freebsd-dev/sys/powerpc/aim/machdep.c

1012 lines
23 KiB
C
Raw Normal View History

/*-
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
* Copyright (C) 1995, 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (C) 2001 Benno Rice
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* $NetBSD: machdep.c,v 1.74.2.1 2000/11/01 16:13:48 tv Exp $
*/
2003-04-03 21:36:33 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_ddb.h"
#include "opt_kstack_pages.h"
#include "opt_msgbuf.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/cons.h>
#include <sys/cpu.h>
#include <sys/eventhandler.h>
#include <sys/exec.h>
#include <sys/imgact.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/ptrace.h>
#include <sys/reboot.h>
#include <sys/signalvar.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/ucontext.h>
#include <sys/uio.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <net/netisr.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_pager.h>
#include <machine/bat.h>
#include <machine/cpu.h>
#include <machine/elf.h>
#include <machine/fpu.h>
#include <machine/hid.h>
#include <machine/kdb.h>
#include <machine/md_var.h>
#include <machine/metadata.h>
#include <machine/mmuvar.h>
#include <machine/pcb.h>
#include <machine/powerpc.h>
#include <machine/reg.h>
#include <machine/sigframe.h>
#include <machine/trap.h>
#include <machine/vmparam.h>
#include <ddb/ddb.h>
#include <dev/ofw/openfirm.h>
#ifdef DDB
extern vm_offset_t ksym_start, ksym_end;
#endif
int cold = 1;
2008-02-12 20:55:51 +00:00
static struct pcpu pcpu0;
static struct trapframe frame0;
vm_offset_t kstack0;
vm_offset_t kstack0_phys;
char machine[] = "powerpc";
SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, "");
static int cacheline_size = CACHELINESIZE;
SYSCTL_INT(_machdep, CPU_CACHELINE, cacheline_size,
CTLFLAG_RD, &cacheline_size, 0, "");
static void cpu_startup(void *);
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
void powerpc_init(u_int, u_int, u_int, void *);
int save_ofw_mapping(void);
int restore_ofw_mapping(void);
void install_extint(void (*)(void));
int setfault(faultbuf); /* defined in locore.S */
static int grab_mcontext(struct thread *, mcontext_t *, int);
void asm_panic(char *);
long Maxmem = 0;
long realmem = 0;
struct pmap ofw_pmap;
extern int ofmsr;
struct bat battable[16];
struct kva_md_info kmi;
void setPQL2(int *const size, int *const ways);
void
setPQL2(int *const size, int *const ways)
{
return;
}
static void
powerpc_ofw_shutdown(void *junk, int howto)
{
if (howto & RB_HALT) {
OF_halt();
}
OF_reboot();
}
static void
cpu_startup(void *dummy)
{
/*
* Initialise the decrementer-based clock.
*/
decr_init();
/*
* Good {morning,afternoon,evening,night}.
*/
cpu_setup(PCPU_GET(cpuid));
/* startrtclock(); */
#ifdef PERFMON
perfmon_init();
#endif
printf("real memory = %ld (%ld MB)\n", ptoa(physmem),
ptoa(physmem) / 1048576);
realmem = physmem;
/*
* Display any holes after the first chunk of extended memory.
*/
if (bootverbose) {
int indx;
printf("Physical memory chunk(s):\n");
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
int size1 = phys_avail[indx + 1] - phys_avail[indx];
printf("0x%08x - 0x%08x, %d bytes (%d pages)\n",
phys_avail[indx], phys_avail[indx + 1] - 1, size1,
size1 / PAGE_SIZE);
}
}
vm_ksubmap_init(&kmi);
printf("avail memory = %ld (%ld MB)\n", ptoa(cnt.v_free_count),
ptoa(cnt.v_free_count) / 1048576);
/*
* Set up buffers, so they can be used to read disk labels.
*/
bufinit();
vm_pager_bufferinit();
EVENTHANDLER_REGISTER(shutdown_final, powerpc_ofw_shutdown, 0,
SHUTDOWN_PRI_LAST);
}
extern char kernel_text[], _end[];
extern void *trapcode, *trapsize;
extern void *alitrap, *alisize;
extern void *dsitrap, *dsisize;
extern void *decrint, *decrsize;
extern void *extint, *extsize;
extern void *dblow, *dbsize;
extern void *vectrap, *vectrapsize;
void
powerpc_init(u_int startkernel, u_int endkernel, u_int basekernel, void *mdp)
{
struct pcpu *pc;
vm_offset_t end, off;
void *kmdp;
char *env;
end = 0;
kmdp = NULL;
/*
* Parse metadata if present and fetch parameters. Must be done
* before console is inited so cninit gets the right value of
* boothowto.
*/
if (mdp != NULL) {
preload_metadata = mdp;
kmdp = preload_search_by_type("elf kernel");
if (kmdp != NULL) {
boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
#ifdef DDB
ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
#endif
}
}
/*
* Init params/tunables that can be overridden by the loader
*/
init_param1();
/*
* Start initializing proc0 and thread0.
*/
proc_linkup0(&proc0, &thread0);
thread0.td_frame = &frame0;
/*
* Set up per-cpu data.
*/
2008-02-12 20:55:51 +00:00
pc = &pcpu0;
pcpu_init(pc, 0, sizeof(struct pcpu));
pc->pc_curthread = &thread0;
pc->pc_curpcb = thread0.td_pcb;
pc->pc_cpuid = 0;
__asm __volatile("mtsprg 0, %0" :: "r"(pc));
mutex_init();
/*
* Initialize the console before printing anything.
*/
cninit();
/*
* Complain if there is no metadata.
*/
if (mdp == NULL || kmdp == NULL) {
printf("powerpc_init: no loader metadata.\n");
}
2002-07-10 12:21:54 +00:00
kdb_init();
kobj_machdep_init();
/*
* XXX: Initialize the interrupt tables.
* Disable translation in case the vector area
* hasn't been mapped (G5)
*/
mtmsr(mfmsr() & ~(PSL_IR | PSL_DR));
isync();
bcopy(&trapcode, (void *)EXC_RST, (size_t)&trapsize);
bcopy(&trapcode, (void *)EXC_MCHK, (size_t)&trapsize);
bcopy(&dsitrap, (void *)EXC_DSI, (size_t)&dsisize);
bcopy(&trapcode, (void *)EXC_ISI, (size_t)&trapsize);
bcopy(&trapcode, (void *)EXC_EXI, (size_t)&trapsize);
bcopy(&alitrap, (void *)EXC_ALI, (size_t)&alisize);
bcopy(&trapcode, (void *)EXC_PGM, (size_t)&trapsize);
bcopy(&trapcode, (void *)EXC_FPU, (size_t)&trapsize);
bcopy(&trapcode, (void *)EXC_DECR, (size_t)&trapsize);
bcopy(&trapcode, (void *)EXC_SC, (size_t)&trapsize);
bcopy(&trapcode, (void *)EXC_TRC, (size_t)&trapsize);
bcopy(&trapcode, (void *)EXC_FPA, (size_t)&trapsize);
bcopy(&vectrap, (void *)EXC_VEC, (size_t)&vectrapsize);
bcopy(&trapcode, (void *)EXC_VECAST, (size_t)&trapsize);
bcopy(&trapcode, (void *)EXC_THRM, (size_t)&trapsize);
bcopy(&trapcode, (void *)EXC_BPT, (size_t)&trapsize);
#ifdef KDB
bcopy(&dblow, (void *)EXC_RST, (size_t)&dbsize);
bcopy(&dblow, (void *)EXC_MCHK, (size_t)&dbsize);
bcopy(&dblow, (void *)EXC_PGM, (size_t)&dbsize);
bcopy(&dblow, (void *)EXC_TRC, (size_t)&dbsize);
bcopy(&dblow, (void *)EXC_BPT, (size_t)&dbsize);
#endif
__syncicache(EXC_RSVD, EXC_LAST - EXC_RSVD);
/*
* Make sure translation has been enabled
*/
mtmsr(mfmsr() | PSL_IR|PSL_DR|PSL_ME|PSL_RI);
isync();
/*
* Initialise virtual memory.
*/
pmap_mmu_install(MMU_TYPE_OEA, 0); /* XXX temporary */
pmap_bootstrap(startkernel, endkernel);
/*
* Initialize params/tunables that are derived from memsize
*/
init_param2(physmem);
/*
* Grab booted kernel's name
*/
env = getenv("kernelname");
if (env != NULL) {
strlcpy(kernelname, env, sizeof(kernelname));
freeenv(env);
}
/*
* Finish setting up thread0.
*/
thread0.td_kstack = kstack0;
thread0.td_pcb = (struct pcb *)
(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
/*
* Map and initialise the message buffer.
*/
for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
pmap_kenter((vm_offset_t)msgbufp + off, msgbuf_phys + off);
msgbufinit(msgbufp, MSGBUF_SIZE);
#ifdef KDB
if (boothowto & RB_KDB)
kdb_enter(KDB_WHY_BOOTFLAGS,
"Boot flags requested debugger");
#endif
}
void
bzero(void *buf, size_t len)
{
caddr_t p;
p = buf;
while (((vm_offset_t) p & (sizeof(u_long) - 1)) && len) {
*p++ = 0;
len--;
}
while (len >= sizeof(u_long) * 8) {
*(u_long*) p = 0;
*((u_long*) p + 1) = 0;
*((u_long*) p + 2) = 0;
*((u_long*) p + 3) = 0;
len -= sizeof(u_long) * 8;
*((u_long*) p + 4) = 0;
*((u_long*) p + 5) = 0;
*((u_long*) p + 6) = 0;
*((u_long*) p + 7) = 0;
p += sizeof(u_long) * 8;
}
while (len >= sizeof(u_long)) {
*(u_long*) p = 0;
len -= sizeof(u_long);
p += sizeof(u_long);
}
while (len) {
*p++ = 0;
len--;
}
}
void
1. Change prototype of trapsignal and sendsig to use ksiginfo_t *, most changes in MD code are trivial, before this change, trapsignal and sendsig use discrete parameters, now they uses member fields of ksiginfo_t structure. For sendsig, this change allows us to pass POSIX realtime signal value to user code. 2. Remove cpu_thread_siginfo, it is no longer needed because we now always generate ksiginfo_t data and feed it to libpthread. 3. Add p_sigqueue to proc structure to hold shared signals which were blocked by all threads in the proc. 4. Add td_sigqueue to thread structure to hold all signals delivered to thread. 5. i386 and amd64 now return POSIX standard si_code, other arches will be fixed. 6. In this sigqueue implementation, pending signal set is kept as before, an extra siginfo list holds additional siginfo_t data for signals. kernel code uses psignal() still behavior as before, it won't be failed even under memory pressure, only exception is when deleting a signal, we should call sigqueue_delete to remove signal from sigqueue but not SIGDELSET. Current there is no kernel code will deliver a signal with additional data, so kernel should be as stable as before, a ksiginfo can carry more information, for example, allow signal to be delivered but throw away siginfo data if memory is not enough. SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can not be caught or masked. The sigqueue() syscall allows user code to queue a signal to target process, if resource is unavailable, EAGAIN will be returned as specification said. Just before thread exits, signal queue memory will be freed by sigqueue_flush. Current, all signals are allowed to be queued, not only realtime signals. Earlier patch reviewed by: jhb, deischen Tested on: i386, amd64
2005-10-14 12:43:47 +00:00
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
struct trapframe *tf;
struct sigframe *sfp;
struct sigacts *psp;
struct sigframe sf;
struct thread *td;
struct proc *p;
int oonstack, rndfsize;
1. Change prototype of trapsignal and sendsig to use ksiginfo_t *, most changes in MD code are trivial, before this change, trapsignal and sendsig use discrete parameters, now they uses member fields of ksiginfo_t structure. For sendsig, this change allows us to pass POSIX realtime signal value to user code. 2. Remove cpu_thread_siginfo, it is no longer needed because we now always generate ksiginfo_t data and feed it to libpthread. 3. Add p_sigqueue to proc structure to hold shared signals which were blocked by all threads in the proc. 4. Add td_sigqueue to thread structure to hold all signals delivered to thread. 5. i386 and amd64 now return POSIX standard si_code, other arches will be fixed. 6. In this sigqueue implementation, pending signal set is kept as before, an extra siginfo list holds additional siginfo_t data for signals. kernel code uses psignal() still behavior as before, it won't be failed even under memory pressure, only exception is when deleting a signal, we should call sigqueue_delete to remove signal from sigqueue but not SIGDELSET. Current there is no kernel code will deliver a signal with additional data, so kernel should be as stable as before, a ksiginfo can carry more information, for example, allow signal to be delivered but throw away siginfo data if memory is not enough. SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can not be caught or masked. The sigqueue() syscall allows user code to queue a signal to target process, if resource is unavailable, EAGAIN will be returned as specification said. Just before thread exits, signal queue memory will be freed by sigqueue_flush. Current, all signals are allowed to be queued, not only realtime signals. Earlier patch reviewed by: jhb, deischen Tested on: i386, amd64
2005-10-14 12:43:47 +00:00
int sig;
int code;
td = curthread;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
1. Change prototype of trapsignal and sendsig to use ksiginfo_t *, most changes in MD code are trivial, before this change, trapsignal and sendsig use discrete parameters, now they uses member fields of ksiginfo_t structure. For sendsig, this change allows us to pass POSIX realtime signal value to user code. 2. Remove cpu_thread_siginfo, it is no longer needed because we now always generate ksiginfo_t data and feed it to libpthread. 3. Add p_sigqueue to proc structure to hold shared signals which were blocked by all threads in the proc. 4. Add td_sigqueue to thread structure to hold all signals delivered to thread. 5. i386 and amd64 now return POSIX standard si_code, other arches will be fixed. 6. In this sigqueue implementation, pending signal set is kept as before, an extra siginfo list holds additional siginfo_t data for signals. kernel code uses psignal() still behavior as before, it won't be failed even under memory pressure, only exception is when deleting a signal, we should call sigqueue_delete to remove signal from sigqueue but not SIGDELSET. Current there is no kernel code will deliver a signal with additional data, so kernel should be as stable as before, a ksiginfo can carry more information, for example, allow signal to be delivered but throw away siginfo data if memory is not enough. SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can not be caught or masked. The sigqueue() syscall allows user code to queue a signal to target process, if resource is unavailable, EAGAIN will be returned as specification said. Just before thread exits, signal queue memory will be freed by sigqueue_flush. Current, all signals are allowed to be queued, not only realtime signals. Earlier patch reviewed by: jhb, deischen Tested on: i386, amd64
2005-10-14 12:43:47 +00:00
sig = ksi->ksi_signo;
code = ksi->ksi_code;
psp = p->p_sigacts;
mtx_assert(&psp->ps_mtx, MA_OWNED);
tf = td->td_frame;
oonstack = sigonstack(tf->fixreg[1]);
rndfsize = ((sizeof(sf) + 15) / 16) * 16;
CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
catcher, sig);
/*
* Save user context
*/
memset(&sf, 0, sizeof(sf));
grab_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
sf.sf_uc.uc_sigmask = *mask;
sf.sf_uc.uc_stack = td->td_sigstk;
sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
/*
* Allocate and validate space for the signal handler context.
*/
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
SIGISMEMBER(psp->ps_sigonstack, sig)) {
sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
td->td_sigstk.ss_size - rndfsize);
} else {
sfp = (struct sigframe *)(tf->fixreg[1] - rndfsize);
}
/*
* Translate the signal if appropriate (Linux emu ?)
*/
if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
/*
* Save the floating-point state, if necessary, then copy it.
*/
/* XXX */
/*
* Set up the registers to return to sigcode.
*
* r1/sp - sigframe ptr
* lr - sig function, dispatched to by blrl in trampoline
* r3 - sig number
* r4 - SIGINFO ? &siginfo : exception code
* r5 - user context
* srr0 - trampoline function addr
*/
tf->lr = (register_t)catcher;
tf->fixreg[1] = (register_t)sfp;
tf->fixreg[FIRSTARG] = sig;
tf->fixreg[FIRSTARG+2] = (register_t)&sfp->sf_uc;
if (SIGISMEMBER(psp->ps_siginfo, sig)) {
/*
* Signal handler installed with SA_SIGINFO.
*/
tf->fixreg[FIRSTARG+1] = (register_t)&sfp->sf_si;
/*
* Fill siginfo structure.
*/
1. Change prototype of trapsignal and sendsig to use ksiginfo_t *, most changes in MD code are trivial, before this change, trapsignal and sendsig use discrete parameters, now they uses member fields of ksiginfo_t structure. For sendsig, this change allows us to pass POSIX realtime signal value to user code. 2. Remove cpu_thread_siginfo, it is no longer needed because we now always generate ksiginfo_t data and feed it to libpthread. 3. Add p_sigqueue to proc structure to hold shared signals which were blocked by all threads in the proc. 4. Add td_sigqueue to thread structure to hold all signals delivered to thread. 5. i386 and amd64 now return POSIX standard si_code, other arches will be fixed. 6. In this sigqueue implementation, pending signal set is kept as before, an extra siginfo list holds additional siginfo_t data for signals. kernel code uses psignal() still behavior as before, it won't be failed even under memory pressure, only exception is when deleting a signal, we should call sigqueue_delete to remove signal from sigqueue but not SIGDELSET. Current there is no kernel code will deliver a signal with additional data, so kernel should be as stable as before, a ksiginfo can carry more information, for example, allow signal to be delivered but throw away siginfo data if memory is not enough. SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can not be caught or masked. The sigqueue() syscall allows user code to queue a signal to target process, if resource is unavailable, EAGAIN will be returned as specification said. Just before thread exits, signal queue memory will be freed by sigqueue_flush. Current, all signals are allowed to be queued, not only realtime signals. Earlier patch reviewed by: jhb, deischen Tested on: i386, amd64
2005-10-14 12:43:47 +00:00
sf.sf_si = ksi->ksi_info;
sf.sf_si.si_signo = sig;
sf.sf_si.si_addr = (void *)((tf->exc == EXC_DSI) ?
tf->cpu.aim.dar : tf->srr0);
} else {
/* Old FreeBSD-style arguments. */
tf->fixreg[FIRSTARG+1] = code;
tf->fixreg[FIRSTARG+3] = (tf->exc == EXC_DSI) ?
tf->cpu.aim.dar : tf->srr0;
}
mtx_unlock(&psp->ps_mtx);
PROC_UNLOCK(p);
tf->srr0 = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
/*
* copy the frame out to userland.
*/
if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
/*
* Process has trashed its stack. Kill it.
*/
CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
PROC_LOCK(p);
sigexit(td, SIGILL);
}
CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td,
tf->srr0, tf->fixreg[1]);
PROC_LOCK(p);
mtx_lock(&psp->ps_mtx);
}
int
sigreturn(struct thread *td, struct sigreturn_args *uap)
{
struct proc *p;
ucontext_t uc;
int error;
CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
return (EFAULT);
}
error = set_mcontext(td, &uc.uc_mcontext);
if (error != 0)
return (error);
p = td->td_proc;
PROC_LOCK(p);
td->td_sigmask = uc.uc_sigmask;
SIG_CANTMASK(td->td_sigmask);
signotify(td);
PROC_UNLOCK(p);
CTR3(KTR_SIG, "sigreturn: return td=%p pc=%#x sp=%#x",
td, uc.uc_mcontext.mc_srr0, uc.uc_mcontext.mc_gpr[1]);
return (EJUSTRETURN);
}
#ifdef COMPAT_FREEBSD4
int
freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
{
return sigreturn(td, (struct sigreturn_args *)uap);
}
#endif
/*
* Construct a PCB from a trapframe. This is called from kdb_trap() where
* we want to start a backtrace from the function that caused us to enter
* the debugger. We have the context in the trapframe, but base the trace
* on the PCB. The PCB doesn't have to be perfect, as long as it contains
* enough for a backtrace.
*/
void
makectx(struct trapframe *tf, struct pcb *pcb)
{
pcb->pcb_lr = tf->srr0;
pcb->pcb_sp = tf->fixreg[1];
}
/*
* get_mcontext/sendsig helper routine that doesn't touch the
* proc lock
*/
static int
grab_mcontext(struct thread *td, mcontext_t *mcp, int flags)
{
struct pcb *pcb;
pcb = td->td_pcb;
memset(mcp, 0, sizeof(mcontext_t));
mcp->mc_vers = _MC_VERSION;
mcp->mc_flags = 0;
memcpy(&mcp->mc_frame, td->td_frame, sizeof(struct trapframe));
if (flags & GET_MC_CLEAR_RET) {
mcp->mc_gpr[3] = 0;
mcp->mc_gpr[4] = 0;
}
/*
* This assumes that floating-point context is *not* lazy,
* so if the thread has used FP there would have been a
* FP-unavailable exception that would have set things up
* correctly.
*/
if (pcb->pcb_flags & PCB_FPU) {
KASSERT(td == curthread,
("get_mcontext: fp save not curthread"));
critical_enter();
save_fpu(td);
critical_exit();
mcp->mc_flags |= _MC_FP_VALID;
memcpy(&mcp->mc_fpscr, &pcb->pcb_fpu.fpscr, sizeof(double));
memcpy(mcp->mc_fpreg, pcb->pcb_fpu.fpr, 32*sizeof(double));
}
/* XXX Altivec context ? */
mcp->mc_len = sizeof(*mcp);
return (0);
}
int
get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
{
int error;
error = grab_mcontext(td, mcp, flags);
if (error == 0) {
PROC_LOCK(curthread->td_proc);
mcp->mc_onstack = sigonstack(td->td_frame->fixreg[1]);
PROC_UNLOCK(curthread->td_proc);
}
return (error);
}
int
set_mcontext(struct thread *td, const mcontext_t *mcp)
{
struct pcb *pcb;
struct trapframe *tf;
pcb = td->td_pcb;
tf = td->td_frame;
if (mcp->mc_vers != _MC_VERSION ||
mcp->mc_len != sizeof(*mcp))
return (EINVAL);
/*
* Don't let the user set privileged MSR bits
*/
if ((mcp->mc_srr1 & PSL_USERSTATIC) != (tf->srr1 & PSL_USERSTATIC)) {
return (EINVAL);
}
memcpy(tf, mcp->mc_frame, sizeof(mcp->mc_frame));
if (mcp->mc_flags & _MC_FP_VALID) {
if ((pcb->pcb_flags & PCB_FPU) != PCB_FPU) {
critical_enter();
enable_fpu(td);
critical_exit();
}
memcpy(&pcb->pcb_fpu.fpscr, &mcp->mc_fpscr, sizeof(double));
memcpy(pcb->pcb_fpu.fpr, mcp->mc_fpreg, 32*sizeof(double));
}
/* XXX Altivec context? */
return (0);
}
void
cpu_boot(int howto)
{
}
void
cpu_initclocks(void)
{
decr_tc_init();
}
/* Get current clock frequency for the given cpu id. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{
return (ENXIO);
}
/*
* Shutdown the CPU as much as possible.
*/
void
cpu_halt(void)
{
OF_exit();
}
void
cpu_idle(void)
{
uint32_t msr;
msr = mfmsr();
#ifdef INVARIANTS
if ((msr & PSL_EE) != PSL_EE) {
struct thread *td = curthread;
printf("td msr %x\n", td->td_md.md_saved_msr);
panic("ints disabled in idleproc!");
}
#endif
if (powerpc_pow_enabled) {
__asm __volatile("sync");
mtmsr(msr | PSL_POW);
isync();
}
}
/*
* Set set up registers on exec.
*/
void
exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
{
struct trapframe *tf;
struct ps_strings arginfo;
tf = trapframe(td);
bzero(tf, sizeof *tf);
tf->fixreg[1] = -roundup(-stack + 8, 16);
/*
* XXX Machine-independent code has already copied arguments and
* XXX environment to userland. Get them back here.
*/
(void)copyin((char *)PS_STRINGS, &arginfo, sizeof(arginfo));
/*
* Set up arguments for _start():
* _start(argc, argv, envp, obj, cleanup, ps_strings);
*
* Notes:
* - obj and cleanup are the auxilliary and termination
* vectors. They are fixed up by ld.elf_so.
* - ps_strings is a NetBSD extention, and will be
* ignored by executables which are strictly
* compliant with the SVR4 ABI.
*
* XXX We have to set both regs and retval here due to different
* XXX calling convention in trap.c and init_main.c.
*/
/*
* XXX PG: these get overwritten in the syscall return code.
* execve() should return EJUSTRETURN, like it does on NetBSD.
* Emulate by setting the syscall return value cells. The
* registers still have to be set for init's fork trampoline.
*/
td->td_retval[0] = arginfo.ps_nargvstr;
td->td_retval[1] = (register_t)arginfo.ps_argvstr;
tf->fixreg[3] = arginfo.ps_nargvstr;
tf->fixreg[4] = (register_t)arginfo.ps_argvstr;
tf->fixreg[5] = (register_t)arginfo.ps_envstr;
tf->fixreg[6] = 0; /* auxillary vector */
tf->fixreg[7] = 0; /* termination vector */
tf->fixreg[8] = (register_t)PS_STRINGS; /* NetBSD extension */
tf->srr0 = entry;
tf->srr1 = PSL_MBO | PSL_USERSET | PSL_FE_DFLT;
td->td_pcb->pcb_flags = 0;
}
int
fill_regs(struct thread *td, struct reg *regs)
{
struct trapframe *tf;
tf = td->td_frame;
memcpy(regs, tf, sizeof(struct reg));
return (0);
}
int
fill_dbregs(struct thread *td, struct dbreg *dbregs)
{
/* No debug registers on PowerPC */
return (ENOSYS);
}
int
fill_fpregs(struct thread *td, struct fpreg *fpregs)
{
struct pcb *pcb;
pcb = td->td_pcb;
if ((pcb->pcb_flags & PCB_FPU) == 0)
memset(fpregs, 0, sizeof(struct fpreg));
else
memcpy(fpregs, &pcb->pcb_fpu, sizeof(struct fpreg));
return (0);
}
int
set_regs(struct thread *td, struct reg *regs)
{
struct trapframe *tf;
tf = td->td_frame;
memcpy(tf, regs, sizeof(struct reg));
return (0);
}
int
set_dbregs(struct thread *td, struct dbreg *dbregs)
{
/* No debug registers on PowerPC */
return (ENOSYS);
}
int
set_fpregs(struct thread *td, struct fpreg *fpregs)
{
struct pcb *pcb;
pcb = td->td_pcb;
if ((pcb->pcb_flags & PCB_FPU) == 0)
enable_fpu(td);
memcpy(&pcb->pcb_fpu, fpregs, sizeof(struct fpreg));
return (0);
}
int
ptrace_set_pc(struct thread *td, unsigned long addr)
{
struct trapframe *tf;
tf = td->td_frame;
tf->srr0 = (register_t)addr;
return (0);
}
int
ptrace_single_step(struct thread *td)
{
struct trapframe *tf;
tf = td->td_frame;
tf->srr1 |= PSL_SE;
return (0);
}
int
ptrace_clear_single_step(struct thread *td)
{
struct trapframe *tf;
tf = td->td_frame;
tf->srr1 &= ~PSL_SE;
return (0);
}
void
kdb_cpu_clear_singlestep(void)
{
kdb_frame->srr1 &= ~PSL_SE;
}
void
kdb_cpu_set_singlestep(void)
{
kdb_frame->srr1 |= PSL_SE;
}
/*
* Initialise a struct pcpu.
*/
void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t sz)
{
}
Divorce critical sections from spinlocks. Critical sections as denoted by critical_enter() and critical_exit() are now solely a mechanism for deferring kernel preemptions. They no longer have any affect on interrupts. This means that standalone critical sections are now very cheap as they are simply unlocked integer increments and decrements for the common case. Spin mutexes now use a separate KPI implemented in MD code: spinlock_enter() and spinlock_exit(). This KPI is responsible for providing whatever MD guarantees are needed to ensure that a thread holding a spin lock won't be preempted by any other code that will try to lock the same lock. For now all archs continue to block interrupts in a "spinlock section" as they did formerly in all critical sections. Note that I've also taken this opportunity to push a few things into MD code rather than MI. For example, critical_fork_exit() no longer exists. Instead, MD code ensures that new threads have the correct state when they are created. Also, we no longer try to fixup the idlethreads for APs in MI code. Instead, each arch sets the initial curthread and adjusts the state of the idle thread it borrows in order to perform the initial context switch. This change is largely a big NOP, but the cleaner separation it provides will allow for more efficient alternative locking schemes in other parts of the kernel (bare critical sections rather than per-CPU spin mutexes for per-CPU data for example). Reviewed by: grehan, cognet, arch@, others Tested on: i386, alpha, sparc64, powerpc, arm, possibly more
2005-04-04 21:53:56 +00:00
void
spinlock_enter(void)
{
struct thread *td;
td = curthread;
if (td->td_md.md_spinlock_count == 0)
td->td_md.md_saved_msr = intr_disable();
td->td_md.md_spinlock_count++;
critical_enter();
}
void
spinlock_exit(void)
{
struct thread *td;
td = curthread;
critical_exit();
td->td_md.md_spinlock_count--;
if (td->td_md.md_spinlock_count == 0)
intr_restore(td->td_md.md_saved_msr);
}
/*
* kcopy(const void *src, void *dst, size_t len);
*
* Copy len bytes from src to dst, aborting if we encounter a fatal
* page fault.
*
* kcopy() _must_ save and restore the old fault handler since it is
* called by uiomove(), which may be in the path of servicing a non-fatal
* page fault.
*/
int
kcopy(const void *src, void *dst, size_t len)
{
struct thread *td;
faultbuf env, *oldfault;
int rv;
td = PCPU_GET(curthread);
oldfault = td->td_pcb->pcb_onfault;
if ((rv = setfault(env)) != 0) {
td->td_pcb->pcb_onfault = oldfault;
return rv;
}
memcpy(dst, src, len);
td->td_pcb->pcb_onfault = oldfault;
return (0);
}
void
asm_panic(char *pstr)
{
panic(pstr);
}
int db_trap_glue(struct trapframe *); /* Called from trap_subr.S */
int
db_trap_glue(struct trapframe *frame)
{
if (!(frame->srr1 & PSL_PR)
&& (frame->exc == EXC_TRC || frame->exc == EXC_RUNMODETRC
|| (frame->exc == EXC_PGM
&& (frame->srr1 & 0x20000))
2004-07-23 05:27:17 +00:00
|| frame->exc == EXC_BPT
|| frame->exc == EXC_DSI)) {
int type = frame->exc;
if (type == EXC_PGM && (frame->srr1 & 0x20000)) {
type = T_BREAKPOINT;
}
return (kdb_trap(type, 0, frame));
}
return (0);
}