freebsd-dev/sys/mips/cavium/uart_dev_oct16550.c

834 lines
21 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2003 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* uart_dev_oct16550.c
*
* Derived from uart_dev_ns8250.c
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <machine/bus.h>
#include <machine/pcpu.h>
#include <dev/uart/uart.h>
#include <dev/uart/uart_cpu.h>
#include <dev/uart/uart_bus.h>
#include <dev/ic/ns16550.h>
#include <mips/cavium/octeon_pcmap_regs.h>
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
#include <contrib/octeon-sdk/cvmx.h>
#include <contrib/octeon-sdk/cvmx-interrupt.h>
#include "uart_if.h"
/*
* Clear pending interrupts. THRE is cleared by reading IIR. Data
* that may have been received gets lost here.
*/
static void
oct16550_clrint (struct uart_bas *bas)
{
uint8_t iir;
iir = uart_getreg(bas, REG_IIR);
while ((iir & IIR_NOPEND) == 0) {
iir &= IIR_IMASK;
if (iir == IIR_RLS)
(void)uart_getreg(bas, REG_LSR);
else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
(void)uart_getreg(bas, REG_DATA);
else if (iir == IIR_MLSC)
(void)uart_getreg(bas, REG_MSR);
else if (iir == IIR_BUSY)
(void) uart_getreg(bas, REG_USR);
uart_barrier(bas);
iir = uart_getreg(bas, REG_IIR);
}
}
static int delay_changed = 1;
static int
oct16550_delay (struct uart_bas *bas)
{
int divisor;
u_char lcr;
static int delay = 0;
if (!delay_changed) return delay;
delay_changed = 0;
lcr = uart_getreg(bas, REG_LCR);
uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
uart_barrier(bas);
divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
uart_barrier(bas);
uart_setreg(bas, REG_LCR, lcr);
uart_barrier(bas);
if(!bas->rclk)
return 10; /* return an approx delay value */
/* 1/10th the time to transmit 1 character (estimate). */
if (divisor <= 134)
return (16000000 * divisor / bas->rclk);
return (16000 * divisor / (bas->rclk / 1000));
}
static int
oct16550_divisor (int rclk, int baudrate)
{
int actual_baud, divisor;
int error;
if (baudrate == 0)
return (0);
divisor = (rclk / (baudrate << 3) + 1) >> 1;
if (divisor == 0 || divisor >= 65536)
return (0);
actual_baud = rclk / (divisor << 4);
/* 10 times error in percent: */
error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
/* 3.0% maximum error tolerance: */
if (error < -30 || error > 30)
return (0);
return (divisor);
}
static int
oct16550_drain (struct uart_bas *bas, int what)
{
int delay, limit;
delay = oct16550_delay(bas);
if (what & UART_DRAIN_TRANSMITTER) {
/*
* Pick an arbitrary high limit to avoid getting stuck in
* an infinite loop when the hardware is broken. Make the
* limit high enough to handle large FIFOs.
*/
limit = 10*10*10*1024;
while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
DELAY(delay);
if (limit == 0) {
/* printf("oct16550: transmitter appears stuck... "); */
return (0);
}
}
if (what & UART_DRAIN_RECEIVER) {
/*
* Pick an arbitrary high limit to avoid getting stuck in
* an infinite loop when the hardware is broken. Make the
* limit high enough to handle large FIFOs and integrated
* UARTs. The HP rx2600 for example has 3 UARTs on the
* management board that tend to get a lot of data send
* to it when the UART is first activated.
*/
limit=10*4096;
while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
(void)uart_getreg(bas, REG_DATA);
uart_barrier(bas);
DELAY(delay << 2);
}
if (limit == 0) {
/* printf("oct16550: receiver appears broken... "); */
return (EIO);
}
}
return (0);
}
/*
* We can only flush UARTs with FIFOs. UARTs without FIFOs should be
* drained. WARNING: this function clobbers the FIFO setting!
*/
static void
oct16550_flush (struct uart_bas *bas, int what)
{
uint8_t fcr;
fcr = FCR_ENABLE;
if (what & UART_FLUSH_TRANSMITTER)
fcr |= FCR_XMT_RST;
if (what & UART_FLUSH_RECEIVER)
fcr |= FCR_RCV_RST;
uart_setreg(bas, REG_FCR, fcr);
uart_barrier(bas);
}
static int
oct16550_param (struct uart_bas *bas, int baudrate, int databits, int stopbits,
int parity)
{
int divisor;
uint8_t lcr;
lcr = 0;
if (databits >= 8)
lcr |= LCR_8BITS;
else if (databits == 7)
lcr |= LCR_7BITS;
else if (databits == 6)
lcr |= LCR_6BITS;
else
lcr |= LCR_5BITS;
if (stopbits > 1)
lcr |= LCR_STOPB;
lcr |= parity << 3;
/* Set baudrate. */
if (baudrate > 0) {
divisor = oct16550_divisor(bas->rclk, baudrate);
if (divisor == 0)
return (EINVAL);
uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
uart_barrier(bas);
uart_setreg(bas, REG_DLL, divisor & 0xff);
uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
uart_barrier(bas);
delay_changed = 1;
}
/* Set LCR and clear DLAB. */
uart_setreg(bas, REG_LCR, lcr);
uart_barrier(bas);
return (0);
}
/*
* Low-level UART interface.
*/
static int oct16550_probe(struct uart_bas *bas);
static void oct16550_init(struct uart_bas *bas, int, int, int, int);
static void oct16550_term(struct uart_bas *bas);
static void oct16550_putc(struct uart_bas *bas, int);
static int oct16550_rxready(struct uart_bas *bas);
static int oct16550_getc(struct uart_bas *bas, struct mtx *);
struct uart_ops uart_oct16550_ops = {
.probe = oct16550_probe,
.init = oct16550_init,
.term = oct16550_term,
.putc = oct16550_putc,
.rxready = oct16550_rxready,
.getc = oct16550_getc,
};
static int
oct16550_probe (struct uart_bas *bas)
{
u_char val;
/* Check known 0 bits that don't depend on DLAB. */
val = uart_getreg(bas, REG_IIR);
if (val & 0x30)
return (ENXIO);
val = uart_getreg(bas, REG_MCR);
if (val & 0xc0)
return (ENXIO);
val = uart_getreg(bas, REG_USR);
if (val & 0xe0)
return (ENXIO);
return (0);
}
static void
oct16550_init (struct uart_bas *bas, int baudrate, int databits, int stopbits,
int parity)
{
u_char ier;
oct16550_param(bas, baudrate, databits, stopbits, parity);
/* Disable all interrupt sources. */
ier = uart_getreg(bas, REG_IER) & 0x0;
uart_setreg(bas, REG_IER, ier);
uart_barrier(bas);
/* Disable the FIFO (if present). */
// uart_setreg(bas, REG_FCR, 0);
uart_barrier(bas);
/* Set RTS & DTR. */
uart_setreg(bas, REG_MCR, MCR_RTS | MCR_DTR);
uart_barrier(bas);
oct16550_clrint(bas);
}
static void
oct16550_term (struct uart_bas *bas)
{
/* Clear RTS & DTR. */
uart_setreg(bas, REG_MCR, 0);
uart_barrier(bas);
}
static inline void oct16550_wait_txhr_empty (struct uart_bas *bas, int limit, int delay)
{
while (((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0) &&
((uart_getreg(bas, REG_USR) & USR_TXFIFO_NOTFULL) == 0))
DELAY(delay);
}
static void
oct16550_putc (struct uart_bas *bas, int c)
{
int delay;
/* 1/10th the time to transmit 1 character (estimate). */
delay = oct16550_delay(bas);
oct16550_wait_txhr_empty(bas, 100, delay);
uart_setreg(bas, REG_DATA, c);
uart_barrier(bas);
oct16550_wait_txhr_empty(bas, 100, delay);
}
static int
oct16550_rxready (struct uart_bas *bas)
{
return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
}
static int
oct16550_getc (struct uart_bas *bas, struct mtx *hwmtx)
{
int c, delay;
uart_lock(hwmtx);
/* 1/10th the time to transmit 1 character (estimate). */
delay = oct16550_delay(bas);
while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
uart_unlock(hwmtx);
DELAY(delay);
uart_lock(hwmtx);
}
c = uart_getreg(bas, REG_DATA);
uart_unlock(hwmtx);
return (c);
}
/*
* High-level UART interface.
*/
struct oct16550_softc {
struct uart_softc base;
uint8_t fcr;
uint8_t ier;
uint8_t mcr;
};
static int oct16550_bus_attach(struct uart_softc *);
static int oct16550_bus_detach(struct uart_softc *);
static int oct16550_bus_flush(struct uart_softc *, int);
static int oct16550_bus_getsig(struct uart_softc *);
static int oct16550_bus_ioctl(struct uart_softc *, int, intptr_t);
static int oct16550_bus_ipend(struct uart_softc *);
static int oct16550_bus_param(struct uart_softc *, int, int, int, int);
static int oct16550_bus_probe(struct uart_softc *);
static int oct16550_bus_receive(struct uart_softc *);
static int oct16550_bus_setsig(struct uart_softc *, int);
static int oct16550_bus_transmit(struct uart_softc *);
static kobj_method_t oct16550_methods[] = {
KOBJMETHOD(uart_attach, oct16550_bus_attach),
KOBJMETHOD(uart_detach, oct16550_bus_detach),
KOBJMETHOD(uart_flush, oct16550_bus_flush),
KOBJMETHOD(uart_getsig, oct16550_bus_getsig),
KOBJMETHOD(uart_ioctl, oct16550_bus_ioctl),
KOBJMETHOD(uart_ipend, oct16550_bus_ipend),
KOBJMETHOD(uart_param, oct16550_bus_param),
KOBJMETHOD(uart_probe, oct16550_bus_probe),
KOBJMETHOD(uart_receive, oct16550_bus_receive),
KOBJMETHOD(uart_setsig, oct16550_bus_setsig),
KOBJMETHOD(uart_transmit, oct16550_bus_transmit),
{ 0, 0 }
};
struct uart_class uart_oct16550_class = {
"oct16550 class",
oct16550_methods,
sizeof(struct oct16550_softc),
.uc_ops = &uart_oct16550_ops,
.uc_range = 8 << 3,
.uc_rclk = 0
};
#define SIGCHG(c, i, s, d) \
if (c) { \
i |= (i & s) ? s : s | d; \
} else { \
i = (i & s) ? (i & ~s) | d : i; \
}
static int
oct16550_bus_attach (struct uart_softc *sc)
{
struct oct16550_softc *oct16550 = (struct oct16550_softc*)sc;
struct uart_bas *bas;
int unit;
unit = device_get_unit(sc->sc_dev);
bas = &sc->sc_bas;
oct16550_drain(bas, UART_DRAIN_TRANSMITTER);
oct16550->mcr = uart_getreg(bas, REG_MCR);
oct16550->fcr = FCR_ENABLE | FCR_RX_HIGH;
uart_setreg(bas, REG_FCR, oct16550->fcr);
uart_barrier(bas);
oct16550_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
if (oct16550->mcr & MCR_DTR)
sc->sc_hwsig |= SER_DTR;
if (oct16550->mcr & MCR_RTS)
sc->sc_hwsig |= SER_RTS;
oct16550_bus_getsig(sc);
oct16550_clrint(bas);
oct16550->ier = uart_getreg(bas, REG_IER) & 0xf0;
oct16550->ier |= IER_EMSC | IER_ERLS | IER_ERXRDY;
uart_setreg(bas, REG_IER, oct16550->ier);
uart_barrier(bas);
/*
* Enable the interrupt in CIU. // UART-x2 @ IP2
*/
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
switch (unit) {
case 0:
cvmx_interrupt_unmask_irq(CVMX_IRQ_UART0);
break;
case 1:
cvmx_interrupt_unmask_irq(CVMX_IRQ_UART1);
break;
default:
panic("%s: invalid UART %d", __func__, unit);
}
return (0);
}
static int
oct16550_bus_detach (struct uart_softc *sc)
{
struct uart_bas *bas;
u_char ier;
bas = &sc->sc_bas;
ier = uart_getreg(bas, REG_IER) & 0xf0;
uart_setreg(bas, REG_IER, ier);
uart_barrier(bas);
oct16550_clrint(bas);
return (0);
}
static int
oct16550_bus_flush (struct uart_softc *sc, int what)
{
struct oct16550_softc *oct16550 = (struct oct16550_softc*)sc;
struct uart_bas *bas;
int error;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
if (sc->sc_rxfifosz > 1) {
oct16550_flush(bas, what);
uart_setreg(bas, REG_FCR, oct16550->fcr);
uart_barrier(bas);
error = 0;
} else
error = oct16550_drain(bas, what);
uart_unlock(sc->sc_hwmtx);
return (error);
}
static int
oct16550_bus_getsig (struct uart_softc *sc)
{
uint32_t new, old, sig;
uint8_t msr;
do {
old = sc->sc_hwsig;
sig = old;
uart_lock(sc->sc_hwmtx);
msr = uart_getreg(&sc->sc_bas, REG_MSR);
uart_unlock(sc->sc_hwmtx);
SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
SIGCHG(msr & MSR_RI, sig, SER_RI, SER_DRI);
new = sig & ~SER_MASK_DELTA;
} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
return (sig);
}
static int
oct16550_bus_ioctl (struct uart_softc *sc, int request, intptr_t data)
{
struct uart_bas *bas;
int baudrate, divisor, error;
uint8_t efr, lcr;
bas = &sc->sc_bas;
error = 0;
uart_lock(sc->sc_hwmtx);
switch (request) {
case UART_IOCTL_BREAK:
lcr = uart_getreg(bas, REG_LCR);
if (data)
lcr |= LCR_SBREAK;
else
lcr &= ~LCR_SBREAK;
uart_setreg(bas, REG_LCR, lcr);
uart_barrier(bas);
break;
case UART_IOCTL_IFLOW:
lcr = uart_getreg(bas, REG_LCR);
uart_barrier(bas);
uart_setreg(bas, REG_LCR, 0xbf);
uart_barrier(bas);
efr = uart_getreg(bas, REG_EFR);
if (data)
efr |= EFR_RTS;
else
efr &= ~EFR_RTS;
uart_setreg(bas, REG_EFR, efr);
uart_barrier(bas);
uart_setreg(bas, REG_LCR, lcr);
uart_barrier(bas);
break;
case UART_IOCTL_OFLOW:
lcr = uart_getreg(bas, REG_LCR);
uart_barrier(bas);
uart_setreg(bas, REG_LCR, 0xbf);
uart_barrier(bas);
efr = uart_getreg(bas, REG_EFR);
if (data)
efr |= EFR_CTS;
else
efr &= ~EFR_CTS;
uart_setreg(bas, REG_EFR, efr);
uart_barrier(bas);
uart_setreg(bas, REG_LCR, lcr);
uart_barrier(bas);
break;
case UART_IOCTL_BAUD:
lcr = uart_getreg(bas, REG_LCR);
uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
uart_barrier(bas);
divisor = uart_getreg(bas, REG_DLL) |
(uart_getreg(bas, REG_DLH) << 8);
uart_barrier(bas);
uart_setreg(bas, REG_LCR, lcr);
uart_barrier(bas);
baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
delay_changed = 1;
if (baudrate > 0)
*(int*)data = baudrate;
else
error = ENXIO;
break;
default:
error = EINVAL;
break;
}
uart_unlock(sc->sc_hwmtx);
return (error);
}
static int
oct16550_bus_ipend(struct uart_softc *sc)
{
struct uart_bas *bas;
int ipend = 0;
uint8_t iir, lsr;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
iir = uart_getreg(bas, REG_IIR) & IIR_IMASK;
if (iir != IIR_NOPEND) {
if (iir == IIR_RLS) {
lsr = uart_getreg(bas, REG_LSR);
if (lsr & LSR_OE)
ipend |= SER_INT_OVERRUN;
if (lsr & LSR_BI)
ipend |= SER_INT_BREAK;
if (lsr & LSR_RXRDY)
ipend |= SER_INT_RXREADY;
} else if (iir == IIR_RXRDY) {
ipend |= SER_INT_RXREADY;
} else if (iir == IIR_RXTOUT) {
ipend |= SER_INT_RXREADY;
} else if (iir == IIR_TXRDY) {
ipend |= SER_INT_TXIDLE;
} else if (iir == IIR_MLSC) {
ipend |= SER_INT_SIGCHG;
} else if (iir == IIR_BUSY) {
(void) uart_getreg(bas, REG_USR);
}
}
uart_unlock(sc->sc_hwmtx);
//#define OCTEON_VISUAL_UART 1
#ifdef OCTEON_VISUAL_UART
static int where1 = 0;
if (ipend) octeon_led_run_wheel(&where1, 6 + device_get_unit(sc->sc_dev));
#endif
return (ipend);
}
static int
oct16550_bus_param (struct uart_softc *sc, int baudrate, int databits,
int stopbits, int parity)
{
struct uart_bas *bas;
int error;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
error = oct16550_param(bas, baudrate, databits, stopbits, parity);
uart_unlock(sc->sc_hwmtx);
return (error);
}
static int
oct16550_bus_probe (struct uart_softc *sc)
{
struct uart_bas *bas;
int error;
bas = &sc->sc_bas;
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
bas->rclk = uart_oct16550_class.uc_rclk = cvmx_sysinfo_get()->cpu_clock_hz;
error = oct16550_probe(bas);
if (error) {
return (error);
}
uart_setreg(bas, REG_MCR, (MCR_DTR | MCR_RTS));
/*
* Enable FIFOs. And check that the UART has them. If not, we're
* done. Since this is the first time we enable the FIFOs, we reset
* them.
*/
oct16550_drain(bas, UART_DRAIN_TRANSMITTER);
#define ENABLE_OCTEON_FIFO 1
#ifdef ENABLE_OCTEON_FIFO
uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
#endif
uart_barrier(bas);
oct16550_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
if (device_get_unit(sc->sc_dev)) {
device_set_desc(sc->sc_dev, "Octeon-16550 channel 1");
} else {
device_set_desc(sc->sc_dev, "Octeon-16550 channel 0");
}
#ifdef ENABLE_OCTEON_FIFO
sc->sc_rxfifosz = 64;
sc->sc_txfifosz = 64;
#else
sc->sc_rxfifosz = 1;
sc->sc_txfifosz = 1;
#endif
#if 0
/*
* XXX there are some issues related to hardware flow control and
* it's likely that uart(4) is the cause. This basicly needs more
* investigation, but we avoid using for hardware flow control
* until then.
*/
/* 16650s or higher have automatic flow control. */
if (sc->sc_rxfifosz > 16) {
sc->sc_hwiflow = 1;
sc->sc_hwoflow = 1;
}
#endif
return (0);
}
static int
oct16550_bus_receive (struct uart_softc *sc)
{
struct uart_bas *bas;
int xc;
uint8_t lsr;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
lsr = uart_getreg(bas, REG_LSR);
while (lsr & LSR_RXRDY) {
if (uart_rx_full(sc)) {
sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
break;
}
xc = uart_getreg(bas, REG_DATA);
if (lsr & LSR_FE)
xc |= UART_STAT_FRAMERR;
if (lsr & LSR_PE)
xc |= UART_STAT_PARERR;
uart_rx_put(sc, xc);
lsr = uart_getreg(bas, REG_LSR);
}
/* Discard everything left in the Rx FIFO. */
/*
* First do a dummy read/discard anyway, in case the UART was lying to us.
* This problem was seen on board, when IIR said RBR, but LSR said no RXRDY
* Results in a stuck ipend loop.
*/
(void)uart_getreg(bas, REG_DATA);
while (lsr & LSR_RXRDY) {
(void)uart_getreg(bas, REG_DATA);
uart_barrier(bas);
lsr = uart_getreg(bas, REG_LSR);
}
uart_unlock(sc->sc_hwmtx);
return (0);
}
static int
oct16550_bus_setsig (struct uart_softc *sc, int sig)
{
struct oct16550_softc *oct16550 = (struct oct16550_softc*)sc;
struct uart_bas *bas;
uint32_t new, old;
bas = &sc->sc_bas;
do {
old = sc->sc_hwsig;
new = old;
if (sig & SER_DDTR) {
SIGCHG(sig & SER_DTR, new, SER_DTR,
SER_DDTR);
}
if (sig & SER_DRTS) {
SIGCHG(sig & SER_RTS, new, SER_RTS,
SER_DRTS);
}
} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
uart_lock(sc->sc_hwmtx);
oct16550->mcr &= ~(MCR_DTR|MCR_RTS);
if (new & SER_DTR)
oct16550->mcr |= MCR_DTR;
if (new & SER_RTS)
oct16550->mcr |= MCR_RTS;
uart_setreg(bas, REG_MCR, oct16550->mcr);
uart_barrier(bas);
uart_unlock(sc->sc_hwmtx);
return (0);
}
static int
oct16550_bus_transmit (struct uart_softc *sc)
{
struct oct16550_softc *oct16550 = (struct oct16550_softc*)sc;
struct uart_bas *bas;
int i;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
#ifdef NO_UART_INTERRUPTS
for (i = 0; i < sc->sc_txdatasz; i++) {
oct16550_putc(bas, sc->sc_txbuf[i]);
}
#else
oct16550_wait_txhr_empty(bas, 100, oct16550_delay(bas));
uart_setreg(bas, REG_IER, oct16550->ier | IER_ETXRDY);
uart_barrier(bas);
for (i = 0; i < sc->sc_txdatasz; i++) {
uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
uart_barrier(bas);
}
sc->sc_txbusy = 1;
#endif
uart_unlock(sc->sc_hwmtx);
return (0);
}