freebsd-dev/sbin/setkey/setkey.8

735 lines
16 KiB
Groff
Raw Normal View History

.\" $KAME: setkey.8,v 1.89 2003/09/07 22:17:41 itojun Exp $
.\"
.\" Copyright (C) 1995, 1996, 1997, 1998, and 1999 WIDE Project.
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\" 3. Neither the name of the project nor the names of its contributors
.\" may be used to endorse or promote products derived from this software
.\" without specific prior written permission.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
2005-02-09 18:07:17 +00:00
.\" $FreeBSD$
.\"
.Dd April 9, 2017
.Dt SETKEY 8
.Os
.\"
.Sh NAME
.Nm setkey
.Nd "manually manipulate the IPsec SA/SP database"
.\"
.Sh SYNOPSIS
.Nm
.Op Fl v
.Fl c
.Nm
.Op Fl v
.Fl f Ar filename
.Nm
Introduce the concept of IPsec security policies scope. Currently are defined three scopes: global, ifnet, and pcb. Generic security policies that IKE daemon can add via PF_KEY interface or an administrator creates with setkey(8) utility have GLOBAL scope. Such policies can be applied by the kernel to outgoing packets and checked agains inbound packets after IPsec processing. Security policies created by if_ipsec(4) interfaces have IFNET scope. Such policies are applied to packets that are passed through if_ipsec(4) interface. And security policies created by application using setsockopt() IP_IPSEC_POLICY option have PCB scope. Such policies are applied to packets related to specific socket. Currently there is no way to list PCB policies via setkey(8) utility. Modify setkey(8) and libipsec(3) to be able distinguish the scope of security policies in the `setkey -DP` listing. Add two optional flags: '-t' to list only policies related to virtual *tunneling* interfaces, i.e. policies with IFNET scope, and '-g' to list only policies with GLOBAL scope. By default policies from all scopes are listed. To implement this PF_KEY's sadb_x_policy structure was modified. sadb_x_policy_reserved field is used to pass the policy scope from the kernel to userland. SADB_SPDDUMP message extended to support filtering by scope: sadb_msg_satype field is used to specify bit mask of requested scopes. For IFNET policies the sadb_x_policy_priority field of struct sadb_x_policy is used to pass if_ipsec's interface if_index to the userland. For GLOBAL policies sadb_x_policy_priority is used only to manage order of security policies in the SPDB. For IFNET policies it is not used, so it can be used to keep if_index. After this change the output of `setkey -DP` now looks like: # setkey -DPt 0.0.0.0/0[any] 0.0.0.0/0[any] any in ipsec esp/tunnel/87.250.242.144-87.250.242.145/unique:145 spid=7 seq=3 pid=58025 scope=ifnet ifname=ipsec0 refcnt=1 # setkey -DPg ::/0 ::/0 icmp6 135,0 out none spid=5 seq=1 pid=872 scope=global refcnt=1 No objection from: #network Obtained from: Yandex LLC MFC after: 2 weeks Sponsored by: Yandex LLC Differential Revision: https://reviews.freebsd.org/D9805
2017-03-07 00:13:53 +00:00
.Op Fl Pgltv
.Fl D
.Nm
.Op Fl Pv
.Fl F
.Nm
.Op Fl h
.Fl x
.\"
.Sh DESCRIPTION
2002-07-14 14:47:15 +00:00
The
.Nm
utility adds, updates, dumps, or flushes
Security Association Database (SAD) entries
as well as Security Policy Database (SPD) entries in the kernel.
.Pp
2002-07-14 14:47:15 +00:00
The
.Nm
utility takes a series of operations from the standard input
(if invoked with
.Fl c )
or the file named
.Ar filename
(if invoked with
.Fl f Ar filename ) .
.Bl -tag -width indent
.It Fl D
Dump the SAD entries.
If with
.Fl P ,
the SPD entries are dumped.
.It Fl F
Flush the SAD entries.
If with
.Fl P ,
the SPD entries are flushed.
Introduce the concept of IPsec security policies scope. Currently are defined three scopes: global, ifnet, and pcb. Generic security policies that IKE daemon can add via PF_KEY interface or an administrator creates with setkey(8) utility have GLOBAL scope. Such policies can be applied by the kernel to outgoing packets and checked agains inbound packets after IPsec processing. Security policies created by if_ipsec(4) interfaces have IFNET scope. Such policies are applied to packets that are passed through if_ipsec(4) interface. And security policies created by application using setsockopt() IP_IPSEC_POLICY option have PCB scope. Such policies are applied to packets related to specific socket. Currently there is no way to list PCB policies via setkey(8) utility. Modify setkey(8) and libipsec(3) to be able distinguish the scope of security policies in the `setkey -DP` listing. Add two optional flags: '-t' to list only policies related to virtual *tunneling* interfaces, i.e. policies with IFNET scope, and '-g' to list only policies with GLOBAL scope. By default policies from all scopes are listed. To implement this PF_KEY's sadb_x_policy structure was modified. sadb_x_policy_reserved field is used to pass the policy scope from the kernel to userland. SADB_SPDDUMP message extended to support filtering by scope: sadb_msg_satype field is used to specify bit mask of requested scopes. For IFNET policies the sadb_x_policy_priority field of struct sadb_x_policy is used to pass if_ipsec's interface if_index to the userland. For GLOBAL policies sadb_x_policy_priority is used only to manage order of security policies in the SPDB. For IFNET policies it is not used, so it can be used to keep if_index. After this change the output of `setkey -DP` now looks like: # setkey -DPt 0.0.0.0/0[any] 0.0.0.0/0[any] any in ipsec esp/tunnel/87.250.242.144-87.250.242.145/unique:145 spid=7 seq=3 pid=58025 scope=ifnet ifname=ipsec0 refcnt=1 # setkey -DPg ::/0 ::/0 icmp6 135,0 out none spid=5 seq=1 pid=872 scope=global refcnt=1 No objection from: #network Obtained from: Yandex LLC MFC after: 2 weeks Sponsored by: Yandex LLC Differential Revision: https://reviews.freebsd.org/D9805
2017-03-07 00:13:53 +00:00
.It Fl g
Only SPD entries with global scope are dumped with
.Fl D
and
.Fl P
flags.
.It Fl t
Only SPD entries with ifnet scope are dumped with
.Fl D
and
.Fl P
flags.
Such SPD entries are linked to the corresponding
.Xr if_ipsec 4
virtual tunneling interface.
.It Fl h
Add hexadecimal dump on
.Fl x
mode.
.It Fl l
Loop forever with short output on
.Fl D .
.It Fl v
Be verbose.
The program will dump messages exchanged on
.Dv PF_KEY
socket, including messages sent from other processes to the kernel.
.It Fl x
Loop forever and dump all the messages transmitted to
.Dv PF_KEY
socket.
.Fl xx
makes each timestamp unformatted.
.El
.Ss Configuration syntax
With
.Fl c
or
.Fl f
on the command line,
.Nm
accepts the following configuration syntax.
Lines starting with hash signs
.Pq Ql #
are treated as comment lines.
.Bl -tag -width indent
.It Xo
.Li add
.Op Fl 46n
.Ar src Ar dst Ar protocol Ar spi
.Op Ar extensions
.Ar algorithm ...
2012-05-13 14:16:04 +00:00
.Li \&;
.Xc
Add an SAD entry.
.Li add
can fail with multiple reasons,
including when the key length does not match the specified algorithm.
.\"
.It Xo
.Li get
.Op Fl 46n
.Ar src Ar dst Ar protocol Ar spi
2012-05-13 14:16:04 +00:00
.Li \&;
.Xc
Show an SAD entry.
.\"
.It Xo
.Li delete
.Op Fl 46n
.Ar src Ar dst Ar protocol Ar spi
2012-05-13 14:16:04 +00:00
.Li \&;
.Xc
Remove an SAD entry.
.\"
.It Xo
.Li deleteall
.Op Fl 46n
.Ar src Ar dst Ar protocol
2012-05-13 14:16:04 +00:00
.Li \&;
.Xc
Remove all SAD entries that match the specification.
.\"
.It Xo
.Li flush
.Op Ar protocol
2012-05-13 14:16:04 +00:00
.Li \&;
.Xc
Clear all SAD entries matched by the options.
.Fl F
on the command line achieves the same functionality.
.\"
.It Xo
.Li dump
.Op Ar protocol
2012-05-13 14:16:04 +00:00
.Li \&;
.Xc
Dumps all SAD entries matched by the options.
.Fl D
on the command line achieves the same functionality.
.\"
.It Xo
.Li spdadd
.Op Fl 46n
.Ar src_range Ar dst_range Ar upperspec Ar policy
2012-05-13 14:16:04 +00:00
.Li \&;
.Xc
Add an SPD entry.
.\"
.It Xo
.Li spddelete
.Op Fl 46n
.Ar src_range Ar dst_range Ar upperspec Fl P Ar direction
2012-05-13 14:16:04 +00:00
.Li \&;
.Xc
Delete an SPD entry.
.\"
.It Xo
.Li spdflush
2012-05-13 14:16:04 +00:00
.Li \&;
.Xc
Clear all SPD entries.
.Fl FP
on the command line achieves the same functionality.
.\"
.It Xo
.Li spddump
2012-05-13 14:16:04 +00:00
.Li \&;
.Xc
Dumps all SPD entries.
.Fl DP
on the command line achieves the same functionality.
.El
.\"
.Pp
Meta-arguments are as follows:
.Pp
.Bl -tag -compact -width indent
.It Ar src
.It Ar dst
Source/destination of the secure communication is specified as
IPv4/v6 address.
The
.Nm
utility
can resolve a FQDN into numeric addresses.
If the FQDN resolves into multiple addresses,
.Nm
will install multiple SAD/SPD entries into the kernel
by trying all possible combinations.
.Fl 4 ,
.Fl 6
and
.Fl n
restricts the address resolution of FQDN in certain ways.
.Fl 4
and
.Fl 6
restrict results into IPv4/v6 addresses only, respectively.
.Fl n
avoids FQDN resolution and requires addresses to be numeric addresses.
.\"
.Pp
.It Ar protocol
.Ar protocol
is one of following:
.Bl -tag -width Fl -compact
.It Li esp
ESP based on rfc2406
.It Li esp-old
ESP based on rfc1827
.It Li ah
AH based on rfc2402
.It Li ah-old
AH based on rfc1826
.It Li ipcomp
IPComp
.It Li tcp
TCP-MD5 based on rfc2385
.El
.\"
.Pp
.It Ar spi
Security Parameter Index
(SPI)
for the SAD and the SPD.
.Ar spi
must be a decimal number, or a hexadecimal number with
.Ql 0x
prefix.
SPI values between 0 and 255 are reserved for future use by IANA
and they cannot be used.
.\"
.Pp
.It Ar extensions
take some of the following:
.Bl -tag -width Fl -compact
.\"
.It Fl m Ar mode
Specify a security protocol mode for use.
.Ar mode
is one of following:
.Li transport , tunnel
or
.Li any .
The default value is
.Li any .
.\"
.It Fl r Ar size
Specify the bitmap size in octets of the anti-replay window.
.Ar size
is a 32-bit unsigned integer, and its value is one eighth of the
anti-replay window size in packets.
If
.Ar size
is zero or not specified, an anti-replay check does not take place.
.\"
.It Fl u Ar id
Specify the identifier of the policy entry in SPD.
See
.Ar policy .
.\"
.It Fl f Ar pad_option
defines the content of the ESP padding.
.Ar pad_option
is one of following:
.Bl -tag -width random-pad -compact
.It Li zero-pad
All of the padding are zero.
.It Li random-pad
A series of randomized values are set.
.It Li seq-pad
A series of sequential increasing numbers started from 1 are set.
.El
.\"
.It Fl f Li nocyclic-seq
Do not allow cyclic sequence number.
.\"
.It Fl lh Ar time
.It Fl ls Ar time
Specify hard/soft life time duration of the SA.
.El
.\"
.Pp
.It Ar algorithm
.Bl -tag -width Fl -compact
.It Fl E Ar ealgo Ar key
Specify an encryption algorithm
.Ar ealgo
for ESP.
.It Xo
.Fl E Ar ealgo Ar key
.Fl A Ar aalgo Ar key
.Xc
Specify a encryption algorithm
.Ar ealgo ,
as well as a payload authentication algorithm
.Ar aalgo ,
for ESP.
.It Fl A Ar aalgo Ar key
Specify an authentication algorithm for AH.
.It Fl C Ar calgo Op Fl R
Specify a compression algorithm for IPComp.
If
.Fl R
is specified, the
.Ar spi
field value will be used as the IPComp CPI
(compression parameter index)
on wire as is.
If
.Fl R
is not specified,
the kernel will use well-known CPI on wire, and
.Ar spi
field will be used only as an index for kernel internal usage.
.El
.Pp
.Ar key
must be double-quoted character string, or a series of hexadecimal digits
preceded by
.Ql 0x .
.Pp
Possible values for
.Ar ealgo ,
.Ar aalgo
and
.Ar calgo
are specified in separate section.
.\"
.Pp
.It Ar src_range
.It Ar dst_range
These are selections of the secure communication specified as
IPv4/v6 address or IPv4/v6 address range, and it may accompany
TCP/UDP port specification.
This takes the following form:
2005-01-15 12:26:29 +00:00
.Bd -unfilled
.Ar address
.Ar address/prefixlen
.Ar address[port]
.Ar address/prefixlen[port]
.Ed
.Pp
.Ar prefixlen
and
.Ar port
must be a decimal number.
The square brackets around
.Ar port
are necessary and are not manpage metacharacters.
For FQDN resolution, the rules applicable to
.Ar src
and
.Ar dst
apply here as well.
.\"
.Pp
.It Ar upperspec
The upper layer protocol to be used.
You can use one of the words in
.Pa /etc/protocols
as
.Ar upperspec ,
as well as
.Li icmp6 ,
.Li ip4 ,
or
.Li any .
2006-09-18 11:55:10 +00:00
The word
.Li any
stands for
.Dq any protocol .
2006-09-18 11:55:10 +00:00
The protocol number may also be used to specify the
.Ar upperspec .
A type and code related to ICMPv6 may also be specified as an
.Ar upperspec .
The type is specified first, followed by a comma and then the relevant
code.
The specification must be placed after
.Li icmp6 .
2006-09-18 11:55:10 +00:00
The kernel considers a zero to be a wildcard but
cannot distinguish between a wildcard and an ICMPv6
type which is zero.
The following example shows a policy where IPSec is not required for
inbound Neighbor Solicitations:
.Pp
.Dl "spdadd ::/0 ::/0 icmp6 135,0 -P in none;"
.Pp
NOTE:
.Ar upperspec
does not work in the forwarding case at this moment,
as it requires extra reassembly at forwarding node,
which is not implemented at this moment.
Although there are many protocols in
.Pa /etc/protocols ,
protocols other than TCP, UDP and ICMP may not be suitable to use with IPsec.
.\"
.Pp
.It Ar policy
.Ar policy
is expressed in one of the following three formats:
2011-06-02 09:56:42 +00:00
.Pp
2012-06-03 07:45:42 +00:00
.Bl -tag -width 2n -compact
.It Fl P Ar direction Li discard
.It Fl P Ar direction Li none
.It Xo Fl P Ar direction Li ipsec
.Ar protocol/mode/src-dst/level Op ...
.Xc
2011-06-02 09:56:42 +00:00
.El
.Pp
The direction of a policy must be specified as
one of:
.Li out ,
.Li in ,
2006-09-18 11:55:10 +00:00
.Li discard ,
.Li none ,
2006-09-18 11:55:10 +00:00
or
.Li ipsec .
2006-09-18 11:55:10 +00:00
The
.Li discard
direction
means that packets matching the supplied indices will be discarded
2006-09-18 11:55:10 +00:00
while
.Li none
means that IPsec operations will not take place on the packet and
.Li ipsec
means that IPsec operation will take place onto the packet.
2006-09-18 11:55:10 +00:00
The
.Ar protocol/mode/src-dst/level
statement gives the rule for how to process the packet.
2006-09-18 11:55:10 +00:00
The
.Ar protocol
is specified as
.Li ah ,
.Li esp
or
2008-09-29 05:31:27 +00:00
.Li ipcomp .
The
.Ar mode
is either
.Li transport
or
.Li tunnel .
If
.Ar mode
is
.Li tunnel ,
you must specify the end-point addresses of the SA as
.Ar src
and
.Ar dst
2006-09-18 11:55:10 +00:00
with a dash,
.Sq - ,
between the addresses.
If
.Ar mode
is
.Li transport ,
both
.Ar src
and
.Ar dst
2002-12-27 12:15:40 +00:00
can be omitted.
The
.Ar level
is one of the following:
.Li default , use , require
or
.Li unique .
If the SA is not available in every level, the kernel will request
the SA from the key exchange daemon.
A value of
.Li default
2006-09-18 11:55:10 +00:00
tells the kernel to use the system wide default protocol
e.g.,\& the one from the
.Li esp_trans_deflev
sysctl variable, when the kernel processes the packet.
2006-09-18 11:55:10 +00:00
A value of
.Li use
means that the kernel will use an SA if it is available,
otherwise the kernel will pass the packet as it would normally.
2006-09-18 11:55:10 +00:00
A value of
.Li require
means that an SA is required whenever the kernel sends a packet matched
that matches the policy.
2006-09-18 11:55:10 +00:00
The
.Li unique
level is the same as
.Li require
but, in addition, it allows the policy to bind with the unique out-bound SA.
For example, if you specify the policy level
.Li unique ,
.Xr racoon 8
will configure the SA for the policy.
If you configure the SA by manual keying for that policy,
you can put the decimal number as the policy identifier after
.Li unique
separated by colon
.Ql :\&
as in the following example:
.Li unique:number .
In order to bind this policy to the SA,
.Li number
2006-09-18 11:55:10 +00:00
must be between 1 and 32767,
which corresponds to
.Ar extensions Fl u
of manual SA configuration.
.Pp
2006-09-18 11:55:10 +00:00
When you want to use an SA bundle, you can define multiple rules.
For
example, if an IP header was followed by an AH header followed by an
ESP header followed by an upper layer protocol header, the rule would
be:
2012-06-03 07:45:42 +00:00
.Pp
.Dl esp/transport//require ah/transport//require ;
2012-06-03 07:45:42 +00:00
.Pp
The rule order is very important.
.Pp
Note that
.Dq Li discard
and
.Dq Li none
are not in the syntax described in
.Xr ipsec_set_policy 3 .
There are small, but important, differences in the syntax.
See
.Xr ipsec_set_policy 3
for details.
.El
.\"
.Sh ALGORITHMS
The following list shows the supported algorithms.
The
.Sy protocol
and
.Sy algorithm
are almost completely orthogonal.
The following list of authentication algorithms can be used as
.Ar aalgo
in the
.Fl A Ar aalgo
of the
.Ar protocol
parameter:
.Bd -literal -offset indent
algorithm keylen (bits) comment
hmac-md5 128 ah: rfc2403
128 ah-old: rfc2085
hmac-sha1 160 ah: rfc2404
160 ah-old: 128bit ICV (no document)
keyed-md5 128 ah: 96bit ICV (no document)
128 ah-old: rfc1828
keyed-sha1 160 ah: 96bit ICV (no document)
160 ah-old: 128bit ICV (no document)
null 0 to 2048 for debugging
hmac-sha2-256 256 ah: 128bit ICV (RFC4868)
256 ah-old: 128bit ICV (no document)
hmac-sha2-384 384 ah: 192bit ICV (RFC4868)
384 ah-old: 128bit ICV (no document)
hmac-sha2-512 512 ah: 256bit ICV (RFC4868)
512 ah-old: 128bit ICV (no document)
hmac-ripemd160 160 ah: 96bit ICV (RFC2857)
ah-old: 128bit ICV (no document)
aes-xcbc-mac 128 ah: 96bit ICV (RFC3566)
128 ah-old: 128bit ICV (no document)
tcp-md5 8 to 640 tcp: rfc2385
.Ed
.Pp
The following is the list of encryption algorithms that can be used as the
.Ar ealgo
in the
.Fl E Ar ealgo
of the
.Ar protocol
parameter:
.Bd -literal -offset indent
algorithm keylen (bits) comment
des-cbc 64 esp-old: rfc1829, esp: rfc2405
3des-cbc 192 rfc2451
null 0 to 2048 rfc2410
blowfish-cbc 40 to 448 rfc2451
cast128-cbc 40 to 128 rfc2451
des-deriv 64 ipsec-ciph-des-derived-01
rijndael-cbc 128/192/256 rfc3602
aes-ctr 160/224/288 draft-ietf-ipsec-ciph-aes-ctr-03
aes-gcm-16 160/224/288 rfc4106
camellia-cbc 128/192/256 rfc4312
.Ed
.Pp
Note that the first 128/192/256 bits of a key for
.Li aes-ctr or aes-gcm-16
will be used as AES key, and remaining 32 bits will be used as nonce.
.Pp
The following are the list of compression algorithms that can be used
as the
.Ar calgo
in the
.Fl C Ar calgo
of the
.Ar protocol
parameter:
.Bd -literal -offset indent
algorithm comment
deflate rfc2394
.Ed
.\"
.Sh EXIT STATUS
.Ex -std
.\"
.Sh EXAMPLES
Add an ESP SA between two IPv6 addresses using the
des-cbc encryption algorithm.
.Bd -literal -offset indent
add 3ffe:501:4819::1 3ffe:501:481d::1 esp 123457
-E des-cbc 0x3ffe05014819ffff ;
.Pp
.Ed
.\"
Add an authentication SA between two FQDN specified hosts:
.Bd -literal -offset indent
add -6 myhost.example.com yourhost.example.com ah 123456
-A hmac-sha1 "AH SA configuration!" ;
.Pp
.Ed
Use both ESP and AH between two numerically specified hosts:
.Bd -literal -offset indent
add 10.0.11.41 10.0.11.33 esp 0x10001
-E des-cbc 0x3ffe05014819ffff
-A hmac-md5 "authentication!!" ;
.Pp
.Ed
Get the SA information associated with first example above:
.Bd -literal -offset indent
get 3ffe:501:4819::1 3ffe:501:481d::1 ah 123456 ;
.Pp
.Ed
Flush all entries from the database:
.Bd -literal -offset indent
flush ;
.Pp
.Ed
Dump the ESP entries from the database:
.Bd -literal -offset indent
dump esp ;
.Pp
.Ed
Add a security policy between two networks that uses ESP in tunnel mode:
.Bd -literal -offset indent
spdadd 10.0.11.41/32[21] 10.0.11.33/32[any] any
-P out ipsec esp/tunnel/192.168.0.1-192.168.1.2/require ;
.Pp
.Ed
Use TCP MD5 between two numerically specified hosts:
.Bd -literal -offset indent
add 10.1.10.34 10.1.10.36 tcp 0x1000 -A tcp-md5 "TCP-MD5 BGP secret" ;
2017-04-04 23:30:05 +00:00
add 10.1.10.36 10.1.10.34 tcp 0x1001 -A tcp-md5 "TCP-MD5 BGP secret" ;
.Ed
.\"
.Sh SEE ALSO
.Xr ipsec_set_policy 3 ,
Introduce the concept of IPsec security policies scope. Currently are defined three scopes: global, ifnet, and pcb. Generic security policies that IKE daemon can add via PF_KEY interface or an administrator creates with setkey(8) utility have GLOBAL scope. Such policies can be applied by the kernel to outgoing packets and checked agains inbound packets after IPsec processing. Security policies created by if_ipsec(4) interfaces have IFNET scope. Such policies are applied to packets that are passed through if_ipsec(4) interface. And security policies created by application using setsockopt() IP_IPSEC_POLICY option have PCB scope. Such policies are applied to packets related to specific socket. Currently there is no way to list PCB policies via setkey(8) utility. Modify setkey(8) and libipsec(3) to be able distinguish the scope of security policies in the `setkey -DP` listing. Add two optional flags: '-t' to list only policies related to virtual *tunneling* interfaces, i.e. policies with IFNET scope, and '-g' to list only policies with GLOBAL scope. By default policies from all scopes are listed. To implement this PF_KEY's sadb_x_policy structure was modified. sadb_x_policy_reserved field is used to pass the policy scope from the kernel to userland. SADB_SPDDUMP message extended to support filtering by scope: sadb_msg_satype field is used to specify bit mask of requested scopes. For IFNET policies the sadb_x_policy_priority field of struct sadb_x_policy is used to pass if_ipsec's interface if_index to the userland. For GLOBAL policies sadb_x_policy_priority is used only to manage order of security policies in the SPDB. For IFNET policies it is not used, so it can be used to keep if_index. After this change the output of `setkey -DP` now looks like: # setkey -DPt 0.0.0.0/0[any] 0.0.0.0/0[any] any in ipsec esp/tunnel/87.250.242.144-87.250.242.145/unique:145 spid=7 seq=3 pid=58025 scope=ifnet ifname=ipsec0 refcnt=1 # setkey -DPg ::/0 ::/0 icmp6 135,0 out none spid=5 seq=1 pid=872 scope=global refcnt=1 No objection from: #network Obtained from: Yandex LLC MFC after: 2 weeks Sponsored by: Yandex LLC Differential Revision: https://reviews.freebsd.org/D9805
2017-03-07 00:13:53 +00:00
.Xr if_ipsec 4 ,
.Xr racoon 8 ,
.Xr sysctl 8
.Rs
.%T "Changed manual key configuration for IPsec"
2010-01-15 16:01:22 +00:00
.%U http://www.kame.net/newsletter/19991007/
.%D "October 1999"
.Re
.\"
.Sh HISTORY
The
.Nm
utility first appeared in WIDE Hydrangea IPv6 protocol stack kit.
The utility was completely re-designed in June 1998.
It first appeared in
.Fx 4.0 .
.\"
.Sh BUGS
The
.Nm
utility
should report and handle syntax errors better.
.Pp
For IPsec gateway configuration,
.Ar src_range
and
.Ar dst_range
with TCP/UDP port number do not work, as the gateway does not reassemble
packets
(cannot inspect upper-layer headers).