freebsd-dev/lib/libc/sparc64/fpu/fpu_emu.h

186 lines
7.4 KiB
C
Raw Normal View History

/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)fpu_emu.h 8.1 (Berkeley) 6/11/93
* $NetBSD: fpu_emu.h,v 1.4 2000/08/03 18:32:07 eeh Exp $
* $FreeBSD$
*/
/*
* Floating point emulator (tailored for SPARC, but structurally
* machine-independent).
*
* Floating point numbers are carried around internally in an `expanded'
* or `unpacked' form consisting of:
* - sign
* - unbiased exponent
* - mantissa (`1.' + 112-bit fraction + guard + round)
* - sticky bit
* Any implied `1' bit is inserted, giving a 113-bit mantissa that is
* always nonzero. Additional low-order `guard' and `round' bits are
* scrunched in, making the entire mantissa 115 bits long. This is divided
* into four 32-bit words, with `spare' bits left over in the upper part
* of the top word (the high bits of fp_mant[0]). An internal `exploded'
* number is thus kept within the half-open interval [1.0,2.0) (but see
* the `number classes' below). This holds even for denormalized numbers:
* when we explode an external denorm, we normalize it, introducing low-order
* zero bits, so that the rest of the code always sees normalized values.
*
* Note that a number of our algorithms use the `spare' bits at the top.
* The most demanding algorithm---the one for sqrt---depends on two such
* bits, so that it can represent values up to (but not including) 8.0,
* and then it needs a carry on top of that, so that we need three `spares'.
*
* The sticky-word is 32 bits so that we can use `OR' operators to goosh
* whole words from the mantissa into it.
*
* All operations are done in this internal extended precision. According
* to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
* it is OK to do a+b in extended precision and then round the result to
* single precision---provided single, double, and extended precisions are
* `far enough apart' (they always are), but we will try to avoid any such
* extra work where possible.
*/
#ifndef _SPARC64_FPU_FPU_EMU_H_
#define _SPARC64_FPU_FPU_EMU_H_
#include "fpu_reg.h"
struct fpn {
int fp_class; /* see below */
int fp_sign; /* 0 => positive, 1 => negative */
int fp_exp; /* exponent (unbiased) */
int fp_sticky; /* nonzero bits lost at right end */
u_int fp_mant[4]; /* 115-bit mantissa */
};
#define FP_NMANT 115 /* total bits in mantissa (incl g,r) */
#define FP_NG 2 /* number of low-order guard bits */
#define FP_LG ((FP_NMANT - 1) & 31) /* log2(1.0) for fp_mant[0] */
#define FP_LG2 ((FP_NMANT - 1) & 63) /* log2(1.0) for fp_mant[0] and fp_mant[1] */
#define FP_QUIETBIT (1 << (FP_LG - 1)) /* Quiet bit in NaNs (0.5) */
#define FP_1 (1 << FP_LG) /* 1.0 in fp_mant[0] */
#define FP_2 (1 << (FP_LG + 1)) /* 2.0 in fp_mant[0] */
/*
* Number classes. Since zero, Inf, and NaN cannot be represented using
* the above layout, we distinguish these from other numbers via a class.
* In addition, to make computation easier and to follow Appendix N of
* the SPARC Version 8 standard, we give each kind of NaN a separate class.
*/
#define FPC_SNAN -2 /* signalling NaN (sign irrelevant) */
#define FPC_QNAN -1 /* quiet NaN (sign irrelevant) */
#define FPC_ZERO 0 /* zero (sign matters) */
#define FPC_NUM 1 /* number (sign matters) */
#define FPC_INF 2 /* infinity (sign matters) */
#define ISNAN(fp) ((fp)->fp_class < 0)
#define ISZERO(fp) ((fp)->fp_class == 0)
#define ISINF(fp) ((fp)->fp_class == FPC_INF)
/*
* ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
* to the `more significant' operand for our purposes. Appendix N says that
* the result of a computation involving two numbers are:
*
* If both are SNaN: operand 2, converted to Quiet
* If only one is SNaN: the SNaN operand, converted to Quiet
* If both are QNaN: operand 2
* If only one is QNaN: the QNaN operand
*
* In addition, in operations with an Inf operand, the result is usually
* Inf. The class numbers are carefully arranged so that if
* (unsigned)class(op1) > (unsigned)class(op2)
* then op1 is the one we want; otherwise op2 is the one we want.
*/
#define ORDER(x, y) { \
if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
SWAP(x, y); \
}
#define SWAP(x, y) { \
register struct fpn *swap; \
swap = (x), (x) = (y), (y) = swap; \
}
/*
* Floating point operand types. FTYPE_LNG is syntethic (it does not occur in
* instructions).
*/
#define FTYPE_INT INSFP_i
#define FTYPE_SNG INSFP_s
#define FTYPE_DBL INSFP_d
#define FTYPE_EXT INSFP_q
#define FTYPE_LNG -1
/*
* Emulator state.
*/
struct fpemu {
u_long fe_fsr; /* fsr copy (modified during op) */
int fe_cx; /* exceptions */
int pad; /* align access to following fields */
struct fpn fe_f1; /* operand 1 */
struct fpn fe_f2; /* operand 2, if required */
struct fpn fe_f3; /* available storage for result */
};
/*
* Arithmetic functions.
* Each of these may modify its inputs (f1,f2) and/or the temporary.
* Each returns a pointer to the result and/or sets exceptions.
*/
#define __fpu_sub(fe) ((fe)->fe_f2.fp_sign ^= 1, __fpu_add(fe))
#ifdef FPU_DEBUG
#define FPE_INSN 0x1
#define FPE_REG 0x2
extern int __fpe_debug;
void __fpu_dumpfpn(struct fpn *);
#define DPRINTF(x, y) if (__fpe_debug & (x)) printf y
#define DUMPFPN(x, f) if (__fpe_debug & (x)) __fpu_dumpfpn((f))
#else
#define DPRINTF(x, y)
#define DUMPFPN(x, f)
#endif
#endif /* !_SPARC64_FPU_FPU_EXTERN_H_ */