freebsd-dev/source/Plugins/Process/gdb-remote/GDBRemoteCommunication.cpp

1453 lines
54 KiB
C++
Raw Normal View History

//===-- GDBRemoteCommunication.cpp ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "GDBRemoteCommunication.h"
// C Includes
#include <limits.h>
#include <string.h>
#include <sys/stat.h>
// C++ Includes
// Other libraries and framework includes
#include "lldb/Core/Log.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Host/ConnectionFileDescriptor.h"
#include "lldb/Host/FileSpec.h"
#include "lldb/Host/Host.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Host/Pipe.h"
#include "lldb/Host/Socket.h"
#include "lldb/Host/StringConvert.h"
#include "lldb/Host/ThreadLauncher.h"
#include "lldb/Host/TimeValue.h"
#include "lldb/Target/Process.h"
#include "llvm/ADT/SmallString.h"
// Project includes
#include "ProcessGDBRemoteLog.h"
#if defined(__APPLE__)
# define DEBUGSERVER_BASENAME "debugserver"
#else
# define DEBUGSERVER_BASENAME "lldb-server"
#endif
#if defined (HAVE_LIBCOMPRESSION)
#include <compression.h>
#endif
#if defined (HAVE_LIBZ)
#include <zlib.h>
#endif
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_gdb_remote;
GDBRemoteCommunication::History::History (uint32_t size) :
m_packets(),
m_curr_idx (0),
m_total_packet_count (0),
m_dumped_to_log (false)
{
m_packets.resize(size);
}
GDBRemoteCommunication::History::~History ()
{
}
void
GDBRemoteCommunication::History::AddPacket (char packet_char,
PacketType type,
uint32_t bytes_transmitted)
{
const size_t size = m_packets.size();
if (size > 0)
{
const uint32_t idx = GetNextIndex();
m_packets[idx].packet.assign (1, packet_char);
m_packets[idx].type = type;
m_packets[idx].bytes_transmitted = bytes_transmitted;
m_packets[idx].packet_idx = m_total_packet_count;
m_packets[idx].tid = Host::GetCurrentThreadID();
}
}
void
GDBRemoteCommunication::History::AddPacket (const std::string &src,
uint32_t src_len,
PacketType type,
uint32_t bytes_transmitted)
{
const size_t size = m_packets.size();
if (size > 0)
{
const uint32_t idx = GetNextIndex();
m_packets[idx].packet.assign (src, 0, src_len);
m_packets[idx].type = type;
m_packets[idx].bytes_transmitted = bytes_transmitted;
m_packets[idx].packet_idx = m_total_packet_count;
m_packets[idx].tid = Host::GetCurrentThreadID();
}
}
void
GDBRemoteCommunication::History::Dump (Stream &strm) const
{
const uint32_t size = GetNumPacketsInHistory ();
const uint32_t first_idx = GetFirstSavedPacketIndex ();
const uint32_t stop_idx = m_curr_idx + size;
for (uint32_t i = first_idx; i < stop_idx; ++i)
{
const uint32_t idx = NormalizeIndex (i);
const Entry &entry = m_packets[idx];
if (entry.type == ePacketTypeInvalid || entry.packet.empty())
break;
strm.Printf ("history[%u] tid=0x%4.4" PRIx64 " <%4u> %s packet: %s\n",
entry.packet_idx,
entry.tid,
entry.bytes_transmitted,
(entry.type == ePacketTypeSend) ? "send" : "read",
entry.packet.c_str());
}
}
void
GDBRemoteCommunication::History::Dump (Log *log) const
{
if (log && !m_dumped_to_log)
{
m_dumped_to_log = true;
const uint32_t size = GetNumPacketsInHistory ();
const uint32_t first_idx = GetFirstSavedPacketIndex ();
const uint32_t stop_idx = m_curr_idx + size;
for (uint32_t i = first_idx; i < stop_idx; ++i)
{
const uint32_t idx = NormalizeIndex (i);
const Entry &entry = m_packets[idx];
if (entry.type == ePacketTypeInvalid || entry.packet.empty())
break;
log->Printf ("history[%u] tid=0x%4.4" PRIx64 " <%4u> %s packet: %s",
entry.packet_idx,
entry.tid,
entry.bytes_transmitted,
(entry.type == ePacketTypeSend) ? "send" : "read",
entry.packet.c_str());
}
}
}
//----------------------------------------------------------------------
// GDBRemoteCommunication constructor
//----------------------------------------------------------------------
GDBRemoteCommunication::GDBRemoteCommunication(const char *comm_name,
const char *listener_name) :
Communication(comm_name),
#ifdef LLDB_CONFIGURATION_DEBUG
m_packet_timeout (1000),
#else
m_packet_timeout (1),
#endif
m_echo_number(0),
m_supports_qEcho (eLazyBoolCalculate),
m_sequence_mutex (Mutex::eMutexTypeRecursive),
m_public_is_running (false),
m_private_is_running (false),
m_history (512),
m_send_acks (true),
m_compression_type (CompressionType::None),
m_listen_url ()
{
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
GDBRemoteCommunication::~GDBRemoteCommunication()
{
if (IsConnected())
{
Disconnect();
}
// Stop the communications read thread which is used to parse all
// incoming packets. This function will block until the read
// thread returns.
if (m_read_thread_enabled)
StopReadThread();
}
char
GDBRemoteCommunication::CalculcateChecksum (const char *payload, size_t payload_length)
{
int checksum = 0;
for (size_t i = 0; i < payload_length; ++i)
checksum += payload[i];
return checksum & 255;
}
size_t
GDBRemoteCommunication::SendAck ()
{
Log *log (ProcessGDBRemoteLog::GetLogIfAllCategoriesSet (GDBR_LOG_PACKETS));
ConnectionStatus status = eConnectionStatusSuccess;
char ch = '+';
const size_t bytes_written = Write (&ch, 1, status, NULL);
if (log)
log->Printf ("<%4" PRIu64 "> send packet: %c", (uint64_t)bytes_written, ch);
m_history.AddPacket (ch, History::ePacketTypeSend, bytes_written);
return bytes_written;
}
size_t
GDBRemoteCommunication::SendNack ()
{
Log *log (ProcessGDBRemoteLog::GetLogIfAllCategoriesSet (GDBR_LOG_PACKETS));
ConnectionStatus status = eConnectionStatusSuccess;
char ch = '-';
const size_t bytes_written = Write (&ch, 1, status, NULL);
if (log)
log->Printf("<%4" PRIu64 "> send packet: %c", (uint64_t)bytes_written, ch);
m_history.AddPacket (ch, History::ePacketTypeSend, bytes_written);
return bytes_written;
}
GDBRemoteCommunication::PacketResult
GDBRemoteCommunication::SendPacket (const char *payload, size_t payload_length)
{
Mutex::Locker locker(m_sequence_mutex);
return SendPacketNoLock (payload, payload_length);
}
GDBRemoteCommunication::PacketResult
GDBRemoteCommunication::SendPacketNoLock (const char *payload, size_t payload_length)
{
if (IsConnected())
{
StreamString packet(0, 4, eByteOrderBig);
packet.PutChar('$');
packet.Write (payload, payload_length);
packet.PutChar('#');
packet.PutHex8(CalculcateChecksum (payload, payload_length));
Log *log (ProcessGDBRemoteLog::GetLogIfAllCategoriesSet (GDBR_LOG_PACKETS));
ConnectionStatus status = eConnectionStatusSuccess;
const char *packet_data = packet.GetData();
const size_t packet_length = packet.GetSize();
size_t bytes_written = Write (packet_data, packet_length, status, NULL);
if (log)
{
size_t binary_start_offset = 0;
if (strncmp(packet_data, "$vFile:pwrite:", strlen("$vFile:pwrite:")) == 0)
{
const char *first_comma = strchr(packet_data, ',');
if (first_comma)
{
const char *second_comma = strchr(first_comma + 1, ',');
if (second_comma)
binary_start_offset = second_comma - packet_data + 1;
}
}
// If logging was just enabled and we have history, then dump out what
// we have to the log so we get the historical context. The Dump() call that
// logs all of the packet will set a boolean so that we don't dump this more
// than once
if (!m_history.DidDumpToLog ())
m_history.Dump (log);
if (binary_start_offset)
{
StreamString strm;
// Print non binary data header
strm.Printf("<%4" PRIu64 "> send packet: %.*s", (uint64_t)bytes_written, (int)binary_start_offset, packet_data);
const uint8_t *p;
// Print binary data exactly as sent
for (p = (const uint8_t*)packet_data + binary_start_offset; *p != '#'; ++p)
strm.Printf("\\x%2.2x", *p);
// Print the checksum
strm.Printf("%*s", (int)3, p);
log->PutCString(strm.GetString().c_str());
}
else
log->Printf("<%4" PRIu64 "> send packet: %.*s", (uint64_t)bytes_written, (int)packet_length, packet_data);
}
m_history.AddPacket (packet.GetString(), packet_length, History::ePacketTypeSend, bytes_written);
if (bytes_written == packet_length)
{
if (GetSendAcks ())
return GetAck ();
else
return PacketResult::Success;
}
else
{
if (log)
log->Printf ("error: failed to send packet: %.*s", (int)packet_length, packet_data);
}
}
return PacketResult::ErrorSendFailed;
}
GDBRemoteCommunication::PacketResult
GDBRemoteCommunication::GetAck ()
{
StringExtractorGDBRemote packet;
PacketResult result = ReadPacket (packet, GetPacketTimeoutInMicroSeconds (), false);
if (result == PacketResult::Success)
{
if (packet.GetResponseType() == StringExtractorGDBRemote::ResponseType::eAck)
return PacketResult::Success;
else
return PacketResult::ErrorSendAck;
}
return result;
}
bool
GDBRemoteCommunication::GetSequenceMutex (Mutex::Locker& locker, const char *failure_message)
{
if (IsRunning())
return locker.TryLock (m_sequence_mutex, failure_message);
locker.Lock (m_sequence_mutex);
return true;
}
bool
GDBRemoteCommunication::WaitForNotRunningPrivate (const TimeValue *timeout_ptr)
{
return m_private_is_running.WaitForValueEqualTo (false, timeout_ptr, NULL);
}
GDBRemoteCommunication::PacketResult
GDBRemoteCommunication::ReadPacket (StringExtractorGDBRemote &response, uint32_t timeout_usec, bool sync_on_timeout)
{
if (m_read_thread_enabled)
return PopPacketFromQueue (response, timeout_usec);
else
return WaitForPacketWithTimeoutMicroSecondsNoLock (response, timeout_usec, sync_on_timeout);
}
// This function is called when a packet is requested.
// A whole packet is popped from the packet queue and returned to the caller.
// Packets are placed into this queue from the communication read thread.
// See GDBRemoteCommunication::AppendBytesToCache.
GDBRemoteCommunication::PacketResult
GDBRemoteCommunication::PopPacketFromQueue (StringExtractorGDBRemote &response, uint32_t timeout_usec)
{
// Calculate absolute timeout value
TimeValue timeout = TimeValue::Now();
timeout.OffsetWithMicroSeconds(timeout_usec);
do
{
// scope for the mutex
{
// lock down the packet queue
Mutex::Locker locker(m_packet_queue_mutex);
// Wait on condition variable.
if (m_packet_queue.size() == 0)
m_condition_queue_not_empty.Wait(m_packet_queue_mutex, &timeout);
if (m_packet_queue.size() > 0)
{
// get the front element of the queue
response = m_packet_queue.front();
// remove the front element
m_packet_queue.pop();
// we got a packet
return PacketResult::Success;
}
}
// Disconnected
if (!IsConnected())
return PacketResult::ErrorDisconnected;
// Loop while not timed out
} while (TimeValue::Now() < timeout);
return PacketResult::ErrorReplyTimeout;
}
GDBRemoteCommunication::PacketResult
GDBRemoteCommunication::WaitForPacketWithTimeoutMicroSecondsNoLock (StringExtractorGDBRemote &packet, uint32_t timeout_usec, bool sync_on_timeout)
{
uint8_t buffer[8192];
Error error;
Log *log (ProcessGDBRemoteLog::GetLogIfAllCategoriesSet (GDBR_LOG_PACKETS | GDBR_LOG_VERBOSE));
// Check for a packet from our cache first without trying any reading...
if (CheckForPacket(NULL, 0, packet) != PacketType::Invalid)
return PacketResult::Success;
bool timed_out = false;
bool disconnected = false;
while (IsConnected() && !timed_out)
{
lldb::ConnectionStatus status = eConnectionStatusNoConnection;
size_t bytes_read = Read (buffer, sizeof(buffer), timeout_usec, status, &error);
if (log)
log->Printf ("%s: Read (buffer, (sizeof(buffer), timeout_usec = 0x%x, status = %s, error = %s) => bytes_read = %" PRIu64,
__PRETTY_FUNCTION__,
timeout_usec,
Communication::ConnectionStatusAsCString (status),
error.AsCString(),
(uint64_t)bytes_read);
if (bytes_read > 0)
{
if (CheckForPacket(buffer, bytes_read, packet) != PacketType::Invalid)
return PacketResult::Success;
}
else
{
switch (status)
{
case eConnectionStatusTimedOut:
case eConnectionStatusInterrupted:
if (sync_on_timeout)
{
//------------------------------------------------------------------
/// Sync the remote GDB server and make sure we get a response that
/// corresponds to what we send.
///
/// Sends a "qEcho" packet and makes sure it gets the exact packet
/// echoed back. If the qEcho packet isn't supported, we send a qC
/// packet and make sure we get a valid thread ID back. We use the
/// "qC" packet since its response if very unique: is responds with
/// "QC%x" where %x is the thread ID of the current thread. This
/// makes the response unique enough from other packet responses to
/// ensure we are back on track.
///
/// This packet is needed after we time out sending a packet so we
/// can ensure that we are getting the response for the packet we
/// are sending. There are no sequence IDs in the GDB remote
/// protocol (there used to be, but they are not supported anymore)
/// so if you timeout sending packet "abc", you might then send
/// packet "cde" and get the response for the previous "abc" packet.
/// Many responses are "OK" or "" (unsupported) or "EXX" (error) so
/// many responses for packets can look like responses for other
/// packets. So if we timeout, we need to ensure that we can get
/// back on track. If we can't get back on track, we must
/// disconnect.
//------------------------------------------------------------------
bool sync_success = false;
bool got_actual_response = false;
// We timed out, we need to sync back up with the
char echo_packet[32];
int echo_packet_len = 0;
RegularExpression response_regex;
if (m_supports_qEcho == eLazyBoolYes)
{
echo_packet_len = ::snprintf (echo_packet, sizeof(echo_packet), "qEcho:%u", ++m_echo_number);
std::string regex_str = "^";
regex_str += echo_packet;
regex_str += "$";
response_regex.Compile(regex_str.c_str());
}
else
{
echo_packet_len = ::snprintf (echo_packet, sizeof(echo_packet), "qC");
response_regex.Compile("^QC[0-9A-Fa-f]+$");
}
PacketResult echo_packet_result = SendPacketNoLock (echo_packet, echo_packet_len);
if (echo_packet_result == PacketResult::Success)
{
const uint32_t max_retries = 3;
uint32_t successful_responses = 0;
for (uint32_t i=0; i<max_retries; ++i)
{
StringExtractorGDBRemote echo_response;
echo_packet_result = WaitForPacketWithTimeoutMicroSecondsNoLock (echo_response, timeout_usec, false);
if (echo_packet_result == PacketResult::Success)
{
++successful_responses;
if (response_regex.Execute(echo_response.GetStringRef().c_str()))
{
sync_success = true;
break;
}
else if (successful_responses == 1)
{
// We got something else back as the first successful response, it probably is
// the response to the packet we actually wanted, so copy it over if this
// is the first success and continue to try to get the qEcho response
packet = echo_response;
got_actual_response = true;
}
}
else if (echo_packet_result == PacketResult::ErrorReplyTimeout)
continue; // Packet timed out, continue waiting for a response
else
break; // Something else went wrong getting the packet back, we failed and are done trying
}
}
// We weren't able to sync back up with the server, we must abort otherwise
// all responses might not be from the right packets...
if (sync_success)
{
// We timed out, but were able to recover
if (got_actual_response)
{
// We initially timed out, but we did get a response that came in before the successful
// reply to our qEcho packet, so lets say everything is fine...
return PacketResult::Success;
}
}
else
{
disconnected = true;
Disconnect();
}
}
timed_out = true;
break;
case eConnectionStatusSuccess:
//printf ("status = success but error = %s\n", error.AsCString("<invalid>"));
break;
case eConnectionStatusEndOfFile:
case eConnectionStatusNoConnection:
case eConnectionStatusLostConnection:
case eConnectionStatusError:
disconnected = true;
Disconnect();
break;
}
}
}
packet.Clear ();
if (disconnected)
return PacketResult::ErrorDisconnected;
if (timed_out)
return PacketResult::ErrorReplyTimeout;
else
return PacketResult::ErrorReplyFailed;
}
bool
GDBRemoteCommunication::DecompressPacket ()
{
Log *log (ProcessGDBRemoteLog::GetLogIfAllCategoriesSet (GDBR_LOG_PACKETS));
if (!CompressionIsEnabled())
return true;
size_t pkt_size = m_bytes.size();
if (pkt_size < 6)
return true;
if (m_bytes[0] != '$' && m_bytes[0] != '%')
return true;
if (m_bytes[1] != 'C' && m_bytes[1] != 'N')
return true;
if (m_bytes[pkt_size - 3] != '#')
return true;
if (!::isxdigit (m_bytes[pkt_size - 2]) || !::isxdigit (m_bytes[pkt_size - 1]))
return true;
size_t content_length = pkt_size - 5; // not counting '$', 'C' | 'N', '#', & the two hex checksum chars
size_t content_start = 2; // The first character of the compressed/not-compressed text of the packet
size_t hash_mark_idx = pkt_size - 3; // The '#' character marking the end of the packet
size_t checksum_idx = pkt_size - 2; // The first character of the two hex checksum characters
// Compressed packets ("$C") start with a base10 number which is the size of the uncompressed payload,
// then a : and then the compressed data. e.g. $C1024:<binary>#00
// Update content_start and content_length to only include the <binary> part of the packet.
uint64_t decompressed_bufsize = ULONG_MAX;
if (m_bytes[1] == 'C')
{
size_t i = content_start;
while (i < hash_mark_idx && isdigit(m_bytes[i]))
i++;
if (i < hash_mark_idx && m_bytes[i] == ':')
{
i++;
content_start = i;
content_length = hash_mark_idx - content_start;
std::string bufsize_str (m_bytes.data() + 2, i - 2 - 1);
errno = 0;
decompressed_bufsize = ::strtoul (bufsize_str.c_str(), NULL, 10);
if (errno != 0 || decompressed_bufsize == ULONG_MAX)
{
m_bytes.erase (0, pkt_size);
return false;
}
}
}
if (GetSendAcks ())
{
char packet_checksum_cstr[3];
packet_checksum_cstr[0] = m_bytes[checksum_idx];
packet_checksum_cstr[1] = m_bytes[checksum_idx + 1];
packet_checksum_cstr[2] = '\0';
long packet_checksum = strtol (packet_checksum_cstr, NULL, 16);
long actual_checksum = CalculcateChecksum (m_bytes.data() + 1, hash_mark_idx - 1);
bool success = packet_checksum == actual_checksum;
if (!success)
{
if (log)
log->Printf ("error: checksum mismatch: %.*s expected 0x%2.2x, got 0x%2.2x",
(int)(pkt_size),
m_bytes.c_str(),
(uint8_t)packet_checksum,
(uint8_t)actual_checksum);
}
// Send the ack or nack if needed
if (!success)
{
SendNack();
m_bytes.erase (0, pkt_size);
return false;
}
else
{
SendAck();
}
}
if (m_bytes[1] == 'N')
{
// This packet was not compressed -- delete the 'N' character at the
// start and the packet may be processed as-is.
m_bytes.erase(1, 1);
return true;
}
// Reverse the gdb-remote binary escaping that was done to the compressed text to
// guard characters like '$', '#', '}', etc.
std::vector<uint8_t> unescaped_content;
unescaped_content.reserve (content_length);
size_t i = content_start;
while (i < hash_mark_idx)
{
if (m_bytes[i] == '}')
{
i++;
unescaped_content.push_back (m_bytes[i] ^ 0x20);
}
else
{
unescaped_content.push_back (m_bytes[i]);
}
i++;
}
uint8_t *decompressed_buffer = nullptr;
size_t decompressed_bytes = 0;
if (decompressed_bufsize != ULONG_MAX)
{
decompressed_buffer = (uint8_t *) malloc (decompressed_bufsize + 1);
if (decompressed_buffer == nullptr)
{
m_bytes.erase (0, pkt_size);
return false;
}
}
#if defined (HAVE_LIBCOMPRESSION)
// libcompression is weak linked so check that compression_decode_buffer() is available
if (compression_decode_buffer != NULL &&
(m_compression_type == CompressionType::ZlibDeflate
|| m_compression_type == CompressionType::LZFSE
|| m_compression_type == CompressionType::LZ4))
{
compression_algorithm compression_type;
if (m_compression_type == CompressionType::ZlibDeflate)
compression_type = COMPRESSION_ZLIB;
else if (m_compression_type == CompressionType::LZFSE)
compression_type = COMPRESSION_LZFSE;
else if (m_compression_type == CompressionType::LZ4)
compression_type = COMPRESSION_LZ4_RAW;
else if (m_compression_type == CompressionType::LZMA)
compression_type = COMPRESSION_LZMA;
// If we have the expected size of the decompressed payload, we can allocate
// the right-sized buffer and do it. If we don't have that information, we'll
// need to try decoding into a big buffer and if the buffer wasn't big enough,
// increase it and try again.
if (decompressed_bufsize != ULONG_MAX && decompressed_buffer != nullptr)
{
decompressed_bytes = compression_decode_buffer (decompressed_buffer, decompressed_bufsize + 10 ,
(uint8_t*) unescaped_content.data(),
unescaped_content.size(),
NULL,
compression_type);
}
}
#endif
#if defined (HAVE_LIBZ)
if (decompressed_bytes == 0
&& decompressed_bufsize != ULONG_MAX
&& decompressed_buffer != nullptr
&& m_compression_type == CompressionType::ZlibDeflate)
{
z_stream stream;
memset (&stream, 0, sizeof (z_stream));
stream.next_in = (Bytef *) unescaped_content.data();
stream.avail_in = (uInt) unescaped_content.size();
stream.total_in = 0;
stream.next_out = (Bytef *) decompressed_buffer;
stream.avail_out = decompressed_bufsize;
stream.total_out = 0;
stream.zalloc = Z_NULL;
stream.zfree = Z_NULL;
stream.opaque = Z_NULL;
if (inflateInit2 (&stream, -15) == Z_OK)
{
int status = inflate (&stream, Z_NO_FLUSH);
inflateEnd (&stream);
if (status == Z_STREAM_END)
{
decompressed_bytes = stream.total_out;
}
}
}
#endif
if (decompressed_bytes == 0 || decompressed_buffer == nullptr)
{
if (decompressed_buffer)
free (decompressed_buffer);
m_bytes.erase (0, pkt_size);
return false;
}
std::string new_packet;
new_packet.reserve (decompressed_bytes + 6);
new_packet.push_back (m_bytes[0]);
new_packet.append ((const char *) decompressed_buffer, decompressed_bytes);
new_packet.push_back ('#');
if (GetSendAcks ())
{
uint8_t decompressed_checksum = CalculcateChecksum ((const char *) decompressed_buffer, decompressed_bytes);
char decompressed_checksum_str[3];
snprintf (decompressed_checksum_str, 3, "%02x", decompressed_checksum);
new_packet.append (decompressed_checksum_str);
}
else
{
new_packet.push_back ('0');
new_packet.push_back ('0');
}
m_bytes = new_packet;
free (decompressed_buffer);
return true;
}
GDBRemoteCommunication::PacketType
GDBRemoteCommunication::CheckForPacket (const uint8_t *src, size_t src_len, StringExtractorGDBRemote &packet)
{
// Put the packet data into the buffer in a thread safe fashion
Mutex::Locker locker(m_bytes_mutex);
Log *log (ProcessGDBRemoteLog::GetLogIfAllCategoriesSet (GDBR_LOG_PACKETS));
if (src && src_len > 0)
{
if (log && log->GetVerbose())
{
StreamString s;
log->Printf ("GDBRemoteCommunication::%s adding %u bytes: %.*s",
__FUNCTION__,
(uint32_t)src_len,
(uint32_t)src_len,
src);
}
m_bytes.append ((const char *)src, src_len);
}
bool isNotifyPacket = false;
// Parse up the packets into gdb remote packets
if (!m_bytes.empty())
{
// end_idx must be one past the last valid packet byte. Start
// it off with an invalid value that is the same as the current
// index.
size_t content_start = 0;
size_t content_length = 0;
size_t total_length = 0;
size_t checksum_idx = std::string::npos;
// Size of packet before it is decompressed, for logging purposes
size_t original_packet_size = m_bytes.size();
if (CompressionIsEnabled())
{
if (DecompressPacket() == false)
{
packet.Clear();
return GDBRemoteCommunication::PacketType::Standard;
}
}
switch (m_bytes[0])
{
case '+': // Look for ack
case '-': // Look for cancel
case '\x03': // ^C to halt target
content_length = total_length = 1; // The command is one byte long...
break;
case '%': // Async notify packet
isNotifyPacket = true;
// Intentional fall through
case '$':
// Look for a standard gdb packet?
{
size_t hash_pos = m_bytes.find('#');
if (hash_pos != std::string::npos)
{
if (hash_pos + 2 < m_bytes.size())
{
checksum_idx = hash_pos + 1;
// Skip the dollar sign
content_start = 1;
// Don't include the # in the content or the $ in the content length
content_length = hash_pos - 1;
total_length = hash_pos + 3; // Skip the # and the two hex checksum bytes
}
else
{
// Checksum bytes aren't all here yet
content_length = std::string::npos;
}
}
}
break;
default:
{
// We have an unexpected byte and we need to flush all bad
// data that is in m_bytes, so we need to find the first
// byte that is a '+' (ACK), '-' (NACK), \x03 (CTRL+C interrupt),
// or '$' character (start of packet header) or of course,
// the end of the data in m_bytes...
const size_t bytes_len = m_bytes.size();
bool done = false;
uint32_t idx;
for (idx = 1; !done && idx < bytes_len; ++idx)
{
switch (m_bytes[idx])
{
case '+':
case '-':
case '\x03':
case '%':
case '$':
done = true;
break;
default:
break;
}
}
if (log)
log->Printf ("GDBRemoteCommunication::%s tossing %u junk bytes: '%.*s'",
__FUNCTION__, idx - 1, idx - 1, m_bytes.c_str());
m_bytes.erase(0, idx - 1);
}
break;
}
if (content_length == std::string::npos)
{
packet.Clear();
return GDBRemoteCommunication::PacketType::Invalid;
}
else if (total_length > 0)
{
// We have a valid packet...
assert (content_length <= m_bytes.size());
assert (total_length <= m_bytes.size());
assert (content_length <= total_length);
size_t content_end = content_start + content_length;
bool success = true;
std::string &packet_str = packet.GetStringRef();
if (log)
{
// If logging was just enabled and we have history, then dump out what
// we have to the log so we get the historical context. The Dump() call that
// logs all of the packet will set a boolean so that we don't dump this more
// than once
if (!m_history.DidDumpToLog ())
m_history.Dump (log);
bool binary = false;
// Only detect binary for packets that start with a '$' and have a '#CC' checksum
if (m_bytes[0] == '$' && total_length > 4)
{
for (size_t i=0; !binary && i<total_length; ++i)
{
if (isprint(m_bytes[i]) == 0)
binary = true;
}
}
if (binary)
{
StreamString strm;
// Packet header...
if (CompressionIsEnabled())
strm.Printf("<%4" PRIu64 ":%" PRIu64 "> read packet: %c", (uint64_t) original_packet_size, (uint64_t)total_length, m_bytes[0]);
else
strm.Printf("<%4" PRIu64 "> read packet: %c", (uint64_t)total_length, m_bytes[0]);
for (size_t i=content_start; i<content_end; ++i)
{
// Remove binary escaped bytes when displaying the packet...
const char ch = m_bytes[i];
if (ch == 0x7d)
{
// 0x7d is the escape character. The next character is to
// be XOR'd with 0x20.
const char escapee = m_bytes[++i] ^ 0x20;
strm.Printf("%2.2x", escapee);
}
else
{
strm.Printf("%2.2x", (uint8_t)ch);
}
}
// Packet footer...
strm.Printf("%c%c%c", m_bytes[total_length-3], m_bytes[total_length-2], m_bytes[total_length-1]);
log->PutCString(strm.GetString().c_str());
}
else
{
if (CompressionIsEnabled())
log->Printf("<%4" PRIu64 ":%" PRIu64 "> read packet: %.*s", (uint64_t) original_packet_size, (uint64_t)total_length, (int)(total_length), m_bytes.c_str());
else
log->Printf("<%4" PRIu64 "> read packet: %.*s", (uint64_t)total_length, (int)(total_length), m_bytes.c_str());
}
}
m_history.AddPacket (m_bytes.c_str(), total_length, History::ePacketTypeRecv, total_length);
// Clear packet_str in case there is some existing data in it.
packet_str.clear();
// Copy the packet from m_bytes to packet_str expanding the
// run-length encoding in the process.
// Reserve enough byte for the most common case (no RLE used)
packet_str.reserve(m_bytes.length());
for (std::string::const_iterator c = m_bytes.begin() + content_start; c != m_bytes.begin() + content_end; ++c)
{
if (*c == '*')
{
// '*' indicates RLE. Next character will give us the
// repeat count and previous character is what is to be
// repeated.
char char_to_repeat = packet_str.back();
// Number of time the previous character is repeated
int repeat_count = *++c + 3 - ' ';
// We have the char_to_repeat and repeat_count. Now push
// it in the packet.
for (int i = 0; i < repeat_count; ++i)
packet_str.push_back(char_to_repeat);
}
else if (*c == 0x7d)
{
// 0x7d is the escape character. The next character is to
// be XOR'd with 0x20.
char escapee = *++c ^ 0x20;
packet_str.push_back(escapee);
}
else
{
packet_str.push_back(*c);
}
}
if (m_bytes[0] == '$' || m_bytes[0] == '%')
{
assert (checksum_idx < m_bytes.size());
if (::isxdigit (m_bytes[checksum_idx+0]) ||
::isxdigit (m_bytes[checksum_idx+1]))
{
if (GetSendAcks ())
{
const char *packet_checksum_cstr = &m_bytes[checksum_idx];
char packet_checksum = strtol (packet_checksum_cstr, NULL, 16);
char actual_checksum = CalculcateChecksum (packet_str.c_str(), packet_str.size());
success = packet_checksum == actual_checksum;
if (!success)
{
if (log)
log->Printf ("error: checksum mismatch: %.*s expected 0x%2.2x, got 0x%2.2x",
(int)(total_length),
m_bytes.c_str(),
(uint8_t)packet_checksum,
(uint8_t)actual_checksum);
}
// Send the ack or nack if needed
if (!success)
SendNack();
else
SendAck();
}
}
else
{
success = false;
if (log)
log->Printf ("error: invalid checksum in packet: '%s'\n", m_bytes.c_str());
}
}
m_bytes.erase(0, total_length);
packet.SetFilePos(0);
if (isNotifyPacket)
return GDBRemoteCommunication::PacketType::Notify;
else
return GDBRemoteCommunication::PacketType::Standard;
}
}
packet.Clear();
return GDBRemoteCommunication::PacketType::Invalid;
}
Error
GDBRemoteCommunication::StartListenThread (const char *hostname, uint16_t port)
{
Error error;
if (m_listen_thread.IsJoinable())
{
error.SetErrorString("listen thread already running");
}
else
{
char listen_url[512];
if (hostname && hostname[0])
snprintf(listen_url, sizeof(listen_url), "listen://%s:%i", hostname, port);
else
snprintf(listen_url, sizeof(listen_url), "listen://%i", port);
m_listen_url = listen_url;
SetConnection(new ConnectionFileDescriptor());
m_listen_thread = ThreadLauncher::LaunchThread(listen_url, GDBRemoteCommunication::ListenThread, this, &error);
}
return error;
}
bool
GDBRemoteCommunication::JoinListenThread ()
{
if (m_listen_thread.IsJoinable())
m_listen_thread.Join(nullptr);
return true;
}
lldb::thread_result_t
GDBRemoteCommunication::ListenThread (lldb::thread_arg_t arg)
{
GDBRemoteCommunication *comm = (GDBRemoteCommunication *)arg;
Error error;
ConnectionFileDescriptor *connection = (ConnectionFileDescriptor *)comm->GetConnection ();
if (connection)
{
// Do the listen on another thread so we can continue on...
if (connection->Connect(comm->m_listen_url.c_str(), &error) != eConnectionStatusSuccess)
comm->SetConnection(NULL);
}
return NULL;
}
Error
GDBRemoteCommunication::StartDebugserverProcess (const char *hostname,
uint16_t in_port,
ProcessLaunchInfo &launch_info,
uint16_t &out_port)
{
Log *log (ProcessGDBRemoteLog::GetLogIfAllCategoriesSet (GDBR_LOG_PROCESS));
if (log)
log->Printf ("GDBRemoteCommunication::%s(hostname=%s, in_port=%" PRIu16 ", out_port=%" PRIu16, __FUNCTION__, hostname ? hostname : "<empty>", in_port, out_port);
out_port = in_port;
Error error;
// If we locate debugserver, keep that located version around
static FileSpec g_debugserver_file_spec;
char debugserver_path[PATH_MAX];
FileSpec &debugserver_file_spec = launch_info.GetExecutableFile();
// Always check to see if we have an environment override for the path
// to the debugserver to use and use it if we do.
const char *env_debugserver_path = getenv("LLDB_DEBUGSERVER_PATH");
if (env_debugserver_path)
{
debugserver_file_spec.SetFile (env_debugserver_path, false);
if (log)
log->Printf ("GDBRemoteCommunication::%s() gdb-remote stub exe path set from environment variable: %s", __FUNCTION__, env_debugserver_path);
}
else
debugserver_file_spec = g_debugserver_file_spec;
bool debugserver_exists = debugserver_file_spec.Exists();
if (!debugserver_exists)
{
// The debugserver binary is in the LLDB.framework/Resources
// directory.
if (HostInfo::GetLLDBPath(ePathTypeSupportExecutableDir, debugserver_file_spec))
{
debugserver_file_spec.AppendPathComponent (DEBUGSERVER_BASENAME);
debugserver_exists = debugserver_file_spec.Exists();
if (debugserver_exists)
{
if (log)
log->Printf ("GDBRemoteCommunication::%s() found gdb-remote stub exe '%s'", __FUNCTION__, debugserver_file_spec.GetPath ().c_str ());
g_debugserver_file_spec = debugserver_file_spec;
}
else
{
if (log)
log->Printf ("GDBRemoteCommunication::%s() could not find gdb-remote stub exe '%s'", __FUNCTION__, debugserver_file_spec.GetPath ().c_str ());
g_debugserver_file_spec.Clear();
debugserver_file_spec.Clear();
}
}
}
if (debugserver_exists)
{
debugserver_file_spec.GetPath (debugserver_path, sizeof(debugserver_path));
Args &debugserver_args = launch_info.GetArguments();
debugserver_args.Clear();
char arg_cstr[PATH_MAX];
// Start args with "debugserver /file/path -r --"
debugserver_args.AppendArgument(debugserver_path);
#if !defined(__APPLE__)
// First argument to lldb-server must be mode in which to run.
debugserver_args.AppendArgument("gdbserver");
#endif
// If a host and port is supplied then use it
char host_and_port[128];
if (hostname)
{
snprintf (host_and_port, sizeof(host_and_port), "%s:%u", hostname, in_port);
debugserver_args.AppendArgument(host_and_port);
}
else
{
host_and_port[0] = '\0';
}
// use native registers, not the GDB registers
debugserver_args.AppendArgument("--native-regs");
if (launch_info.GetLaunchInSeparateProcessGroup())
{
debugserver_args.AppendArgument("--setsid");
}
llvm::SmallString<PATH_MAX> named_pipe_path;
Pipe port_pipe;
if (host_and_port[0] && in_port == 0)
{
// Create a temporary file to get the stdout/stderr and redirect the
// output of the command into this file. We will later read this file
// if all goes well and fill the data into "command_output_ptr"
// Binding to port zero, we need to figure out what port it ends up
// using using a named pipe...
error = port_pipe.CreateWithUniqueName("debugserver-named-pipe", false, named_pipe_path);
if (error.Success())
{
debugserver_args.AppendArgument("--named-pipe");
debugserver_args.AppendArgument(named_pipe_path.c_str());
}
else
{
if (log)
log->Printf("GDBRemoteCommunication::%s() "
"named pipe creation failed: %s",
__FUNCTION__, error.AsCString());
// let's try an unnamed pipe
error = port_pipe.CreateNew(true);
if (error.Fail())
{
if (log)
log->Printf("GDBRemoteCommunication::%s() "
"unnamed pipe creation failed: %s",
__FUNCTION__, error.AsCString());
return error;
}
int write_fd = port_pipe.GetWriteFileDescriptor();
debugserver_args.AppendArgument("--pipe");
debugserver_args.AppendArgument(std::to_string(write_fd).c_str());
launch_info.AppendCloseFileAction(port_pipe.GetReadFileDescriptor());
}
}
else
{
// No host and port given, so lets listen on our end and make the debugserver
// connect to us..
error = StartListenThread ("127.0.0.1", 0);
if (error.Fail())
{
if (log)
log->Printf ("GDBRemoteCommunication::%s() unable to start listen thread: %s", __FUNCTION__, error.AsCString());
return error;
}
ConnectionFileDescriptor *connection = (ConnectionFileDescriptor *)GetConnection ();
// Wait for 10 seconds to resolve the bound port
out_port = connection->GetListeningPort(10);
if (out_port > 0)
{
char port_cstr[32];
snprintf(port_cstr, sizeof(port_cstr), "127.0.0.1:%i", out_port);
// Send the host and port down that debugserver and specify an option
// so that it connects back to the port we are listening to in this process
debugserver_args.AppendArgument("--reverse-connect");
debugserver_args.AppendArgument(port_cstr);
}
else
{
error.SetErrorString ("failed to bind to port 0 on 127.0.0.1");
if (log)
log->Printf ("GDBRemoteCommunication::%s() failed: %s", __FUNCTION__, error.AsCString());
return error;
}
}
const char *env_debugserver_log_file = getenv("LLDB_DEBUGSERVER_LOG_FILE");
if (env_debugserver_log_file)
{
::snprintf (arg_cstr, sizeof(arg_cstr), "--log-file=%s", env_debugserver_log_file);
debugserver_args.AppendArgument(arg_cstr);
}
#if defined(__APPLE__)
const char *env_debugserver_log_flags = getenv("LLDB_DEBUGSERVER_LOG_FLAGS");
if (env_debugserver_log_flags)
{
::snprintf (arg_cstr, sizeof(arg_cstr), "--log-flags=%s", env_debugserver_log_flags);
debugserver_args.AppendArgument(arg_cstr);
}
#else
const char *env_debugserver_log_channels = getenv("LLDB_SERVER_LOG_CHANNELS");
if (env_debugserver_log_channels)
{
::snprintf (arg_cstr, sizeof(arg_cstr), "--log-channels=%s", env_debugserver_log_channels);
debugserver_args.AppendArgument(arg_cstr);
}
#endif
// Add additional args, starting with LLDB_DEBUGSERVER_EXTRA_ARG_1 until an env var doesn't come back.
uint32_t env_var_index = 1;
bool has_env_var;
do
{
char env_var_name[64];
snprintf (env_var_name, sizeof (env_var_name), "LLDB_DEBUGSERVER_EXTRA_ARG_%" PRIu32, env_var_index++);
const char *extra_arg = getenv(env_var_name);
has_env_var = extra_arg != nullptr;
if (has_env_var)
{
debugserver_args.AppendArgument (extra_arg);
if (log)
log->Printf ("GDBRemoteCommunication::%s adding env var %s contents to stub command line (%s)", __FUNCTION__, env_var_name, extra_arg);
}
} while (has_env_var);
// Close STDIN, STDOUT and STDERR.
launch_info.AppendCloseFileAction (STDIN_FILENO);
launch_info.AppendCloseFileAction (STDOUT_FILENO);
launch_info.AppendCloseFileAction (STDERR_FILENO);
// Redirect STDIN, STDOUT and STDERR to "/dev/null".
launch_info.AppendSuppressFileAction (STDIN_FILENO, true, false);
launch_info.AppendSuppressFileAction (STDOUT_FILENO, false, true);
launch_info.AppendSuppressFileAction (STDERR_FILENO, false, true);
error = Host::LaunchProcess(launch_info);
if (error.Success() && launch_info.GetProcessID() != LLDB_INVALID_PROCESS_ID)
{
if (named_pipe_path.size() > 0)
{
error = port_pipe.OpenAsReader(named_pipe_path, false);
if (error.Fail())
if (log)
log->Printf("GDBRemoteCommunication::%s() "
"failed to open named pipe %s for reading: %s",
__FUNCTION__, named_pipe_path.c_str(), error.AsCString());
}
if (port_pipe.CanWrite())
port_pipe.CloseWriteFileDescriptor();
if (port_pipe.CanRead())
{
char port_cstr[256];
port_cstr[0] = '\0';
size_t num_bytes = sizeof(port_cstr);
// Read port from pipe with 10 second timeout.
error = port_pipe.ReadWithTimeout(port_cstr, num_bytes,
std::chrono::seconds{10}, num_bytes);
if (error.Success())
{
assert(num_bytes > 0 && port_cstr[num_bytes-1] == '\0');
out_port = StringConvert::ToUInt32(port_cstr, 0);
if (log)
log->Printf("GDBRemoteCommunication::%s() "
"debugserver listens %u port",
__FUNCTION__, out_port);
}
else
{
if (log)
log->Printf("GDBRemoteCommunication::%s() "
"failed to read a port value from pipe %s: %s",
__FUNCTION__, named_pipe_path.c_str(), error.AsCString());
}
port_pipe.Close();
}
if (named_pipe_path.size() > 0)
{
const auto err = port_pipe.Delete(named_pipe_path);
if (err.Fail())
{
if (log)
log->Printf ("GDBRemoteCommunication::%s failed to delete pipe %s: %s",
__FUNCTION__, named_pipe_path.c_str(), err.AsCString());
}
}
// Make sure we actually connect with the debugserver...
JoinListenThread();
}
}
else
{
error.SetErrorStringWithFormat ("unable to locate " DEBUGSERVER_BASENAME );
}
if (error.Fail())
{
if (log)
log->Printf ("GDBRemoteCommunication::%s() failed: %s", __FUNCTION__, error.AsCString());
}
return error;
}
void
GDBRemoteCommunication::DumpHistory(Stream &strm)
{
m_history.Dump (strm);
}
GDBRemoteCommunication::ScopedTimeout::ScopedTimeout (GDBRemoteCommunication& gdb_comm,
uint32_t timeout) :
m_gdb_comm (gdb_comm)
{
m_saved_timeout = m_gdb_comm.SetPacketTimeout (timeout);
}
GDBRemoteCommunication::ScopedTimeout::~ScopedTimeout ()
{
m_gdb_comm.SetPacketTimeout (m_saved_timeout);
}
// This function is called via the Communications class read thread when bytes become available
// for this connection. This function will consume all incoming bytes and try to parse whole
// packets as they become available. Full packets are placed in a queue, so that all packet
// requests can simply pop from this queue. Async notification packets will be dispatched
// immediately to the ProcessGDBRemote Async thread via an event.
void GDBRemoteCommunication::AppendBytesToCache (const uint8_t * bytes, size_t len, bool broadcast, lldb::ConnectionStatus status)
{
StringExtractorGDBRemote packet;
while (true)
{
PacketType type = CheckForPacket(bytes, len, packet);
// scrub the data so we do not pass it back to CheckForPacket
// on future passes of the loop
bytes = nullptr;
len = 0;
// we may have received no packet so lets bail out
if (type == PacketType::Invalid)
break;
if (type == PacketType::Standard)
{
// scope for the mutex
{
// lock down the packet queue
Mutex::Locker locker(m_packet_queue_mutex);
// push a new packet into the queue
m_packet_queue.push(packet);
// Signal condition variable that we have a packet
m_condition_queue_not_empty.Signal();
}
}
if (type == PacketType::Notify)
{
// put this packet into an event
const char *pdata = packet.GetStringRef().c_str();
// as the communication class, we are a broadcaster and the
// async thread is tuned to listen to us
BroadcastEvent(
eBroadcastBitGdbReadThreadGotNotify,
new EventDataBytes(pdata));
}
}
}