freebsd-dev/sys/compat/linux/linux_stats.c

671 lines
18 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
2012-01-15 13:23:18 +00:00
* Copyright (c) 1994-1995 Søren Schmidt
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
2003-06-10 21:29:12 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include <sys/param.h>
#include <sys/capsicum.h>
#include <sys/dirent.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/stat.h>
#include <sys/syscallsubr.h>
#include <sys/systm.h>
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
#include <sys/tty.h>
#include <sys/vnode.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#ifdef COMPAT_LINUX32
#include <machine/../linux32/linux.h>
#include <machine/../linux32/linux32_proto.h>
#else
#include <machine/../linux/linux.h>
#include <machine/../linux/linux_proto.h>
#endif
2000-08-22 01:51:54 +00:00
#include <compat/linux/linux_util.h>
#include <compat/linux/linux_file.h>
static void
translate_vnhook_major_minor(struct vnode *vp, struct stat *sb)
{
int major, minor;
if (vp->v_type == VCHR && vp->v_rdev != NULL &&
linux_driver_get_major_minor(devtoname(vp->v_rdev),
&major, &minor) == 0) {
sb->st_rdev = (major << 8 | minor);
}
}
static int
linux_kern_statat(struct thread *td, int flag, int fd, char *path,
enum uio_seg pathseg, struct stat *sbp)
{
return (kern_statat(td, flag, fd, path, pathseg, sbp,
translate_vnhook_major_minor));
}
#ifdef LINUX_LEGACY_SYSCALLS
static int
linux_kern_stat(struct thread *td, char *path, enum uio_seg pathseg,
struct stat *sbp)
{
return (linux_kern_statat(td, 0, AT_FDCWD, path, pathseg, sbp));
}
static int
linux_kern_lstat(struct thread *td, char *path, enum uio_seg pathseg,
struct stat *sbp)
{
return (linux_kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, path,
pathseg, sbp));
}
#endif
static void
translate_fd_major_minor(struct thread *td, int fd, struct stat *buf)
{
struct file *fp;
struct vnode *vp;
int major, minor;
/*
* No capability rights required here.
*/
if ((!S_ISCHR(buf->st_mode) && !S_ISBLK(buf->st_mode)) ||
fget(td, fd, &cap_no_rights, &fp) != 0)
return;
vp = fp->f_vnode;
if (vp != NULL && vp->v_rdev != NULL &&
linux_driver_get_major_minor(devtoname(vp->v_rdev),
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
&major, &minor) == 0) {
buf->st_rdev = (major << 8 | minor);
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
} else if (fp->f_type == DTYPE_PTS) {
struct tty *tp = fp->f_data;
/* Convert the numbers for the slave device. */
if (linux_driver_get_major_minor(devtoname(tp->t_dev),
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
&major, &minor) == 0) {
buf->st_rdev = (major << 8 | minor);
}
}
fdrop(fp, td);
}
Fix the encoding of major and minor numbers in 64-bit dev_t by restoring the old encodings for the lower 16 and 32 bits and only using the higher 32 bits for unusually large major and minor numbers. This change breaks compatibility with the previous encoding (which was only used in -current). Fix truncation to (essentially) 16-bit dev_t in newnfs v3. Any encoding of device numbers gives an ABI, so it can't be changed without translations for compatibility. Extra bits give the much larger complication that the translations need to compress into fewer bits. Fortunately, more than 32 bits are rarely needed, so compression is rarely needed except for 16-bit linux dev_t where it was always needed but never done. The previous encoding moved the major number into the top 32 bits. Almost no translation code handled this, so the major number was blindly truncated away in most 32-bit encodings. E.g., for ffs, mknod(8) with major = 1 and minor = 2 gave dev_t = 0x10000002; ffs cannot represent this and blindly truncated it to 2. But if this mknod was run on any released version of FreeBSD, it gives dev_t = 0x102. ffs can represent this, but in the previous encoding it was not decoded, giving major = 0, minor = 0x102. The presence of bugs was most obvious for exporting dev_t's from an old system to -current, since bugs in newnfs augment them. I fixed oldnfs to support 32-bit dev_t in 1996 (r16634), but this regressed to 16-bit dev_t in newnfs, first to the old 16-bit encoding and then further in -current. E.g., old ad0 with major = 234, minor = 0x10002 had the correct (major, minor) number on the wire, but newnfs truncated this to (234, 2) and then the previous encoding shifted the major number into oblivion as seen by ffs or old applications. I first tried to fix this by translating on every ABI/API boundary, but there are too many boundaries and too many sloppy translations by blind truncation. So use the old encoding for the low 32 bits so that sloppy translations work no worse than before provided the high 32 bits are not set. Add some error checking for when bits are lost. Keep not doing any error checking for translations for almost everything in compat/linux. compat/freebsd32/freebsd32_misc.c: Optionally check for losing bits after possibly-truncating assignments as before. compat/linux/linux_stats.c: Depend on the representation being compatible with Linux's (or just with itself for local use) and spell some of the translations as assignments in a macro that hides the details. fs/nfsclient/nfs_clcomsubs.c: Essentially the same fix as in 1996, except there is now no possible truncation in makedev() itself. Also fix nearby style bugs. kern/vfs_syscalls.c: As for freebsd32. Also update the sysctl description to include file numbers, and change it to describe device ids as device numbers. sys/types.h: Use inline functions (wrapped by macros) since the expressions are now a bit too complicated for plain macros. Describe the encoding and some of the reasons for it. 16-bit compatibility didn't leave many reasonable choices for the 32-bit encoding, and 32-bit compatibility doesn't leave many reasonable choices for the 64-bit encoding. My choice is to put the 8 new minor bits in the low 8 bits of the top 32 bits. This minimizes discontiguities. Reviewed by: kib (except for rewrite of the comment in linux_stats.c)
2018-06-13 12:22:00 +00:00
/*
* l_dev_t has the same encoding as dev_t in the latter's low 16 bits, so
* truncation of a dev_t to 16 bits gives the same result as unpacking
* using major() and minor() and repacking in the l_dev_t format. This
* detail is hidden in dev_to_ldev(). Overflow in conversions of dev_t's
* are not checked for, as for other fields.
Fix the encoding of major and minor numbers in 64-bit dev_t by restoring the old encodings for the lower 16 and 32 bits and only using the higher 32 bits for unusually large major and minor numbers. This change breaks compatibility with the previous encoding (which was only used in -current). Fix truncation to (essentially) 16-bit dev_t in newnfs v3. Any encoding of device numbers gives an ABI, so it can't be changed without translations for compatibility. Extra bits give the much larger complication that the translations need to compress into fewer bits. Fortunately, more than 32 bits are rarely needed, so compression is rarely needed except for 16-bit linux dev_t where it was always needed but never done. The previous encoding moved the major number into the top 32 bits. Almost no translation code handled this, so the major number was blindly truncated away in most 32-bit encodings. E.g., for ffs, mknod(8) with major = 1 and minor = 2 gave dev_t = 0x10000002; ffs cannot represent this and blindly truncated it to 2. But if this mknod was run on any released version of FreeBSD, it gives dev_t = 0x102. ffs can represent this, but in the previous encoding it was not decoded, giving major = 0, minor = 0x102. The presence of bugs was most obvious for exporting dev_t's from an old system to -current, since bugs in newnfs augment them. I fixed oldnfs to support 32-bit dev_t in 1996 (r16634), but this regressed to 16-bit dev_t in newnfs, first to the old 16-bit encoding and then further in -current. E.g., old ad0 with major = 234, minor = 0x10002 had the correct (major, minor) number on the wire, but newnfs truncated this to (234, 2) and then the previous encoding shifted the major number into oblivion as seen by ffs or old applications. I first tried to fix this by translating on every ABI/API boundary, but there are too many boundaries and too many sloppy translations by blind truncation. So use the old encoding for the low 32 bits so that sloppy translations work no worse than before provided the high 32 bits are not set. Add some error checking for when bits are lost. Keep not doing any error checking for translations for almost everything in compat/linux. compat/freebsd32/freebsd32_misc.c: Optionally check for losing bits after possibly-truncating assignments as before. compat/linux/linux_stats.c: Depend on the representation being compatible with Linux's (or just with itself for local use) and spell some of the translations as assignments in a macro that hides the details. fs/nfsclient/nfs_clcomsubs.c: Essentially the same fix as in 1996, except there is now no possible truncation in makedev() itself. Also fix nearby style bugs. kern/vfs_syscalls.c: As for freebsd32. Also update the sysctl description to include file numbers, and change it to describe device ids as device numbers. sys/types.h: Use inline functions (wrapped by macros) since the expressions are now a bit too complicated for plain macros. Describe the encoding and some of the reasons for it. 16-bit compatibility didn't leave many reasonable choices for the 32-bit encoding, and 32-bit compatibility doesn't leave many reasonable choices for the 64-bit encoding. My choice is to put the 8 new minor bits in the low 8 bits of the top 32 bits. This minimizes discontiguities. Reviewed by: kib (except for rewrite of the comment in linux_stats.c)
2018-06-13 12:22:00 +00:00
*
* dev_to_ldev() is only used for translating st_dev. When we convert
* st_rdev for copying it out, it isn't really a dev_t, but has already
* been translated to an l_dev_t in a nontrivial way. Translating it
* again would be illogical but would have no effect since the low 16
* bits have the same encoding.
*
* The nontrivial translation for st_rdev renumbers some devices, but not
* ones that can be mounted on, so it is consistent with the translation
* for st_dev except when the renumbering or truncation causes conflicts.
Fix the encoding of major and minor numbers in 64-bit dev_t by restoring the old encodings for the lower 16 and 32 bits and only using the higher 32 bits for unusually large major and minor numbers. This change breaks compatibility with the previous encoding (which was only used in -current). Fix truncation to (essentially) 16-bit dev_t in newnfs v3. Any encoding of device numbers gives an ABI, so it can't be changed without translations for compatibility. Extra bits give the much larger complication that the translations need to compress into fewer bits. Fortunately, more than 32 bits are rarely needed, so compression is rarely needed except for 16-bit linux dev_t where it was always needed but never done. The previous encoding moved the major number into the top 32 bits. Almost no translation code handled this, so the major number was blindly truncated away in most 32-bit encodings. E.g., for ffs, mknod(8) with major = 1 and minor = 2 gave dev_t = 0x10000002; ffs cannot represent this and blindly truncated it to 2. But if this mknod was run on any released version of FreeBSD, it gives dev_t = 0x102. ffs can represent this, but in the previous encoding it was not decoded, giving major = 0, minor = 0x102. The presence of bugs was most obvious for exporting dev_t's from an old system to -current, since bugs in newnfs augment them. I fixed oldnfs to support 32-bit dev_t in 1996 (r16634), but this regressed to 16-bit dev_t in newnfs, first to the old 16-bit encoding and then further in -current. E.g., old ad0 with major = 234, minor = 0x10002 had the correct (major, minor) number on the wire, but newnfs truncated this to (234, 2) and then the previous encoding shifted the major number into oblivion as seen by ffs or old applications. I first tried to fix this by translating on every ABI/API boundary, but there are too many boundaries and too many sloppy translations by blind truncation. So use the old encoding for the low 32 bits so that sloppy translations work no worse than before provided the high 32 bits are not set. Add some error checking for when bits are lost. Keep not doing any error checking for translations for almost everything in compat/linux. compat/freebsd32/freebsd32_misc.c: Optionally check for losing bits after possibly-truncating assignments as before. compat/linux/linux_stats.c: Depend on the representation being compatible with Linux's (or just with itself for local use) and spell some of the translations as assignments in a macro that hides the details. fs/nfsclient/nfs_clcomsubs.c: Essentially the same fix as in 1996, except there is now no possible truncation in makedev() itself. Also fix nearby style bugs. kern/vfs_syscalls.c: As for freebsd32. Also update the sysctl description to include file numbers, and change it to describe device ids as device numbers. sys/types.h: Use inline functions (wrapped by macros) since the expressions are now a bit too complicated for plain macros. Describe the encoding and some of the reasons for it. 16-bit compatibility didn't leave many reasonable choices for the 32-bit encoding, and 32-bit compatibility doesn't leave many reasonable choices for the 64-bit encoding. My choice is to put the 8 new minor bits in the low 8 bits of the top 32 bits. This minimizes discontiguities. Reviewed by: kib (except for rewrite of the comment in linux_stats.c)
2018-06-13 12:22:00 +00:00
*/
#define dev_to_ldev(d) ((uint16_t)(d))
static int
newstat_copyout(struct stat *buf, void *ubuf)
{
struct l_newstat tbuf;
bzero(&tbuf, sizeof(tbuf));
Fix the encoding of major and minor numbers in 64-bit dev_t by restoring the old encodings for the lower 16 and 32 bits and only using the higher 32 bits for unusually large major and minor numbers. This change breaks compatibility with the previous encoding (which was only used in -current). Fix truncation to (essentially) 16-bit dev_t in newnfs v3. Any encoding of device numbers gives an ABI, so it can't be changed without translations for compatibility. Extra bits give the much larger complication that the translations need to compress into fewer bits. Fortunately, more than 32 bits are rarely needed, so compression is rarely needed except for 16-bit linux dev_t where it was always needed but never done. The previous encoding moved the major number into the top 32 bits. Almost no translation code handled this, so the major number was blindly truncated away in most 32-bit encodings. E.g., for ffs, mknod(8) with major = 1 and minor = 2 gave dev_t = 0x10000002; ffs cannot represent this and blindly truncated it to 2. But if this mknod was run on any released version of FreeBSD, it gives dev_t = 0x102. ffs can represent this, but in the previous encoding it was not decoded, giving major = 0, minor = 0x102. The presence of bugs was most obvious for exporting dev_t's from an old system to -current, since bugs in newnfs augment them. I fixed oldnfs to support 32-bit dev_t in 1996 (r16634), but this regressed to 16-bit dev_t in newnfs, first to the old 16-bit encoding and then further in -current. E.g., old ad0 with major = 234, minor = 0x10002 had the correct (major, minor) number on the wire, but newnfs truncated this to (234, 2) and then the previous encoding shifted the major number into oblivion as seen by ffs or old applications. I first tried to fix this by translating on every ABI/API boundary, but there are too many boundaries and too many sloppy translations by blind truncation. So use the old encoding for the low 32 bits so that sloppy translations work no worse than before provided the high 32 bits are not set. Add some error checking for when bits are lost. Keep not doing any error checking for translations for almost everything in compat/linux. compat/freebsd32/freebsd32_misc.c: Optionally check for losing bits after possibly-truncating assignments as before. compat/linux/linux_stats.c: Depend on the representation being compatible with Linux's (or just with itself for local use) and spell some of the translations as assignments in a macro that hides the details. fs/nfsclient/nfs_clcomsubs.c: Essentially the same fix as in 1996, except there is now no possible truncation in makedev() itself. Also fix nearby style bugs. kern/vfs_syscalls.c: As for freebsd32. Also update the sysctl description to include file numbers, and change it to describe device ids as device numbers. sys/types.h: Use inline functions (wrapped by macros) since the expressions are now a bit too complicated for plain macros. Describe the encoding and some of the reasons for it. 16-bit compatibility didn't leave many reasonable choices for the 32-bit encoding, and 32-bit compatibility doesn't leave many reasonable choices for the 64-bit encoding. My choice is to put the 8 new minor bits in the low 8 bits of the top 32 bits. This minimizes discontiguities. Reviewed by: kib (except for rewrite of the comment in linux_stats.c)
2018-06-13 12:22:00 +00:00
tbuf.st_dev = dev_to_ldev(buf->st_dev);
tbuf.st_ino = buf->st_ino;
tbuf.st_mode = buf->st_mode;
tbuf.st_nlink = buf->st_nlink;
tbuf.st_uid = buf->st_uid;
tbuf.st_gid = buf->st_gid;
tbuf.st_rdev = buf->st_rdev;
tbuf.st_size = buf->st_size;
tbuf.st_atim.tv_sec = buf->st_atim.tv_sec;
tbuf.st_atim.tv_nsec = buf->st_atim.tv_nsec;
tbuf.st_mtim.tv_sec = buf->st_mtim.tv_sec;
tbuf.st_mtim.tv_nsec = buf->st_mtim.tv_nsec;
tbuf.st_ctim.tv_sec = buf->st_ctim.tv_sec;
tbuf.st_ctim.tv_nsec = buf->st_ctim.tv_nsec;
tbuf.st_blksize = buf->st_blksize;
tbuf.st_blocks = buf->st_blocks;
return (copyout(&tbuf, ubuf, sizeof(tbuf)));
}
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_newstat(struct thread *td, struct linux_newstat_args *args)
{
struct stat buf;
char *path;
int error;
LCONVPATHEXIST(td, args->path, &path);
error = linux_kern_stat(td, path, UIO_SYSSPACE, &buf);
LFREEPATH(path);
if (error)
return (error);
return (newstat_copyout(&buf, args->buf));
}
int
linux_newlstat(struct thread *td, struct linux_newlstat_args *args)
{
struct stat sb;
char *path;
int error;
Mega-commit for Linux emulator update.. This has been stress tested under netscape-2.0 for Linux running all the Java stuff. The scrollbars are now working, at least on my machine. (whew! :-) I'm uncomfortable with the size of this commit, but it's too inter-dependant to easily seperate out. The main changes: COMPAT_LINUX is *GONE*. Most of the code has been moved out of the i386 machine dependent section into the linux emulator itself. The int 0x80 syscall code was almost identical to the lcall 7,0 code and a minor tweak allows them to both be used with the same C code. All kernels can now just modload the lkm and it'll DTRT without having to rebuild the kernel first. Like IBCS2, you can statically compile it in with "options LINUX". A pile of new syscalls implemented, including getdents(), llseek(), readv(), writev(), msync(), personality(). The Linux-ELF libraries want to use some of these. linux_select() now obeys Linux semantics, ie: returns the time remaining of the timeout value rather than leaving it the original value. Quite a few bugs removed, including incorrect arguments being used in syscalls.. eg: mixups between passing the sigset as an int, vs passing it as a pointer and doing a copyin(), missing return values, unhandled cases, SIOC* ioctls, etc. The build for the code has changed. i386/conf/files now knows how to build linux_genassym and generate linux_assym.h on the fly. Supporting changes elsewhere in the kernel: The user-mode signal trampoline has moved from the U area to immediately below the top of the stack (below PS_STRINGS). This allows the different binary emulations to have their own signal trampoline code (which gets rid of the hardwired syscall 103 (sigreturn on BSD, syslog on Linux)) and so that the emulator can provide the exact "struct sigcontext *" argument to the program's signal handlers. The sigstack's "ss_flags" now uses SS_DISABLE and SS_ONSTACK flags, which have the same values as the re-used SA_DISABLE and SA_ONSTACK which are intended for sigaction only. This enables the support of a SA_RESETHAND flag to sigaction to implement the gross SYSV and Linux SA_ONESHOT signal semantics where the signal handler is reset when it's triggered. makesyscalls.sh no longer appends the struct sysentvec on the end of the generated init_sysent.c code. It's a lot saner to have it in a seperate file rather than trying to update the structure inside the awk script. :-) At exec time, the dozen bytes or so of signal trampoline code are copied to the top of the user's stack, rather than obtaining the trampoline code the old way by getting a clone of the parent's user area. This allows Linux and native binaries to freely exec each other without getting trampolines mixed up.
1996-03-02 19:38:20 +00:00
LCONVPATHEXIST(td, args->path, &path);
error = linux_kern_lstat(td, path, UIO_SYSSPACE, &sb);
LFREEPATH(path);
Mega-commit for Linux emulator update.. This has been stress tested under netscape-2.0 for Linux running all the Java stuff. The scrollbars are now working, at least on my machine. (whew! :-) I'm uncomfortable with the size of this commit, but it's too inter-dependant to easily seperate out. The main changes: COMPAT_LINUX is *GONE*. Most of the code has been moved out of the i386 machine dependent section into the linux emulator itself. The int 0x80 syscall code was almost identical to the lcall 7,0 code and a minor tweak allows them to both be used with the same C code. All kernels can now just modload the lkm and it'll DTRT without having to rebuild the kernel first. Like IBCS2, you can statically compile it in with "options LINUX". A pile of new syscalls implemented, including getdents(), llseek(), readv(), writev(), msync(), personality(). The Linux-ELF libraries want to use some of these. linux_select() now obeys Linux semantics, ie: returns the time remaining of the timeout value rather than leaving it the original value. Quite a few bugs removed, including incorrect arguments being used in syscalls.. eg: mixups between passing the sigset as an int, vs passing it as a pointer and doing a copyin(), missing return values, unhandled cases, SIOC* ioctls, etc. The build for the code has changed. i386/conf/files now knows how to build linux_genassym and generate linux_assym.h on the fly. Supporting changes elsewhere in the kernel: The user-mode signal trampoline has moved from the U area to immediately below the top of the stack (below PS_STRINGS). This allows the different binary emulations to have their own signal trampoline code (which gets rid of the hardwired syscall 103 (sigreturn on BSD, syslog on Linux)) and so that the emulator can provide the exact "struct sigcontext *" argument to the program's signal handlers. The sigstack's "ss_flags" now uses SS_DISABLE and SS_ONSTACK flags, which have the same values as the re-used SA_DISABLE and SA_ONSTACK which are intended for sigaction only. This enables the support of a SA_RESETHAND flag to sigaction to implement the gross SYSV and Linux SA_ONESHOT signal semantics where the signal handler is reset when it's triggered. makesyscalls.sh no longer appends the struct sysentvec on the end of the generated init_sysent.c code. It's a lot saner to have it in a seperate file rather than trying to update the structure inside the awk script. :-) At exec time, the dozen bytes or so of signal trampoline code are copied to the top of the user's stack, rather than obtaining the trampoline code the old way by getting a clone of the parent's user area. This allows Linux and native binaries to freely exec each other without getting trampolines mixed up.
1996-03-02 19:38:20 +00:00
if (error)
return (error);
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
return (newstat_copyout(&sb, args->buf));
}
#endif
int
linux_newfstat(struct thread *td, struct linux_newfstat_args *args)
{
struct stat buf;
int error;
error = kern_fstat(td, args->fd, &buf);
translate_fd_major_minor(td, args->fd, &buf);
if (!error)
error = newstat_copyout(&buf, args->buf);
return (error);
}
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
static int
stat_copyout(struct stat *buf, void *ubuf)
{
struct l_stat lbuf;
bzero(&lbuf, sizeof(lbuf));
Fix the encoding of major and minor numbers in 64-bit dev_t by restoring the old encodings for the lower 16 and 32 bits and only using the higher 32 bits for unusually large major and minor numbers. This change breaks compatibility with the previous encoding (which was only used in -current). Fix truncation to (essentially) 16-bit dev_t in newnfs v3. Any encoding of device numbers gives an ABI, so it can't be changed without translations for compatibility. Extra bits give the much larger complication that the translations need to compress into fewer bits. Fortunately, more than 32 bits are rarely needed, so compression is rarely needed except for 16-bit linux dev_t where it was always needed but never done. The previous encoding moved the major number into the top 32 bits. Almost no translation code handled this, so the major number was blindly truncated away in most 32-bit encodings. E.g., for ffs, mknod(8) with major = 1 and minor = 2 gave dev_t = 0x10000002; ffs cannot represent this and blindly truncated it to 2. But if this mknod was run on any released version of FreeBSD, it gives dev_t = 0x102. ffs can represent this, but in the previous encoding it was not decoded, giving major = 0, minor = 0x102. The presence of bugs was most obvious for exporting dev_t's from an old system to -current, since bugs in newnfs augment them. I fixed oldnfs to support 32-bit dev_t in 1996 (r16634), but this regressed to 16-bit dev_t in newnfs, first to the old 16-bit encoding and then further in -current. E.g., old ad0 with major = 234, minor = 0x10002 had the correct (major, minor) number on the wire, but newnfs truncated this to (234, 2) and then the previous encoding shifted the major number into oblivion as seen by ffs or old applications. I first tried to fix this by translating on every ABI/API boundary, but there are too many boundaries and too many sloppy translations by blind truncation. So use the old encoding for the low 32 bits so that sloppy translations work no worse than before provided the high 32 bits are not set. Add some error checking for when bits are lost. Keep not doing any error checking for translations for almost everything in compat/linux. compat/freebsd32/freebsd32_misc.c: Optionally check for losing bits after possibly-truncating assignments as before. compat/linux/linux_stats.c: Depend on the representation being compatible with Linux's (or just with itself for local use) and spell some of the translations as assignments in a macro that hides the details. fs/nfsclient/nfs_clcomsubs.c: Essentially the same fix as in 1996, except there is now no possible truncation in makedev() itself. Also fix nearby style bugs. kern/vfs_syscalls.c: As for freebsd32. Also update the sysctl description to include file numbers, and change it to describe device ids as device numbers. sys/types.h: Use inline functions (wrapped by macros) since the expressions are now a bit too complicated for plain macros. Describe the encoding and some of the reasons for it. 16-bit compatibility didn't leave many reasonable choices for the 32-bit encoding, and 32-bit compatibility doesn't leave many reasonable choices for the 64-bit encoding. My choice is to put the 8 new minor bits in the low 8 bits of the top 32 bits. This minimizes discontiguities. Reviewed by: kib (except for rewrite of the comment in linux_stats.c)
2018-06-13 12:22:00 +00:00
lbuf.st_dev = dev_to_ldev(buf->st_dev);
lbuf.st_ino = buf->st_ino;
lbuf.st_mode = buf->st_mode;
lbuf.st_nlink = buf->st_nlink;
lbuf.st_uid = buf->st_uid;
lbuf.st_gid = buf->st_gid;
lbuf.st_rdev = buf->st_rdev;
lbuf.st_size = MIN(buf->st_size, INT32_MAX);
lbuf.st_atim.tv_sec = buf->st_atim.tv_sec;
lbuf.st_atim.tv_nsec = buf->st_atim.tv_nsec;
lbuf.st_mtim.tv_sec = buf->st_mtim.tv_sec;
lbuf.st_mtim.tv_nsec = buf->st_mtim.tv_nsec;
lbuf.st_ctim.tv_sec = buf->st_ctim.tv_sec;
lbuf.st_ctim.tv_nsec = buf->st_ctim.tv_nsec;
lbuf.st_blksize = buf->st_blksize;
lbuf.st_blocks = buf->st_blocks;
lbuf.st_flags = buf->st_flags;
lbuf.st_gen = buf->st_gen;
return (copyout(&lbuf, ubuf, sizeof(lbuf)));
}
int
linux_stat(struct thread *td, struct linux_stat_args *args)
{
struct stat buf;
char *path;
int error;
LCONVPATHEXIST(td, args->path, &path);
error = linux_kern_stat(td, path, UIO_SYSSPACE, &buf);
if (error) {
LFREEPATH(path);
return (error);
}
LFREEPATH(path);
return (stat_copyout(&buf, args->up));
}
int
linux_lstat(struct thread *td, struct linux_lstat_args *args)
{
struct stat buf;
char *path;
int error;
LCONVPATHEXIST(td, args->path, &path);
error = linux_kern_lstat(td, path, UIO_SYSSPACE, &buf);
if (error) {
LFREEPATH(path);
return (error);
}
LFREEPATH(path);
return (stat_copyout(&buf, args->up));
}
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
struct l_statfs {
l_long f_type;
l_long f_bsize;
l_long f_blocks;
l_long f_bfree;
l_long f_bavail;
l_long f_files;
l_long f_ffree;
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
l_fsid_t f_fsid;
l_long f_namelen;
l_long f_frsize;
l_long f_flags;
l_long f_spare[4];
};
#define LINUX_CODA_SUPER_MAGIC 0x73757245L
#define LINUX_EXT2_SUPER_MAGIC 0xEF53L
#define LINUX_HPFS_SUPER_MAGIC 0xf995e849L
#define LINUX_ISOFS_SUPER_MAGIC 0x9660L
#define LINUX_MSDOS_SUPER_MAGIC 0x4d44L
#define LINUX_NCP_SUPER_MAGIC 0x564cL
#define LINUX_NFS_SUPER_MAGIC 0x6969L
#define LINUX_NTFS_SUPER_MAGIC 0x5346544EL
#define LINUX_PROC_SUPER_MAGIC 0x9fa0L
#define LINUX_UFS_SUPER_MAGIC 0x00011954L /* XXX - UFS_MAGIC in Linux */
#define LINUX_ZFS_SUPER_MAGIC 0x2FC12FC1
2017-09-24 20:57:03 +00:00
#define LINUX_DEVFS_SUPER_MAGIC 0x1373L
#define LINUX_SHMFS_MAGIC 0x01021994
static long
bsd_to_linux_ftype(const char *fstypename)
{
int i;
static struct {const char *bsd_name; long linux_type;} b2l_tbl[] = {
{"ufs", LINUX_UFS_SUPER_MAGIC},
{"zfs", LINUX_ZFS_SUPER_MAGIC},
{"cd9660", LINUX_ISOFS_SUPER_MAGIC},
{"nfs", LINUX_NFS_SUPER_MAGIC},
{"ext2fs", LINUX_EXT2_SUPER_MAGIC},
{"procfs", LINUX_PROC_SUPER_MAGIC},
{"msdosfs", LINUX_MSDOS_SUPER_MAGIC},
{"ntfs", LINUX_NTFS_SUPER_MAGIC},
{"nwfs", LINUX_NCP_SUPER_MAGIC},
{"hpfs", LINUX_HPFS_SUPER_MAGIC},
{"coda", LINUX_CODA_SUPER_MAGIC},
{"devfs", LINUX_DEVFS_SUPER_MAGIC},
{"tmpfs", LINUX_SHMFS_MAGIC},
{NULL, 0L}};
for (i = 0; b2l_tbl[i].bsd_name != NULL; i++)
if (strcmp(b2l_tbl[i].bsd_name, fstypename) == 0)
return (b2l_tbl[i].linux_type);
return (0L);
}
static int
bsd_to_linux_statfs(struct statfs *bsd_statfs, struct l_statfs *linux_statfs)
{
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
uint64_t tmp;
#define LINUX_HIBITS 0xffffffff00000000ULL
tmp = bsd_statfs->f_blocks | bsd_statfs->f_bfree | bsd_statfs->f_files |
bsd_statfs->f_bsize;
if ((bsd_statfs->f_bavail != -1 && (bsd_statfs->f_bavail & LINUX_HIBITS)) ||
(bsd_statfs->f_ffree != -1 && (bsd_statfs->f_ffree & LINUX_HIBITS)) ||
(tmp & LINUX_HIBITS))
return (EOVERFLOW);
#undef LINUX_HIBITS
#endif
linux_statfs->f_type = bsd_to_linux_ftype(bsd_statfs->f_fstypename);
linux_statfs->f_bsize = bsd_statfs->f_bsize;
linux_statfs->f_blocks = bsd_statfs->f_blocks;
linux_statfs->f_bfree = bsd_statfs->f_bfree;
linux_statfs->f_bavail = bsd_statfs->f_bavail;
linux_statfs->f_ffree = bsd_statfs->f_ffree;
linux_statfs->f_files = bsd_statfs->f_files;
linux_statfs->f_fsid.val[0] = bsd_statfs->f_fsid.val[0];
linux_statfs->f_fsid.val[1] = bsd_statfs->f_fsid.val[1];
linux_statfs->f_namelen = MAXNAMLEN;
linux_statfs->f_frsize = bsd_statfs->f_bsize;
linux_statfs->f_flags = 0;
memset(linux_statfs->f_spare, 0, sizeof(linux_statfs->f_spare));
return (0);
}
int
linux_statfs(struct thread *td, struct linux_statfs_args *args)
{
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
struct l_statfs linux_statfs;
struct statfs *bsd_statfs;
char *path;
int error;
Mega-commit for Linux emulator update.. This has been stress tested under netscape-2.0 for Linux running all the Java stuff. The scrollbars are now working, at least on my machine. (whew! :-) I'm uncomfortable with the size of this commit, but it's too inter-dependant to easily seperate out. The main changes: COMPAT_LINUX is *GONE*. Most of the code has been moved out of the i386 machine dependent section into the linux emulator itself. The int 0x80 syscall code was almost identical to the lcall 7,0 code and a minor tweak allows them to both be used with the same C code. All kernels can now just modload the lkm and it'll DTRT without having to rebuild the kernel first. Like IBCS2, you can statically compile it in with "options LINUX". A pile of new syscalls implemented, including getdents(), llseek(), readv(), writev(), msync(), personality(). The Linux-ELF libraries want to use some of these. linux_select() now obeys Linux semantics, ie: returns the time remaining of the timeout value rather than leaving it the original value. Quite a few bugs removed, including incorrect arguments being used in syscalls.. eg: mixups between passing the sigset as an int, vs passing it as a pointer and doing a copyin(), missing return values, unhandled cases, SIOC* ioctls, etc. The build for the code has changed. i386/conf/files now knows how to build linux_genassym and generate linux_assym.h on the fly. Supporting changes elsewhere in the kernel: The user-mode signal trampoline has moved from the U area to immediately below the top of the stack (below PS_STRINGS). This allows the different binary emulations to have their own signal trampoline code (which gets rid of the hardwired syscall 103 (sigreturn on BSD, syslog on Linux)) and so that the emulator can provide the exact "struct sigcontext *" argument to the program's signal handlers. The sigstack's "ss_flags" now uses SS_DISABLE and SS_ONSTACK flags, which have the same values as the re-used SA_DISABLE and SA_ONSTACK which are intended for sigaction only. This enables the support of a SA_RESETHAND flag to sigaction to implement the gross SYSV and Linux SA_ONESHOT signal semantics where the signal handler is reset when it's triggered. makesyscalls.sh no longer appends the struct sysentvec on the end of the generated init_sysent.c code. It's a lot saner to have it in a seperate file rather than trying to update the structure inside the awk script. :-) At exec time, the dozen bytes or so of signal trampoline code are copied to the top of the user's stack, rather than obtaining the trampoline code the old way by getting a clone of the parent's user area. This allows Linux and native binaries to freely exec each other without getting trampolines mixed up.
1996-03-02 19:38:20 +00:00
LCONVPATHEXIST(td, args->path, &path);
bsd_statfs = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
error = kern_statfs(td, path, UIO_SYSSPACE, bsd_statfs);
LFREEPATH(path);
if (error == 0)
error = bsd_to_linux_statfs(bsd_statfs, &linux_statfs);
free(bsd_statfs, M_STATFS);
if (error != 0)
return (error);
return (copyout(&linux_statfs, args->buf, sizeof(linux_statfs)));
}
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
static void
bsd_to_linux_statfs64(struct statfs *bsd_statfs, struct l_statfs64 *linux_statfs)
{
linux_statfs->f_type = bsd_to_linux_ftype(bsd_statfs->f_fstypename);
linux_statfs->f_bsize = bsd_statfs->f_bsize;
linux_statfs->f_blocks = bsd_statfs->f_blocks;
linux_statfs->f_bfree = bsd_statfs->f_bfree;
linux_statfs->f_bavail = bsd_statfs->f_bavail;
linux_statfs->f_ffree = bsd_statfs->f_ffree;
linux_statfs->f_files = bsd_statfs->f_files;
linux_statfs->f_fsid.val[0] = bsd_statfs->f_fsid.val[0];
linux_statfs->f_fsid.val[1] = bsd_statfs->f_fsid.val[1];
linux_statfs->f_namelen = MAXNAMLEN;
linux_statfs->f_frsize = bsd_statfs->f_bsize;
linux_statfs->f_flags = 0;
memset(linux_statfs->f_spare, 0, sizeof(linux_statfs->f_spare));
}
int
linux_statfs64(struct thread *td, struct linux_statfs64_args *args)
{
struct l_statfs64 linux_statfs;
struct statfs *bsd_statfs;
char *path;
int error;
if (args->bufsize != sizeof(struct l_statfs64))
return (EINVAL);
LCONVPATHEXIST(td, args->path, &path);
bsd_statfs = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
error = kern_statfs(td, path, UIO_SYSSPACE, bsd_statfs);
LFREEPATH(path);
if (error == 0)
bsd_to_linux_statfs64(bsd_statfs, &linux_statfs);
free(bsd_statfs, M_STATFS);
if (error != 0)
return (error);
return (copyout(&linux_statfs, args->buf, sizeof(linux_statfs)));
}
int
linux_fstatfs64(struct thread *td, struct linux_fstatfs64_args *args)
{
struct l_statfs64 linux_statfs;
struct statfs *bsd_statfs;
int error;
if (args->bufsize != sizeof(struct l_statfs64))
return (EINVAL);
bsd_statfs = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
error = kern_fstatfs(td, args->fd, bsd_statfs);
if (error == 0)
bsd_to_linux_statfs64(bsd_statfs, &linux_statfs);
free(bsd_statfs, M_STATFS);
if (error != 0)
return (error);
return (copyout(&linux_statfs, args->buf, sizeof(linux_statfs)));
}
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
int
linux_fstatfs(struct thread *td, struct linux_fstatfs_args *args)
{
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
struct l_statfs linux_statfs;
struct statfs *bsd_statfs;
int error;
bsd_statfs = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
error = kern_fstatfs(td, args->fd, bsd_statfs);
if (error == 0)
error = bsd_to_linux_statfs(bsd_statfs, &linux_statfs);
free(bsd_statfs, M_STATFS);
if (error != 0)
return (error);
return (copyout(&linux_statfs, args->buf, sizeof(linux_statfs)));
}
struct l_ustat
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
{
l_daddr_t f_tfree;
l_ino_t f_tinode;
char f_fname[6];
char f_fpack[6];
};
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_ustat(struct thread *td, struct linux_ustat_args *args)
{
return (EOPNOTSUPP);
}
#endif
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
static int
stat64_copyout(struct stat *buf, void *ubuf)
{
struct l_stat64 lbuf;
bzero(&lbuf, sizeof(lbuf));
Fix the encoding of major and minor numbers in 64-bit dev_t by restoring the old encodings for the lower 16 and 32 bits and only using the higher 32 bits for unusually large major and minor numbers. This change breaks compatibility with the previous encoding (which was only used in -current). Fix truncation to (essentially) 16-bit dev_t in newnfs v3. Any encoding of device numbers gives an ABI, so it can't be changed without translations for compatibility. Extra bits give the much larger complication that the translations need to compress into fewer bits. Fortunately, more than 32 bits are rarely needed, so compression is rarely needed except for 16-bit linux dev_t where it was always needed but never done. The previous encoding moved the major number into the top 32 bits. Almost no translation code handled this, so the major number was blindly truncated away in most 32-bit encodings. E.g., for ffs, mknod(8) with major = 1 and minor = 2 gave dev_t = 0x10000002; ffs cannot represent this and blindly truncated it to 2. But if this mknod was run on any released version of FreeBSD, it gives dev_t = 0x102. ffs can represent this, but in the previous encoding it was not decoded, giving major = 0, minor = 0x102. The presence of bugs was most obvious for exporting dev_t's from an old system to -current, since bugs in newnfs augment them. I fixed oldnfs to support 32-bit dev_t in 1996 (r16634), but this regressed to 16-bit dev_t in newnfs, first to the old 16-bit encoding and then further in -current. E.g., old ad0 with major = 234, minor = 0x10002 had the correct (major, minor) number on the wire, but newnfs truncated this to (234, 2) and then the previous encoding shifted the major number into oblivion as seen by ffs or old applications. I first tried to fix this by translating on every ABI/API boundary, but there are too many boundaries and too many sloppy translations by blind truncation. So use the old encoding for the low 32 bits so that sloppy translations work no worse than before provided the high 32 bits are not set. Add some error checking for when bits are lost. Keep not doing any error checking for translations for almost everything in compat/linux. compat/freebsd32/freebsd32_misc.c: Optionally check for losing bits after possibly-truncating assignments as before. compat/linux/linux_stats.c: Depend on the representation being compatible with Linux's (or just with itself for local use) and spell some of the translations as assignments in a macro that hides the details. fs/nfsclient/nfs_clcomsubs.c: Essentially the same fix as in 1996, except there is now no possible truncation in makedev() itself. Also fix nearby style bugs. kern/vfs_syscalls.c: As for freebsd32. Also update the sysctl description to include file numbers, and change it to describe device ids as device numbers. sys/types.h: Use inline functions (wrapped by macros) since the expressions are now a bit too complicated for plain macros. Describe the encoding and some of the reasons for it. 16-bit compatibility didn't leave many reasonable choices for the 32-bit encoding, and 32-bit compatibility doesn't leave many reasonable choices for the 64-bit encoding. My choice is to put the 8 new minor bits in the low 8 bits of the top 32 bits. This minimizes discontiguities. Reviewed by: kib (except for rewrite of the comment in linux_stats.c)
2018-06-13 12:22:00 +00:00
lbuf.st_dev = dev_to_ldev(buf->st_dev);
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
lbuf.st_ino = buf->st_ino;
lbuf.st_mode = buf->st_mode;
lbuf.st_nlink = buf->st_nlink;
lbuf.st_uid = buf->st_uid;
lbuf.st_gid = buf->st_gid;
lbuf.st_rdev = buf->st_rdev;
lbuf.st_size = buf->st_size;
lbuf.st_atim.tv_sec = buf->st_atim.tv_sec;
lbuf.st_atim.tv_nsec = buf->st_atim.tv_nsec;
lbuf.st_mtim.tv_sec = buf->st_mtim.tv_sec;
lbuf.st_mtim.tv_nsec = buf->st_mtim.tv_nsec;
lbuf.st_ctim.tv_sec = buf->st_ctim.tv_sec;
lbuf.st_ctim.tv_nsec = buf->st_ctim.tv_nsec;
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
lbuf.st_blksize = buf->st_blksize;
lbuf.st_blocks = buf->st_blocks;
/*
* The __st_ino field makes all the difference. In the Linux kernel
* it is conditionally compiled based on STAT64_HAS_BROKEN_ST_INO,
* but without the assignment to __st_ino the runtime linker refuses
* to mmap(2) any shared libraries. I guess it's broken alright :-)
*/
lbuf.__st_ino = buf->st_ino;
return (copyout(&lbuf, ubuf, sizeof(lbuf)));
}
int
linux_stat64(struct thread *td, struct linux_stat64_args *args)
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
{
struct stat buf;
char *filename;
int error;
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
LCONVPATHEXIST(td, args->filename, &filename);
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
error = linux_kern_stat(td, filename, UIO_SYSSPACE, &buf);
LFREEPATH(filename);
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
if (error)
return (error);
return (stat64_copyout(&buf, args->statbuf));
}
int
linux_lstat64(struct thread *td, struct linux_lstat64_args *args)
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
{
struct stat sb;
char *filename;
int error;
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
LCONVPATHEXIST(td, args->filename, &filename);
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
error = linux_kern_lstat(td, filename, UIO_SYSSPACE, &sb);
LFREEPATH(filename);
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
if (error)
return (error);
return (stat64_copyout(&sb, args->statbuf));
}
int
linux_fstat64(struct thread *td, struct linux_fstat64_args *args)
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
{
struct stat buf;
int error;
error = kern_fstat(td, args->fd, &buf);
translate_fd_major_minor(td, args->fd, &buf);
Round of cleanups and enhancements. These include (in random order): o Introduce private types for use in linux syscalls for two reasons: 1. establish type independence for ease in porting and, 2. provide a visual queue as to which syscalls have proper prototypes to further cleanup the i386/alpha split. Linuxulator types are prefixed by 'l_'. void and char have not been "virtualized". o Provide dummy functions for all syscalls and remove dummy functions or implementations of truely obsolete syscalls. o Sanitize the shm*, sem* and msg* syscalls. o Make a first attempt to implement the linux_sysctl syscall. At this time it only returns one MIB (KERN_VERSION), but most importantly, it tells us when we need to add additional sysctls :-) o Bump the kenel version up to 2.4.2 (this is not the same as the KERN_VERSION MIB, BTW). o Implement new syscalls, of which most are specific to i386. Our syscall table is now up to date with Linux 2.4.2. Some highlights: - Implement the 32-bit uid_t and gid_t bases syscalls. - Implement a couple of 64-bit file size/offset bases syscalls. o Fix or improve numerous syscalls and prototypes. o Reduce style(9) violations while I'm here. Especially indentation inconsistencies within the same file are addressed. Re-indenting did not obfuscate actual changes to the extend that it could not be combined. NOTE: I spend some time testing these changes and found that if there were regressions, they were not caused by these changes AFAICT. It was observed that installing a RH 7.1 runtime environment did make matters worse. Hangs and/or reboots have been observed with and without these changes, so when it failed to make life better in cases it doesn't look like it made it worse.
2001-09-08 19:07:04 +00:00
if (!error)
error = stat64_copyout(&buf, args->statbuf);
return (error);
}
int
linux_fstatat64(struct thread *td, struct linux_fstatat64_args *args)
{
char *path;
int error, dfd, flag;
struct stat buf;
if (args->flag & ~LINUX_AT_SYMLINK_NOFOLLOW)
return (EINVAL);
flag = (args->flag & LINUX_AT_SYMLINK_NOFOLLOW) ?
AT_SYMLINK_NOFOLLOW : 0;
dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
LCONVPATHEXIST_AT(td, args->pathname, &path, dfd);
error = linux_kern_statat(td, flag, dfd, path, UIO_SYSSPACE, &buf);
if (!error)
error = stat64_copyout(&buf, args->statbuf);
LFREEPATH(path);
return (error);
}
#else /* __amd64__ && !COMPAT_LINUX32 */
int
linux_newfstatat(struct thread *td, struct linux_newfstatat_args *args)
{
char *path;
int error, dfd, flag;
struct stat buf;
if (args->flag & ~LINUX_AT_SYMLINK_NOFOLLOW)
return (EINVAL);
flag = (args->flag & LINUX_AT_SYMLINK_NOFOLLOW) ?
AT_SYMLINK_NOFOLLOW : 0;
dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
LCONVPATHEXIST_AT(td, args->pathname, &path, dfd);
error = linux_kern_statat(td, flag, dfd, path, UIO_SYSSPACE, &buf);
if (error == 0)
error = newstat_copyout(&buf, args->statbuf);
LFREEPATH(path);
return (error);
}
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
int
linux_syncfs(struct thread *td, struct linux_syncfs_args *args)
{
struct mount *mp;
struct vnode *vp;
int error, save;
error = fgetvp(td, args->fd, &cap_fsync_rights, &vp);
if (error != 0)
/*
* Linux syncfs() returns only EBADF, however fgetvp()
* can return EINVAL in case of file descriptor does
* not represent a vnode. XXX.
*/
return (error);
mp = vp->v_mount;
mtx_lock(&mountlist_mtx);
error = vfs_busy(mp, MBF_MNTLSTLOCK);
if (error != 0) {
/* See comment above. */
mtx_unlock(&mountlist_mtx);
goto out;
}
if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
vn_start_write(NULL, &mp, V_NOWAIT) == 0) {
save = curthread_pflags_set(TDP_SYNCIO);
vfs_msync(mp, MNT_NOWAIT);
VFS_SYNC(mp, MNT_NOWAIT);
curthread_pflags_restore(save);
vn_finished_write(mp);
}
vfs_unbusy(mp);
out:
vrele(vp);
return (error);
}