freebsd-dev/sys/crypto/rijndael/rijndael-alg-fst.c

489 lines
15 KiB
C
Raw Normal View History

/* $FreeBSD$ */
/* $KAME: rijndael-alg-fst.c,v 1.7 2001/05/27 00:23:23 itojun Exp $ */
/*
* rijndael-alg-fst.c v2.3 April '2000
*
* Optimised ANSI C code
*
* authors: v1.0: Antoon Bosselaers
* v2.0: Vincent Rijmen
* v2.3: Paulo Barreto
*
* This code is placed in the public domain.
*/
#include <sys/cdefs.h>
#include <sys/types.h>
#ifdef _KERNEL
#include <sys/systm.h>
#else
#include <string.h>
#endif
#include <crypto/rijndael/rijndael-alg-fst.h>
#include <crypto/rijndael/rijndael_local.h>
#include <crypto/rijndael/boxes-fst.dat>
int rijndaelKeySched(word8 k[MAXKC][4], word8 W[MAXROUNDS+1][4][4], int ROUNDS) {
/* Calculate the necessary round keys
* The number of calculations depends on keyBits and blockBits
*/
int j, r, t, rconpointer = 0;
union {
word8 x8[MAXKC][4];
word32 x32[MAXKC];
} xtk;
#define tk xtk.x8
int KC = ROUNDS - 6;
for (j = KC-1; j >= 0; j--) {
*((word32*)tk[j]) = *((word32*)k[j]);
}
r = 0;
t = 0;
/* copy values into round key array */
for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
for (; (j < KC) && (t < 4); j++, t++) {
*((word32*)W[r][t]) = *((word32*)tk[j]);
}
if (t == 4) {
r++;
t = 0;
}
}
while (r < ROUNDS + 1) { /* while not enough round key material calculated */
/* calculate new values */
tk[0][0] ^= S[tk[KC-1][1]];
tk[0][1] ^= S[tk[KC-1][2]];
tk[0][2] ^= S[tk[KC-1][3]];
tk[0][3] ^= S[tk[KC-1][0]];
tk[0][0] ^= rcon[rconpointer++];
if (KC != 8) {
for (j = 1; j < KC; j++) {
*((word32*)tk[j]) ^= *((word32*)tk[j-1]);
}
} else {
for (j = 1; j < KC/2; j++) {
*((word32*)tk[j]) ^= *((word32*)tk[j-1]);
}
tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
for (j = KC/2 + 1; j < KC; j++) {
*((word32*)tk[j]) ^= *((word32*)tk[j-1]);
}
}
/* copy values into round key array */
for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
for (; (j < KC) && (t < 4); j++, t++) {
*((word32*)W[r][t]) = *((word32*)tk[j]);
}
if (t == 4) {
r++;
t = 0;
}
}
}
return 0;
#undef tk
}
int rijndaelKeyEncToDec(word8 W[MAXROUNDS+1][4][4], int ROUNDS) {
int r;
word8 *w;
for (r = 1; r < ROUNDS; r++) {
w = W[r][0];
*((word32*)w) =
*((const word32*)U1[w[0]])
^ *((const word32*)U2[w[1]])
^ *((const word32*)U3[w[2]])
^ *((const word32*)U4[w[3]]);
w = W[r][1];
*((word32*)w) =
*((const word32*)U1[w[0]])
^ *((const word32*)U2[w[1]])
^ *((const word32*)U3[w[2]])
^ *((const word32*)U4[w[3]]);
w = W[r][2];
*((word32*)w) =
*((const word32*)U1[w[0]])
^ *((const word32*)U2[w[1]])
^ *((const word32*)U3[w[2]])
^ *((const word32*)U4[w[3]]);
w = W[r][3];
*((word32*)w) =
*((const word32*)U1[w[0]])
^ *((const word32*)U2[w[1]])
^ *((const word32*)U3[w[2]])
^ *((const word32*)U4[w[3]]);
}
return 0;
}
/**
* Encrypt a single block.
*/
int rijndaelEncrypt(word8 in[16], word8 out[16], word8 rk[MAXROUNDS+1][4][4], int ROUNDS) {
int r;
union {
word8 x8[16];
word32 x32[4];
} xa, xb;
#define a xa.x8
#define b xb.x8
union {
word8 x8[4][4];
word32 x32[4];
} xtemp;
#define temp xtemp.x8
memcpy(a, in, sizeof a);
*((word32*)temp[0]) = *((word32*)(a )) ^ *((word32*)rk[0][0]);
*((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[0][1]);
*((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[0][2]);
*((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[0][3]);
*((word32*)(b )) = *((const word32*)T1[temp[0][0]])
^ *((const word32*)T2[temp[1][1]])
^ *((const word32*)T3[temp[2][2]])
^ *((const word32*)T4[temp[3][3]]);
*((word32*)(b + 4)) = *((const word32*)T1[temp[1][0]])
^ *((const word32*)T2[temp[2][1]])
^ *((const word32*)T3[temp[3][2]])
^ *((const word32*)T4[temp[0][3]]);
*((word32*)(b + 8)) = *((const word32*)T1[temp[2][0]])
^ *((const word32*)T2[temp[3][1]])
^ *((const word32*)T3[temp[0][2]])
^ *((const word32*)T4[temp[1][3]]);
*((word32*)(b +12)) = *((const word32*)T1[temp[3][0]])
^ *((const word32*)T2[temp[0][1]])
^ *((const word32*)T3[temp[1][2]])
^ *((const word32*)T4[temp[2][3]]);
for (r = 1; r < ROUNDS-1; r++) {
*((word32*)temp[0]) = *((word32*)(b )) ^ *((word32*)rk[r][0]);
*((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]);
*((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]);
*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
*((word32*)(b )) = *((const word32*)T1[temp[0][0]])
^ *((const word32*)T2[temp[1][1]])
^ *((const word32*)T3[temp[2][2]])
^ *((const word32*)T4[temp[3][3]]);
*((word32*)(b + 4)) = *((const word32*)T1[temp[1][0]])
^ *((const word32*)T2[temp[2][1]])
^ *((const word32*)T3[temp[3][2]])
^ *((const word32*)T4[temp[0][3]]);
*((word32*)(b + 8)) = *((const word32*)T1[temp[2][0]])
^ *((const word32*)T2[temp[3][1]])
^ *((const word32*)T3[temp[0][2]])
^ *((const word32*)T4[temp[1][3]]);
*((word32*)(b +12)) = *((const word32*)T1[temp[3][0]])
^ *((const word32*)T2[temp[0][1]])
^ *((const word32*)T3[temp[1][2]])
^ *((const word32*)T4[temp[2][3]]);
}
/* last round is special */
*((word32*)temp[0]) = *((word32*)(b )) ^ *((word32*)rk[ROUNDS-1][0]);
*((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[ROUNDS-1][1]);
*((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[ROUNDS-1][2]);
*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[ROUNDS-1][3]);
b[ 0] = T1[temp[0][0]][1];
b[ 1] = T1[temp[1][1]][1];
b[ 2] = T1[temp[2][2]][1];
b[ 3] = T1[temp[3][3]][1];
b[ 4] = T1[temp[1][0]][1];
b[ 5] = T1[temp[2][1]][1];
b[ 6] = T1[temp[3][2]][1];
b[ 7] = T1[temp[0][3]][1];
b[ 8] = T1[temp[2][0]][1];
b[ 9] = T1[temp[3][1]][1];
b[10] = T1[temp[0][2]][1];
b[11] = T1[temp[1][3]][1];
b[12] = T1[temp[3][0]][1];
b[13] = T1[temp[0][1]][1];
b[14] = T1[temp[1][2]][1];
b[15] = T1[temp[2][3]][1];
*((word32*)(b )) ^= *((word32*)rk[ROUNDS][0]);
*((word32*)(b+ 4)) ^= *((word32*)rk[ROUNDS][1]);
*((word32*)(b+ 8)) ^= *((word32*)rk[ROUNDS][2]);
*((word32*)(b+12)) ^= *((word32*)rk[ROUNDS][3]);
memcpy(out, b, sizeof b /* XXX out */);
return 0;
#undef a
#undef b
#undef temp
}
#ifdef INTERMEDIATE_VALUE_KAT
/**
* Encrypt only a certain number of rounds.
* Only used in the Intermediate Value Known Answer Test.
*/
int rijndaelEncryptRound(word8 a[4][4], word8 rk[MAXROUNDS+1][4][4], int ROUNDS, int rounds) {
int r;
word8 temp[4][4];
/* make number of rounds sane */
if (rounds > ROUNDS) {
rounds = ROUNDS;
}
*((word32*)a[0]) = *((word32*)a[0]) ^ *((word32*)rk[0][0]);
*((word32*)a[1]) = *((word32*)a[1]) ^ *((word32*)rk[0][1]);
*((word32*)a[2]) = *((word32*)a[2]) ^ *((word32*)rk[0][2]);
*((word32*)a[3]) = *((word32*)a[3]) ^ *((word32*)rk[0][3]);
for (r = 1; (r <= rounds) && (r < ROUNDS); r++) {
*((word32*)temp[0]) = *((word32*)T1[a[0][0]])
^ *((word32*)T2[a[1][1]])
^ *((word32*)T3[a[2][2]])
^ *((word32*)T4[a[3][3]]);
*((word32*)temp[1]) = *((word32*)T1[a[1][0]])
^ *((word32*)T2[a[2][1]])
^ *((word32*)T3[a[3][2]])
^ *((word32*)T4[a[0][3]]);
*((word32*)temp[2]) = *((word32*)T1[a[2][0]])
^ *((word32*)T2[a[3][1]])
^ *((word32*)T3[a[0][2]])
^ *((word32*)T4[a[1][3]]);
*((word32*)temp[3]) = *((word32*)T1[a[3][0]])
^ *((word32*)T2[a[0][1]])
^ *((word32*)T3[a[1][2]])
^ *((word32*)T4[a[2][3]]);
*((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[r][0]);
*((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[r][1]);
*((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[r][2]);
*((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[r][3]);
}
if (rounds == ROUNDS) {
/* last round is special */
temp[0][0] = T1[a[0][0]][1];
temp[0][1] = T1[a[1][1]][1];
temp[0][2] = T1[a[2][2]][1];
temp[0][3] = T1[a[3][3]][1];
temp[1][0] = T1[a[1][0]][1];
temp[1][1] = T1[a[2][1]][1];
temp[1][2] = T1[a[3][2]][1];
temp[1][3] = T1[a[0][3]][1];
temp[2][0] = T1[a[2][0]][1];
temp[2][1] = T1[a[3][1]][1];
temp[2][2] = T1[a[0][2]][1];
temp[2][3] = T1[a[1][3]][1];
temp[3][0] = T1[a[3][0]][1];
temp[3][1] = T1[a[0][1]][1];
temp[3][2] = T1[a[1][2]][1];
temp[3][3] = T1[a[2][3]][1];
*((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[ROUNDS][0]);
*((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[ROUNDS][1]);
*((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[ROUNDS][2]);
*((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[ROUNDS][3]);
}
return 0;
}
#endif /* INTERMEDIATE_VALUE_KAT */
/**
* Decrypt a single block.
*/
int rijndaelDecrypt(word8 in[16], word8 out[16], word8 rk[MAXROUNDS+1][4][4], int ROUNDS) {
int r;
union {
word8 x8[16];
word32 x32[4];
} xa, xb;
#define a xa.x8
#define b xb.x8
union {
word8 x8[4][4];
word32 x32[4];
} xtemp;
#define temp xtemp.x8
memcpy(a, in, sizeof a);
*((word32*)temp[0]) = *((word32*)(a )) ^ *((word32*)rk[ROUNDS][0]);
*((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[ROUNDS][1]);
*((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[ROUNDS][2]);
*((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[ROUNDS][3]);
*((word32*)(b )) = *((const word32*)T5[temp[0][0]])
^ *((const word32*)T6[temp[3][1]])
^ *((const word32*)T7[temp[2][2]])
^ *((const word32*)T8[temp[1][3]]);
*((word32*)(b+ 4)) = *((const word32*)T5[temp[1][0]])
^ *((const word32*)T6[temp[0][1]])
^ *((const word32*)T7[temp[3][2]])
^ *((const word32*)T8[temp[2][3]]);
*((word32*)(b+ 8)) = *((const word32*)T5[temp[2][0]])
^ *((const word32*)T6[temp[1][1]])
^ *((const word32*)T7[temp[0][2]])
^ *((const word32*)T8[temp[3][3]]);
*((word32*)(b+12)) = *((const word32*)T5[temp[3][0]])
^ *((const word32*)T6[temp[2][1]])
^ *((const word32*)T7[temp[1][2]])
^ *((const word32*)T8[temp[0][3]]);
for (r = ROUNDS-1; r > 1; r--) {
*((word32*)temp[0]) = *((word32*)(b )) ^ *((word32*)rk[r][0]);
*((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]);
*((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]);
*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
*((word32*)(b )) = *((const word32*)T5[temp[0][0]])
^ *((const word32*)T6[temp[3][1]])
^ *((const word32*)T7[temp[2][2]])
^ *((const word32*)T8[temp[1][3]]);
*((word32*)(b+ 4)) = *((const word32*)T5[temp[1][0]])
^ *((const word32*)T6[temp[0][1]])
^ *((const word32*)T7[temp[3][2]])
^ *((const word32*)T8[temp[2][3]]);
*((word32*)(b+ 8)) = *((const word32*)T5[temp[2][0]])
^ *((const word32*)T6[temp[1][1]])
^ *((const word32*)T7[temp[0][2]])
^ *((const word32*)T8[temp[3][3]]);
*((word32*)(b+12)) = *((const word32*)T5[temp[3][0]])
^ *((const word32*)T6[temp[2][1]])
^ *((const word32*)T7[temp[1][2]])
^ *((const word32*)T8[temp[0][3]]);
}
/* last round is special */
*((word32*)temp[0]) = *((word32*)(b )) ^ *((word32*)rk[1][0]);
*((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[1][1]);
*((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[1][2]);
*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[1][3]);
b[ 0] = S5[temp[0][0]];
b[ 1] = S5[temp[3][1]];
b[ 2] = S5[temp[2][2]];
b[ 3] = S5[temp[1][3]];
b[ 4] = S5[temp[1][0]];
b[ 5] = S5[temp[0][1]];
b[ 6] = S5[temp[3][2]];
b[ 7] = S5[temp[2][3]];
b[ 8] = S5[temp[2][0]];
b[ 9] = S5[temp[1][1]];
b[10] = S5[temp[0][2]];
b[11] = S5[temp[3][3]];
b[12] = S5[temp[3][0]];
b[13] = S5[temp[2][1]];
b[14] = S5[temp[1][2]];
b[15] = S5[temp[0][3]];
*((word32*)(b )) ^= *((word32*)rk[0][0]);
*((word32*)(b+ 4)) ^= *((word32*)rk[0][1]);
*((word32*)(b+ 8)) ^= *((word32*)rk[0][2]);
*((word32*)(b+12)) ^= *((word32*)rk[0][3]);
memcpy(out, b, sizeof b /* XXX out */);
return 0;
#undef a
#undef b
#undef temp
}
#ifdef INTERMEDIATE_VALUE_KAT
/**
* Decrypt only a certain number of rounds.
* Only used in the Intermediate Value Known Answer Test.
* Operations rearranged such that the intermediate values
* of decryption correspond with the intermediate values
* of encryption.
*/
int rijndaelDecryptRound(word8 a[4][4], word8 rk[MAXROUNDS+1][4][4], int ROUNDS, int rounds) {
int r, i;
word8 temp[4], shift;
/* make number of rounds sane */
if (rounds > ROUNDS) {
rounds = ROUNDS;
}
/* first round is special: */
*(word32 *)a[0] ^= *(word32 *)rk[ROUNDS][0];
*(word32 *)a[1] ^= *(word32 *)rk[ROUNDS][1];
*(word32 *)a[2] ^= *(word32 *)rk[ROUNDS][2];
*(word32 *)a[3] ^= *(word32 *)rk[ROUNDS][3];
for (i = 0; i < 4; i++) {
a[i][0] = Si[a[i][0]];
a[i][1] = Si[a[i][1]];
a[i][2] = Si[a[i][2]];
a[i][3] = Si[a[i][3]];
}
for (i = 1; i < 4; i++) {
shift = (4 - i) & 3;
temp[0] = a[(0 + shift) & 3][i];
temp[1] = a[(1 + shift) & 3][i];
temp[2] = a[(2 + shift) & 3][i];
temp[3] = a[(3 + shift) & 3][i];
a[0][i] = temp[0];
a[1][i] = temp[1];
a[2][i] = temp[2];
a[3][i] = temp[3];
}
/* ROUNDS-1 ordinary rounds */
for (r = ROUNDS-1; r > rounds; r--) {
*(word32 *)a[0] ^= *(word32 *)rk[r][0];
*(word32 *)a[1] ^= *(word32 *)rk[r][1];
*(word32 *)a[2] ^= *(word32 *)rk[r][2];
*(word32 *)a[3] ^= *(word32 *)rk[r][3];
*((word32*)a[0]) =
*((word32*)U1[a[0][0]])
^ *((word32*)U2[a[0][1]])
^ *((word32*)U3[a[0][2]])
^ *((word32*)U4[a[0][3]]);
*((word32*)a[1]) =
*((word32*)U1[a[1][0]])
^ *((word32*)U2[a[1][1]])
^ *((word32*)U3[a[1][2]])
^ *((word32*)U4[a[1][3]]);
*((word32*)a[2]) =
*((word32*)U1[a[2][0]])
^ *((word32*)U2[a[2][1]])
^ *((word32*)U3[a[2][2]])
^ *((word32*)U4[a[2][3]]);
*((word32*)a[3]) =
*((word32*)U1[a[3][0]])
^ *((word32*)U2[a[3][1]])
^ *((word32*)U3[a[3][2]])
^ *((word32*)U4[a[3][3]]);
for (i = 0; i < 4; i++) {
a[i][0] = Si[a[i][0]];
a[i][1] = Si[a[i][1]];
a[i][2] = Si[a[i][2]];
a[i][3] = Si[a[i][3]];
}
for (i = 1; i < 4; i++) {
shift = (4 - i) & 3;
temp[0] = a[(0 + shift) & 3][i];
temp[1] = a[(1 + shift) & 3][i];
temp[2] = a[(2 + shift) & 3][i];
temp[3] = a[(3 + shift) & 3][i];
a[0][i] = temp[0];
a[1][i] = temp[1];
a[2][i] = temp[2];
a[3][i] = temp[3];
}
}
if (rounds == 0) {
/* End with the extra key addition */
*(word32 *)a[0] ^= *(word32 *)rk[0][0];
*(word32 *)a[1] ^= *(word32 *)rk[0][1];
*(word32 *)a[2] ^= *(word32 *)rk[0][2];
*(word32 *)a[3] ^= *(word32 *)rk[0][3];
}
return 0;
}
#endif /* INTERMEDIATE_VALUE_KAT */