_hal_gethwchannel to map a net80211 channel to a h/w frequency (always the same except for 900MHz channels) o add HAL_EEBADREG and HAL_EEBADCC status codes to better identify regulatory problems o remove CTRY_DEBUG and CTRY_DEFAULT enum's; these come from net80211 now o change ath_hal_getwirelessmodes to really return wireless modes supported by the hardware (was previously applying regulatory constraints) o return channel interference status with IEEE80211_CHANSTATE_CWINT (should change to a callback so hal api's can take const pointers) o remove some #define's no longer needed with the inclusion of <net80211/_ieee80211.h> Sponsored by: Carlson Wireless
2009-01-28 18:00:22 +00:00
if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan))
2008-11-28 00:03:41 +00:00
return;
xset = 0;
for (i = 0; i < rs->rs_count; i++) {
uint8_t rset = rs->rs_rates[i];
/* Basic rate defined? */
if ((rset & 0x80) && (rset &= 0x7f) >= xset)
xset = rset;
}
/*
* Set the h/w bit to reflect whether or not the basic
* rate is found to be equal or less than 2Mbps.
*/
reg = OS_REG_READ(ah, AR_STA_ID1);
if (xset && xset/2 <= 2)
OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
else
OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
}
/*
* Grab a semi-random value from hardware registers - may not
* change often
*/
uint32_t
ar5212GetRandomSeed(struct ath_hal *ah)
{
uint32_t nf;
nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
return (OS_REG_READ(ah, AR_TSF_U32) ^
OS_REG_READ(ah, AR_TSF_L32) ^ nf);
}
/*
* Detect if our card is present
*/
HAL_BOOL
ar5212DetectCardPresent(struct ath_hal *ah)
{
uint16_t macVersion, macRev;
uint32_t v;
/*
* Read the Silicon Revision register and compare that
* to what we read at attach time. If the same, we say
* a card/device is present.
*/
v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID;
macVersion = v >> AR_SREV_ID_S;
macRev = v & AR_SREV_REVISION;
return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
AH_PRIVATE(ah)->ah_macRev == macRev);
}
void
ar5212EnableMibCounters(struct ath_hal *ah)
{
/* NB: this just resets the mib counter machinery */
OS_REG_WRITE(ah, AR_MIBC,
~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f);
}
void
ar5212DisableMibCounters(struct ath_hal *ah)
{
OS_REG_WRITE(ah, AR_MIBC, AR_MIBC | AR_MIBC_CMC);
}
/*
* Update MIB Counters
*/
void
ar5212UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS* stats)
{
stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
}
/*
* Detect if the HW supports spreading a CCK signal on channel 14
*/
HAL_BOOL
ar5212IsJapanChannelSpreadSupported(struct ath_hal *ah)
{
return AH_TRUE;
}
/*
* Get the rssi of frame curently being received.
*/
uint32_t
ar5212GetCurRssi(struct ath_hal *ah)
{
return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
}
u_int
ar5212GetDefAntenna(struct ath_hal *ah)
{
return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
}
void
ar5212SetDefAntenna(struct ath_hal *ah, u_int antenna)
{
OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
}
HAL_ANT_SETTING
ar5212GetAntennaSwitch(struct ath_hal *ah)
{
return AH5212(ah)->ah_antControl;
2008-11-28 00:03:41 +00:00
}
HAL_BOOL
ar5212SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING setting)
2008-11-28 00:03:41 +00:00
{
struct ath_hal_5212 *ahp = AH5212(ah);
Overhaul regulatory support: o remove HAL_CHANNEL; convert the hal to use net80211 channels; this mostly involves mechanical changes to variable names and channel attribute macros o gut HAL_CHANNEL_PRIVATE as most of the contents are now redundant with the net80211 channel available o change api for ath_hal_init_channels: no more reglass id's, no more outdoor indication (was a noop), anM contents o add ath_hal_getchannels to have the hal construct a channel list without altering runtime state; this is used to retrieve the calibration list for the device in ath_getradiocaps o add ath_hal_set_channels to take a channel list and regulatory data from above and construct internal state to match (maps frequencies for 900MHz cards, setup for CTL lookups, etc) o compact the private channel table: we keep one private channel per frequency instead of one per HAL_CHANNEL; this gives a big space savings and potentially improves ani and calibration by sharing state (to be seen; didn't see anything in testing); a new config option AH_MAXCHAN controls the table size (default to 96 which was chosen to be ~3x the largest expected size) o shrink ani state and change to mirror private channel table (one entry per frequency indexed by ic_devdata) o move ani state flags to private channel state o remove country codes; use net80211 definitions instead o remove GSM regulatory support; it's no longer needed now that we pass in channel lists from above o consolidate ADHOC_NO_11A attribute with DISALLOW_ADHOC_11A o simplify initial channel list construction based on the EEPROM contents; we preserve country code support for now but may want to just fallback to a WWR sku and dispatch the discovered country code up to user space so the channel list can be constructed using the master regdomain tables o defer to net80211 for max antenna gain o eliminate sorting of internal channel table; now that we use ic_devdata as an index, table lookups are O(1) o remove internal copy of the country code; the public one is sufficient o remove AH_SUPPORT_11D conditional compilation; we always support 11d o remove ath_hal_ispublicsafetysku; not needed any more o remove ath_hal_isgsmsku; no more GSM stuff o move Conformance Test Limit (CTL) state from private channel to a lookup using per-band pointers cached in the private state block o remove regulatory class id support; was unused and belongs in net80211 o fix channel list construction to set IEEE80211_CHAN_NOADHOC, IEEE80211_CHAN_NOHOSTAP, and IEEE80211_CHAN_4MSXMIT o remove private channel flags CHANNEL_DFS and CHANNEL_4MS_LIMIT; these are now set in the constructed net80211 channel o store CHANNEL_NFCREQUIRED (Noise Floor Required) channel attribute in one of the driver-private flag bits of the net80211 channel o move 900MHz frequency mapping into the hal; the mapped frequency is stored in the private channel and used throughout the hal (no more mapping in the driver and/or net80211) o remove ath_hal_mhz2ieee; it's no longer needed as net80211 does the calculation and available in the net80211 channel o change noise floor calibration logic to work with compacted private channel table setup; this may require revisiting as we no longer can distinguish channel attributes (e.g. 11b vs 11g vs turbo) but since the data is used only to calculate status data we can live with it for now o change ah_getChipPowerLimits internal method to operate on a single channel instead of all channels in the private channel table o add ath_hal_gethwchannel to map a net80211 channel to a h/w frequency (always the same except for 900MHz channels) o add HAL_EEBADREG and HAL_EEBADCC status codes to better identify regulatory problems o remove CTRY_DEBUG and CTRY_DEFAULT enum's; these come from net80211 now o change ath_hal_getwirelessmodes to really return wireless modes supported by the hardware (was previously applying regulatory constraints) o return channel interference status with IEEE80211_CHANSTATE_CWINT (should change to a callback so hal api's can take const pointers) o remove some #define's no longer needed with the inclusion of <net80211/_ieee80211.h> Sponsored by: Carlson Wireless
2009-01-28 18:00:22 +00:00
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2008-11-28 00:03:41 +00:00
Overhaul regulatory support: o remove HAL_CHANNEL; convert the hal to use net80211 channels; this mostly involves mechanical changes to variable names and channel attribute macros o gut HAL_CHANNEL_PRIVATE as most of the contents are now redundant with the net80211 channel available o change api for ath_hal_init_channels: no more reglass id's, no more outdoor indication (was a noop), anM contents o add ath_hal_getchannels to have the hal construct a channel list without altering runtime state; this is used to retrieve the calibration list for the device in ath_getradiocaps o add ath_hal_set_channels to take a channel list and regulatory data from above and construct internal state to match (maps frequencies for 900MHz cards, setup for CTL lookups, etc) o compact the private channel table: we keep one private channel per frequency instead of one per HAL_CHANNEL; this gives a big space savings and potentially improves ani and calibration by sharing state (to be seen; didn't see anything in testing); a new config option AH_MAXCHAN controls the table size (default to 96 which was chosen to be ~3x the largest expected size) o shrink ani state and change to mirror private channel table (one entry per frequency indexed by ic_devdata) o move ani state flags to private channel state o remove country codes; use net80211 definitions instead o remove GSM regulatory support; it's no longer needed now that we pass in channel lists from above o consolidate ADHOC_NO_11A attribute with DISALLOW_ADHOC_11A o simplify initial channel list construction based on the EEPROM contents; we preserve country code support for now but may want to just fallback to a WWR sku and dispatch the discovered country code up to user space so the channel list can be constructed using the master regdomain tables o defer to net80211 for max antenna gain o eliminate sorting of internal channel table; now that we use ic_devdata as an index, table lookups are O(1) o remove internal copy of the country code; the public one is sufficient o remove AH_SUPPORT_11D conditional compilation; we always support 11d o remove ath_hal_ispublicsafetysku; not needed any more o remove ath_hal_isgsmsku; no more GSM stuff o move Conformance Test Limit (CTL) state from private channel to a lookup using per-band pointers cached in the private state block o remove regulatory class id support; was unused and belongs in net80211 o fix channel list construction to set IEEE80211_CHAN_NOADHOC, IEEE80211_CHAN_NOHOSTAP, and IEEE80211_CHAN_4MSXMIT o remove private channel flags CHANNEL_DFS and CHANNEL_4MS_LIMIT; these are now set in the constructed net80211 channel o store CHANNEL_NFCREQUIRED (Noise Floor Required) channel attribute in one of the driver-private flag bits of the net80211 channel o move 900MHz frequency mapping into the hal; the mapped frequency is stored in the private channel and used throughout the hal (no more mapping in the driver and/or net80211) o remove ath_hal_mhz2ieee; it's no longer needed as net80211 does the calculation and available in the net80211 channel o change noise floor calibration logic to work with compacted private channel table setup; this may require revisiting as we no longer can distinguish channel attributes (e.g. 11b vs 11g vs turbo) but since the data is used only to calculate status data we can live with it for now o change ah_getChipPowerLimits internal method to operate on a single channel instead of all channels in the private channel table o add ath_hal_gethwchannel to map a net80211 channel to a h/w frequency (always the same except for 900MHz channels) o add HAL_EEBADREG and HAL_EEBADCC status codes to better identify regulatory problems o remove CTRY_DEBUG and CTRY_DEFAULT enum's; these come from net80211 now o change ath_hal_getwirelessmodes to really return wireless modes supported by the hardware (was previously applying regulatory constraints) o return channel interference status with IEEE80211_CHANSTATE_CWINT (should change to a callback so hal api's can take const pointers) o remove some #define's no longer needed with the inclusion of <net80211/_ieee80211.h> Sponsored by: Carlson Wireless
2009-01-28 18:00:22 +00:00
if (!ahp->ah_phyPowerOn || chan == AH_NULL) {
/* PHY powered off, just stash settings */
ahp->ah_antControl = setting;
ahp->ah_diversity = (setting == HAL_ANT_VARIABLE);
2008-11-28 00:03:41 +00:00
return AH_TRUE;
}
Overhaul regulatory support: o remove HAL_CHANNEL; convert the hal to use net80211 channels; this mostly involves mechanical changes to variable names and channel attribute macros o gut HAL_CHANNEL_PRIVATE as most of the contents are now redundant with the net80211 channel available o change api for ath_hal_init_channels: no more reglass id's, no more outdoor indication (was a noop), anM contents o add ath_hal_getchannels to have the hal construct a channel list without altering runtime state; this is used to retrieve the calibration list for the device in ath_getradiocaps o add ath_hal_set_channels to take a channel list and regulatory data from above and construct internal state to match (maps frequencies for 900MHz cards, setup for CTL lookups, etc) o compact the private channel table: we keep one private channel per frequency instead of one per HAL_CHANNEL; this gives a big space savings and potentially improves ani and calibration by sharing state (to be seen; didn't see anything in testing); a new config option AH_MAXCHAN controls the table size (default to 96 which was chosen to be ~3x the largest expected size) o shrink ani state and change to mirror private channel table (one entry per frequency indexed by ic_devdata) o move ani state flags to private channel state o remove country codes; use net80211 definitions instead o remove GSM regulatory support; it's no longer needed now that we pass in channel lists from above o consolidate ADHOC_NO_11A attribute with DISALLOW_ADHOC_11A o simplify initial channel list construction based on the EEPROM contents; we preserve country code support for now but may want to just fallback to a WWR sku and dispatch the discovered country code up to user space so the channel list can be constructed using the master regdomain tables o defer to net80211 for max antenna gain o eliminate sorting of internal channel table; now that we use ic_devdata as an index, table lookups are O(1) o remove internal copy of the country code; the public one is sufficient o remove AH_SUPPORT_11D conditional compilation; we always support 11d o remove ath_hal_ispublicsafetysku; not needed any more o remove ath_hal_isgsmsku; no more GSM stuff o move Conformance Test Limit (CTL) state from private channel to a lookup using per-band pointers cached in the private state block o remove regulatory class id support; was unused and belongs in net80211 o fix channel list construction to set IEEE80211_CHAN_NOADHOC, IEEE80211_CHAN_NOHOSTAP, and IEEE80211_CHAN_4MSXMIT o remove private channel flags CHANNEL_DFS and CHANNEL_4MS_LIMIT; these are now set in the constructed net80211 channel o store CHANNEL_NFCREQUIRED (Noise Floor Required) channel attribute in one of the driver-private flag bits of the net80211 channel o move 900MHz frequency mapping into the hal; the mapped frequency is stored in the private channel and used throughout the hal (no more mapping in the driver and/or net80211) o remove ath_hal_mhz2ieee; it's no longer needed as net80211 does the calculation and available in the net80211 channel o change noise floor calibration logic to work with compacted private channel table setup; this may require revisiting as we no longer can distinguish channel attributes (e.g. 11b vs 11g vs turbo) but since the data is used only to calculate status data we can live with it for now o change ah_getChipPowerLimits internal method to operate on a single channel instead of all channels in the private channel table o add ath_hal_gethwchannel to map a net80211 channel to a h/w frequency (always the same except for 900MHz channels) o add HAL_EEBADREG and HAL_EEBADCC status codes to better identify regulatory problems o remove CTRY_DEBUG and CTRY_DEFAULT enum's; these come from net80211 now o change ath_hal_getwirelessmodes to really return wireless modes supported by the hardware (was previously applying regulatory constraints) o return channel interference status with IEEE80211_CHANSTATE_CWINT (should change to a callback so hal api's can take const pointers) o remove some #define's no longer needed with the inclusion of <net80211/_ieee80211.h> Sponsored by: Carlson Wireless
2009-01-28 18:00:22 +00:00
return ar5212SetAntennaSwitchInternal(ah, setting, chan);
2008-11-28 00:03:41 +00:00
}
HAL_BOOL
ar5212IsSleepAfterBeaconBroken(struct ath_hal *ah)
{
return AH_TRUE;
}
HAL_BOOL
ar5212SetSifsTime(struct ath_hal *ah, u_int us)
{
struct ath_hal_5212 *ahp = AH5212(ah);
if (us > ath_hal_mac_usec(ah, 0xffff)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
__func__, us);
ahp->ah_sifstime = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us));
Overhaul regulatory support: o remove HAL_CHANNEL; convert the hal to use net80211 channels; this mostly involves mechanical changes to variable names and channel attribute macros o gut HAL_CHANNEL_PRIVATE as most of the contents are now redundant with the net80211 channel available o change api for ath_hal_init_channels: no more reglass id's, no more outdoor indication (was a noop), anM contents o add ath_hal_getchannels to have the hal construct a channel list without altering runtime state; this is used to retrieve the calibration list for the device in ath_getradiocaps o add ath_hal_set_channels to take a channel list and regulatory data from above and construct internal state to match (maps frequencies for 900MHz cards, setup for CTL lookups, etc) o compact the private channel table: we keep one private channel per frequency instead of one per HAL_CHANNEL; this gives a big space savings and potentially improves ani and calibration by sharing state (to be seen; didn't see anything in testing); a new config option AH_MAXCHAN controls the table size (default to 96 which was chosen to be ~3x the largest expected size) o shrink ani state and change to mirror private channel table (one entry per frequency indexed by ic_devdata) o move ani state flags to private channel state o remove country codes; use net80211 definitions instead o remove GSM regulatory support; it's no longer needed now that we pass in channel lists from above o consolidate ADHOC_NO_11A attribute with DISALLOW_ADHOC_11A o simplify initial channel list construction based on the EEPROM contents; we preserve country code support for now but may want to just fallback to a WWR sku and dispatch the discovered country code up to user space so the channel list can be constructed using the master regdomain tables o defer to net80211 for max antenna gain o eliminate sorting of internal channel table; now that we use ic_devdata as an index, table lookups are O(1) o remove internal copy of the country code; the public one is sufficient o remove AH_SUPPORT_11D conditional compilation; we always support 11d o remove ath_hal_ispublicsafetysku; not needed any more o remove ath_hal_isgsmsku; no more GSM stuff o move Conformance Test Limit (CTL) state from private channel to a lookup using per-band pointers cached in the private state block o remove regulatory class id support; was unused and belongs in net80211 o fix channel list construction to set IEEE80211_CHAN_NOADHOC, IEEE80211_CHAN_NOHOSTAP, and IEEE80211_CHAN_4MSXMIT o remove private channel flags CHANNEL_DFS and CHANNEL_4MS_LIMIT; these are now set in the constructed net80211 channel o store CHANNEL_NFCREQUIRED (Noise Floor Required) channel attribute in one of the driver-private flag bits of the net80211 channel o move 900MHz frequency mapping into the hal; the mapped frequency is stored in the private channel and used throughout the hal (no more mapping in the driver and/or net80211) o remove ath_hal_mhz2ieee; it's no longer needed as net80211 does the calculation and available in the net80211 channel o change noise floor calibration logic to work with compacted private channel table setup; this may require revisiting as we no longer can distinguish channel attributes (e.g. 11b vs 11g vs turbo) but since the data is used only to calculate status data we can live with it for now o change ah_getChipPowerLimits internal method to operate on a single channel instead of all channels in the private channel table o add ath_hal_gethwchannel to map a net80211 channel to a h/w frequency (always the same except for 900MHz channels) o add HAL_EEBADREG and HAL_EEBADCC status codes to better identify regulatory problems o remove CTRY_DEBUG and CTRY_DEFAULT enum's; these come from net80211 now o change ath_hal_getwirelessmodes to really return wireless modes supported by the hardware (was previously applying regulatory constraints) o return channel interference status with IEEE80211_CHANSTATE_CWINT (should change to a callback so hal api's can take const pointers) o remove some #define's no longer needed with the inclusion of <net80211/_ieee80211.h> Sponsored by: Carlson Wireless
2009-01-28 18:00:22 +00:00
ahp->ah_slottime = us;
2008-11-28 00:03:41 +00:00
return AH_TRUE;
}
}
u_int
ar5212GetSifsTime(struct ath_hal *ah)
{
u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
HAL_BOOL
ar5212SetSlotTime(struct ath_hal *ah, u_int us)
{
struct ath_hal_5212 *ahp = AH5212(ah);
if (us < HAL_SLOT_TIME_6 || us > ath_hal_mac_usec(ah, 0xffff)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
__func__, us);
ahp->ah_slottime = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
ahp->ah_slottime = us;
return AH_TRUE;
}
}
u_int
ar5212GetSlotTime(struct ath_hal *ah)
{
u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
HAL_BOOL
ar5212SetAckTimeout(struct ath_hal *ah, u_int us)
{
struct ath_hal_5212 *ahp = AH5212(ah);
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
__func__, us);
ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
ahp->ah_acktimeout = us;
return AH_TRUE;
}
}
u_int
ar5212GetAckTimeout(struct ath_hal *ah)
{
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
u_int
ar5212GetAckCTSRate(struct ath_hal *ah)
{
return ((AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
}
HAL_BOOL
ar5212SetAckCTSRate(struct ath_hal *ah, u_int high)
{
struct ath_hal_5212 *ahp = AH5212(ah);
if (high) {
OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
} else {
OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
}
return AH_TRUE;
}
HAL_BOOL
ar5212SetCTSTimeout(struct ath_hal *ah, u_int us)
{
struct ath_hal_5212 *ahp = AH5212(ah);
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
__func__, us);
ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
ahp->ah_ctstimeout = us;
return AH_TRUE;
}
}
u_int
ar5212GetCTSTimeout(struct ath_hal *ah)
{
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
/* Setup decompression for given key index */
HAL_BOOL
ar5212SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
{
struct ath_hal_5212 *ahp = AH5212(ah);
if (keyidx >= HAL_DECOMP_MASK_SIZE)
return HAL_EINVAL;
OS_REG_WRITE(ah, AR_DCM_A, keyidx);
OS_REG_WRITE(ah, AR_DCM_D, en ? AR_DCM_D_EN : 0);
ahp->ah_decompMask[keyidx] = en;
return AH_TRUE;
}
/* Setup coverage class */
void
ar5212SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
{
uint32_t slot, timeout, eifs;
u_int clkRate;
AH_PRIVATE(ah)->ah_coverageClass = coverageclass;
if (now) {
if (AH_PRIVATE(ah)->ah_coverageClass == 0)
return;
/* Don't apply coverage class to non A channels */
Overhaul regulatory support: o remove HAL_CHANNEL; convert the hal to use net80211 channels; this mostly involves mechanical changes to variable names and channel attribute macros o gut HAL_CHANNEL_PRIVATE as most of the contents are now redundant with the net80211 channel available o change api for ath_hal_init_channels: no more reglass id's, no more outdoor indication (was a noop), anM contents o add ath_hal_getchannels to have the hal construct a channel list without altering runtime state; this is used to retrieve the calibration list for the device in ath_getradiocaps o add ath_hal_set_channels to take a channel list and regulatory data from above and construct internal state to match (maps frequencies for 900MHz cards, setup for CTL lookups, etc) o compact the private channel table: we keep one private channel per frequency instead of one per HAL_CHANNEL; this gives a big space savings and potentially improves ani and calibration by sharing state (to be seen; didn't see anything in testing); a new config option AH_MAXCHAN controls the table size (default to 96 which was chosen to be ~3x the largest expected size) o shrink ani state and change to mirror private channel table (one entry per frequency indexed by ic_devdata) o move ani state flags to private channel state o remove country codes; use net80211 definitions instead o remove GSM regulatory support; it's no longer needed now that we pass in channel lists from above o consolidate ADHOC_NO_11A attribute with DISALLOW_ADHOC_11A o simplify initial channel list construction based on the EEPROM contents; we preserve country code support for now but may want to just fallback to a WWR sku and dispatch the discovered country code up to user space so the channel list can be constructed using the master regdomain tables o defer to net80211 for max antenna gain o eliminate sorting of internal channel table; now that we use ic_devdata as an index, table lookups are O(1) o remove internal copy of the country code; the public one is sufficient o remove AH_SUPPORT_11D conditional compilation; we always support 11d o remove ath_hal_ispublicsafetysku; not needed any more o remove ath_hal_isgsmsku; no more GSM stuff o move Conformance Test Limit (CTL) state from private channel to a lookup using per-band pointers cached in the private state block o remove regulatory class id support; was unused and belongs in net80211 o fix channel list construction to set IEEE80211_CHAN_NOADHOC, IEEE80211_CHAN_NOHOSTAP, and IEEE80211_CHAN_4MSXMIT o remove private channel flags CHANNEL_DFS and CHANNEL_4MS_LIMIT; these are now set in the constructed net80211 channel o store CHANNEL_NFCREQUIRED (Noise Floor Required) channel attribute in one of the driver-private flag bits of the net80211 channel o move 900MHz frequency mapping into the hal; the mapped frequency is stored in the private channel and used throughout the hal (no more mapping in the driver and/or net80211) o remove ath_hal_mhz2ieee; it's no longer needed as net80211 does the calculation and available in the net80211 channel o change noise floor calibration logic to work with compacted private channel table setup; this may require revisiting as we no longer can distinguish channel attributes (e.g. 11b vs 11g vs turbo) but since the data is used only to calculate status data we can live with it for now o change ah_getChipPowerLimits internal method to operate on a single channel instead of all channels in the private channel table o add ath_hal_gethwchannel to map a net80211 channel to a h/w frequency (always the same except for 900MHz channels) o add HAL_EEBADREG and HAL_EEBADCC status codes to better identify regulatory problems o remove CTRY_DEBUG and CTRY_DEFAULT enum's; these come from net80211 now o change ath_hal_getwirelessmodes to really return wireless modes supported by the hardware (was previously applying regulatory constraints) o return channel interference status with IEEE80211_CHANSTATE_CWINT (should change to a callback so hal api's can take const pointers) o remove some #define's no longer needed with the inclusion of <net80211/_ieee80211.h> Sponsored by: Carlson Wireless
2009-01-28 18:00:22 +00:00
if (!IEEE80211_IS_CHAN_A(AH_PRIVATE(ah)->ah_curchan))
2008-11-28 00:03:41 +00:00
return;
/* Get core clock rate */
clkRate = ath_hal_mac_clks(ah, 1);
/* Compute EIFS */
slot = coverageclass * 3 * clkRate;
eifs = coverageclass * 6 * clkRate;
Overhaul regulatory support: o remove HAL_CHANNEL; convert the hal to use net80211 channels; this mostly involves mechanical changes to variable names and channel attribute macros o gut HAL_CHANNEL_PRIVATE as most of the contents are now redundant with the net80211 channel available o change api for ath_hal_init_channels: no more reglass id's, no more outdoor indication (was a noop), anM contents o add ath_hal_getchannels to have the hal construct a channel list without altering runtime state; this is used to retrieve the calibration list for the device in ath_getradiocaps o add ath_hal_set_channels to take a channel list and regulatory data from above and construct internal state to match (maps frequencies for 900MHz cards, setup for CTL lookups, etc) o compact the private channel table: we keep one private channel per frequency instead of one per HAL_CHANNEL; this gives a big space savings and potentially improves ani and calibration by sharing state (to be seen; didn't see anything in testing); a new config option AH_MAXCHAN controls the table size (default to 96 which was chosen to be ~3x the largest expected size) o shrink ani state and change to mirror private channel table (one entry per frequency indexed by ic_devdata) o move ani state flags to private channel state o remove country codes; use net80211 definitions instead o remove GSM regulatory support; it's no longer needed now that we pass in channel lists from above o consolidate ADHOC_NO_11A attribute with DISALLOW_ADHOC_11A o simplify initial channel list construction based on the EEPROM contents; we preserve country code support for now but may want to just fallback to a WWR sku and dispatch the discovered country code up to user space so the channel list can be constructed using the master regdomain tables o defer to net80211 for max antenna gain o eliminate sorting of internal channel table; now that we use ic_devdata as an index, table lookups are O(1) o remove internal copy of the country code; the public one is sufficient o remove AH_SUPPORT_11D conditional compilation; we always support 11d o remove ath_hal_ispublicsafetysku; not needed any more o remove ath_hal_isgsmsku; no more GSM stuff o move Conformance Test Limit (CTL) state from private channel to a lookup using per-band pointers cached in the private state block o remove regulatory class id support; was unused and belongs in net80211 o fix channel list construction to set IEEE80211_CHAN_NOADHOC, IEEE80211_CHAN_NOHOSTAP, and IEEE80211_CHAN_4MSXMIT o remove private channel flags CHANNEL_DFS and CHANNEL_4MS_LIMIT; these are now set in the constructed net80211 channel o store CHANNEL_NFCREQUIRED (Noise Floor Required) channel attribute in one of the driver-private flag bits of the net80211 channel o move 900MHz frequency mapping into the hal; the mapped frequency is stored in the private channel and used throughout the hal (no more mapping in the driver and/or net80211) o remove ath_hal_mhz2ieee; it's no longer needed as net80211 does the calculation and available in the net80211 channel o change noise floor calibration logic to work with compacted private channel table setup; this may require revisiting as we no longer can distinguish channel attributes (e.g. 11b vs 11g vs turbo) but since the data is used only to calculate status data we can live with it for now o change ah_getChipPowerLimits internal method to operate on a single channel instead of all channels in the private channel table o add ath_hal_gethwchannel to map a net80211 channel to a h/w frequency (always the same except for 900MHz channels) o add HAL_EEBADREG and HAL_EEBADCC status codes to better identify regulatory problems o remove CTRY_DEBUG and CTRY_DEFAULT enum's; these come from net80211 now o change ath_hal_getwirelessmodes to really return wireless modes supported by the hardware (was previously applying regulatory constraints) o return channel interference status with IEEE80211_CHANSTATE_CWINT (should change to a callback so hal api's can take const pointers) o remove some #define's no longer needed with the inclusion of <net80211/_ieee80211.h> Sponsored by: Carlson Wireless
2009-01-28 18:00:22 +00:00
if (IEEE80211_IS_CHAN_HALF(AH_PRIVATE(ah)->ah_curchan)) {
2008-11-28 00:03:41 +00:00
slot += IFS_SLOT_HALF_RATE;
eifs += IFS_EIFS_HALF_RATE;
Overhaul regulatory support: o remove HAL_CHANNEL; convert the hal to use net80211 channels; this mostly involves mechanical changes to variable names and channel attribute macros o gut HAL_CHANNEL_PRIVATE as most of the contents are now redundant with the net80211 channel available o change api for ath_hal_init_channels: no more reglass id's, no more outdoor indication (was a noop), anM contents o add ath_hal_getchannels to have the hal construct a channel list without altering runtime state; this is used to retrieve the calibration list for the device in ath_getradiocaps o add ath_hal_set_channels to take a channel list and regulatory data from above and construct internal state to match (maps frequencies for 900MHz cards, setup for CTL lookups, etc) o compact the private channel table: we keep one private channel per frequency instead of one per HAL_CHANNEL; this gives a big space savings and potentially improves ani and calibration by sharing state (to be seen; didn't see anything in testing); a new config option AH_MAXCHAN controls the table size (default to 96 which was chosen to be ~3x the largest expected size) o shrink ani state and change to mirror private channel table (one entry per frequency indexed by ic_devdata) o move ani state flags to private channel state o remove country codes; use net80211 definitions instead o remove GSM regulatory support; it's no longer needed now that we pass in channel lists from above o consolidate ADHOC_NO_11A attribute with DISALLOW_ADHOC_11A o simplify initial channel list construction based on the EEPROM contents; we preserve country code support for now but may want to just fallback to a WWR sku and dispatch the discovered country code up to user space so the channel list can be constructed using the master regdomain tables o defer to net80211 for max antenna gain o eliminate sorting of internal channel table; now that we use ic_devdata as an index, table lookups are O(1) o remove internal copy of the country code; the public one is sufficient o remove AH_SUPPORT_11D conditional compilation; we always support 11d o remove ath_hal_ispublicsafetysku; not needed any more o remove ath_hal_isgsmsku; no more GSM stuff o move Conformance Test Limit (CTL) state from private channel to a lookup using per-band pointers cached in the private state block o remove regulatory class id support; was unused and belongs in net80211 o fix channel list construction to set IEEE80211_CHAN_NOADHOC, IEEE80211_CHAN_NOHOSTAP, and IEEE80211_CHAN_4MSXMIT o remove private channel flags CHANNEL_DFS and CHANNEL_4MS_LIMIT; these are now set in the constructed net80211 channel o store CHANNEL_NFCREQUIRED (Noise Floor Required) channel attribute in one of the driver-private flag bits of the net80211 channel o move 900MHz frequency mapping into the hal; the mapped frequency is stored in the private channel and used throughout the hal (no more mapping in the driver and/or net80211) o remove ath_hal_mhz2ieee; it's no longer needed as net80211 does the calculation and available in the net80211 channel o change noise floor calibration logic to work with compacted private channel table setup; this may require revisiting as we no longer can distinguish channel attributes (e.g. 11b vs 11g vs turbo) but since the data is used only to calculate status data we can live with it for now o change ah_getChipPowerLimits internal method to operate on a single channel instead of all channels in the private channel table o add ath_hal_gethwchannel to map a net80211 channel to a h/w frequency (always the same except for 900MHz channels) o add HAL_EEBADREG and HAL_EEBADCC status codes to better identify regulatory problems o remove CTRY_DEBUG and CTRY_DEFAULT enum's; these come from net80211 now o change ath_hal_getwirelessmodes to really return wireless modes supported by the hardware (was previously applying regulatory constraints) o return channel interference status with IEEE80211_CHANSTATE_CWINT (should change to a callback so hal api's can take const pointers) o remove some #define's no longer needed with the inclusion of <net80211/_ieee80211.h> Sponsored by: Carlson Wireless
2009-01-28 18:00:22 +00:00
} else if (IEEE80211_IS_CHAN_QUARTER(AH_PRIVATE(ah)->ah_curchan)) {
2008-11-28 00:03:41 +00:00
slot += IFS_SLOT_QUARTER_RATE;
eifs += IFS_EIFS_QUARTER_RATE;
} else { /* full rate */
slot += IFS_SLOT_FULL_RATE;
eifs += IFS_EIFS_FULL_RATE;
}
/*
* Add additional time for air propagation for ACK and CTS
* timeouts. This value is in core clocks.
*/
timeout = ACK_CTS_TIMEOUT_11A + (coverageclass * 3 * clkRate);
/*
* Write the values: slot, eifs, ack/cts timeouts.
*/
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
OS_REG_WRITE(ah, AR_TIME_OUT,
SM(timeout, AR_TIME_OUT_CTS)
| SM(timeout, AR_TIME_OUT_ACK));
}
}
void
ar5212SetPCUConfig(struct ath_hal *ah)
{
ar5212SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
}
/*
* Return whether an external 32KHz crystal should be used
* to reduce power consumption when sleeping. We do so if
* the crystal is present (obtained from EEPROM) and if we
* are not running as an AP and are configured to use it.
*/
HAL_BOOL
ar5212Use32KHzclock(struct ath_hal *ah, HAL_OPMODE opmode)
{
if (opmode != HAL_M_HOSTAP) {
struct ath_hal_5212 *ahp = AH5212(ah);
return ath_hal_eepromGetFlag(ah, AR_EEP_32KHZCRYSTAL) &&
(ahp->ah_enable32kHzClock == USE_32KHZ ||
ahp->ah_enable32kHzClock == AUTO_32KHZ);
} else
return AH_FALSE;
}
/*
* If 32KHz clock exists, use it to lower power consumption during sleep
*
* Note: If clock is set to 32 KHz, delays on accessing certain
* baseband registers (27-31, 124-127) are required.
*/
void
ar5212SetupClock(struct ath_hal *ah, HAL_OPMODE opmode)
{
if (ar5212Use32KHzclock(ah, opmode)) {
/*
* Enable clocks to be turned OFF in BB during sleep
* and also enable turning OFF 32MHz/40MHz Refclk
* from A2.
*/
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18);
2008-11-28 00:03:41 +00:00
OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, 1);
OS_REG_WRITE(ah, AR_TSF_PARM, 61); /* 32 KHz TSF incr */
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 1);
if (IS_2413(ah) || IS_5413(ah) || IS_2417(ah)) {
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x26);
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0d);
OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x07);
OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0x3f);
/* # Set sleep clock rate to 32 KHz. */
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x2);
} else {
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x0a);
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0c);
OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x03);
OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0x20);
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x3);
}
} else {
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x0);
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
OS_REG_WRITE(ah, AR_TSF_PARM, 1); /* 32MHz TSF inc */
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x7f);
if (IS_2417(ah))
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0a);
else if (IS_HB63(ah))
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x32);
else
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x0c);
OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0xff);
OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
IS_RAD5112_ANY(ah) || IS_5413(ah) || IS_2417(ah) ? 0x14 : 0x18);
OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
2008-11-28 00:03:41 +00:00
}
}
/*
* If 32KHz clock exists, turn it off and turn back on the 32Mhz
*/
void
ar5212RestoreClock(struct ath_hal *ah, HAL_OPMODE opmode)
{
if (ar5212Use32KHzclock(ah, opmode)) {
/* # Set sleep clock rate back to 32 MHz. */
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0);
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
OS_REG_WRITE(ah, AR_TSF_PARM, 1); /* 32 MHz TSF incr */
OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
2008-11-28 00:03:41 +00:00
/*
* Restore BB registers to power-on defaults
*/
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x7f);
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x0c);
OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0xff);
OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18);
2008-11-28 00:03:41 +00:00
}
}
/*
* Adjust NF based on statistical values for 5GHz frequencies.
* Default method: this may be overridden by the rf backend.
*/
int16_t
ar5212GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
{
static const struct {
uint16_t freqLow;
int16_t adjust;
} adjustDef[] = {
{ 5790, 11 }, /* NB: ordered high -> low */
{ 5730, 10 },
{ 5690, 9 },
{ 5660, 8 },
{ 5610, 7 },
{ 5530, 5 },
{ 5450, 4 },
{ 5379, 2 },
{ 5209, 0 },
{ 3000, 1 },
{ 0, 0 },
};
int i;
for (i = 0; c->channel <= adjustDef[i].freqLow; i++)
;
return adjustDef[i].adjust;
}
HAL_STATUS
ar5212GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
uint32_t capability, uint32_t *result)
{
#define MACVERSION(ah) AH_PRIVATE(ah)->ah_macVersion
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
const struct ar5212AniState *ani;
switch (type) {
case HAL_CAP_CIPHER: /* cipher handled in hardware */
switch (capability) {
case HAL_CIPHER_AES_CCM:
return pCap->halCipherAesCcmSupport ?
HAL_OK : HAL_ENOTSUPP;
case HAL_CIPHER_AES_OCB:
case HAL_CIPHER_TKIP:
case HAL_CIPHER_WEP:
case HAL_CIPHER_MIC:
case HAL_CIPHER_CLR:
return HAL_OK;
default:
return HAL_ENOTSUPP;
}
case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1:
return (ahp->ah_staId1Defaults &
AR_STA_ID1_CRPT_MIC_ENABLE) ? HAL_OK : HAL_ENXIO;
}
2008-12-11 04:03:50 +00:00
return HAL_EINVAL;
2008-11-28 00:03:41 +00:00
case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */
switch (capability) {
case 0: /* hardware capability */
return pCap->halTkipMicTxRxKeySupport ?
HAL_ENXIO : HAL_OK;
case 1: /* current setting */
return (ahp->ah_miscMode &
AR_MISC_MODE_MIC_NEW_LOC_ENABLE) ? HAL_ENXIO : HAL_OK;
}
return HAL_EINVAL;
case HAL_CAP_WME_TKIPMIC: /* hardware can do TKIP MIC w/ WMM */
/* XXX move to capability bit */
return MACVERSION(ah) > AR_SREV_VERSION_VENICE ||
(MACVERSION(ah) == AR_SREV_VERSION_VENICE &&
AH_PRIVATE(ah)->ah_macRev >= 8) ? HAL_OK : HAL_ENOTSUPP;
case HAL_CAP_DIVERSITY: /* hardware supports fast diversity */
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1: /* current setting */
return ahp->ah_diversity ? HAL_OK : HAL_ENXIO;
2008-11-28 00:03:41 +00:00
}
return HAL_EINVAL;
case HAL_CAP_DIAG:
*result = AH_PRIVATE(ah)->ah_diagreg;
return HAL_OK;
case HAL_CAP_TPC:
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1:
return ahp->ah_tpcEnabled ? HAL_OK : HAL_ENXIO;
}
return HAL_OK;
case HAL_CAP_PHYDIAG: /* radar pulse detection capability */
switch (capability) {
case HAL_CAP_RADAR:
return ath_hal_eepromGetFlag(ah, AR_EEP_AMODE) ?
HAL_OK: HAL_ENXIO;
case HAL_CAP_AR:
return (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) ||
ath_hal_eepromGetFlag(ah, AR_EEP_BMODE)) ?
HAL_OK: HAL_ENXIO;
}
return HAL_ENXIO;
case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1:
return (ahp->ah_staId1Defaults &
AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
}
return HAL_EINVAL;
case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */
switch (capability) {
case 0: /* hardware capability */
return pCap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
case 1:
return (ahp->ah_miscMode & AR_MISC_MODE_TX_ADD_TSF) ?
HAL_OK : HAL_ENXIO;
}
return HAL_EINVAL;
case HAL_CAP_TPC_ACK:
*result = MS(ahp->ah_macTPC, AR_TPC_ACK);
return HAL_OK;
case HAL_CAP_TPC_CTS:
*result = MS(ahp->ah_macTPC, AR_TPC_CTS);
return HAL_OK;
case HAL_CAP_INTMIT: /* interference mitigation */
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1:
return (ahp->ah_procPhyErr & HAL_ANI_ENA) ?
HAL_OK : HAL_ENXIO;
case 2: /* HAL_ANI_NOISE_IMMUNITY_LEVEL */
case 3: /* HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION */
case 4: /* HAL_ANI_CCK_WEAK_SIGNAL_THR */
case 5: /* HAL_ANI_FIRSTEP_LEVEL */
case 6: /* HAL_ANI_SPUR_IMMUNITY_LEVEL */
ani = ar5212AniGetCurrentState(ah);
if (ani == AH_NULL)
return HAL_ENXIO;
switch (capability) {
case 2: *result = ani->noiseImmunityLevel; break;
case 3: *result = !ani->ofdmWeakSigDetectOff; break;
case 4: *result = ani->cckWeakSigThreshold; break;
case 5: *result = ani->firstepLevel; break;
case 6: *result = ani->spurImmunityLevel; break;
}
return HAL_OK;
}
return HAL_EINVAL;
default:
return ath_hal_getcapability(ah, type, capability, result);
}
#undef MACVERSION
}
HAL_BOOL
ar5212SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
uint32_t capability, uint32_t setting, HAL_STATUS *status)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
uint32_t v;
switch (type) {
case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */
if (setting)
ahp->ah_staId1Defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
else
ahp->ah_staId1Defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
return AH_TRUE;
case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */
if (!pCap->halTkipMicTxRxKeySupport)
return AH_FALSE;
/* NB: true =>'s use split key cache layout */
if (setting)
ahp->ah_miscMode &= ~AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
else
ahp->ah_miscMode |= AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
/* NB: write here so keys can be setup w/o a reset */
OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
return AH_TRUE;
case HAL_CAP_DIVERSITY:
if (ahp->ah_phyPowerOn) {
v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
if (setting)
v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
else
v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
}
ahp->ah_diversity = (setting != 0);
2008-11-28 00:03:41 +00:00
return AH_TRUE;
case HAL_CAP_DIAG: /* hardware diagnostic support */
/*
* NB: could split this up into virtual capabilities,
* (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
* seems worth the additional complexity.
*/
AH_PRIVATE(ah)->ah_diagreg = setting;
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
return AH_TRUE;
case HAL_CAP_TPC:
ahp->ah_tpcEnabled = (setting != 0);
return AH_TRUE;
case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */
if (setting)
ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
else
ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
return AH_TRUE;
case HAL_CAP_TPC_ACK:
case HAL_CAP_TPC_CTS:
setting += ahp->ah_txPowerIndexOffset;
if (setting > 63)
setting = 63;
if (type == HAL_CAP_TPC_ACK) {
ahp->ah_macTPC &= AR_TPC_ACK;
ahp->ah_macTPC |= MS(setting, AR_TPC_ACK);
} else {
ahp->ah_macTPC &= AR_TPC_CTS;
ahp->ah_macTPC |= MS(setting, AR_TPC_CTS);
}
OS_REG_WRITE(ah, AR_TPC, ahp->ah_macTPC);
return AH_TRUE;
case HAL_CAP_INTMIT: { /* interference mitigation */
static const HAL_ANI_CMD cmds[] = {
HAL_ANI_PRESENT,
HAL_ANI_MODE,
HAL_ANI_NOISE_IMMUNITY_LEVEL,
HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
HAL_ANI_CCK_WEAK_SIGNAL_THR,
HAL_ANI_FIRSTEP_LEVEL,
HAL_ANI_SPUR_IMMUNITY_LEVEL,
};
return capability < N(cmds) ?
ar5212AniControl(ah, cmds[capability], setting) :
AH_FALSE;
}
case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */
if (pCap->halTsfAddSupport) {
if (setting)
ahp->ah_miscMode |= AR_MISC_MODE_TX_ADD_TSF;
else
ahp->ah_miscMode &= ~AR_MISC_MODE_TX_ADD_TSF;
return AH_TRUE;
}
/* fall thru... */
default:
return ath_hal_setcapability(ah, type, capability,
setting, status);
}
#undef N
}
HAL_BOOL
ar5212GetDiagState(struct ath_hal *ah, int request,
const void *args, uint32_t argsize,
void **result, uint32_t *resultsize)
{
struct ath_hal_5212 *ahp = AH5212(ah);
(void) ahp;
if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
return AH_TRUE;
switch (request) {
case HAL_DIAG_EEPROM:
case HAL_DIAG_EEPROM_EXP_11A:
case HAL_DIAG_EEPROM_EXP_11B:
case HAL_DIAG_EEPROM_EXP_11G:
case HAL_DIAG_RFGAIN:
return ath_hal_eepromDiag(ah, request,
args, argsize, result, resultsize);
case HAL_DIAG_RFGAIN_CURSTEP:
*result = __DECONST(void *, ahp->ah_gainValues.currStep);
*resultsize = (*result == AH_NULL) ?
0 : sizeof(GAIN_OPTIMIZATION_STEP);
return AH_TRUE;
case HAL_DIAG_PCDAC:
*result = ahp->ah_pcdacTable;
*resultsize = ahp->ah_pcdacTableSize;
return AH_TRUE;
case HAL_DIAG_TXRATES:
*result = &ahp->ah_ratesArray[0];
*resultsize = sizeof(ahp->ah_ratesArray);
return AH_TRUE;
case HAL_DIAG_ANI_CURRENT:
*result = ar5212AniGetCurrentState(ah);
*resultsize = (*result == AH_NULL) ?
0 : sizeof(struct ar5212AniState);
return AH_TRUE;
case HAL_DIAG_ANI_STATS:
*result = ar5212AniGetCurrentStats(ah);
*resultsize = (*result == AH_NULL) ?
0 : sizeof(struct ar5212Stats);
return AH_TRUE;
case HAL_DIAG_ANI_CMD:
if (argsize != 2*sizeof(uint32_t))
return AH_FALSE;
ar5212AniControl(ah, ((const uint32_t *)args)[0],
((const uint32_t *)args)[1]);
return AH_TRUE;
case HAL_DIAG_ANI_PARAMS:
/*
* NB: We assume struct ar5212AniParams is identical
* to HAL_ANI_PARAMS; if they diverge then we'll need
* to handle it here
*/
if (argsize == 0 && args == AH_NULL) {
struct ar5212AniState *aniState =
ar5212AniGetCurrentState(ah);
if (aniState == AH_NULL)
return AH_FALSE;
*result = __DECONST(void *, aniState->params);
*resultsize = sizeof(struct ar5212AniParams);
return AH_TRUE;
} else {
if (argsize != sizeof(struct ar5212AniParams))
return AH_FALSE;
return ar5212AniSetParams(ah, args, args);
}
}
return AH_FALSE;
}