782 lines
22 KiB
C
782 lines
22 KiB
C
|
/*-
|
||
|
* Copyright (c) 2010 Luigi Rizzo, Riccardo Panicucci, Universita` di Pisa
|
||
|
* All rights reserved
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Dummynet portions related to packet handling.
|
||
|
*/
|
||
|
#include <sys/cdefs.h>
|
||
|
__FBSDID("$FreeBSD$");
|
||
|
|
||
|
#include "opt_inet6.h"
|
||
|
|
||
|
#include <sys/param.h>
|
||
|
#include <sys/systm.h>
|
||
|
#include <sys/malloc.h>
|
||
|
#include <sys/mbuf.h>
|
||
|
#include <sys/kernel.h>
|
||
|
#include <sys/lock.h>
|
||
|
#include <sys/module.h>
|
||
|
#include <sys/priv.h>
|
||
|
#include <sys/proc.h>
|
||
|
#include <sys/rwlock.h>
|
||
|
#include <sys/socket.h>
|
||
|
#include <sys/time.h>
|
||
|
#include <sys/sysctl.h>
|
||
|
#include <net/if.h> /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
|
||
|
#include <net/netisr.h>
|
||
|
#include <netinet/in.h>
|
||
|
#include <netinet/ip.h> /* ip_len, ip_off */
|
||
|
#include <netinet/ip_var.h> /* ip_output(), IP_FORWARDING */
|
||
|
#include <netinet/ip_fw.h>
|
||
|
#include <netinet/ipfw/ip_fw_private.h>
|
||
|
#include <netinet/ipfw/dn_heap.h>
|
||
|
#include <netinet/ip_dummynet.h>
|
||
|
#include <netinet/ipfw/ip_dn_private.h>
|
||
|
#include <netinet/ipfw/dn_sched.h>
|
||
|
|
||
|
#include <netinet/if_ether.h> /* various ether_* routines */
|
||
|
|
||
|
#include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
|
||
|
#include <netinet6/ip6_var.h>
|
||
|
|
||
|
/*
|
||
|
* We keep a private variable for the simulation time, but we could
|
||
|
* probably use an existing one ("softticks" in sys/kern/kern_timeout.c)
|
||
|
* instead of dn_cfg.curr_time
|
||
|
*/
|
||
|
|
||
|
struct dn_parms dn_cfg;
|
||
|
|
||
|
static long tick_last; /* Last tick duration (usec). */
|
||
|
static long tick_delta; /* Last vs standard tick diff (usec). */
|
||
|
static long tick_delta_sum; /* Accumulated tick difference (usec).*/
|
||
|
static long tick_adjustment; /* Tick adjustments done. */
|
||
|
static long tick_lost; /* Lost(coalesced) ticks number. */
|
||
|
/* Adjusted vs non-adjusted curr_time difference (ticks). */
|
||
|
static long tick_diff;
|
||
|
|
||
|
static unsigned long io_pkt;
|
||
|
static unsigned long io_pkt_fast;
|
||
|
static unsigned long io_pkt_drop;
|
||
|
|
||
|
/*
|
||
|
* We use a heap to store entities for which we have pending timer events.
|
||
|
* The heap is checked at every tick and all entities with expired events
|
||
|
* are extracted.
|
||
|
*/
|
||
|
|
||
|
MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
|
||
|
|
||
|
extern void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
|
||
|
|
||
|
#ifdef SYSCTL_NODE
|
||
|
|
||
|
SYSBEGIN(f4)
|
||
|
|
||
|
SYSCTL_DECL(_net_inet);
|
||
|
SYSCTL_DECL(_net_inet_ip);
|
||
|
SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet");
|
||
|
|
||
|
/* parameters */
|
||
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
|
||
|
CTLFLAG_RW, &dn_cfg.hash_size, 0, "Default hash table size");
|
||
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit,
|
||
|
CTLFLAG_RW, &dn_cfg.slot_limit, 0,
|
||
|
"Upper limit in slots for pipe queue.");
|
||
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit,
|
||
|
CTLFLAG_RW, &dn_cfg.byte_limit, 0,
|
||
|
"Upper limit in bytes for pipe queue.");
|
||
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast,
|
||
|
CTLFLAG_RW, &dn_cfg.io_fast, 0, "Enable fast dummynet io.");
|
||
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug,
|
||
|
CTLFLAG_RW, &dn_cfg.debug, 0, "Dummynet debug level");
|
||
|
|
||
|
/* RED parameters */
|
||
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
|
||
|
CTLFLAG_RD, &dn_cfg.red_lookup_depth, 0, "Depth of RED lookup table");
|
||
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
|
||
|
CTLFLAG_RD, &dn_cfg.red_avg_pkt_size, 0, "RED Medium packet size");
|
||
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
|
||
|
CTLFLAG_RD, &dn_cfg.red_max_pkt_size, 0, "RED Max packet size");
|
||
|
|
||
|
/* time adjustment */
|
||
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta,
|
||
|
CTLFLAG_RD, &tick_delta, 0, "Last vs standard tick difference (usec).");
|
||
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum,
|
||
|
CTLFLAG_RD, &tick_delta_sum, 0, "Accumulated tick difference (usec).");
|
||
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment,
|
||
|
CTLFLAG_RD, &tick_adjustment, 0, "Tick adjustments done.");
|
||
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff,
|
||
|
CTLFLAG_RD, &tick_diff, 0,
|
||
|
"Adjusted vs non-adjusted curr_time difference (ticks).");
|
||
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost,
|
||
|
CTLFLAG_RD, &tick_lost, 0,
|
||
|
"Number of ticks coalesced by dummynet taskqueue.");
|
||
|
|
||
|
/* statistics */
|
||
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, schk_count,
|
||
|
CTLFLAG_RD, &dn_cfg.schk_count, 0, "Number of schedulers");
|
||
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, si_count,
|
||
|
CTLFLAG_RD, &dn_cfg.si_count, 0, "Number of scheduler instances");
|
||
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, fsk_count,
|
||
|
CTLFLAG_RD, &dn_cfg.fsk_count, 0, "Number of flowsets");
|
||
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, queue_count,
|
||
|
CTLFLAG_RD, &dn_cfg.queue_count, 0, "Number of queues");
|
||
|
SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt,
|
||
|
CTLFLAG_RD, &io_pkt, 0,
|
||
|
"Number of packets passed to dummynet.");
|
||
|
SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast,
|
||
|
CTLFLAG_RD, &io_pkt_fast, 0,
|
||
|
"Number of packets bypassed dummynet scheduler.");
|
||
|
SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop,
|
||
|
CTLFLAG_RD, &io_pkt_drop, 0,
|
||
|
"Number of packets dropped by dummynet.");
|
||
|
|
||
|
SYSEND
|
||
|
|
||
|
#endif
|
||
|
|
||
|
static void dummynet_send(struct mbuf *);
|
||
|
|
||
|
/*
|
||
|
* Packets processed by dummynet have an mbuf tag associated with
|
||
|
* them that carries their dummynet state.
|
||
|
* Outside dummynet, only the 'rule' field is relevant, and it must
|
||
|
* be at the beginning of the structure.
|
||
|
*/
|
||
|
struct dn_pkt_tag {
|
||
|
struct ipfw_rule_ref rule; /* matching rule */
|
||
|
|
||
|
/* second part, dummynet specific */
|
||
|
int dn_dir; /* action when packet comes out.*/
|
||
|
/* see ip_fw_private.h */
|
||
|
uint64_t output_time; /* when the pkt is due for delivery*/
|
||
|
struct ifnet *ifp; /* interface, for ip_output */
|
||
|
struct _ip6dn_args ip6opt; /* XXX ipv6 options */
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Return the mbuf tag holding the dummynet state (it should
|
||
|
* be the first one on the list).
|
||
|
*/
|
||
|
static struct dn_pkt_tag *
|
||
|
dn_tag_get(struct mbuf *m)
|
||
|
{
|
||
|
struct m_tag *mtag = m_tag_first(m);
|
||
|
KASSERT(mtag != NULL &&
|
||
|
mtag->m_tag_cookie == MTAG_ABI_COMPAT &&
|
||
|
mtag->m_tag_id == PACKET_TAG_DUMMYNET,
|
||
|
("packet on dummynet queue w/o dummynet tag!"));
|
||
|
return (struct dn_pkt_tag *)(mtag+1);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
mq_append(struct mq *q, struct mbuf *m)
|
||
|
{
|
||
|
if (q->head == NULL)
|
||
|
q->head = m;
|
||
|
else
|
||
|
q->tail->m_nextpkt = m;
|
||
|
q->tail = m;
|
||
|
m->m_nextpkt = NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Dispose a list of packet. Use a functions so if we need to do
|
||
|
* more work, this is a central point to do it.
|
||
|
*/
|
||
|
void dn_free_pkts(struct mbuf *mnext)
|
||
|
{
|
||
|
struct mbuf *m;
|
||
|
|
||
|
while ((m = mnext) != NULL) {
|
||
|
mnext = m->m_nextpkt;
|
||
|
FREE_PKT(m);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
red_drops (struct dn_queue *q, int len)
|
||
|
{
|
||
|
/*
|
||
|
* RED algorithm
|
||
|
*
|
||
|
* RED calculates the average queue size (avg) using a low-pass filter
|
||
|
* with an exponential weighted (w_q) moving average:
|
||
|
* avg <- (1-w_q) * avg + w_q * q_size
|
||
|
* where q_size is the queue length (measured in bytes or * packets).
|
||
|
*
|
||
|
* If q_size == 0, we compute the idle time for the link, and set
|
||
|
* avg = (1 - w_q)^(idle/s)
|
||
|
* where s is the time needed for transmitting a medium-sized packet.
|
||
|
*
|
||
|
* Now, if avg < min_th the packet is enqueued.
|
||
|
* If avg > max_th the packet is dropped. Otherwise, the packet is
|
||
|
* dropped with probability P function of avg.
|
||
|
*/
|
||
|
|
||
|
struct dn_fsk *fs = q->fs;
|
||
|
int64_t p_b = 0;
|
||
|
|
||
|
/* Queue in bytes or packets? */
|
||
|
uint32_t q_size = (fs->fs.flags & DN_QSIZE_BYTES) ?
|
||
|
q->ni.len_bytes : q->ni.length;
|
||
|
|
||
|
/* Average queue size estimation. */
|
||
|
if (q_size != 0) {
|
||
|
/* Queue is not empty, avg <- avg + (q_size - avg) * w_q */
|
||
|
int diff = SCALE(q_size) - q->avg;
|
||
|
int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
|
||
|
|
||
|
q->avg += (int)v;
|
||
|
} else {
|
||
|
/*
|
||
|
* Queue is empty, find for how long the queue has been
|
||
|
* empty and use a lookup table for computing
|
||
|
* (1 - * w_q)^(idle_time/s) where s is the time to send a
|
||
|
* (small) packet.
|
||
|
* XXX check wraps...
|
||
|
*/
|
||
|
if (q->avg) {
|
||
|
u_int t = div64((dn_cfg.curr_time - q->q_time), fs->lookup_step);
|
||
|
|
||
|
q->avg = (t < fs->lookup_depth) ?
|
||
|
SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Should i drop? */
|
||
|
if (q->avg < fs->min_th) {
|
||
|
q->count = -1;
|
||
|
return (0); /* accept packet */
|
||
|
}
|
||
|
if (q->avg >= fs->max_th) { /* average queue >= max threshold */
|
||
|
if (fs->fs.flags & DN_IS_GENTLE_RED) {
|
||
|
/*
|
||
|
* According to Gentle-RED, if avg is greater than
|
||
|
* max_th the packet is dropped with a probability
|
||
|
* p_b = c_3 * avg - c_4
|
||
|
* where c_3 = (1 - max_p) / max_th
|
||
|
* c_4 = 1 - 2 * max_p
|
||
|
*/
|
||
|
p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) -
|
||
|
fs->c_4;
|
||
|
} else {
|
||
|
q->count = -1;
|
||
|
return (1);
|
||
|
}
|
||
|
} else if (q->avg > fs->min_th) {
|
||
|
/*
|
||
|
* We compute p_b using the linear dropping function
|
||
|
* p_b = c_1 * avg - c_2
|
||
|
* where c_1 = max_p / (max_th - min_th)
|
||
|
* c_2 = max_p * min_th / (max_th - min_th)
|
||
|
*/
|
||
|
p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
|
||
|
}
|
||
|
|
||
|
if (fs->fs.flags & DN_QSIZE_BYTES)
|
||
|
p_b = div64((p_b * len) , fs->max_pkt_size);
|
||
|
if (++q->count == 0)
|
||
|
q->random = random() & 0xffff;
|
||
|
else {
|
||
|
/*
|
||
|
* q->count counts packets arrived since last drop, so a greater
|
||
|
* value of q->count means a greater packet drop probability.
|
||
|
*/
|
||
|
if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
|
||
|
q->count = 0;
|
||
|
/* After a drop we calculate a new random value. */
|
||
|
q->random = random() & 0xffff;
|
||
|
return (1); /* drop */
|
||
|
}
|
||
|
}
|
||
|
/* End of RED algorithm. */
|
||
|
|
||
|
return (0); /* accept */
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Enqueue a packet in q, subject to space and queue management policy
|
||
|
* (whose parameters are in q->fs).
|
||
|
* Update stats for the queue and the scheduler.
|
||
|
* Return 0 on success, 1 on drop. The packet is consumed anyways.
|
||
|
*/
|
||
|
int
|
||
|
dn_enqueue(struct dn_queue *q, struct mbuf* m, int drop)
|
||
|
{
|
||
|
struct dn_fs *f;
|
||
|
struct dn_flow *ni; /* stats for scheduler instance */
|
||
|
uint64_t len;
|
||
|
|
||
|
if (q->fs == NULL || q->_si == NULL) {
|
||
|
printf("%s fs %p si %p, dropping\n",
|
||
|
__FUNCTION__, q->fs, q->_si);
|
||
|
FREE_PKT(m);
|
||
|
return 1;
|
||
|
}
|
||
|
f = &(q->fs->fs);
|
||
|
ni = &q->_si->ni;
|
||
|
len = m->m_pkthdr.len;
|
||
|
/* Update statistics, then check reasons to drop pkt. */
|
||
|
q->ni.tot_bytes += len;
|
||
|
q->ni.tot_pkts++;
|
||
|
ni->tot_bytes += len;
|
||
|
ni->tot_pkts++;
|
||
|
if (drop)
|
||
|
goto drop;
|
||
|
if (f->plr && random() < f->plr)
|
||
|
goto drop;
|
||
|
if (f->flags & DN_IS_RED && red_drops(q, m->m_pkthdr.len))
|
||
|
goto drop;
|
||
|
if (f->flags & DN_QSIZE_BYTES) {
|
||
|
if (q->ni.len_bytes > f->qsize)
|
||
|
goto drop;
|
||
|
} else if (q->ni.length >= f->qsize) {
|
||
|
goto drop;
|
||
|
}
|
||
|
mq_append(&q->mq, m);
|
||
|
q->ni.length++;
|
||
|
q->ni.len_bytes += len;
|
||
|
ni->length++;
|
||
|
ni->len_bytes += len;
|
||
|
return 0;
|
||
|
|
||
|
drop:
|
||
|
io_pkt_drop++;
|
||
|
q->ni.drops++;
|
||
|
ni->drops++;
|
||
|
FREE_PKT(m);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Fetch packets from the delay line which are due now. If there are
|
||
|
* leftover packets, reinsert the delay line in the heap.
|
||
|
* Runs under scheduler lock.
|
||
|
*/
|
||
|
static void
|
||
|
transmit_event(struct mq *q, struct delay_line *dline, uint64_t now)
|
||
|
{
|
||
|
struct mbuf *m;
|
||
|
struct dn_pkt_tag *pkt = NULL;
|
||
|
|
||
|
dline->oid.subtype = 0; /* not in heap */
|
||
|
while ((m = dline->mq.head) != NULL) {
|
||
|
pkt = dn_tag_get(m);
|
||
|
if (!DN_KEY_LEQ(pkt->output_time, now))
|
||
|
break;
|
||
|
dline->mq.head = m->m_nextpkt;
|
||
|
mq_append(q, m);
|
||
|
}
|
||
|
if (m != NULL) {
|
||
|
dline->oid.subtype = 1; /* in heap */
|
||
|
heap_insert(&dn_cfg.evheap, pkt->output_time, dline);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Convert the additional MAC overheads/delays into an equivalent
|
||
|
* number of bits for the given data rate. The samples are
|
||
|
* in milliseconds so we need to divide by 1000.
|
||
|
*/
|
||
|
static uint64_t
|
||
|
extra_bits(struct mbuf *m, struct dn_schk *s)
|
||
|
{
|
||
|
int index;
|
||
|
uint64_t bits;
|
||
|
struct dn_profile *pf = s->profile;
|
||
|
|
||
|
if (!pf || pf->samples_no == 0)
|
||
|
return 0;
|
||
|
index = random() % pf->samples_no;
|
||
|
bits = div64((uint64_t)pf->samples[index] * s->link.bandwidth, 1000);
|
||
|
if (index >= pf->loss_level) {
|
||
|
struct dn_pkt_tag *dt = dn_tag_get(m);
|
||
|
if (dt)
|
||
|
dt->dn_dir = DIR_DROP;
|
||
|
}
|
||
|
return bits;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Send traffic from a scheduler instance due by 'now'.
|
||
|
* Return a pointer to the head of the queue.
|
||
|
*/
|
||
|
static struct mbuf *
|
||
|
serve_sched(struct mq *q, struct dn_sch_inst *si, uint64_t now)
|
||
|
{
|
||
|
struct mq def_q;
|
||
|
struct dn_schk *s = si->sched;
|
||
|
struct mbuf *m = NULL;
|
||
|
int delay_line_idle = (si->dline.mq.head == NULL);
|
||
|
int done, bw;
|
||
|
|
||
|
if (q == NULL) {
|
||
|
q = &def_q;
|
||
|
q->head = NULL;
|
||
|
}
|
||
|
|
||
|
bw = s->link.bandwidth;
|
||
|
si->kflags &= ~DN_ACTIVE;
|
||
|
|
||
|
if (bw > 0)
|
||
|
si->credit += (now - si->sched_time) * bw;
|
||
|
else
|
||
|
si->credit = 0;
|
||
|
si->sched_time = now;
|
||
|
done = 0;
|
||
|
while (si->credit >= 0 && (m = s->fp->dequeue(si)) != NULL) {
|
||
|
uint64_t len_scaled;
|
||
|
done++;
|
||
|
len_scaled = (bw == 0) ? 0 : hz *
|
||
|
(m->m_pkthdr.len * 8 + extra_bits(m, s));
|
||
|
si->credit -= len_scaled;
|
||
|
/* Move packet in the delay line */
|
||
|
dn_tag_get(m)->output_time += s->link.delay ;
|
||
|
mq_append(&si->dline.mq, m);
|
||
|
}
|
||
|
/*
|
||
|
* If credit >= 0 the instance is idle, mark time.
|
||
|
* Otherwise put back in the heap, and adjust the output
|
||
|
* time of the last inserted packet, m, which was too early.
|
||
|
*/
|
||
|
if (si->credit >= 0) {
|
||
|
si->idle_time = now;
|
||
|
} else {
|
||
|
uint64_t t;
|
||
|
KASSERT (bw > 0, ("bw=0 and credit<0 ?"));
|
||
|
t = div64(bw - 1 - si->credit, bw);
|
||
|
if (m)
|
||
|
dn_tag_get(m)->output_time += t;
|
||
|
si->kflags |= DN_ACTIVE;
|
||
|
heap_insert(&dn_cfg.evheap, now + t, si);
|
||
|
}
|
||
|
if (delay_line_idle && done)
|
||
|
transmit_event(q, &si->dline, now);
|
||
|
return q->head;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The timer handler for dummynet. Time is computed in ticks, but
|
||
|
* but the code is tolerant to the actual rate at which this is called.
|
||
|
* Once complete, the function reschedules itself for the next tick.
|
||
|
*/
|
||
|
void
|
||
|
dummynet_task(void *context, int pending)
|
||
|
{
|
||
|
struct timeval t;
|
||
|
struct mq q = { NULL, NULL }; /* queue to accumulate results */
|
||
|
|
||
|
DN_BH_WLOCK();
|
||
|
|
||
|
/* Update number of lost(coalesced) ticks. */
|
||
|
tick_lost += pending - 1;
|
||
|
|
||
|
getmicrouptime(&t);
|
||
|
/* Last tick duration (usec). */
|
||
|
tick_last = (t.tv_sec - dn_cfg.prev_t.tv_sec) * 1000000 +
|
||
|
(t.tv_usec - dn_cfg.prev_t.tv_usec);
|
||
|
/* Last tick vs standard tick difference (usec). */
|
||
|
tick_delta = (tick_last * hz - 1000000) / hz;
|
||
|
/* Accumulated tick difference (usec). */
|
||
|
tick_delta_sum += tick_delta;
|
||
|
|
||
|
dn_cfg.prev_t = t;
|
||
|
|
||
|
/*
|
||
|
* Adjust curr_time if the accumulated tick difference is
|
||
|
* greater than the 'standard' tick. Since curr_time should
|
||
|
* be monotonically increasing, we do positive adjustments
|
||
|
* as required, and throttle curr_time in case of negative
|
||
|
* adjustment.
|
||
|
*/
|
||
|
dn_cfg.curr_time++;
|
||
|
if (tick_delta_sum - tick >= 0) {
|
||
|
int diff = tick_delta_sum / tick;
|
||
|
|
||
|
dn_cfg.curr_time += diff;
|
||
|
tick_diff += diff;
|
||
|
tick_delta_sum %= tick;
|
||
|
tick_adjustment++;
|
||
|
} else if (tick_delta_sum + tick <= 0) {
|
||
|
dn_cfg.curr_time--;
|
||
|
tick_diff--;
|
||
|
tick_delta_sum += tick;
|
||
|
tick_adjustment++;
|
||
|
}
|
||
|
|
||
|
/* serve pending events, accumulate in q */
|
||
|
for (;;) {
|
||
|
struct dn_id *p; /* generic parameter to handler */
|
||
|
|
||
|
if (dn_cfg.evheap.elements == 0 ||
|
||
|
DN_KEY_LT(dn_cfg.curr_time, HEAP_TOP(&dn_cfg.evheap)->key))
|
||
|
break;
|
||
|
p = HEAP_TOP(&dn_cfg.evheap)->object;
|
||
|
heap_extract(&dn_cfg.evheap, NULL);
|
||
|
|
||
|
if (p->type == DN_SCH_I) {
|
||
|
serve_sched(&q, (struct dn_sch_inst *)p, dn_cfg.curr_time);
|
||
|
} else { /* extracted a delay line */
|
||
|
transmit_event(&q, (struct delay_line *)p, dn_cfg.curr_time);
|
||
|
}
|
||
|
}
|
||
|
dn_drain_scheduler();
|
||
|
dn_drain_queue();
|
||
|
|
||
|
DN_BH_WUNLOCK();
|
||
|
dn_reschedule();
|
||
|
if (q.head != NULL)
|
||
|
dummynet_send(q.head);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* forward a chain of packets to the proper destination.
|
||
|
* This runs outside the dummynet lock.
|
||
|
*/
|
||
|
static void
|
||
|
dummynet_send(struct mbuf *m)
|
||
|
{
|
||
|
struct mbuf *n;
|
||
|
|
||
|
for (; m != NULL; m = n) {
|
||
|
struct ifnet *ifp = NULL; /* gcc 3.4.6 complains */
|
||
|
struct m_tag *tag;
|
||
|
int dst;
|
||
|
|
||
|
n = m->m_nextpkt;
|
||
|
m->m_nextpkt = NULL;
|
||
|
tag = m_tag_first(m);
|
||
|
if (tag == NULL) { /* should not happen */
|
||
|
dst = DIR_DROP;
|
||
|
} else {
|
||
|
struct dn_pkt_tag *pkt = dn_tag_get(m);
|
||
|
/* extract the dummynet info, rename the tag
|
||
|
* to carry reinject info.
|
||
|
*/
|
||
|
dst = pkt->dn_dir;
|
||
|
ifp = pkt->ifp;
|
||
|
tag->m_tag_cookie = MTAG_IPFW_RULE;
|
||
|
tag->m_tag_id = 0;
|
||
|
}
|
||
|
|
||
|
switch (dst) {
|
||
|
case DIR_OUT:
|
||
|
SET_HOST_IPLEN(mtod(m, struct ip *));
|
||
|
ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
|
||
|
break ;
|
||
|
|
||
|
case DIR_IN :
|
||
|
/* put header in network format for ip_input() */
|
||
|
//SET_NET_IPLEN(mtod(m, struct ip *));
|
||
|
netisr_dispatch(NETISR_IP, m);
|
||
|
break;
|
||
|
|
||
|
#ifdef INET6
|
||
|
case DIR_IN | PROTO_IPV6:
|
||
|
netisr_dispatch(NETISR_IPV6, m);
|
||
|
break;
|
||
|
|
||
|
case DIR_OUT | PROTO_IPV6:
|
||
|
SET_HOST_IPLEN(mtod(m, struct ip *));
|
||
|
ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
|
||
|
break;
|
||
|
#endif
|
||
|
|
||
|
case DIR_FWD | PROTO_IFB: /* DN_TO_IFB_FWD: */
|
||
|
if (bridge_dn_p != NULL)
|
||
|
((*bridge_dn_p)(m, ifp));
|
||
|
else
|
||
|
printf("dummynet: if_bridge not loaded\n");
|
||
|
|
||
|
break;
|
||
|
|
||
|
case DIR_IN | PROTO_LAYER2: /* DN_TO_ETH_DEMUX: */
|
||
|
/*
|
||
|
* The Ethernet code assumes the Ethernet header is
|
||
|
* contiguous in the first mbuf header.
|
||
|
* Insure this is true.
|
||
|
*/
|
||
|
if (m->m_len < ETHER_HDR_LEN &&
|
||
|
(m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
|
||
|
printf("dummynet/ether: pullup failed, "
|
||
|
"dropping packet\n");
|
||
|
break;
|
||
|
}
|
||
|
ether_demux(m->m_pkthdr.rcvif, m);
|
||
|
break;
|
||
|
|
||
|
case DIR_OUT | PROTO_LAYER2: /* N_TO_ETH_OUT: */
|
||
|
ether_output_frame(ifp, m);
|
||
|
break;
|
||
|
|
||
|
case DIR_DROP:
|
||
|
/* drop the packet after some time */
|
||
|
FREE_PKT(m);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
printf("dummynet: bad switch %d!\n", dst);
|
||
|
FREE_PKT(m);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
tag_mbuf(struct mbuf *m, int dir, struct ip_fw_args *fwa)
|
||
|
{
|
||
|
struct dn_pkt_tag *dt;
|
||
|
struct m_tag *mtag;
|
||
|
|
||
|
mtag = m_tag_get(PACKET_TAG_DUMMYNET,
|
||
|
sizeof(*dt), M_NOWAIT | M_ZERO);
|
||
|
if (mtag == NULL)
|
||
|
return 1; /* Cannot allocate packet header. */
|
||
|
m_tag_prepend(m, mtag); /* Attach to mbuf chain. */
|
||
|
dt = (struct dn_pkt_tag *)(mtag + 1);
|
||
|
dt->rule = fwa->rule;
|
||
|
dt->rule.info &= IPFW_ONEPASS; /* only keep this info */
|
||
|
dt->dn_dir = dir;
|
||
|
dt->ifp = fwa->oif;
|
||
|
/* dt->output tame is updated as we move through */
|
||
|
dt->output_time = dn_cfg.curr_time;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* dummynet hook for packets.
|
||
|
* We use the argument to locate the flowset fs and the sched_set sch
|
||
|
* associated to it. The we apply flow_mask and sched_mask to
|
||
|
* determine the queue and scheduler instances.
|
||
|
*
|
||
|
* dir where shall we send the packet after dummynet.
|
||
|
* *m0 the mbuf with the packet
|
||
|
* ifp the 'ifp' parameter from the caller.
|
||
|
* NULL in ip_input, destination interface in ip_output,
|
||
|
*/
|
||
|
int
|
||
|
dummynet_io(struct mbuf **m0, int dir, struct ip_fw_args *fwa)
|
||
|
{
|
||
|
struct mbuf *m = *m0;
|
||
|
struct dn_fsk *fs = NULL;
|
||
|
struct dn_sch_inst *si;
|
||
|
struct dn_queue *q = NULL; /* default */
|
||
|
|
||
|
int fs_id = (fwa->rule.info & IPFW_INFO_MASK) +
|
||
|
((fwa->rule.info & IPFW_IS_PIPE) ? 2*DN_MAX_ID : 0);
|
||
|
DN_BH_WLOCK();
|
||
|
io_pkt++;
|
||
|
/* we could actually tag outside the lock, but who cares... */
|
||
|
if (tag_mbuf(m, dir, fwa))
|
||
|
goto dropit;
|
||
|
if (dn_cfg.busy) {
|
||
|
/* if the upper half is busy doing something expensive,
|
||
|
* lets queue the packet and move forward
|
||
|
*/
|
||
|
mq_append(&dn_cfg.pending, m);
|
||
|
m = *m0 = NULL; /* consumed */
|
||
|
goto done; /* already active, nothing to do */
|
||
|
}
|
||
|
/* XXX locate_flowset could be optimised with a direct ref. */
|
||
|
fs = dn_ht_find(dn_cfg.fshash, fs_id, 0, NULL);
|
||
|
if (fs == NULL)
|
||
|
goto dropit; /* This queue/pipe does not exist! */
|
||
|
if (fs->sched == NULL) /* should not happen */
|
||
|
goto dropit;
|
||
|
/* find scheduler instance, possibly applying sched_mask */
|
||
|
si = ipdn_si_find(fs->sched, &(fwa->f_id));
|
||
|
if (si == NULL)
|
||
|
goto dropit;
|
||
|
/*
|
||
|
* If the scheduler supports multiple queues, find the right one
|
||
|
* (otherwise it will be ignored by enqueue).
|
||
|
*/
|
||
|
if (fs->sched->fp->flags & DN_MULTIQUEUE) {
|
||
|
q = ipdn_q_find(fs, si, &(fwa->f_id));
|
||
|
if (q == NULL)
|
||
|
goto dropit;
|
||
|
}
|
||
|
if (fs->sched->fp->enqueue(si, q, m)) {
|
||
|
printf("%s dropped by enqueue\n", __FUNCTION__);
|
||
|
/* packet was dropped by enqueue() */
|
||
|
m = *m0 = NULL;
|
||
|
goto dropit;
|
||
|
}
|
||
|
|
||
|
if (si->kflags & DN_ACTIVE) {
|
||
|
m = *m0 = NULL; /* consumed */
|
||
|
goto done; /* already active, nothing to do */
|
||
|
}
|
||
|
|
||
|
/* compute the initial allowance */
|
||
|
{
|
||
|
struct dn_link *p = &fs->sched->link;
|
||
|
si->credit = dn_cfg.io_fast ? p->bandwidth : 0;
|
||
|
if (p->burst) {
|
||
|
uint64_t burst = (dn_cfg.curr_time - si->idle_time) * p->bandwidth;
|
||
|
if (burst > p->burst)
|
||
|
burst = p->burst;
|
||
|
si->credit += burst;
|
||
|
}
|
||
|
}
|
||
|
/* pass through scheduler and delay line */
|
||
|
m = serve_sched(NULL, si, dn_cfg.curr_time);
|
||
|
|
||
|
/* optimization -- pass it back to ipfw for immediate send */
|
||
|
/* XXX Don't call dummynet_send() if scheduler return the packet
|
||
|
* just enqueued. This avoid a lock order reversal.
|
||
|
*
|
||
|
*/
|
||
|
if (/*dn_cfg.io_fast &&*/ m == *m0 && (dir & PROTO_LAYER2) == 0 ) {
|
||
|
/* fast io */
|
||
|
io_pkt_fast++;
|
||
|
if (m->m_nextpkt != NULL) {
|
||
|
printf("dummynet: fast io: pkt chain detected!\n");
|
||
|
m->m_nextpkt = NULL;
|
||
|
}
|
||
|
m = NULL;
|
||
|
} else {
|
||
|
*m0 = NULL;
|
||
|
}
|
||
|
done:
|
||
|
DN_BH_WUNLOCK();
|
||
|
if (m)
|
||
|
dummynet_send(m);
|
||
|
return 0;
|
||
|
|
||
|
dropit:
|
||
|
io_pkt_drop++;
|
||
|
DN_BH_WUNLOCK();
|
||
|
if (m)
|
||
|
FREE_PKT(m);
|
||
|
*m0 = NULL;
|
||
|
return (fs && (fs->fs.flags & DN_NOERROR)) ? 0 : ENOBUFS;
|
||
|
}
|