freebsd-dev/sys/compat/ndis/subr_ndis.c

2994 lines
71 KiB
C
Raw Normal View History

Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
/*
* Copyright (c) 2003
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* This file implements a translation layer between the BSD networking
* infrasturcture and Windows(R) NDIS network driver modules. A Windows
* NDIS driver calls into several functions in the NDIS.SYS Windows
* kernel module and exports a table of functions designed to be called
* by the NDIS subsystem. Using the PE loader, we can patch our own
* versions of the NDIS routines into a given Windows driver module and
* convince the driver that it is in fact running on Windows.
*
* We provide a table of all our implemented NDIS routines which is patched
* into the driver object code. All our exported routines must use the
* _stdcall calling convention, since that's what the Windows object code
* expects.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
Implement some more NDIS and ntoskrnl API calls: subr_ndis.c: NdisGetCurrentSystemTime() which, according to the Microsoft documentation returns "the number of 100 nanosecond intervals since January 1, 1601." I have no idea what's so special about that epoch or why they chose 100 nanosecond ticks. I don't know the proper offset to convert nanotime() from the UNIX epoch to January 1, 1601, so for now I'm just doing the unit convertion to 100s of nanoseconds. subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(), ExInterlockedPushEntrySList(). The latter two are different from InterlockedPopEntrySList() and InterlockedPushEntrySList() in that they accept a spinlock to hold while executing, whereas the non-Ex routines use a lock internal to ntoskrnl. I also modified ExInitializePagedLookasideList() and ExInitializeNPagedLookasideList() to initialize mutex locks within the lookaside structures. It seems that in NDIS 5.0, the lookaside allocate/free routines ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList(), which require the use of the per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside spinlock is deprecated. We need to support both cases. Note that I appear to be doing something wrong with ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList(): they don't appear to obtain proper pointers to their arguments, so I'm probably doing something wrong in terms of their calling convention (they're declared to be FASTCALL in Widnows, and I'm not sure what that means for gcc). It happens that in my stub lookaside implementation, they don't need to do any work anyway, so for now I've hacked them to always return NULL, which avoids corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
#include <sys/timespec.h>
#include <sys/smp.h>
#include <sys/queue.h>
#include <sys/proc.h>
#include <sys/filedesc.h>
#include <sys/namei.h>
#include <sys/fcntl.h>
#include <sys/vnode.h>
#include <sys/kthread.h>
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <machine/atomic.h>
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <machine/stdarg.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_ioctl.h>
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <compat/ndis/pe_var.h>
#include <compat/ndis/resource_var.h>
#include <compat/ndis/ntoskrnl_var.h>
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
#include <compat/ndis/hal_var.h>
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
#include <compat/ndis/ndis_var.h>
#include <compat/ndis/cfg_var.h>
#include <dev/if_ndis/if_ndisvar.h>
#define FUNC void(*)(void)
static char ndis_filepath[MAXPATHLEN];
extern struct nd_head ndis_devhead;
SYSCTL_STRING(_hw, OID_AUTO, ndis_filepath, CTLFLAG_RW, ndis_filepath,
MAXPATHLEN, "Path used by NdisOpenFile() to search for files");
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void ndis_initwrap(ndis_handle *,
device_object *, void *, void *);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static ndis_status ndis_register_miniport(ndis_handle,
ndis_miniport_characteristics *, int);
__stdcall static ndis_status ndis_malloc_withtag(void **, uint32_t, uint32_t);
__stdcall static ndis_status ndis_malloc(void **,
uint32_t, uint32_t, ndis_physaddr);
__stdcall static void ndis_free(void *, uint32_t, uint32_t);
__stdcall static ndis_status ndis_setattr_ex(ndis_handle, ndis_handle,
uint32_t, uint32_t, ndis_interface_type);
__stdcall static void ndis_open_cfg(ndis_status *, ndis_handle *, ndis_handle);
__stdcall static void ndis_open_cfgbyidx(ndis_status *, ndis_handle,
uint32_t, ndis_unicode_string *, ndis_handle *);
__stdcall static void ndis_open_cfgbyname(ndis_status *, ndis_handle,
ndis_unicode_string *, ndis_handle *);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
static ndis_status ndis_encode_parm(ndis_miniport_block *,
struct sysctl_oid *, ndis_parm_type, ndis_config_parm **);
static ndis_status ndis_decode_parm(ndis_miniport_block *,
ndis_config_parm *, char *);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void ndis_read_cfg(ndis_status *, ndis_config_parm **,
ndis_handle, ndis_unicode_string *, ndis_parm_type);
__stdcall static void ndis_write_cfg(ndis_status *, ndis_handle,
ndis_unicode_string *, ndis_config_parm *);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void ndis_close_cfg(ndis_handle);
__stdcall static void ndis_create_lock(ndis_spin_lock *);
__stdcall static void ndis_destroy_lock(ndis_spin_lock *);
__stdcall static void ndis_lock(ndis_spin_lock *);
__stdcall static void ndis_unlock(ndis_spin_lock *);
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
__stdcall static void ndis_lock_dpr(ndis_spin_lock *);
__stdcall static void ndis_unlock_dpr(ndis_spin_lock *);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static uint32_t ndis_read_pci(ndis_handle, uint32_t,
uint32_t, void *, uint32_t);
__stdcall static uint32_t ndis_write_pci(ndis_handle, uint32_t,
uint32_t, void *, uint32_t);
static void ndis_syslog(ndis_handle, ndis_error_code, uint32_t, ...);
static void ndis_map_cb(void *, bus_dma_segment_t *, int, int);
__stdcall static void ndis_vtophys_load(ndis_handle, ndis_buffer *,
uint32_t, uint8_t, ndis_paddr_unit *, uint32_t *);
__stdcall static void ndis_vtophys_unload(ndis_handle, ndis_buffer *, uint32_t);
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
__stdcall static void ndis_create_timer(ndis_miniport_timer *, ndis_handle,
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
ndis_timer_function, void *);
__stdcall static void ndis_init_timer(ndis_timer *,
ndis_timer_function, void *);
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
__stdcall static void ndis_set_timer(ndis_timer *, uint32_t);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void ndis_set_periodic_timer(ndis_miniport_timer *, uint32_t);
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
__stdcall static void ndis_cancel_timer(ndis_timer *, uint8_t *);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void ndis_query_resources(ndis_status *, ndis_handle,
ndis_resource_list *, uint32_t *);
__stdcall static ndis_status ndis_register_ioport(void **,
ndis_handle, uint32_t, uint32_t);
__stdcall static void ndis_deregister_ioport(ndis_handle,
uint32_t, uint32_t, void *);
__stdcall static void ndis_read_netaddr(ndis_status *, void **,
uint32_t *, ndis_handle);
__stdcall static ndis_status ndis_mapreg_cnt(uint32_t, uint32_t *);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static ndis_status ndis_alloc_mapreg(ndis_handle,
uint32_t, uint8_t, uint32_t, uint32_t);
__stdcall static void ndis_free_mapreg(ndis_handle);
static void ndis_mapshared_cb(void *, bus_dma_segment_t *, int, int);
__stdcall static void ndis_alloc_sharedmem(ndis_handle, uint32_t,
uint8_t, void **, ndis_physaddr *);
static void ndis_asyncmem_complete(void *);
__stdcall static ndis_status ndis_alloc_sharedmem_async(ndis_handle,
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
uint32_t, uint8_t, void *);
__stdcall static void ndis_free_sharedmem(ndis_handle, uint32_t,
uint8_t, void *, ndis_physaddr);
__stdcall static ndis_status ndis_map_iospace(void **, ndis_handle,
ndis_physaddr, uint32_t);
__stdcall static void ndis_unmap_iospace(ndis_handle, void *, uint32_t);
__stdcall static uint32_t ndis_cachefill(void);
__stdcall static uint32_t ndis_dma_align(ndis_handle);
__stdcall static ndis_status ndis_init_sc_dma(ndis_handle,
uint8_t, uint32_t);
__stdcall static void ndis_alloc_packetpool(ndis_status *,
ndis_handle *, uint32_t, uint32_t);
__stdcall static void ndis_ex_alloc_packetpool(ndis_status *,
ndis_handle *, uint32_t, uint32_t, uint32_t);
__stdcall static uint32_t ndis_packetpool_use(ndis_handle);
__stdcall static void ndis_free_packetpool(ndis_handle);
__stdcall static void ndis_alloc_packet(ndis_status *,
ndis_packet **, ndis_handle);
__stdcall static void ndis_release_packet(ndis_packet *);
__stdcall static void ndis_unchain_headbuf(ndis_packet *, ndis_buffer **);
__stdcall static void ndis_unchain_tailbuf(ndis_packet *, ndis_buffer **);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void ndis_alloc_bufpool(ndis_status *,
ndis_handle *, uint32_t);
__stdcall static void ndis_free_bufpool(ndis_handle);
__stdcall static void ndis_alloc_buf(ndis_status *, ndis_buffer **,
ndis_handle, void *, uint32_t);
__stdcall static void ndis_release_buf(ndis_buffer *);
__stdcall static uint32_t ndis_buflen(ndis_buffer *);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void ndis_query_buf(ndis_buffer *, void **, uint32_t *);
__stdcall static void ndis_query_buf_safe(ndis_buffer *, void **,
uint32_t *, uint32_t);
__stdcall static void *ndis_buf_vaddr(ndis_buffer *);
__stdcall static void *ndis_buf_vaddr_safe(ndis_buffer *, uint32_t);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void ndis_adjust_buflen(ndis_buffer *, int);
__stdcall static uint32_t ndis_interlock_inc(uint32_t *);
__stdcall static uint32_t ndis_interlock_dec(uint32_t *);
__stdcall static void ndis_init_event(ndis_event *);
__stdcall static void ndis_set_event(ndis_event *);
__stdcall static void ndis_reset_event(ndis_event *);
__stdcall static uint8_t ndis_wait_event(ndis_event *, uint32_t);
__stdcall static ndis_status ndis_unicode2ansi(ndis_ansi_string *,
ndis_unicode_string *);
__stdcall static ndis_status ndis_ansi2unicode(ndis_unicode_string *,
ndis_ansi_string *);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static ndis_status ndis_assign_pcirsrc(ndis_handle,
uint32_t, ndis_resource_list **);
__stdcall static ndis_status ndis_register_intr(ndis_miniport_interrupt *,
ndis_handle, uint32_t, uint32_t, uint8_t,
uint8_t, ndis_interrupt_mode);
__stdcall static void ndis_deregister_intr(ndis_miniport_interrupt *);
__stdcall static void ndis_register_shutdown(ndis_handle, void *,
ndis_shutdown_handler);
__stdcall static void ndis_deregister_shutdown(ndis_handle);
__stdcall static uint32_t ndis_numpages(ndis_buffer *);
__stdcall static void ndis_buf_physpages(ndis_buffer *, uint32_t *);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void ndis_query_bufoffset(ndis_buffer *,
uint32_t *, uint32_t *);
__stdcall static void ndis_sleep(uint32_t);
__stdcall static uint32_t ndis_read_pccard_amem(ndis_handle,
uint32_t, void *, uint32_t);
__stdcall static uint32_t ndis_write_pccard_amem(ndis_handle,
uint32_t, void *, uint32_t);
__stdcall static list_entry *ndis_insert_head(list_entry *,
list_entry *, ndis_spin_lock *);
__stdcall static list_entry *ndis_remove_head(list_entry *,
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
ndis_spin_lock *);
__stdcall static list_entry *ndis_insert_tail(list_entry *,
list_entry *, ndis_spin_lock *);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static uint8_t ndis_sync_with_intr(ndis_miniport_interrupt *,
void *, void *);
Implement some more NDIS and ntoskrnl API calls: subr_ndis.c: NdisGetCurrentSystemTime() which, according to the Microsoft documentation returns "the number of 100 nanosecond intervals since January 1, 1601." I have no idea what's so special about that epoch or why they chose 100 nanosecond ticks. I don't know the proper offset to convert nanotime() from the UNIX epoch to January 1, 1601, so for now I'm just doing the unit convertion to 100s of nanoseconds. subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(), ExInterlockedPushEntrySList(). The latter two are different from InterlockedPopEntrySList() and InterlockedPushEntrySList() in that they accept a spinlock to hold while executing, whereas the non-Ex routines use a lock internal to ntoskrnl. I also modified ExInitializePagedLookasideList() and ExInitializeNPagedLookasideList() to initialize mutex locks within the lookaside structures. It seems that in NDIS 5.0, the lookaside allocate/free routines ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList(), which require the use of the per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside spinlock is deprecated. We need to support both cases. Note that I appear to be doing something wrong with ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList(): they don't appear to obtain proper pointers to their arguments, so I'm probably doing something wrong in terms of their calling convention (they're declared to be FASTCALL in Widnows, and I'm not sure what that means for gcc). It happens that in my stub lookaside implementation, they don't need to do any work anyway, so for now I've hacked them to always return NULL, which avoids corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
__stdcall static void ndis_time(uint64_t *);
__stdcall static void ndis_uptime(uint32_t *);
__stdcall static void ndis_init_string(ndis_unicode_string *, char *);
__stdcall static void ndis_init_ansi_string(ndis_ansi_string *, char *);
2003-12-28 21:36:03 +00:00
__stdcall static void ndis_init_unicode_string(ndis_unicode_string *,
uint16_t *);
subr_ndis.c: - fix ndis_time() so that it returns a time based on the proper epoch (wacky though it may be) - implement NdisInitializeString() and NdisFreeString(), and add stub for NdisMRemoveMiniport() ntoskrnl_var.h: - add missing member to the general_lookaside struct (gl_listentry) subr_ntoskrnl.c: - Fix arguments to the interlocked push/pop routines: 'head' is an slist_header *, not an slist_entry * - Kludge up _fastcall support for the push/pop routines. The _fastcall convention is similar to _stdcall, except the first two available DWORD-sized arguments are passed in %ecx and %edx, respectively. One kludge for this __attribute__ ((regparm(3))), however this isn't entirely right, as it assumes %eax, %ecx and %edx will be used (regparm(2) assumes %eax and %edx). Another kludge is to declare the two fastcall-ed args as local register variables and explicitly assign them to %ecx and %edx, but experimentation showed that gcc would not guard %ecx and %edx against being clobbered. Thus, I came up with a 3rd kludge, which is to use some inline assembly of the form: void *arg1; void *arg2; __asm__("movl %%ecx, %%ecx" : "=c" (arg1)); __asm__("movl %%edx, %%edx" : "=d" (arg2)); This lets gcc know that we're going to reference %ecx and %edx and that it should make an effort not to let it get trampled. This wastes an instruction (movl %reg, %reg is a no-op) but insures proper behavior. It's possible there's a better way to do this though: this is the first time I've used inline assembler in this fashion. The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside lists work for the two drivers I have that use them, one of which is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
__stdcall static void ndis_free_string(ndis_unicode_string *);
__stdcall static ndis_status ndis_remove_miniport(ndis_handle *);
__stdcall static void ndis_termwrap(ndis_handle, void *);
__stdcall static void ndis_get_devprop(ndis_handle, device_object **,
device_object **, device_object **, cm_resource_list *,
cm_resource_list *);
__stdcall static void ndis_firstbuf(ndis_packet *, ndis_buffer **,
void **, uint32_t *, uint32_t *);
__stdcall static void ndis_firstbuf_safe(ndis_packet *, ndis_buffer **,
void **, uint32_t *, uint32_t *, uint32_t);
__stdcall static void ndis_open_file(ndis_status *, ndis_handle *, uint32_t *,
ndis_unicode_string *, ndis_physaddr);
__stdcall static void ndis_map_file(ndis_status *, void **, ndis_handle);
__stdcall static void ndis_unmap_file(ndis_handle);
__stdcall static void ndis_close_file(ndis_handle);
__stdcall static u_int8_t ndis_cpu_cnt(void);
__stdcall static void ndis_ind_statusdone(ndis_handle);
__stdcall static void ndis_ind_status(ndis_handle, ndis_status,
void *, uint32_t);
static void ndis_workfunc(void *);
__stdcall static ndis_status ndis_sched_workitem(ndis_work_item *);
__stdcall static void ndis_pkt_to_pkt(ndis_packet *, uint32_t, uint32_t,
ndis_packet *, uint32_t, uint32_t *);
__stdcall static void ndis_pkt_to_pkt_safe(ndis_packet *, uint32_t, uint32_t,
ndis_packet *, uint32_t, uint32_t *, uint32_t);
__stdcall static ndis_status ndis_register_dev(ndis_handle,
ndis_unicode_string *, ndis_unicode_string *, driver_dispatch **,
void **, ndis_handle *);
__stdcall static ndis_status ndis_deregister_dev(ndis_handle);
__stdcall static ndis_status ndis_query_name(ndis_unicode_string *,
ndis_handle);
__stdcall static void ndis_register_unload(ndis_handle, void *);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void dummy(void);
/*
* Some really old drivers do not properly check the return value
* from NdisAllocatePacket() and NdisAllocateBuffer() and will
* sometimes allocate few more buffers/packets that they originally
* requested when they created the pool. To prevent this from being
* a problem, we allocate a few extra buffers/packets beyond what
* the driver asks for. This #define controls how many.
*/
#define NDIS_POOL_EXTRA 16
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
int
ndis_libinit()
{
strcpy(ndis_filepath, "/compat/ndis");
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return(0);
}
int
ndis_libfini()
{
return(0);
}
/*
* NDIS deals with strings in unicode format, so we have
* do deal with them that way too. For now, we only handle
* conversion between unicode and ASCII since that's all
* that device drivers care about.
*/
int
ndis_ascii_to_unicode(ascii, unicode)
char *ascii;
uint16_t **unicode;
{
uint16_t *ustr;
int i;
if (*unicode == NULL)
*unicode = malloc(strlen(ascii) * 2, M_DEVBUF, M_WAITOK);
if (*unicode == NULL)
return(ENOMEM);
ustr = *unicode;
for (i = 0; i < strlen(ascii); i++) {
*ustr = (uint16_t)ascii[i];
ustr++;
}
return(0);
}
int
ndis_unicode_to_ascii(unicode, ulen, ascii)
uint16_t *unicode;
int ulen;
char **ascii;
{
uint8_t *astr;
int i;
if (*ascii == NULL)
*ascii = malloc((ulen / 2) + 1, M_DEVBUF, M_WAITOK|M_ZERO);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
if (*ascii == NULL)
return(ENOMEM);
astr = *ascii;
for (i = 0; i < ulen / 2; i++) {
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
*astr = (uint8_t)unicode[i];
astr++;
}
return(0);
}
__stdcall static void
ndis_initwrap(wrapper, drv_obj, path, unused)
ndis_handle *wrapper;
device_object *drv_obj;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
void *path;
void *unused;
{
ndis_miniport_block *block;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
block = drv_obj->do_rsvd;
*wrapper = block;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
__stdcall static void
ndis_termwrap(handle, syspec)
ndis_handle handle;
void *syspec;
{
return;
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static ndis_status
ndis_register_miniport(handle, characteristics, len)
ndis_handle handle;
ndis_miniport_characteristics *characteristics;
int len;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
block = (ndis_miniport_block *)handle;
sc = (struct ndis_softc *)block->nmb_ifp;
bcopy((char *)characteristics, (char *)&sc->ndis_chars,
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
sizeof(ndis_miniport_characteristics));
if (sc->ndis_chars.nmc_version_major < 5 ||
sc->ndis_chars.nmc_version_minor < 1) {
sc->ndis_chars.nmc_shutdown_handler = NULL;
sc->ndis_chars.nmc_canceltxpkts_handler = NULL;
sc->ndis_chars.nmc_pnpevent_handler = NULL;
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return(NDIS_STATUS_SUCCESS);
}
__stdcall static ndis_status
ndis_malloc_withtag(vaddr, len, tag)
void **vaddr;
uint32_t len;
uint32_t tag;
{
void *mem;
mem = malloc(len, M_DEVBUF, M_NOWAIT);
if (mem == NULL)
return(NDIS_STATUS_RESOURCES);
*vaddr = mem;
return(NDIS_STATUS_SUCCESS);
}
__stdcall static ndis_status
ndis_malloc(vaddr, len, flags, highaddr)
void **vaddr;
uint32_t len;
uint32_t flags;
ndis_physaddr highaddr;
{
void *mem;
mem = malloc(len, M_DEVBUF, M_NOWAIT);
if (mem == NULL)
return(NDIS_STATUS_RESOURCES);
*vaddr = mem;
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
ndis_free(vaddr, len, flags)
void *vaddr;
uint32_t len;
uint32_t flags;
{
if (len == 0)
return;
free(vaddr, M_DEVBUF);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
__stdcall static ndis_status
ndis_setattr_ex(adapter_handle, adapter_ctx, hangsecs,
flags, iftype)
ndis_handle adapter_handle;
ndis_handle adapter_ctx;
uint32_t hangsecs;
uint32_t flags;
ndis_interface_type iftype;
{
ndis_miniport_block *block;
/*
* Save the adapter context, we need it for calling
* the driver's internal functions.
*/
block = (ndis_miniport_block *)adapter_handle;
block->nmb_miniportadapterctx = adapter_ctx;
block->nmb_checkforhangsecs = hangsecs;
block->nmb_flags = flags;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
ndis_open_cfg(status, cfg, wrapctx)
ndis_status *status;
ndis_handle *cfg;
ndis_handle wrapctx;
{
*cfg = wrapctx;
*status = NDIS_STATUS_SUCCESS;
return;
}
__stdcall static void
ndis_open_cfgbyname(status, cfg, subkey, subhandle)
ndis_status *status;
ndis_handle cfg;
ndis_unicode_string *subkey;
ndis_handle *subhandle;
{
*subhandle = cfg;
*status = NDIS_STATUS_SUCCESS;
return;
}
__stdcall static void
ndis_open_cfgbyidx(status, cfg, idx, subkey, subhandle)
ndis_status *status;
ndis_handle cfg;
uint32_t idx;
ndis_unicode_string *subkey;
ndis_handle *subhandle;
{
*status = NDIS_STATUS_FAILURE;
return;
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
static ndis_status
ndis_encode_parm(block, oid, type, parm)
ndis_miniport_block *block;
struct sysctl_oid *oid;
ndis_parm_type type;
ndis_config_parm **parm;
{
uint16_t *unicode;
ndis_unicode_string *ustr;
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
int base = 0;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
unicode = (uint16_t *)&block->nmb_dummybuf;
switch(type) {
case ndis_parm_string:
ndis_ascii_to_unicode((char *)oid->oid_arg1, &unicode);
(*parm)->ncp_type = ndis_parm_string;
ustr = &(*parm)->ncp_parmdata.ncp_stringdata;
ustr->nus_len = strlen((char *)oid->oid_arg1) * 2;
ustr->nus_buf = unicode;
break;
case ndis_parm_int:
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
if (strncmp((char *)oid->oid_arg1, "0x", 2) == 0)
base = 16;
else
base = 10;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
(*parm)->ncp_type = ndis_parm_int;
(*parm)->ncp_parmdata.ncp_intdata =
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
strtol((char *)oid->oid_arg1, NULL, base);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
break;
case ndis_parm_hexint:
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
if (strncmp((char *)oid->oid_arg1, "0x", 2) == 0)
base = 16;
else
base = 10;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
(*parm)->ncp_type = ndis_parm_hexint;
(*parm)->ncp_parmdata.ncp_intdata =
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
strtoul((char *)oid->oid_arg1, NULL, base);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
break;
default:
return(NDIS_STATUS_FAILURE);
break;
}
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
ndis_read_cfg(status, parm, cfg, key, type)
ndis_status *status;
ndis_config_parm **parm;
ndis_handle cfg;
ndis_unicode_string *key;
ndis_parm_type type;
{
char *keystr = NULL;
uint16_t *unicode;
ndis_miniport_block *block;
struct ndis_softc *sc;
struct sysctl_oid *oidp;
struct sysctl_ctx_entry *e;
block = (ndis_miniport_block *)cfg;
sc = (struct ndis_softc *)block->nmb_ifp;
if (key->nus_len == 0 || key->nus_buf == NULL) {
*status = NDIS_STATUS_FAILURE;
return;
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
ndis_unicode_to_ascii(key->nus_buf, key->nus_len, &keystr);
*parm = &block->nmb_replyparm;
bzero((char *)&block->nmb_replyparm, sizeof(ndis_config_parm));
unicode = (uint16_t *)&block->nmb_dummybuf;
/*
* See if registry key is already in a list of known keys
* included with the driver.
*/
TAILQ_FOREACH(e, &sc->ndis_ctx, link) {
oidp = e->entry;
if (strcmp(oidp->oid_name, keystr) == 0) {
if (strcmp((char *)oidp->oid_arg1, "UNSET") == 0) {
free(keystr, M_DEVBUF);
*status = NDIS_STATUS_FAILURE;
return;
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
*status = ndis_encode_parm(block, oidp, type, parm);
free(keystr, M_DEVBUF);
return;
}
}
/*
* If the key didn't match, add it to the list of dynamically
* created ones. Sometimes, drivers refer to registry keys
* that aren't documented in their .INF files. These keys
* are supposed to be created by some sort of utility or
* control panel snap-in that comes with the driver software.
* Sometimes it's useful to be able to manipulate these.
* If the driver requests the key in the form of a string,
* make its default value an empty string, otherwise default
* it to "0".
*/
if (type == ndis_parm_int || type == ndis_parm_hexint)
ndis_add_sysctl(sc, keystr, "(dynamic integer key)",
"UNSET", CTLFLAG_RW);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
else
ndis_add_sysctl(sc, keystr, "(dynamic string key)",
"UNSET", CTLFLAG_RW);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
free(keystr, M_DEVBUF);
*status = NDIS_STATUS_FAILURE;
return;
}
static ndis_status
ndis_decode_parm(block, parm, val)
ndis_miniport_block *block;
ndis_config_parm *parm;
char *val;
{
ndis_unicode_string *ustr;
char *astr = NULL;
switch(parm->ncp_type) {
case ndis_parm_string:
ustr = &parm->ncp_parmdata.ncp_stringdata;
ndis_unicode_to_ascii(ustr->nus_buf, ustr->nus_len, &astr);
bcopy(astr, val, 254);
free(astr, M_DEVBUF);
break;
case ndis_parm_int:
sprintf(val, "%d", parm->ncp_parmdata.ncp_intdata);
break;
case ndis_parm_hexint:
sprintf(val, "%xu", parm->ncp_parmdata.ncp_intdata);
break;
default:
return(NDIS_STATUS_FAILURE);
break;
}
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
ndis_write_cfg(status, cfg, key, parm)
ndis_status *status;
ndis_handle cfg;
ndis_unicode_string *key;
ndis_config_parm *parm;
{
char *keystr = NULL;
ndis_miniport_block *block;
struct ndis_softc *sc;
struct sysctl_oid *oidp;
struct sysctl_ctx_entry *e;
char val[256];
block = (ndis_miniport_block *)cfg;
sc = (struct ndis_softc *)block->nmb_ifp;
ndis_unicode_to_ascii(key->nus_buf, key->nus_len, &keystr);
/* Decode the parameter into a string. */
bzero(val, sizeof(val));
*status = ndis_decode_parm(block, parm, val);
if (*status != NDIS_STATUS_SUCCESS) {
free(keystr, M_DEVBUF);
return;
}
/* See if the key already exists. */
TAILQ_FOREACH(e, &sc->ndis_ctx, link) {
oidp = e->entry;
if (strcmp(oidp->oid_name, keystr) == 0) {
/* Found it, set the value. */
strcpy((char *)oidp->oid_arg1, val);
free(keystr, M_DEVBUF);
return;
}
}
/* Not found, add a new key with the specified value. */
ndis_add_sysctl(sc, keystr, "(dynamically set key)",
val, CTLFLAG_RW);
free(keystr, M_DEVBUF);
*status = NDIS_STATUS_SUCCESS;
return;
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void
ndis_close_cfg(cfg)
ndis_handle cfg;
{
return;
}
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
/*
* Initialize a Windows spinlock.
*/
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void
ndis_create_lock(lock)
ndis_spin_lock *lock;
{
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
lock->nsl_spinlock = 0;
lock->nsl_kirql = 0;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
/*
* Destroy a Windows spinlock. This is a no-op for now. There are two reasons
* for this. One is that it's sort of superfluous: we don't have to do anything
* special to deallocate the spinlock. The other is that there are some buggy
* drivers which call NdisFreeSpinLock() _after_ calling NdisFreeMemory() on
* the block of memory in which the spinlock resides. (Yes, ADMtek, I'm
* talking to you.)
*/
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void
ndis_destroy_lock(lock)
ndis_spin_lock *lock;
{
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
#ifdef notdef
lock->nsl_spinlock = 0;
lock->nsl_kirql = 0;
#endif
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
/*
* Acquire a spinlock from IRQL <= DISPATCH_LEVEL.
*/
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void
ndis_lock(lock)
ndis_spin_lock *lock;
{
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
lock->nsl_kirql = FASTCALL2(hal_lock,
&lock->nsl_spinlock, DISPATCH_LEVEL);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
/*
* Release a spinlock from IRQL == DISPATCH_LEVEL.
*/
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void
ndis_unlock(lock)
ndis_spin_lock *lock;
{
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
FASTCALL2(hal_unlock, &lock->nsl_spinlock, lock->nsl_kirql);
return;
}
/*
* Acquire a spinlock when already running at IRQL == DISPATCH_LEVEL.
*/
__stdcall static void
ndis_lock_dpr(lock)
ndis_spin_lock *lock;
{
FASTCALL1(ntoskrnl_lock_dpc, &lock->nsl_spinlock);
return;
}
/*
* Release a spinlock without leaving IRQL == DISPATCH_LEVEL.
*/
__stdcall static void
ndis_unlock_dpr(lock)
ndis_spin_lock *lock;
{
FASTCALL1(ntoskrnl_unlock_dpc, &lock->nsl_spinlock);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
__stdcall static uint32_t
ndis_read_pci(adapter, slot, offset, buf, len)
ndis_handle adapter;
uint32_t slot;
uint32_t offset;
void *buf;
uint32_t len;
{
ndis_miniport_block *block;
int i;
char *dest;
block = (ndis_miniport_block *)adapter;
dest = buf;
if (block == NULL || block->nmb_dev == NULL)
return(0);
for (i = 0; i < len; i++)
dest[i] = pci_read_config(block->nmb_dev, i + offset, 1);
return(len);
}
__stdcall static uint32_t
ndis_write_pci(adapter, slot, offset, buf, len)
ndis_handle adapter;
uint32_t slot;
uint32_t offset;
void *buf;
uint32_t len;
{
ndis_miniport_block *block;
int i;
char *dest;
block = (ndis_miniport_block *)adapter;
dest = buf;
if (block == NULL || block->nmb_dev == NULL)
return(0);
for (i = 0; i < len; i++)
pci_write_config(block->nmb_dev, i + offset, dest[i], 1);
return(len);
}
/*
* The errorlog routine uses a variable argument list, so we
* have to declare it this way.
*/
#define ERRMSGLEN 512
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
static void
ndis_syslog(ndis_handle adapter, ndis_error_code code,
uint32_t numerrors, ...)
{
ndis_miniport_block *block;
va_list ap;
int i, error;
char *str = NULL, *ustr = NULL;
uint16_t flags;
char msgbuf[ERRMSGLEN];
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
block = (ndis_miniport_block *)adapter;
error = pe_get_message(block->nmb_img, code, &str, &i, &flags);
if (error == 0 && flags & MESSAGE_RESOURCE_UNICODE) {
ustr = msgbuf;
ndis_unicode_to_ascii((uint16_t *)str,
((i / 2)) > (ERRMSGLEN - 1) ? ERRMSGLEN : i, &ustr);
str = ustr;
}
device_printf (block->nmb_dev, "NDIS ERROR: %x (%s)\n", code,
str == NULL ? "unknown error" : str);
device_printf (block->nmb_dev, "NDIS NUMERRORS: %x\n", numerrors);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
va_start(ap, numerrors);
for (i = 0; i < numerrors; i++)
device_printf (block->nmb_dev, "argptr: %p\n",
va_arg(ap, void *));
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
va_end(ap);
return;
}
static void
ndis_map_cb(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg;
int error;
{
struct ndis_map_arg *ctx;
int i;
if (error)
return;
ctx = arg;
for (i = 0; i < nseg; i++) {
ctx->nma_fraglist[i].npu_physaddr.np_quad = segs[i].ds_addr;
ctx->nma_fraglist[i].npu_len = segs[i].ds_len;
}
ctx->nma_cnt = nseg;
return;
}
__stdcall static void
ndis_vtophys_load(adapter, buf, mapreg, writedev, addrarray, arraysize)
ndis_handle adapter;
ndis_buffer *buf;
uint32_t mapreg;
uint8_t writedev;
ndis_paddr_unit *addrarray;
uint32_t *arraysize;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
struct ndis_map_arg nma;
bus_dmamap_t map;
int error;
if (adapter == NULL)
return;
block = (ndis_miniport_block *)adapter;
sc = (struct ndis_softc *)(block->nmb_ifp);
if (mapreg > sc->ndis_mmapcnt)
return;
map = sc->ndis_mmaps[mapreg];
nma.nma_fraglist = addrarray;
error = bus_dmamap_load(sc->ndis_mtag, map,
MDL_VA(buf), buf->nb_bytecount, ndis_map_cb,
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
(void *)&nma, BUS_DMA_NOWAIT);
if (error)
return;
bus_dmamap_sync(sc->ndis_mtag, map,
writedev ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
*arraysize = nma.nma_cnt;
return;
}
__stdcall static void
ndis_vtophys_unload(adapter, buf, mapreg)
ndis_handle adapter;
ndis_buffer *buf;
uint32_t mapreg;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
bus_dmamap_t map;
if (adapter == NULL)
return;
block = (ndis_miniport_block *)adapter;
sc = (struct ndis_softc *)(block->nmb_ifp);
if (mapreg > sc->ndis_mmapcnt)
return;
map = sc->ndis_mmaps[mapreg];
bus_dmamap_sync(sc->ndis_mtag, map,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ndis_mtag, map);
return;
}
/*
* This is an older pre-miniport timer init routine which doesn't
* accept a miniport context handle. The function context (ctx)
* is supposed to be a pointer to the adapter handle, which should
* have been handed to us via NdisSetAttributesEx(). We use this
* function context to track down the corresponding ndis_miniport_block
* structure. It's vital that we track down the miniport block structure,
* so if we can't do it, we panic. Note that we also play some games
* here by treating ndis_timer and ndis_miniport_timer as the same
* thing.
*/
__stdcall static void
ndis_init_timer(timer, func, ctx)
ndis_timer *timer;
ndis_timer_function func;
void *ctx;
{
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
ntoskrnl_init_timer(&timer->nt_ktimer);
ntoskrnl_init_dpc(&timer->nt_kdpc, func, ctx);
return;
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void
ndis_create_timer(timer, handle, func, ctx)
ndis_miniport_timer *timer;
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
ndis_handle handle;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
ndis_timer_function func;
void *ctx;
{
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
/* Save the funcptr and context */
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
timer->nmt_timerfunc = func;
timer->nmt_timerctx = ctx;
timer->nmt_block = handle;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
ntoskrnl_init_timer(&timer->nmt_ktimer);
ntoskrnl_init_dpc(&timer->nmt_kdpc, func, ctx);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
/*
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
* In Windows, there's both an NdisMSetTimer() and an NdisSetTimer(),
* but the former is just a macro wrapper around the latter.
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
*/
__stdcall static void
ndis_set_timer(timer, msecs)
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
ndis_timer *timer;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
uint32_t msecs;
{
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
/*
* KeSetTimer() wants the period in
* hundred nanosecond intervals.
*/
ntoskrnl_set_timer(&timer->nt_ktimer,
((int64_t)msecs * -10000), &timer->nt_kdpc);
Fix several issues related to the KeInitializeTimer() etc... API stuff that I added recently: - When a periodic timer fires, it's automatically re-armed. We must make sure to re-arm the timer _before_ invoking any caller-supplied defered procedure call: the DPC may choose to call KeCancelTimer(), and re-arming the timer after the DPC un-does the effect of the cancel. - Fix similar issue with periodic timers in subr_ndis.c. - When calling KeSetTimer() or KeSetTimerEx(), if the timer is already pending, untimeout() it first before timeout()ing it again. - The old Atheros driver for the 5211 seems to use KeSetTimerEx() incorrectly, or at the very least in a very strange way that doesn't quite follow the Microsoft documentation. In one case, it calls KeSetTimerEx() with a duetime of 0 and a period of 5000. The Microsoft documentation says that negative duetime values are relative to the current time and positive values are absolute. But it doesn't say what's supposed to happen with positive values that less than the current time, i.e. absolute values that are in the past. Lacking any further information, I have decided that timers with positive duetimes that are in the past should fire right away (or in our case, after only 1 tick). This also takes care of the other strange usage in the Atheros driver, where the duetime is specified as 500000 and the period is 50. I think someone may have meant to use -500000 and misinterpreted the documentation. - Also modified KeWaitForSingleObject() and KeWaitForMultipleObjects() to make the same duetime adjustment, since they have the same rules regarding timeout values. - Cosmetic: change name of 'timeout' variable in KeWaitForSingleObject() and KeWaitForMultipleObjects() to 'duetime' to avoid senseless (though harmless) overlap with timeout() function name. With these fixes, I can get the 5211 card to associate properly with my adhoc net using driver AR5211.SYS version 2.4.1.6.
2004-03-10 07:43:11 +00:00
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
__stdcall static void
ndis_set_periodic_timer(timer, msecs)
ndis_miniport_timer *timer;
uint32_t msecs;
{
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
ntoskrnl_set_timer_ex(&timer->nmt_ktimer,
((int64_t)msecs * -10000), msecs, &timer->nmt_kdpc);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
/*
* Technically, this is really NdisCancelTimer(), but we also
* (ab)use it for NdisMCancelTimer(), since in our implementation
* we don't need the extra info in the ndis_miniport_timer
* structure.
*/
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void
ndis_cancel_timer(timer, cancelled)
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
ndis_timer *timer;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
uint8_t *cancelled;
{
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
*cancelled = ntoskrnl_cancel_timer(&timer->nt_ktimer);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
__stdcall static void
ndis_query_resources(status, adapter, list, buflen)
ndis_status *status;
ndis_handle adapter;
ndis_resource_list *list;
uint32_t *buflen;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
int rsclen;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
block = (ndis_miniport_block *)adapter;
sc = (struct ndis_softc *)block->nmb_ifp;
rsclen = sizeof(ndis_resource_list) +
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
(sizeof(cm_partial_resource_desc) * (sc->ndis_rescnt - 1));
if (*buflen < rsclen) {
*buflen = rsclen;
*status = NDIS_STATUS_INVALID_LENGTH;
return;
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
- The MiniportReset() function can return NDIS_STATUS_PENDING, in which case we should wait for the resetdone handler to be called before returning. - When providing resources via ndis_query_resources(), uses the computed rsclen when using bcopy() to copy out the resource data rather than the caller-supplied buffer length. - Avoid using ndis_reset_nic() in if_ndis.c unless we really need to reset the NIC because of a problem. - Allow interrupts to be fielded during ndis_attach(), at least as far as allowing ndis_isr() and ndis_intrhand() to run. - Use ndis_80211_rates_ex when probing for supported rates. Technically, this isn't supposed to work since, although Microsoft added the extended rate structure with the NDIS 5.1 update, the spec still says that the OID_802_11_SUPPORTED_RATES OID uses ndis_80211_rates. In spite of this, it appears some drivers use it anyway. - When adding in our guessed rates, check to see if they already exist so that we avoid any duplicates. - Add a printf() to ndis_open_file() that alerts the user when a driver attempts to open a file under /compat/ndis. With these changes, I can get the driver for the SMC 2802W 54g PCI card to load and run. This board uses a Prism54G chip. Note that in order for this driver to work, you must place the supplied smc2802w.arm firmware image under /compat/ndis. (The firmware is not resident on the device.) Note that this should also allow the 3Com 3CRWE154G72 card to work as well; as far as I can tell, these cards also use a Prism54G chip.
2004-04-05 08:26:52 +00:00
bcopy((char *)block->nmb_rlist, (char *)list, rsclen);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
*status = NDIS_STATUS_SUCCESS;
return;
}
__stdcall static ndis_status
ndis_register_ioport(offset, adapter, port, numports)
void **offset;
ndis_handle adapter;
uint32_t port;
uint32_t numports;
{
struct ndis_miniport_block *block;
struct ndis_softc *sc;
if (adapter == NULL)
return(NDIS_STATUS_FAILURE);
block = (ndis_miniport_block *)adapter;
sc = (struct ndis_softc *)(block->nmb_ifp);
if (sc->ndis_res_io == NULL)
return(NDIS_STATUS_FAILURE);
/* Don't let the device map more ports than we have. */
if (rman_get_size(sc->ndis_res_io) < numports)
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return(NDIS_STATUS_INVALID_LENGTH);
*offset = (void *)rman_get_start(sc->ndis_res_io);
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
ndis_deregister_ioport(adapter, port, numports, offset)
ndis_handle adapter;
uint32_t port;
uint32_t numports;
void *offset;
{
return;
}
__stdcall static void
ndis_read_netaddr(status, addr, addrlen, adapter)
ndis_status *status;
void **addr;
uint32_t *addrlen;
ndis_handle adapter;
{
struct ndis_softc *sc;
ndis_miniport_block *block;
uint8_t empty[] = { 0, 0, 0, 0, 0, 0 };
block = (ndis_miniport_block *)adapter;
sc = (struct ndis_softc *)block->nmb_ifp;
if (bcmp(sc->arpcom.ac_enaddr, empty, ETHER_ADDR_LEN) == 0)
*status = NDIS_STATUS_FAILURE;
else {
*addr = sc->arpcom.ac_enaddr;
*addrlen = ETHER_ADDR_LEN;
*status = NDIS_STATUS_SUCCESS;
}
return;
}
__stdcall static ndis_status
ndis_mapreg_cnt(bustype, cnt)
uint32_t bustype;
uint32_t *cnt;
{
*cnt = 8192;
return(NDIS_STATUS_SUCCESS);
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static ndis_status
ndis_alloc_mapreg(adapter, dmachannel, dmasize, physmapneeded, maxmap)
ndis_handle adapter;
uint32_t dmachannel;
uint8_t dmasize;
uint32_t physmapneeded;
uint32_t maxmap;
{
struct ndis_softc *sc;
ndis_miniport_block *block;
int error, i, nseg = NDIS_MAXSEG;
block = (ndis_miniport_block *)adapter;
sc = (struct ndis_softc *)block->nmb_ifp;
sc->ndis_mmaps = malloc(sizeof(bus_dmamap_t) * physmapneeded,
M_DEVBUF, M_NOWAIT|M_ZERO);
if (sc->ndis_mmaps == NULL)
return(NDIS_STATUS_RESOURCES);
error = bus_dma_tag_create(sc->ndis_parent_tag, ETHER_ALIGN, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
NULL, maxmap * nseg, nseg, maxmap, BUS_DMA_ALLOCNOW,
NULL, NULL, &sc->ndis_mtag);
if (error) {
free(sc->ndis_mmaps, M_DEVBUF);
return(NDIS_STATUS_RESOURCES);
}
for (i = 0; i < physmapneeded; i++)
bus_dmamap_create(sc->ndis_mtag, 0, &sc->ndis_mmaps[i]);
sc->ndis_mmapcnt = physmapneeded;
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
ndis_free_mapreg(adapter)
ndis_handle adapter;
{
struct ndis_softc *sc;
ndis_miniport_block *block;
int i;
block = (ndis_miniport_block *)adapter;
sc = (struct ndis_softc *)block->nmb_ifp;
for (i = 0; i < sc->ndis_mmapcnt; i++)
bus_dmamap_destroy(sc->ndis_mtag, sc->ndis_mmaps[i]);
free(sc->ndis_mmaps, M_DEVBUF);
bus_dma_tag_destroy(sc->ndis_mtag);
return;
}
static void
ndis_mapshared_cb(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg;
int error;
{
ndis_physaddr *p;
if (error || nseg > 1)
return;
p = arg;
p->np_quad = segs[0].ds_addr;
return;
}
/*
* This maps to bus_dmamem_alloc().
*/
__stdcall static void
ndis_alloc_sharedmem(adapter, len, cached, vaddr, paddr)
ndis_handle adapter;
uint32_t len;
uint8_t cached;
void **vaddr;
ndis_physaddr *paddr;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
struct ndis_shmem *sh;
int error;
if (adapter == NULL)
return;
block = (ndis_miniport_block *)adapter;
sc = (struct ndis_softc *)(block->nmb_ifp);
sh = malloc(sizeof(struct ndis_shmem), M_DEVBUF, M_NOWAIT|M_ZERO);
if (sh == NULL)
return;
error = bus_dma_tag_create(sc->ndis_parent_tag, 64,
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
NULL, len, 1, len, BUS_DMA_ALLOCNOW, NULL, NULL,
&sh->ndis_stag);
if (error) {
free(sh, M_DEVBUF);
return;
}
error = bus_dmamem_alloc(sh->ndis_stag, vaddr,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sh->ndis_smap);
if (error) {
bus_dma_tag_destroy(sh->ndis_stag);
free(sh, M_DEVBUF);
return;
}
error = bus_dmamap_load(sh->ndis_stag, sh->ndis_smap, *vaddr,
len, ndis_mapshared_cb, (void *)paddr, BUS_DMA_NOWAIT);
if (error) {
bus_dmamem_free(sh->ndis_stag, *vaddr, sh->ndis_smap);
bus_dma_tag_destroy(sh->ndis_stag);
free(sh, M_DEVBUF);
return;
}
sh->ndis_saddr = *vaddr;
sh->ndis_next = sc->ndis_shlist;
sc->ndis_shlist = sh;
return;
}
struct ndis_allocwork {
ndis_handle na_adapter;
uint32_t na_len;
uint8_t na_cached;
void *na_ctx;
};
static void
ndis_asyncmem_complete(arg)
void *arg;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
{
ndis_miniport_block *block;
struct ndis_softc *sc;
struct ndis_allocwork *w;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
void *vaddr;
ndis_physaddr paddr;
__stdcall ndis_allocdone_handler donefunc;
w = arg;
block = (ndis_miniport_block *)w->na_adapter;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
sc = (struct ndis_softc *)(block->nmb_ifp);
vaddr = NULL;
paddr.np_quad = 0;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
donefunc = sc->ndis_chars.nmc_allocate_complete_func;
ndis_alloc_sharedmem(w->na_adapter, w->na_len,
w->na_cached, &vaddr, &paddr);
donefunc(w->na_adapter, vaddr, &paddr, w->na_len, w->na_ctx);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
free(arg, M_DEVBUF);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
__stdcall static ndis_status
ndis_alloc_sharedmem_async(adapter, len, cached, ctx)
ndis_handle adapter;
uint32_t len;
uint8_t cached;
void *ctx;
{
struct ndis_allocwork *w;
if (adapter == NULL)
return(NDIS_STATUS_FAILURE);
w = malloc(sizeof(struct ndis_allocwork), M_TEMP, M_NOWAIT);
if (w == NULL)
return(NDIS_STATUS_FAILURE);
w->na_adapter = adapter;
w->na_cached = cached;
w->na_len = len;
w->na_ctx = ctx;
/*
* Pawn this work off on the SWI thread instead of the
* taskqueue thread, because sometimes drivers will queue
* up work items on the taskqueue thread that will block,
* which would prevent the memory allocation from completing
* when we need it.
*/
ndis_sched(ndis_asyncmem_complete, w, NDIS_SWI);
return(NDIS_STATUS_PENDING);
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void
ndis_free_sharedmem(adapter, len, cached, vaddr, paddr)
ndis_handle adapter;
uint32_t len;
uint8_t cached;
void *vaddr;
ndis_physaddr paddr;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
struct ndis_shmem *sh, *prev;
if (vaddr == NULL || adapter == NULL)
return;
block = (ndis_miniport_block *)adapter;
sc = (struct ndis_softc *)(block->nmb_ifp);
sh = prev = sc->ndis_shlist;
while (sh) {
if (sh->ndis_saddr == vaddr)
break;
prev = sh;
sh = sh->ndis_next;
}
bus_dmamap_unload(sh->ndis_stag, sh->ndis_smap);
bus_dmamem_free(sh->ndis_stag, vaddr, sh->ndis_smap);
bus_dma_tag_destroy(sh->ndis_stag);
if (sh == sc->ndis_shlist)
sc->ndis_shlist = sh->ndis_next;
else
prev->ndis_next = sh->ndis_next;
free(sh, M_DEVBUF);
return;
}
__stdcall static ndis_status
ndis_map_iospace(vaddr, adapter, paddr, len)
void **vaddr;
ndis_handle adapter;
ndis_physaddr paddr;
uint32_t len;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
if (adapter == NULL)
return(NDIS_STATUS_FAILURE);
block = (ndis_miniport_block *)adapter;
sc = (struct ndis_softc *)(block->nmb_ifp);
if (sc->ndis_res_mem != NULL &&
paddr.np_quad == rman_get_start(sc->ndis_res_mem))
*vaddr = (void *)rman_get_virtual(sc->ndis_res_mem);
else if (sc->ndis_res_altmem != NULL &&
paddr.np_quad == rman_get_start(sc->ndis_res_altmem))
*vaddr = (void *)rman_get_virtual(sc->ndis_res_altmem);
else
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return(NDIS_STATUS_FAILURE);
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
ndis_unmap_iospace(adapter, vaddr, len)
ndis_handle adapter;
void *vaddr;
uint32_t len;
{
return;
}
__stdcall static uint32_t
ndis_cachefill(void)
{
return(128);
}
__stdcall static uint32_t
ndis_dma_align(handle)
ndis_handle handle;
{
return(128);
}
/*
* NDIS has two methods for dealing with NICs that support DMA.
* One is to just pass packets to the driver and let it call
* NdisMStartBufferPhysicalMapping() to map each buffer in the packet
* all by itself, and the other is to let the NDIS library handle the
* buffer mapping internally, and hand the driver an already populated
* scatter/gather fragment list. If the driver calls
* NdisMInitializeScatterGatherDma(), it wants to use the latter
* method.
*/
__stdcall static ndis_status
ndis_init_sc_dma(adapter, is64, maxphysmap)
ndis_handle adapter;
uint8_t is64;
uint32_t maxphysmap;
{
struct ndis_softc *sc;
ndis_miniport_block *block;
int error;
if (adapter == NULL)
return(NDIS_STATUS_FAILURE);
block = (ndis_miniport_block *)adapter;
sc = (struct ndis_softc *)block->nmb_ifp;
/* Don't do this twice. */
if (sc->ndis_sc == 1)
return(NDIS_STATUS_SUCCESS);
error = bus_dma_tag_create(sc->ndis_parent_tag, ETHER_ALIGN, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES * NDIS_MAXSEG, NDIS_MAXSEG, MCLBYTES, BUS_DMA_ALLOCNOW,
NULL, NULL, &sc->ndis_ttag);
sc->ndis_sc = 1;
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
ndis_alloc_packetpool(status, pool, descnum, protrsvdlen)
ndis_status *status;
ndis_handle *pool;
uint32_t descnum;
uint32_t protrsvdlen;
{
ndis_packet *cur;
int i;
*pool = malloc(sizeof(ndis_packet) *
((descnum + NDIS_POOL_EXTRA) + 1),
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
M_DEVBUF, M_NOWAIT|M_ZERO);
if (pool == NULL) {
*status = NDIS_STATUS_RESOURCES;
return;
}
cur = (ndis_packet *)*pool;
cur->np_private.npp_flags = 0x1; /* mark the head of the list */
Add sanity checks to the ndis_packet and ndis_buffer pool handling routines to guard against problems caused by (possibly) buggy drivers. The RealTek 8180 wireless driver calls NdisFreeBuffer() to release some of its buffers _after_ it's already called NdisFreeBufferPool() to destroy the pool to which the buffers belong. In our implementation, this error causes NdisFreeBuffer() to touch stale heap memory. If you are running a release kernel, and hence have INVARIANTS et al turned off, it turns out nothing happens. But if you're using a development kernel config with INVARIANTS on, the malloc()/free() sanity checks will scribble over the pool memory with 0xdeadc0de once it's released so that any attempts to touch it will cause a trap, and indeed this is what happens. It happens that I run 5.2-RELEASE on my laptop, so when I tested the rtl8180.sys driver, it worked fine for me, but people trying to run it with development systems checked out or cvsupped from -current would get a page fault on driver load. I can't find any reason why the NDISulator would cause the RealTek driver to do the NdisFreeBufferPool() prematurely, and the same driver obviously works with Windows -- or at least, it doesn't cause a crash: the Microsoft documentation for NdisFreeBufferPool() says that failing to return all buffers to the pool before calling NdisFreeBufferPool() causes a memory leak. I've written to my contacts at RealTek asking them to check if this is indeed a bug in their driver. In the meantime, these new sanity checks will catch this problem and issue a warning rather than causing a trap. The trick is to keep a count of outstanding buffers for each buffer pool, and if the driver tries to call NdisFreeBufferPool() while there are still buffers outstanding, we mark the pool for deletion and then defer destroying it until after the last buffer has been reclaimed.
2004-03-04 00:17:14 +00:00
cur->np_private.npp_totlen = 0; /* init deletetion flag */
for (i = 0; i < (descnum + NDIS_POOL_EXTRA); i++) {
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
cur->np_private.npp_head = (ndis_handle)(cur + 1);
cur++;
}
*status = NDIS_STATUS_SUCCESS;
return;
}
__stdcall static void
ndis_ex_alloc_packetpool(status, pool, descnum, oflowdescnum, protrsvdlen)
ndis_status *status;
ndis_handle *pool;
uint32_t descnum;
uint32_t oflowdescnum;
uint32_t protrsvdlen;
{
return(ndis_alloc_packetpool(status, pool,
descnum + oflowdescnum, protrsvdlen));
}
__stdcall static uint32_t
ndis_packetpool_use(pool)
ndis_handle pool;
{
ndis_packet *head;
head = (ndis_packet *)pool;
return(head->np_private.npp_count);
}
__stdcall static void
ndis_free_packetpool(pool)
ndis_handle pool;
{
Add sanity checks to the ndis_packet and ndis_buffer pool handling routines to guard against problems caused by (possibly) buggy drivers. The RealTek 8180 wireless driver calls NdisFreeBuffer() to release some of its buffers _after_ it's already called NdisFreeBufferPool() to destroy the pool to which the buffers belong. In our implementation, this error causes NdisFreeBuffer() to touch stale heap memory. If you are running a release kernel, and hence have INVARIANTS et al turned off, it turns out nothing happens. But if you're using a development kernel config with INVARIANTS on, the malloc()/free() sanity checks will scribble over the pool memory with 0xdeadc0de once it's released so that any attempts to touch it will cause a trap, and indeed this is what happens. It happens that I run 5.2-RELEASE on my laptop, so when I tested the rtl8180.sys driver, it worked fine for me, but people trying to run it with development systems checked out or cvsupped from -current would get a page fault on driver load. I can't find any reason why the NDISulator would cause the RealTek driver to do the NdisFreeBufferPool() prematurely, and the same driver obviously works with Windows -- or at least, it doesn't cause a crash: the Microsoft documentation for NdisFreeBufferPool() says that failing to return all buffers to the pool before calling NdisFreeBufferPool() causes a memory leak. I've written to my contacts at RealTek asking them to check if this is indeed a bug in their driver. In the meantime, these new sanity checks will catch this problem and issue a warning rather than causing a trap. The trick is to keep a count of outstanding buffers for each buffer pool, and if the driver tries to call NdisFreeBufferPool() while there are still buffers outstanding, we mark the pool for deletion and then defer destroying it until after the last buffer has been reclaimed.
2004-03-04 00:17:14 +00:00
ndis_packet *head;
head = pool;
/* Mark this pool as 'going away.' */
head->np_private.npp_totlen = 1;
/* If there are no buffers loaned out, destroy the pool. */
if (head->np_private.npp_count == 0)
free(pool, M_DEVBUF);
else
printf("NDIS: buggy driver deleting active packet pool!\n");
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
__stdcall static void
ndis_alloc_packet(status, packet, pool)
ndis_status *status;
ndis_packet **packet;
ndis_handle pool;
{
ndis_packet *head, *pkt;
head = (ndis_packet *)pool;
if (head->np_private.npp_flags != 0x1) {
*status = NDIS_STATUS_FAILURE;
return;
}
Add sanity checks to the ndis_packet and ndis_buffer pool handling routines to guard against problems caused by (possibly) buggy drivers. The RealTek 8180 wireless driver calls NdisFreeBuffer() to release some of its buffers _after_ it's already called NdisFreeBufferPool() to destroy the pool to which the buffers belong. In our implementation, this error causes NdisFreeBuffer() to touch stale heap memory. If you are running a release kernel, and hence have INVARIANTS et al turned off, it turns out nothing happens. But if you're using a development kernel config with INVARIANTS on, the malloc()/free() sanity checks will scribble over the pool memory with 0xdeadc0de once it's released so that any attempts to touch it will cause a trap, and indeed this is what happens. It happens that I run 5.2-RELEASE on my laptop, so when I tested the rtl8180.sys driver, it worked fine for me, but people trying to run it with development systems checked out or cvsupped from -current would get a page fault on driver load. I can't find any reason why the NDISulator would cause the RealTek driver to do the NdisFreeBufferPool() prematurely, and the same driver obviously works with Windows -- or at least, it doesn't cause a crash: the Microsoft documentation for NdisFreeBufferPool() says that failing to return all buffers to the pool before calling NdisFreeBufferPool() causes a memory leak. I've written to my contacts at RealTek asking them to check if this is indeed a bug in their driver. In the meantime, these new sanity checks will catch this problem and issue a warning rather than causing a trap. The trick is to keep a count of outstanding buffers for each buffer pool, and if the driver tries to call NdisFreeBufferPool() while there are still buffers outstanding, we mark the pool for deletion and then defer destroying it until after the last buffer has been reclaimed.
2004-03-04 00:17:14 +00:00
/*
* If this pool is marked as 'going away' don't allocate any
* more packets out of it.
*/
if (head->np_private.npp_totlen) {
*status = NDIS_STATUS_FAILURE;
return;
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
pkt = (ndis_packet *)head->np_private.npp_head;
if (pkt == NULL) {
*status = NDIS_STATUS_RESOURCES;
return;
}
head->np_private.npp_head = pkt->np_private.npp_head;
pkt->np_private.npp_head = pkt->np_private.npp_tail = NULL;
/* Save pointer to the pool. */
pkt->np_private.npp_pool = head;
/* Set the oob offset pointer. Lots of things expect this. */
pkt->np_private.npp_packetooboffset =
offsetof(ndis_packet, np_oob);
/*
* We must initialize the packet flags correctly in order
* for the NDIS_SET_PACKET_MEDIA_SPECIFIC_INFO() and
* NDIS_GET_PACKET_MEDIA_SPECIFIC_INFO() to work correctly.
*/
pkt->np_private.npp_ndispktflags = NDIS_PACKET_ALLOCATED_BY_NDIS;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
*packet = pkt;
head->np_private.npp_count++;
*status = NDIS_STATUS_SUCCESS;
return;
}
__stdcall static void
ndis_release_packet(packet)
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
ndis_packet *packet;
{
ndis_packet *head;
if (packet == NULL || packet->np_private.npp_pool == NULL)
return;
head = packet->np_private.npp_pool;
if (head->np_private.npp_flags != 0x1)
return;
packet->np_private.npp_head = head->np_private.npp_head;
head->np_private.npp_head = (ndis_buffer *)packet;
head->np_private.npp_count--;
Add sanity checks to the ndis_packet and ndis_buffer pool handling routines to guard against problems caused by (possibly) buggy drivers. The RealTek 8180 wireless driver calls NdisFreeBuffer() to release some of its buffers _after_ it's already called NdisFreeBufferPool() to destroy the pool to which the buffers belong. In our implementation, this error causes NdisFreeBuffer() to touch stale heap memory. If you are running a release kernel, and hence have INVARIANTS et al turned off, it turns out nothing happens. But if you're using a development kernel config with INVARIANTS on, the malloc()/free() sanity checks will scribble over the pool memory with 0xdeadc0de once it's released so that any attempts to touch it will cause a trap, and indeed this is what happens. It happens that I run 5.2-RELEASE on my laptop, so when I tested the rtl8180.sys driver, it worked fine for me, but people trying to run it with development systems checked out or cvsupped from -current would get a page fault on driver load. I can't find any reason why the NDISulator would cause the RealTek driver to do the NdisFreeBufferPool() prematurely, and the same driver obviously works with Windows -- or at least, it doesn't cause a crash: the Microsoft documentation for NdisFreeBufferPool() says that failing to return all buffers to the pool before calling NdisFreeBufferPool() causes a memory leak. I've written to my contacts at RealTek asking them to check if this is indeed a bug in their driver. In the meantime, these new sanity checks will catch this problem and issue a warning rather than causing a trap. The trick is to keep a count of outstanding buffers for each buffer pool, and if the driver tries to call NdisFreeBufferPool() while there are still buffers outstanding, we mark the pool for deletion and then defer destroying it until after the last buffer has been reclaimed.
2004-03-04 00:17:14 +00:00
/*
* If the pool has been marked for deletion and there are
* no more packets outstanding, nuke the pool.
*/
if (head->np_private.npp_totlen && head->np_private.npp_count == 0)
free(head, M_DEVBUF);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
__stdcall static void
ndis_unchain_headbuf(packet, buf)
ndis_packet *packet;
ndis_buffer **buf;
{
ndis_packet_private *priv;
if (packet == NULL || buf == NULL)
return;
priv = &packet->np_private;
priv->npp_validcounts = FALSE;
if (priv->npp_head == priv->npp_tail) {
*buf = priv->npp_head;
priv->npp_head = priv->npp_tail = NULL;
} else {
*buf = priv->npp_head;
priv->npp_head = (*buf)->nb_next;
}
return;
}
__stdcall static void
ndis_unchain_tailbuf(packet, buf)
ndis_packet *packet;
ndis_buffer **buf;
{
ndis_packet_private *priv;
ndis_buffer *tmp;
if (packet == NULL || buf == NULL)
return;
priv = &packet->np_private;
priv->npp_validcounts = FALSE;
if (priv->npp_head == priv->npp_tail) {
*buf = priv->npp_head;
priv->npp_head = priv->npp_tail = NULL;
} else {
*buf = priv->npp_tail;
tmp = priv->npp_head;
while (tmp->nb_next != priv->npp_tail)
tmp = tmp->nb_next;
priv->npp_tail = tmp;
tmp->nb_next = NULL;
}
return;
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
/*
* The NDIS "buffer" manipulation functions are somewhat misnamed.
* They don't really allocate buffers: they allocate buffer mappings.
* The idea is you reserve a chunk of DMA-able memory using
* NdisMAllocateSharedMemory() and then use NdisAllocateBuffer()
* to obtain the virtual address of the DMA-able region.
* ndis_alloc_bufpool() is analagous to bus_dma_tag_create().
*/
__stdcall static void
ndis_alloc_bufpool(status, pool, descnum)
ndis_status *status;
ndis_handle *pool;
uint32_t descnum;
{
ndis_buffer *cur;
int i;
*pool = malloc(sizeof(ndis_buffer) *
((descnum + NDIS_POOL_EXTRA) + 1),
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
M_DEVBUF, M_NOWAIT|M_ZERO);
if (pool == NULL) {
*status = NDIS_STATUS_RESOURCES;
return;
}
cur = (ndis_buffer *)*pool;
cur->nb_flags = 0x1; /* mark the head of the list */
Add sanity checks to the ndis_packet and ndis_buffer pool handling routines to guard against problems caused by (possibly) buggy drivers. The RealTek 8180 wireless driver calls NdisFreeBuffer() to release some of its buffers _after_ it's already called NdisFreeBufferPool() to destroy the pool to which the buffers belong. In our implementation, this error causes NdisFreeBuffer() to touch stale heap memory. If you are running a release kernel, and hence have INVARIANTS et al turned off, it turns out nothing happens. But if you're using a development kernel config with INVARIANTS on, the malloc()/free() sanity checks will scribble over the pool memory with 0xdeadc0de once it's released so that any attempts to touch it will cause a trap, and indeed this is what happens. It happens that I run 5.2-RELEASE on my laptop, so when I tested the rtl8180.sys driver, it worked fine for me, but people trying to run it with development systems checked out or cvsupped from -current would get a page fault on driver load. I can't find any reason why the NDISulator would cause the RealTek driver to do the NdisFreeBufferPool() prematurely, and the same driver obviously works with Windows -- or at least, it doesn't cause a crash: the Microsoft documentation for NdisFreeBufferPool() says that failing to return all buffers to the pool before calling NdisFreeBufferPool() causes a memory leak. I've written to my contacts at RealTek asking them to check if this is indeed a bug in their driver. In the meantime, these new sanity checks will catch this problem and issue a warning rather than causing a trap. The trick is to keep a count of outstanding buffers for each buffer pool, and if the driver tries to call NdisFreeBufferPool() while there are still buffers outstanding, we mark the pool for deletion and then defer destroying it until after the last buffer has been reclaimed.
2004-03-04 00:17:14 +00:00
cur->nb_bytecount = 0; /* init usage count */
cur->nb_byteoffset = 0; /* init deletetion flag */
for (i = 0; i < (descnum + NDIS_POOL_EXTRA); i++) {
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
cur->nb_next = cur + 1;
cur++;
}
*status = NDIS_STATUS_SUCCESS;
return;
}
__stdcall static void
ndis_free_bufpool(pool)
ndis_handle pool;
{
Add sanity checks to the ndis_packet and ndis_buffer pool handling routines to guard against problems caused by (possibly) buggy drivers. The RealTek 8180 wireless driver calls NdisFreeBuffer() to release some of its buffers _after_ it's already called NdisFreeBufferPool() to destroy the pool to which the buffers belong. In our implementation, this error causes NdisFreeBuffer() to touch stale heap memory. If you are running a release kernel, and hence have INVARIANTS et al turned off, it turns out nothing happens. But if you're using a development kernel config with INVARIANTS on, the malloc()/free() sanity checks will scribble over the pool memory with 0xdeadc0de once it's released so that any attempts to touch it will cause a trap, and indeed this is what happens. It happens that I run 5.2-RELEASE on my laptop, so when I tested the rtl8180.sys driver, it worked fine for me, but people trying to run it with development systems checked out or cvsupped from -current would get a page fault on driver load. I can't find any reason why the NDISulator would cause the RealTek driver to do the NdisFreeBufferPool() prematurely, and the same driver obviously works with Windows -- or at least, it doesn't cause a crash: the Microsoft documentation for NdisFreeBufferPool() says that failing to return all buffers to the pool before calling NdisFreeBufferPool() causes a memory leak. I've written to my contacts at RealTek asking them to check if this is indeed a bug in their driver. In the meantime, these new sanity checks will catch this problem and issue a warning rather than causing a trap. The trick is to keep a count of outstanding buffers for each buffer pool, and if the driver tries to call NdisFreeBufferPool() while there are still buffers outstanding, we mark the pool for deletion and then defer destroying it until after the last buffer has been reclaimed.
2004-03-04 00:17:14 +00:00
ndis_buffer *head;
head = pool;
/* Mark this pool as 'going away.' */
head->nb_byteoffset = 1;
/* If there are no buffers loaned out, destroy the pool. */
if (head->nb_bytecount == 0)
free(pool, M_DEVBUF);
else
printf("NDIS: buggy driver deleting active buffer pool!\n");
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
/*
* This maps to a bus_dmamap_create() and bus_dmamap_load().
*/
__stdcall static void
ndis_alloc_buf(status, buffer, pool, vaddr, len)
ndis_status *status;
ndis_buffer **buffer;
ndis_handle pool;
void *vaddr;
uint32_t len;
{
ndis_buffer *head, *buf;
head = (ndis_buffer *)pool;
if (head->nb_flags != 0x1) {
*status = NDIS_STATUS_FAILURE;
return;
}
Add sanity checks to the ndis_packet and ndis_buffer pool handling routines to guard against problems caused by (possibly) buggy drivers. The RealTek 8180 wireless driver calls NdisFreeBuffer() to release some of its buffers _after_ it's already called NdisFreeBufferPool() to destroy the pool to which the buffers belong. In our implementation, this error causes NdisFreeBuffer() to touch stale heap memory. If you are running a release kernel, and hence have INVARIANTS et al turned off, it turns out nothing happens. But if you're using a development kernel config with INVARIANTS on, the malloc()/free() sanity checks will scribble over the pool memory with 0xdeadc0de once it's released so that any attempts to touch it will cause a trap, and indeed this is what happens. It happens that I run 5.2-RELEASE on my laptop, so when I tested the rtl8180.sys driver, it worked fine for me, but people trying to run it with development systems checked out or cvsupped from -current would get a page fault on driver load. I can't find any reason why the NDISulator would cause the RealTek driver to do the NdisFreeBufferPool() prematurely, and the same driver obviously works with Windows -- or at least, it doesn't cause a crash: the Microsoft documentation for NdisFreeBufferPool() says that failing to return all buffers to the pool before calling NdisFreeBufferPool() causes a memory leak. I've written to my contacts at RealTek asking them to check if this is indeed a bug in their driver. In the meantime, these new sanity checks will catch this problem and issue a warning rather than causing a trap. The trick is to keep a count of outstanding buffers for each buffer pool, and if the driver tries to call NdisFreeBufferPool() while there are still buffers outstanding, we mark the pool for deletion and then defer destroying it until after the last buffer has been reclaimed.
2004-03-04 00:17:14 +00:00
/*
* If this pool is marked as 'going away' don't allocate any
* more buffers out of it.
*/
if (head->nb_byteoffset) {
*status = NDIS_STATUS_FAILURE;
return;
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
buf = head->nb_next;
if (buf == NULL) {
*status = NDIS_STATUS_RESOURCES;
return;
}
head->nb_next = buf->nb_next;
/* Save pointer to the pool. */
buf->nb_process = head;
MDL_INIT(buf, vaddr, len);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
*buffer = buf;
Add sanity checks to the ndis_packet and ndis_buffer pool handling routines to guard against problems caused by (possibly) buggy drivers. The RealTek 8180 wireless driver calls NdisFreeBuffer() to release some of its buffers _after_ it's already called NdisFreeBufferPool() to destroy the pool to which the buffers belong. In our implementation, this error causes NdisFreeBuffer() to touch stale heap memory. If you are running a release kernel, and hence have INVARIANTS et al turned off, it turns out nothing happens. But if you're using a development kernel config with INVARIANTS on, the malloc()/free() sanity checks will scribble over the pool memory with 0xdeadc0de once it's released so that any attempts to touch it will cause a trap, and indeed this is what happens. It happens that I run 5.2-RELEASE on my laptop, so when I tested the rtl8180.sys driver, it worked fine for me, but people trying to run it with development systems checked out or cvsupped from -current would get a page fault on driver load. I can't find any reason why the NDISulator would cause the RealTek driver to do the NdisFreeBufferPool() prematurely, and the same driver obviously works with Windows -- or at least, it doesn't cause a crash: the Microsoft documentation for NdisFreeBufferPool() says that failing to return all buffers to the pool before calling NdisFreeBufferPool() causes a memory leak. I've written to my contacts at RealTek asking them to check if this is indeed a bug in their driver. In the meantime, these new sanity checks will catch this problem and issue a warning rather than causing a trap. The trick is to keep a count of outstanding buffers for each buffer pool, and if the driver tries to call NdisFreeBufferPool() while there are still buffers outstanding, we mark the pool for deletion and then defer destroying it until after the last buffer has been reclaimed.
2004-03-04 00:17:14 +00:00
/* Increment count of busy buffers. */
head->nb_bytecount++;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
*status = NDIS_STATUS_SUCCESS;
return;
}
__stdcall static void
ndis_release_buf(buf)
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
ndis_buffer *buf;
{
ndis_buffer *head;
if (buf == NULL || buf->nb_process == NULL)
return;
head = buf->nb_process;
if (head->nb_flags != 0x1)
return;
buf->nb_next = head->nb_next;
head->nb_next = buf;
Add sanity checks to the ndis_packet and ndis_buffer pool handling routines to guard against problems caused by (possibly) buggy drivers. The RealTek 8180 wireless driver calls NdisFreeBuffer() to release some of its buffers _after_ it's already called NdisFreeBufferPool() to destroy the pool to which the buffers belong. In our implementation, this error causes NdisFreeBuffer() to touch stale heap memory. If you are running a release kernel, and hence have INVARIANTS et al turned off, it turns out nothing happens. But if you're using a development kernel config with INVARIANTS on, the malloc()/free() sanity checks will scribble over the pool memory with 0xdeadc0de once it's released so that any attempts to touch it will cause a trap, and indeed this is what happens. It happens that I run 5.2-RELEASE on my laptop, so when I tested the rtl8180.sys driver, it worked fine for me, but people trying to run it with development systems checked out or cvsupped from -current would get a page fault on driver load. I can't find any reason why the NDISulator would cause the RealTek driver to do the NdisFreeBufferPool() prematurely, and the same driver obviously works with Windows -- or at least, it doesn't cause a crash: the Microsoft documentation for NdisFreeBufferPool() says that failing to return all buffers to the pool before calling NdisFreeBufferPool() causes a memory leak. I've written to my contacts at RealTek asking them to check if this is indeed a bug in their driver. In the meantime, these new sanity checks will catch this problem and issue a warning rather than causing a trap. The trick is to keep a count of outstanding buffers for each buffer pool, and if the driver tries to call NdisFreeBufferPool() while there are still buffers outstanding, we mark the pool for deletion and then defer destroying it until after the last buffer has been reclaimed.
2004-03-04 00:17:14 +00:00
/* Decrement count of busy buffers. */
head->nb_bytecount--;
/*
* If the pool has been marked for deletion and there are
* no more buffers outstanding, nuke the pool.
*/
if (head->nb_byteoffset && head->nb_bytecount == 0)
free(head, M_DEVBUF);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
/* Aw c'mon. */
__stdcall static uint32_t
ndis_buflen(buf)
ndis_buffer *buf;
{
return(buf->nb_bytecount);
}
/*
* Get the virtual address and length of a buffer.
* Note: the vaddr argument is optional.
*/
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void
ndis_query_buf(buf, vaddr, len)
ndis_buffer *buf;
void **vaddr;
uint32_t *len;
{
if (vaddr != NULL)
*vaddr = MDL_VA(buf);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
*len = buf->nb_bytecount;
return;
}
/* Same as above -- we don't care about the priority. */
__stdcall static void
ndis_query_buf_safe(buf, vaddr, len, prio)
ndis_buffer *buf;
void **vaddr;
uint32_t *len;
uint32_t prio;
{
if (vaddr != NULL)
*vaddr = MDL_VA(buf);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
*len = buf->nb_bytecount;
return;
}
/* Damnit Microsoft!! How many ways can you do the same thing?! */
__stdcall static void *
ndis_buf_vaddr(buf)
ndis_buffer *buf;
{
return(MDL_VA(buf));
}
__stdcall static void *
ndis_buf_vaddr_safe(buf, prio)
ndis_buffer *buf;
uint32_t prio;
{
return(MDL_VA(buf));
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void
ndis_adjust_buflen(buf, len)
ndis_buffer *buf;
int len;
{
buf->nb_bytecount = len;
return;
}
__stdcall static uint32_t
ndis_interlock_inc(addend)
uint32_t *addend;
{
atomic_add_long((u_long *)addend, 1);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return(*addend);
}
__stdcall static uint32_t
ndis_interlock_dec(addend)
uint32_t *addend;
{
atomic_subtract_long((u_long *)addend, 1);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return(*addend);
}
__stdcall static void
ndis_init_event(event)
ndis_event *event;
{
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
/*
- In subr_ndis.c:ndis_init_event(), initialize events as notification objects rather than synchronization objects. When a sync object is signaled, only the first thread waiting on it is woken up, and then it's automatically reset to the not-signaled state. When a notification object is signaled, all threads waiting on it will be woken up, and it remains in the signaled state until someone resets it manually. We want the latter behavior for NDIS events. - In kern_ndis.c:ndis_convert_res(), we have to create a temporary copy of the list returned by BUS_GET_RESOURCE_LIST(). When the PCI bus code probes resources for a given device, it enters them into a singly linked list, head first. The result is that traversing this list gives you the resources in reverse order. This means when we create the Windows resource list, it will be in reverse order too. Unfortunately, this can hose drivers for devices with multiple I/O ranges of the same type, like, say, two memory mapped I/O regions (one for registers, one to map the NVRAM/bootrom/whatever). Some drivers test the range size to figure out which region is which, but others just assume that the resources will be listed in ascending order from lowest numbered BAR to highest. Reversing the order means such drivers will choose the wrong resource as their I/O register range. Since we can't traverse the resource SLIST backwards, we have to make a temporary copy of the list in the right order and then build the Windows resource list from that. I suppose we could just fix the PCI bus code to use a TAILQ instead, but then I'd have to track down all the consumers of the BUS_GET_RESOURCE_LIST() and fix them too.
2004-03-25 18:31:52 +00:00
* NDIS events are always notification
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
* events, and should be initialized to the
* not signaled state.
*/
- In subr_ndis.c:ndis_init_event(), initialize events as notification objects rather than synchronization objects. When a sync object is signaled, only the first thread waiting on it is woken up, and then it's automatically reset to the not-signaled state. When a notification object is signaled, all threads waiting on it will be woken up, and it remains in the signaled state until someone resets it manually. We want the latter behavior for NDIS events. - In kern_ndis.c:ndis_convert_res(), we have to create a temporary copy of the list returned by BUS_GET_RESOURCE_LIST(). When the PCI bus code probes resources for a given device, it enters them into a singly linked list, head first. The result is that traversing this list gives you the resources in reverse order. This means when we create the Windows resource list, it will be in reverse order too. Unfortunately, this can hose drivers for devices with multiple I/O ranges of the same type, like, say, two memory mapped I/O regions (one for registers, one to map the NVRAM/bootrom/whatever). Some drivers test the range size to figure out which region is which, but others just assume that the resources will be listed in ascending order from lowest numbered BAR to highest. Reversing the order means such drivers will choose the wrong resource as their I/O register range. Since we can't traverse the resource SLIST backwards, we have to make a temporary copy of the list in the right order and then build the Windows resource list from that. I suppose we could just fix the PCI bus code to use a TAILQ instead, but then I'd have to track down all the consumers of the BUS_GET_RESOURCE_LIST() and fix them too.
2004-03-25 18:31:52 +00:00
ntoskrnl_init_event(&event->ne_event, EVENT_TYPE_NOTIFY, FALSE);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
__stdcall static void
ndis_set_event(event)
ndis_event *event;
{
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
ntoskrnl_set_event(&event->ne_event, 0, 0);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
__stdcall static void
ndis_reset_event(event)
ndis_event *event;
{
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
ntoskrnl_reset_event(&event->ne_event);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
__stdcall static uint8_t
ndis_wait_event(event, msecs)
ndis_event *event;
uint32_t msecs;
{
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
int64_t duetime;
uint32_t rval;
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
duetime = ((int64_t)msecs * -10000);
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
rval = ntoskrnl_waitforobj((nt_dispatch_header *)event,
0, 0, TRUE, msecs ? &duetime : NULL);
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
if (rval == STATUS_TIMEOUT)
return(FALSE);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
- Rewrite the timer and event API routines in subr_ndis.c so that they are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
return(TRUE);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
}
__stdcall static ndis_status
ndis_unicode2ansi(dstr, sstr)
ndis_ansi_string *dstr;
ndis_unicode_string *sstr;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
{
if (dstr == NULL || sstr == NULL)
return(NDIS_STATUS_FAILURE);
if (ndis_unicode_to_ascii(sstr->nus_buf,
sstr->nus_len, &dstr->nas_buf))
return(NDIS_STATUS_FAILURE);
dstr->nas_len = dstr->nas_maxlen = strlen(dstr->nas_buf);
return (NDIS_STATUS_SUCCESS);
}
__stdcall static ndis_status
ndis_ansi2unicode(dstr, sstr)
ndis_unicode_string *dstr;
ndis_ansi_string *sstr;
{
char *str;
if (dstr == NULL || sstr == NULL)
return(NDIS_STATUS_FAILURE);
str = malloc(sstr->nas_len + 1, M_DEVBUF, M_NOWAIT);
if (str == NULL)
return(NDIS_STATUS_FAILURE);
strncpy(str, sstr->nas_buf, sstr->nas_len);
*(str + sstr->nas_len) = '\0';
if (ndis_ascii_to_unicode(str, &dstr->nus_buf)) {
free(str, M_DEVBUF);
return(NDIS_STATUS_FAILURE);
}
dstr->nus_len = dstr->nus_maxlen = sstr->nas_len * 2;
free(str, M_DEVBUF);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return (NDIS_STATUS_SUCCESS);
}
__stdcall static ndis_status
ndis_assign_pcirsrc(adapter, slot, list)
ndis_handle adapter;
uint32_t slot;
ndis_resource_list **list;
{
ndis_miniport_block *block;
if (adapter == NULL || list == NULL)
return (NDIS_STATUS_FAILURE);
block = (ndis_miniport_block *)adapter;
*list = block->nmb_rlist;
return (NDIS_STATUS_SUCCESS);
}
__stdcall static ndis_status
ndis_register_intr(intr, adapter, ivec, ilevel, reqisr, shared, imode)
ndis_miniport_interrupt *intr;
ndis_handle adapter;
uint32_t ivec;
uint32_t ilevel;
uint8_t reqisr;
uint8_t shared;
ndis_interrupt_mode imode;
{
ndis_miniport_block *block;
block = adapter;
intr->ni_block = adapter;
intr->ni_isrreq = reqisr;
intr->ni_shared = shared;
block->nmb_interrupt = intr;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
ndis_deregister_intr(intr)
ndis_miniport_interrupt *intr;
{
return;
}
__stdcall static void
ndis_register_shutdown(adapter, shutdownctx, shutdownfunc)
ndis_handle adapter;
void *shutdownctx;
ndis_shutdown_handler shutdownfunc;
{
ndis_miniport_block *block;
ndis_miniport_characteristics *chars;
struct ndis_softc *sc;
if (adapter == NULL)
return;
block = (ndis_miniport_block *)adapter;
sc = (struct ndis_softc *)block->nmb_ifp;
chars = &sc->ndis_chars;
chars->nmc_shutdown_handler = shutdownfunc;
chars->nmc_rsvd0 = shutdownctx;
return;
}
__stdcall static void
ndis_deregister_shutdown(adapter)
ndis_handle adapter;
{
ndis_miniport_block *block;
ndis_miniport_characteristics *chars;
struct ndis_softc *sc;
if (adapter == NULL)
return;
block = (ndis_miniport_block *)adapter;
sc = (struct ndis_softc *)block->nmb_ifp;
chars = &sc->ndis_chars;
chars->nmc_shutdown_handler = NULL;
chars->nmc_rsvd0 = NULL;
return;
}
__stdcall static uint32_t
ndis_numpages(buf)
ndis_buffer *buf;
{
if (buf == NULL)
return(0);
if (buf->nb_bytecount == 0)
return(1);
return(SPAN_PAGES(MDL_VA(buf), buf->nb_bytecount));
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
}
__stdcall static void
ndis_buf_physpages(buf, pages)
ndis_buffer *buf;
uint32_t *pages;
{
if (buf == NULL)
return;
*pages = ndis_numpages(buf);
return;
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void
ndis_query_bufoffset(buf, off, len)
ndis_buffer *buf;
uint32_t *off;
uint32_t *len;
{
if (buf == NULL)
return;
*off = buf->nb_byteoffset;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
*len = buf->nb_bytecount;
return;
}
__stdcall static void
ndis_sleep(usecs)
uint32_t usecs;
{
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = usecs;
ndis_thsuspend(curthread->td_proc, tvtohz(&tv));
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return;
}
__stdcall static uint32_t
ndis_read_pccard_amem(handle, offset, buf, len)
ndis_handle handle;
uint32_t offset;
void *buf;
uint32_t len;
{
struct ndis_softc *sc;
ndis_miniport_block *block;
bus_space_handle_t bh;
bus_space_tag_t bt;
char *dest;
int i;
if (handle == NULL)
return(0);
block = (ndis_miniport_block *)handle;
sc = (struct ndis_softc *)block->nmb_ifp;
dest = buf;
bh = rman_get_bushandle(sc->ndis_res_am);
bt = rman_get_bustag(sc->ndis_res_am);
for (i = 0; i < len; i++)
dest[i] = bus_space_read_1(bt, bh, (offset * 2) + (i * 2));
return(i);
}
__stdcall static uint32_t
ndis_write_pccard_amem(handle, offset, buf, len)
ndis_handle handle;
uint32_t offset;
void *buf;
uint32_t len;
{
struct ndis_softc *sc;
ndis_miniport_block *block;
bus_space_handle_t bh;
bus_space_tag_t bt;
char *src;
int i;
if (handle == NULL)
return(0);
block = (ndis_miniport_block *)handle;
sc = (struct ndis_softc *)block->nmb_ifp;
src = buf;
bh = rman_get_bushandle(sc->ndis_res_am);
bt = rman_get_bustag(sc->ndis_res_am);
for (i = 0; i < len; i++)
bus_space_write_1(bt, bh, (offset * 2) + (i * 2), src[i]);
return(i);
}
__stdcall static list_entry *
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
ndis_insert_head(head, entry, lock)
list_entry *head;
list_entry *entry;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
ndis_spin_lock *lock;
{
list_entry *flink;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
lock->nsl_kirql = FASTCALL2(hal_lock,
&lock->nsl_spinlock, DISPATCH_LEVEL);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
flink = head->nle_flink;
entry->nle_flink = flink;
entry->nle_blink = head;
flink->nle_blink = entry;
head->nle_flink = entry;
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
FASTCALL2(hal_unlock, &lock->nsl_spinlock, lock->nsl_kirql);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return(flink);
}
__stdcall static list_entry *
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
ndis_remove_head(head, lock)
list_entry *head;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
ndis_spin_lock *lock;
{
list_entry *flink;
list_entry *entry;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
lock->nsl_kirql = FASTCALL2(hal_lock,
&lock->nsl_spinlock, DISPATCH_LEVEL);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
entry = head->nle_flink;
flink = entry->nle_flink;
head->nle_flink = flink;
flink->nle_blink = head;
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
FASTCALL2(hal_unlock, &lock->nsl_spinlock, lock->nsl_kirql);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return(entry);
}
__stdcall static list_entry *
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
ndis_insert_tail(head, entry, lock)
list_entry *head;
list_entry *entry;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
ndis_spin_lock *lock;
{
list_entry *blink;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
lock->nsl_kirql = FASTCALL2(hal_lock,
&lock->nsl_spinlock, DISPATCH_LEVEL);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
blink = head->nle_blink;
entry->nle_flink = head;
entry->nle_blink = blink;
blink->nle_flink = entry;
head->nle_blink = entry;
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
FASTCALL2(hal_unlock, &lock->nsl_spinlock, lock->nsl_kirql);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
return(blink);
}
__stdcall static uint8_t
ndis_sync_with_intr(intr, syncfunc, syncctx)
ndis_miniport_interrupt *intr;
void *syncfunc;
void *syncctx;
{
struct ndis_softc *sc;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall uint8_t (*sync)(void *);
uint8_t rval;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
if (syncfunc == NULL || syncctx == NULL)
return(0);
sc = (struct ndis_softc *)intr->ni_block->nmb_ifp;
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
sync = syncfunc;
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
mtx_lock(&sc->ndis_intrmtx);
rval = sync(syncctx);
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
mtx_unlock(&sc->ndis_intrmtx);
return(rval);
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
}
Implement some more NDIS and ntoskrnl API calls: subr_ndis.c: NdisGetCurrentSystemTime() which, according to the Microsoft documentation returns "the number of 100 nanosecond intervals since January 1, 1601." I have no idea what's so special about that epoch or why they chose 100 nanosecond ticks. I don't know the proper offset to convert nanotime() from the UNIX epoch to January 1, 1601, so for now I'm just doing the unit convertion to 100s of nanoseconds. subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(), ExInterlockedPushEntrySList(). The latter two are different from InterlockedPopEntrySList() and InterlockedPushEntrySList() in that they accept a spinlock to hold while executing, whereas the non-Ex routines use a lock internal to ntoskrnl. I also modified ExInitializePagedLookasideList() and ExInitializeNPagedLookasideList() to initialize mutex locks within the lookaside structures. It seems that in NDIS 5.0, the lookaside allocate/free routines ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList(), which require the use of the per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside spinlock is deprecated. We need to support both cases. Note that I appear to be doing something wrong with ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList(): they don't appear to obtain proper pointers to their arguments, so I'm probably doing something wrong in terms of their calling convention (they're declared to be FASTCALL in Widnows, and I'm not sure what that means for gcc). It happens that in my stub lookaside implementation, they don't need to do any work anyway, so for now I've hacked them to always return NULL, which avoids corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
/*
* Return the number of 100 nanosecond intervals since
* January 1, 1601. (?!?!)
*/
__stdcall static void
ndis_time(tval)
uint64_t *tval;
{
struct timespec ts;
Implement some more NDIS and ntoskrnl API calls: subr_ndis.c: NdisGetCurrentSystemTime() which, according to the Microsoft documentation returns "the number of 100 nanosecond intervals since January 1, 1601." I have no idea what's so special about that epoch or why they chose 100 nanosecond ticks. I don't know the proper offset to convert nanotime() from the UNIX epoch to January 1, 1601, so for now I'm just doing the unit convertion to 100s of nanoseconds. subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(), ExInterlockedPushEntrySList(). The latter two are different from InterlockedPopEntrySList() and InterlockedPushEntrySList() in that they accept a spinlock to hold while executing, whereas the non-Ex routines use a lock internal to ntoskrnl. I also modified ExInitializePagedLookasideList() and ExInitializeNPagedLookasideList() to initialize mutex locks within the lookaside structures. It seems that in NDIS 5.0, the lookaside allocate/free routines ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList(), which require the use of the per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside spinlock is deprecated. We need to support both cases. Note that I appear to be doing something wrong with ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList(): they don't appear to obtain proper pointers to their arguments, so I'm probably doing something wrong in terms of their calling convention (they're declared to be FASTCALL in Widnows, and I'm not sure what that means for gcc). It happens that in my stub lookaside implementation, they don't need to do any work anyway, so for now I've hacked them to always return NULL, which avoids corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
nanotime(&ts);
*tval = (uint64_t)ts.tv_nsec / 100 + (uint64_t)ts.tv_sec * 10000000 +
11644473600;
return;
}
/*
* Return the number of milliseconds since the system booted.
*/
__stdcall static void
ndis_uptime(tval)
uint32_t *tval;
{
struct timespec ts;
nanouptime(&ts);
*tval = ts.tv_nsec / 1000000 + ts.tv_sec * 1000;
return;
Implement some more NDIS and ntoskrnl API calls: subr_ndis.c: NdisGetCurrentSystemTime() which, according to the Microsoft documentation returns "the number of 100 nanosecond intervals since January 1, 1601." I have no idea what's so special about that epoch or why they chose 100 nanosecond ticks. I don't know the proper offset to convert nanotime() from the UNIX epoch to January 1, 1601, so for now I'm just doing the unit convertion to 100s of nanoseconds. subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(), ExInterlockedPushEntrySList(). The latter two are different from InterlockedPopEntrySList() and InterlockedPushEntrySList() in that they accept a spinlock to hold while executing, whereas the non-Ex routines use a lock internal to ntoskrnl. I also modified ExInitializePagedLookasideList() and ExInitializeNPagedLookasideList() to initialize mutex locks within the lookaside structures. It seems that in NDIS 5.0, the lookaside allocate/free routines ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList(), which require the use of the per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside spinlock is deprecated. We need to support both cases. Note that I appear to be doing something wrong with ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList(): they don't appear to obtain proper pointers to their arguments, so I'm probably doing something wrong in terms of their calling convention (they're declared to be FASTCALL in Widnows, and I'm not sure what that means for gcc). It happens that in my stub lookaside implementation, they don't need to do any work anyway, so for now I've hacked them to always return NULL, which avoids corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
}
subr_ndis.c: - fix ndis_time() so that it returns a time based on the proper epoch (wacky though it may be) - implement NdisInitializeString() and NdisFreeString(), and add stub for NdisMRemoveMiniport() ntoskrnl_var.h: - add missing member to the general_lookaside struct (gl_listentry) subr_ntoskrnl.c: - Fix arguments to the interlocked push/pop routines: 'head' is an slist_header *, not an slist_entry * - Kludge up _fastcall support for the push/pop routines. The _fastcall convention is similar to _stdcall, except the first two available DWORD-sized arguments are passed in %ecx and %edx, respectively. One kludge for this __attribute__ ((regparm(3))), however this isn't entirely right, as it assumes %eax, %ecx and %edx will be used (regparm(2) assumes %eax and %edx). Another kludge is to declare the two fastcall-ed args as local register variables and explicitly assign them to %ecx and %edx, but experimentation showed that gcc would not guard %ecx and %edx against being clobbered. Thus, I came up with a 3rd kludge, which is to use some inline assembly of the form: void *arg1; void *arg2; __asm__("movl %%ecx, %%ecx" : "=c" (arg1)); __asm__("movl %%edx, %%edx" : "=d" (arg2)); This lets gcc know that we're going to reference %ecx and %edx and that it should make an effort not to let it get trampled. This wastes an instruction (movl %reg, %reg is a no-op) but insures proper behavior. It's possible there's a better way to do this though: this is the first time I've used inline assembler in this fashion. The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside lists work for the two drivers I have that use them, one of which is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
__stdcall static void
ndis_init_string(dst, src)
ndis_unicode_string *dst;
subr_ndis.c: - fix ndis_time() so that it returns a time based on the proper epoch (wacky though it may be) - implement NdisInitializeString() and NdisFreeString(), and add stub for NdisMRemoveMiniport() ntoskrnl_var.h: - add missing member to the general_lookaside struct (gl_listentry) subr_ntoskrnl.c: - Fix arguments to the interlocked push/pop routines: 'head' is an slist_header *, not an slist_entry * - Kludge up _fastcall support for the push/pop routines. The _fastcall convention is similar to _stdcall, except the first two available DWORD-sized arguments are passed in %ecx and %edx, respectively. One kludge for this __attribute__ ((regparm(3))), however this isn't entirely right, as it assumes %eax, %ecx and %edx will be used (regparm(2) assumes %eax and %edx). Another kludge is to declare the two fastcall-ed args as local register variables and explicitly assign them to %ecx and %edx, but experimentation showed that gcc would not guard %ecx and %edx against being clobbered. Thus, I came up with a 3rd kludge, which is to use some inline assembly of the form: void *arg1; void *arg2; __asm__("movl %%ecx, %%ecx" : "=c" (arg1)); __asm__("movl %%edx, %%edx" : "=d" (arg2)); This lets gcc know that we're going to reference %ecx and %edx and that it should make an effort not to let it get trampled. This wastes an instruction (movl %reg, %reg is a no-op) but insures proper behavior. It's possible there's a better way to do this though: this is the first time I've used inline assembler in this fashion. The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside lists work for the two drivers I have that use them, one of which is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
char *src;
{
ndis_unicode_string *u;
u = dst;
u->nus_buf = NULL;
if (ndis_ascii_to_unicode(src, &u->nus_buf))
subr_ndis.c: - fix ndis_time() so that it returns a time based on the proper epoch (wacky though it may be) - implement NdisInitializeString() and NdisFreeString(), and add stub for NdisMRemoveMiniport() ntoskrnl_var.h: - add missing member to the general_lookaside struct (gl_listentry) subr_ntoskrnl.c: - Fix arguments to the interlocked push/pop routines: 'head' is an slist_header *, not an slist_entry * - Kludge up _fastcall support for the push/pop routines. The _fastcall convention is similar to _stdcall, except the first two available DWORD-sized arguments are passed in %ecx and %edx, respectively. One kludge for this __attribute__ ((regparm(3))), however this isn't entirely right, as it assumes %eax, %ecx and %edx will be used (regparm(2) assumes %eax and %edx). Another kludge is to declare the two fastcall-ed args as local register variables and explicitly assign them to %ecx and %edx, but experimentation showed that gcc would not guard %ecx and %edx against being clobbered. Thus, I came up with a 3rd kludge, which is to use some inline assembly of the form: void *arg1; void *arg2; __asm__("movl %%ecx, %%ecx" : "=c" (arg1)); __asm__("movl %%edx, %%edx" : "=d" (arg2)); This lets gcc know that we're going to reference %ecx and %edx and that it should make an effort not to let it get trampled. This wastes an instruction (movl %reg, %reg is a no-op) but insures proper behavior. It's possible there's a better way to do this though: this is the first time I've used inline assembler in this fashion. The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside lists work for the two drivers I have that use them, one of which is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
return;
u->nus_len = u->nus_maxlen = strlen(src) * 2;
return;
}
__stdcall static void
ndis_free_string(str)
ndis_unicode_string *str;
{
if (str == NULL)
return;
if (str->nus_buf != NULL)
free(str->nus_buf, M_DEVBUF);
free(str, M_DEVBUF);
return;
}
__stdcall static ndis_status
ndis_remove_miniport(adapter)
ndis_handle *adapter;
{
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
ndis_init_ansi_string(dst, src)
ndis_ansi_string *dst;
char *src;
{
ndis_ansi_string *a;
a = dst;
if (a == NULL)
return;
if (src == NULL) {
a->nas_len = a->nas_maxlen = 0;
a->nas_buf = NULL;
} else {
a->nas_buf = src;
a->nas_len = a->nas_maxlen = strlen(src);
}
return;
}
2003-12-28 21:36:03 +00:00
__stdcall static void
ndis_init_unicode_string(dst, src)
ndis_unicode_string *dst;
uint16_t *src;
{
ndis_unicode_string *u;
int i;
u = dst;
if (u == NULL)
return;
if (src == NULL) {
u->nus_len = u->nus_maxlen = 0;
u->nus_buf = NULL;
} else {
i = 0;
while(src[i] != 0)
i++;
u->nus_buf = src;
u->nus_len = u->nus_maxlen = i * 2;
}
return;
}
__stdcall static void ndis_get_devprop(adapter, phydevobj,
funcdevobj, nextdevobj, resources, transresources)
ndis_handle adapter;
device_object **phydevobj;
device_object **funcdevobj;
device_object **nextdevobj;
cm_resource_list *resources;
cm_resource_list *transresources;
{
ndis_miniport_block *block;
block = (ndis_miniport_block *)adapter;
if (phydevobj != NULL)
*phydevobj = &block->nmb_devobj;
if (funcdevobj != NULL)
*funcdevobj = &block->nmb_devobj;
return;
}
__stdcall static void
ndis_firstbuf(packet, buf, firstva, firstlen, totlen)
ndis_packet *packet;
ndis_buffer **buf;
void **firstva;
uint32_t *firstlen;
uint32_t *totlen;
{
ndis_buffer *tmp;
tmp = packet->np_private.npp_head;
*buf = tmp;
if (tmp == NULL) {
*firstva = NULL;
*firstlen = *totlen = 0;
} else {
*firstva = MDL_VA(tmp);
*firstlen = *totlen = tmp->nb_bytecount;
for (tmp = tmp->nb_next; tmp != NULL; tmp = tmp->nb_next)
*totlen += tmp->nb_bytecount;
}
return;
}
__stdcall static void
ndis_firstbuf_safe(packet, buf, firstva, firstlen, totlen, prio)
ndis_packet *packet;
ndis_buffer **buf;
void **firstva;
uint32_t *firstlen;
uint32_t *totlen;
uint32_t prio;
{
ndis_firstbuf(packet, buf, firstva, firstlen, totlen);
}
/* can also return NDIS_STATUS_RESOURCES/NDIS_STATUS_ERROR_READING_FILE */
__stdcall static void
ndis_open_file(status, filehandle, filelength, filename, highestaddr)
ndis_status *status;
ndis_handle *filehandle;
uint32_t *filelength;
ndis_unicode_string *filename;
ndis_physaddr highestaddr;
{
char *afilename = NULL;
struct thread *td = curthread;
struct nameidata nd;
int flags, error;
struct vattr vat;
struct vattr *vap = &vat;
ndis_fh *fh;
char path[MAXPATHLEN];
ndis_unicode_to_ascii(filename->nus_buf,
filename->nus_len, &afilename);
sprintf(path, "%s/%s", ndis_filepath, afilename);
free(afilename, M_DEVBUF);
fh = malloc(sizeof(ndis_fh), M_TEMP, M_NOWAIT);
if (fh == NULL) {
*status = NDIS_STATUS_RESOURCES;
return;
}
mtx_lock(&Giant);
/* Some threads don't have a current working directory. */
if (td->td_proc->p_fd->fd_rdir == NULL)
td->td_proc->p_fd->fd_rdir = rootvnode;
if (td->td_proc->p_fd->fd_cdir == NULL)
td->td_proc->p_fd->fd_cdir = rootvnode;
NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, td);
flags = FREAD;
error = vn_open(&nd, &flags, 0, -1);
if (error) {
mtx_unlock(&Giant);
*status = NDIS_STATUS_FILE_NOT_FOUND;
free(fh, M_TEMP);
- The MiniportReset() function can return NDIS_STATUS_PENDING, in which case we should wait for the resetdone handler to be called before returning. - When providing resources via ndis_query_resources(), uses the computed rsclen when using bcopy() to copy out the resource data rather than the caller-supplied buffer length. - Avoid using ndis_reset_nic() in if_ndis.c unless we really need to reset the NIC because of a problem. - Allow interrupts to be fielded during ndis_attach(), at least as far as allowing ndis_isr() and ndis_intrhand() to run. - Use ndis_80211_rates_ex when probing for supported rates. Technically, this isn't supposed to work since, although Microsoft added the extended rate structure with the NDIS 5.1 update, the spec still says that the OID_802_11_SUPPORTED_RATES OID uses ndis_80211_rates. In spite of this, it appears some drivers use it anyway. - When adding in our guessed rates, check to see if they already exist so that we avoid any duplicates. - Add a printf() to ndis_open_file() that alerts the user when a driver attempts to open a file under /compat/ndis. With these changes, I can get the driver for the SMC 2802W 54g PCI card to load and run. This board uses a Prism54G chip. Note that in order for this driver to work, you must place the supplied smc2802w.arm firmware image under /compat/ndis. (The firmware is not resident on the device.) Note that this should also allow the 3Com 3CRWE154G72 card to work as well; as far as I can tell, these cards also use a Prism54G chip.
2004-04-05 08:26:52 +00:00
printf("NDIS: open file %s failed: %d\n", path, error);
return;
}
NDFREE(&nd, NDF_ONLY_PNBUF);
/* Get the file size. */
VOP_GETATTR(nd.ni_vp, vap, NOCRED, td);
VOP_UNLOCK(nd.ni_vp, 0, td);
mtx_unlock(&Giant);
fh->nf_vp = nd.ni_vp;
fh->nf_map = NULL;
*filehandle = fh;
*filelength = fh->nf_maplen = vap->va_size & 0xFFFFFFFF;
*status = NDIS_STATUS_SUCCESS;
return;
}
__stdcall static void
ndis_map_file(status, mappedbuffer, filehandle)
ndis_status *status;
void **mappedbuffer;
ndis_handle filehandle;
{
ndis_fh *fh;
struct thread *td = curthread;
int error, resid;
if (filehandle == NULL) {
*status = NDIS_STATUS_FAILURE;
return;
}
fh = (ndis_fh *)filehandle;
if (fh->nf_vp == NULL) {
*status = NDIS_STATUS_FAILURE;
return;
}
if (fh->nf_map != NULL) {
*status = NDIS_STATUS_ALREADY_MAPPED;
return;
}
fh->nf_map = malloc(fh->nf_maplen, M_DEVBUF, M_NOWAIT);
if (fh->nf_map == NULL) {
*status = NDIS_STATUS_RESOURCES;
return;
}
mtx_lock(&Giant);
error = vn_rdwr(UIO_READ, fh->nf_vp, fh->nf_map, fh->nf_maplen, 0,
UIO_SYSSPACE, 0, td->td_ucred, NOCRED, &resid, td);
mtx_unlock(&Giant);
if (error)
*status = NDIS_STATUS_FAILURE;
else {
*status = NDIS_STATUS_SUCCESS;
*mappedbuffer = fh->nf_map;
}
return;
}
__stdcall static void
ndis_unmap_file(filehandle)
ndis_handle filehandle;
{
ndis_fh *fh;
fh = (ndis_fh *)filehandle;
if (fh->nf_map == NULL)
return;
free(fh->nf_map, M_DEVBUF);
fh->nf_map = NULL;
return;
}
__stdcall static void
ndis_close_file(filehandle)
ndis_handle filehandle;
{
struct thread *td = curthread;
ndis_fh *fh;
if (filehandle == NULL)
return;
fh = (ndis_fh *)filehandle;
if (fh->nf_map != NULL) {
free(fh->nf_map, M_DEVBUF);
fh->nf_map = NULL;
}
if (fh->nf_vp == NULL)
return;
mtx_lock(&Giant);
vn_close(fh->nf_vp, FREAD, td->td_ucred, td);
mtx_unlock(&Giant);
fh->nf_vp = NULL;
free(fh, M_DEVBUF);
return;
}
__stdcall static uint8_t
ndis_cpu_cnt()
{
return(mp_ncpus);
}
typedef void (*ndis_statusdone_handler)(ndis_handle);
typedef void (*ndis_status_handler)(ndis_handle, ndis_status,
void *, uint32_t);
__stdcall static void
ndis_ind_statusdone(adapter)
ndis_handle adapter;
{
ndis_miniport_block *block;
__stdcall ndis_statusdone_handler statusdonefunc;
block = (ndis_miniport_block *)adapter;
statusdonefunc = block->nmb_statusdone_func;
statusdonefunc(adapter);
return;
}
__stdcall static void
ndis_ind_status(adapter, status, sbuf, slen)
ndis_handle adapter;
ndis_status status;
void *sbuf;
uint32_t slen;
{
ndis_miniport_block *block;
__stdcall ndis_status_handler statusfunc;
block = (ndis_miniport_block *)adapter;
statusfunc = block->nmb_status_func;
statusfunc(adapter, status, sbuf, slen);
return;
}
static void
ndis_workfunc(ctx)
void *ctx;
{
ndis_work_item *work;
__stdcall ndis_proc workfunc;
work = ctx;
workfunc = work->nwi_func;
workfunc(work, work->nwi_ctx);
return;
}
__stdcall static ndis_status
ndis_sched_workitem(work)
ndis_work_item *work;
{
ndis_sched(ndis_workfunc, work, NDIS_TASKQUEUE);
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
ndis_pkt_to_pkt(dpkt, doff, reqlen, spkt, soff, cpylen)
ndis_packet *dpkt;
uint32_t doff;
uint32_t reqlen;
ndis_packet *spkt;
uint32_t soff;
uint32_t *cpylen;
{
ndis_buffer *src, *dst;
char *sptr, *dptr;
int resid, copied, len, scnt, dcnt;
*cpylen = 0;
src = spkt->np_private.npp_head;
dst = dpkt->np_private.npp_head;
sptr = MDL_VA(src);
dptr = MDL_VA(dst);
scnt = src->nb_bytecount;
dcnt = dst->nb_bytecount;
while (soff) {
if (src->nb_bytecount > soff) {
sptr += soff;
scnt = src->nb_bytecount - soff;
break;
}
soff -= src->nb_bytecount;
src = src->nb_next;
if (src == NULL)
return;
sptr = MDL_VA(src);
}
while (doff) {
if (dst->nb_bytecount > doff) {
dptr += doff;
dcnt = dst->nb_bytecount - doff;
break;
}
doff -= dst->nb_bytecount;
dst = dst->nb_next;
if (dst == NULL)
return;
dptr = MDL_VA(dst);
}
resid = reqlen;
copied = 0;
while(1) {
if (resid < scnt)
len = resid;
else
len = scnt;
if (dcnt < len)
len = dcnt;
bcopy(sptr, dptr, len);
copied += len;
resid -= len;
if (resid == 0)
break;
dcnt -= len;
if (dcnt == 0) {
dst = dst->nb_next;
if (dst == NULL)
break;
dptr = MDL_VA(dst);
dcnt = dst->nb_bytecount;
}
scnt -= len;
if (scnt == 0) {
src = src->nb_next;
if (src == NULL)
break;
sptr = MDL_VA(src);
scnt = src->nb_bytecount;
}
}
*cpylen = copied;
return;
}
__stdcall static void
ndis_pkt_to_pkt_safe(dpkt, doff, reqlen, spkt, soff, cpylen, prio)
ndis_packet *dpkt;
uint32_t doff;
uint32_t reqlen;
ndis_packet *spkt;
uint32_t soff;
uint32_t *cpylen;
uint32_t prio;
{
ndis_pkt_to_pkt(dpkt, doff, reqlen, spkt, soff, cpylen);
return;
}
__stdcall static ndis_status
ndis_register_dev(handle, devname, symname, majorfuncs, devobj, devhandle)
ndis_handle handle;
ndis_unicode_string *devname;
ndis_unicode_string *symname;
driver_dispatch *majorfuncs[];
void **devobj;
ndis_handle *devhandle;
{
ndis_miniport_block *block;
block = (ndis_miniport_block *)handle;
*devobj = &block->nmb_devobj;
*devhandle = handle;
return(NDIS_STATUS_SUCCESS);
}
__stdcall static ndis_status
ndis_deregister_dev(handle)
ndis_handle handle;
{
return(NDIS_STATUS_SUCCESS);
}
__stdcall static ndis_status
ndis_query_name(name, handle)
ndis_unicode_string *name;
ndis_handle handle;
{
ndis_miniport_block *block;
block = (ndis_miniport_block *)handle;
ndis_ascii_to_unicode(__DECONST(char *,
device_get_nameunit(block->nmb_dev)), &name->nus_buf);
name->nus_len = strlen(device_get_nameunit(block->nmb_dev)) * 2;
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
ndis_register_unload(handle, func)
ndis_handle handle;
void *func;
{
return;
}
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
__stdcall static void
dummy()
{
printf ("NDIS dummy called...\n");
return;
}
image_patch_table ndis_functbl[] = {
{ "NdisCopyFromPacketToPacket", (FUNC)ndis_pkt_to_pkt },
{ "NdisCopyFromPacketToPacketSafe", (FUNC)ndis_pkt_to_pkt_safe },
{ "NdisScheduleWorkItem", (FUNC)ndis_sched_workitem },
{ "NdisMIndicateStatusComplete", (FUNC)ndis_ind_statusdone },
{ "NdisMIndicateStatus", (FUNC)ndis_ind_status },
{ "NdisSystemProcessorCount", (FUNC)ndis_cpu_cnt },
{ "NdisUnchainBufferAtBack", (FUNC)ndis_unchain_tailbuf, },
{ "NdisGetFirstBufferFromPacket", (FUNC)ndis_firstbuf },
{ "NdisGetFirstBufferFromPacketSafe", (FUNC)ndis_firstbuf_safe },
{ "NdisGetBufferPhysicalArraySize", (FUNC)ndis_buf_physpages },
{ "NdisMGetDeviceProperty", (FUNC)ndis_get_devprop },
{ "NdisInitAnsiString", (FUNC)ndis_init_ansi_string },
2003-12-28 21:36:03 +00:00
{ "NdisInitUnicodeString", (FUNC)ndis_init_unicode_string },
{ "NdisWriteConfiguration", (FUNC)ndis_write_cfg },
{ "NdisAnsiStringToUnicodeString", (FUNC)ndis_ansi2unicode },
{ "NdisTerminateWrapper", (FUNC)ndis_termwrap },
{ "NdisOpenConfigurationKeyByName", (FUNC)ndis_open_cfgbyname },
{ "NdisOpenConfigurationKeyByIndex", (FUNC)ndis_open_cfgbyidx },
subr_ndis.c: - fix ndis_time() so that it returns a time based on the proper epoch (wacky though it may be) - implement NdisInitializeString() and NdisFreeString(), and add stub for NdisMRemoveMiniport() ntoskrnl_var.h: - add missing member to the general_lookaside struct (gl_listentry) subr_ntoskrnl.c: - Fix arguments to the interlocked push/pop routines: 'head' is an slist_header *, not an slist_entry * - Kludge up _fastcall support for the push/pop routines. The _fastcall convention is similar to _stdcall, except the first two available DWORD-sized arguments are passed in %ecx and %edx, respectively. One kludge for this __attribute__ ((regparm(3))), however this isn't entirely right, as it assumes %eax, %ecx and %edx will be used (regparm(2) assumes %eax and %edx). Another kludge is to declare the two fastcall-ed args as local register variables and explicitly assign them to %ecx and %edx, but experimentation showed that gcc would not guard %ecx and %edx against being clobbered. Thus, I came up with a 3rd kludge, which is to use some inline assembly of the form: void *arg1; void *arg2; __asm__("movl %%ecx, %%ecx" : "=c" (arg1)); __asm__("movl %%edx, %%edx" : "=d" (arg2)); This lets gcc know that we're going to reference %ecx and %edx and that it should make an effort not to let it get trampled. This wastes an instruction (movl %reg, %reg is a no-op) but insures proper behavior. It's possible there's a better way to do this though: this is the first time I've used inline assembler in this fashion. The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside lists work for the two drivers I have that use them, one of which is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
{ "NdisMRemoveMiniport", (FUNC)ndis_remove_miniport },
{ "NdisInitializeString", (FUNC)ndis_init_string },
{ "NdisFreeString", (FUNC)ndis_free_string },
Implement some more NDIS and ntoskrnl API calls: subr_ndis.c: NdisGetCurrentSystemTime() which, according to the Microsoft documentation returns "the number of 100 nanosecond intervals since January 1, 1601." I have no idea what's so special about that epoch or why they chose 100 nanosecond ticks. I don't know the proper offset to convert nanotime() from the UNIX epoch to January 1, 1601, so for now I'm just doing the unit convertion to 100s of nanoseconds. subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(), ExInterlockedPushEntrySList(). The latter two are different from InterlockedPopEntrySList() and InterlockedPushEntrySList() in that they accept a spinlock to hold while executing, whereas the non-Ex routines use a lock internal to ntoskrnl. I also modified ExInitializePagedLookasideList() and ExInitializeNPagedLookasideList() to initialize mutex locks within the lookaside structures. It seems that in NDIS 5.0, the lookaside allocate/free routines ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList(), which require the use of the per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside spinlock is deprecated. We need to support both cases. Note that I appear to be doing something wrong with ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList(): they don't appear to obtain proper pointers to their arguments, so I'm probably doing something wrong in terms of their calling convention (they're declared to be FASTCALL in Widnows, and I'm not sure what that means for gcc). It happens that in my stub lookaside implementation, they don't need to do any work anyway, so for now I've hacked them to always return NULL, which avoids corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
{ "NdisGetCurrentSystemTime", (FUNC)ndis_time },
{ "NdisGetSystemUpTime", (FUNC)ndis_uptime },
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
{ "NdisMSynchronizeWithInterrupt", (FUNC)ndis_sync_with_intr },
{ "NdisMAllocateSharedMemoryAsync", (FUNC)ndis_alloc_sharedmem_async },
{ "NdisInterlockedInsertHeadList", (FUNC)ndis_insert_head },
{ "NdisInterlockedInsertTailList", (FUNC)ndis_insert_tail },
{ "NdisInterlockedRemoveHeadList", (FUNC)ndis_remove_head },
{ "NdisInitializeWrapper", (FUNC)ndis_initwrap },
{ "NdisMRegisterMiniport", (FUNC)ndis_register_miniport },
{ "NdisAllocateMemoryWithTag", (FUNC)ndis_malloc_withtag },
{ "NdisAllocateMemory", (FUNC)ndis_malloc },
{ "NdisMSetAttributesEx", (FUNC)ndis_setattr_ex },
{ "NdisCloseConfiguration", (FUNC)ndis_close_cfg },
{ "NdisReadConfiguration", (FUNC)ndis_read_cfg },
{ "NdisOpenConfiguration", (FUNC)ndis_open_cfg },
{ "NdisAcquireSpinLock", (FUNC)ndis_lock },
Continue my efforts to imitate Windows as closely as possible by attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
{ "NdisReleaseSpinLock", (FUNC)ndis_unlock },
{ "NdisDprAcquireSpinLock", (FUNC)ndis_lock_dpr },
{ "NdisDprReleaseSpinLock", (FUNC)ndis_unlock_dpr },
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
{ "NdisAllocateSpinLock", (FUNC)ndis_create_lock },
{ "NdisFreeSpinLock", (FUNC)ndis_destroy_lock },
{ "NdisFreeMemory", (FUNC)ndis_free },
{ "NdisReadPciSlotInformation", (FUNC)ndis_read_pci },
{ "NdisWritePciSlotInformation",(FUNC)ndis_write_pci },
{ "NdisImmediateReadPciSlotInformation", (FUNC)ndis_read_pci },
{ "NdisImmediateWritePciSlotInformation", (FUNC)ndis_write_pci },
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
{ "NdisWriteErrorLogEntry", (FUNC)ndis_syslog },
{ "NdisMStartBufferPhysicalMapping", (FUNC)ndis_vtophys_load },
{ "NdisMCompleteBufferPhysicalMapping", (FUNC)ndis_vtophys_unload },
{ "NdisMInitializeTimer", (FUNC)ndis_create_timer },
{ "NdisInitializeTimer", (FUNC)ndis_init_timer },
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
{ "NdisSetTimer", (FUNC)ndis_set_timer },
{ "NdisMCancelTimer", (FUNC)ndis_cancel_timer },
{ "NdisCancelTimer", (FUNC)ndis_cancel_timer },
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
{ "NdisMSetPeriodicTimer", (FUNC)ndis_set_periodic_timer },
{ "NdisMQueryAdapterResources", (FUNC)ndis_query_resources },
{ "NdisMRegisterIoPortRange", (FUNC)ndis_register_ioport },
{ "NdisMDeregisterIoPortRange", (FUNC)ndis_deregister_ioport },
{ "NdisReadNetworkAddress", (FUNC)ndis_read_netaddr },
{ "NdisQueryMapRegisterCount", (FUNC)ndis_mapreg_cnt },
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
{ "NdisMAllocateMapRegisters", (FUNC)ndis_alloc_mapreg },
{ "NdisMFreeMapRegisters", (FUNC)ndis_free_mapreg },
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
{ "NdisMAllocateSharedMemory", (FUNC)ndis_alloc_sharedmem },
{ "NdisMMapIoSpace", (FUNC)ndis_map_iospace },
{ "NdisMUnmapIoSpace", (FUNC)ndis_unmap_iospace },
{ "NdisGetCacheFillSize", (FUNC)ndis_cachefill },
{ "NdisMGetDmaAlignment", (FUNC)ndis_dma_align },
{ "NdisMInitializeScatterGatherDma", (FUNC)ndis_init_sc_dma },
{ "NdisAllocatePacketPool", (FUNC)ndis_alloc_packetpool },
{ "NdisAllocatePacketPoolEx", (FUNC)ndis_ex_alloc_packetpool },
{ "NdisAllocatePacket", (FUNC)ndis_alloc_packet },
{ "NdisFreePacket", (FUNC)ndis_release_packet },
{ "NdisFreePacketPool", (FUNC)ndis_free_packetpool },
{ "NdisDprAllocatePacket", (FUNC)ndis_alloc_packet },
{ "NdisDprFreePacket", (FUNC)ndis_release_packet },
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
{ "NdisAllocateBufferPool", (FUNC)ndis_alloc_bufpool },
{ "NdisAllocateBuffer", (FUNC)ndis_alloc_buf },
{ "NdisQueryBuffer", (FUNC)ndis_query_buf },
{ "NdisQueryBufferSafe", (FUNC)ndis_query_buf_safe },
{ "NdisBufferVirtualAddress", (FUNC)ndis_buf_vaddr },
{ "NdisBufferVirtualAddressSafe", (FUNC)ndis_buf_vaddr_safe },
{ "NdisBufferLength", (FUNC)ndis_buflen },
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
{ "NdisFreeBuffer", (FUNC)ndis_release_buf },
{ "NdisFreeBufferPool", (FUNC)ndis_free_bufpool },
{ "NdisInterlockedIncrement", (FUNC)ndis_interlock_inc },
{ "NdisInterlockedDecrement", (FUNC)ndis_interlock_dec },
{ "NdisInitializeEvent", (FUNC)ndis_init_event },
{ "NdisSetEvent", (FUNC)ndis_set_event },
{ "NdisResetEvent", (FUNC)ndis_reset_event },
{ "NdisWaitEvent", (FUNC)ndis_wait_event },
{ "NdisUnicodeStringToAnsiString", (FUNC)ndis_unicode2ansi },
{ "NdisMPciAssignResources", (FUNC)ndis_assign_pcirsrc },
{ "NdisMFreeSharedMemory", (FUNC)ndis_free_sharedmem },
{ "NdisMRegisterInterrupt", (FUNC)ndis_register_intr },
{ "NdisMDeregisterInterrupt", (FUNC)ndis_deregister_intr },
{ "NdisMRegisterAdapterShutdownHandler", (FUNC)ndis_register_shutdown },
{ "NdisMDeregisterAdapterShutdownHandler", (FUNC)ndis_deregister_shutdown },
{ "NDIS_BUFFER_TO_SPAN_PAGES", (FUNC)ndis_numpages },
{ "NdisQueryBufferOffset", (FUNC)ndis_query_bufoffset },
{ "NdisAdjustBufferLength", (FUNC)ndis_adjust_buflen },
{ "NdisPacketPoolUsage", (FUNC)ndis_packetpool_use },
{ "NdisMSleep", (FUNC)ndis_sleep },
{ "NdisUnchainBufferAtFront", (FUNC)ndis_unchain_headbuf },
{ "NdisReadPcmciaAttributeMemory", (FUNC)ndis_read_pccard_amem },
{ "NdisWritePcmciaAttributeMemory", (FUNC)ndis_write_pccard_amem },
{ "NdisOpenFile", (FUNC)ndis_open_file },
{ "NdisMapFile", (FUNC)ndis_map_file },
{ "NdisUnmapFile", (FUNC)ndis_unmap_file },
{ "NdisCloseFile", (FUNC)ndis_close_file },
{ "NdisMRegisterDevice", (FUNC)ndis_register_dev },
{ "NdisMDeregisterDevice", (FUNC)ndis_deregister_dev },
{ "NdisMQueryAdapterInstanceName", (FUNC)ndis_query_name },
{ "NdisMRegisterUnloadHandler", (FUNC)ndis_register_unload },
Commit the first cut of Project Evil, also known as the NDISulator. Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
/*
* This last entry is a catch-all for any function we haven't
* implemented yet. The PE import list patching routine will
* use it for any function that doesn't have an explicit match
* in this table.
*/
{ NULL, (FUNC)dummy },
/* End of list. */
{ NULL, NULL },
};