freebsd-dev/etc/rc.initdiskless

284 lines
9.3 KiB
Plaintext
Raw Normal View History

#!/bin/sh
#
2003-08-07 21:06:32 +00:00
# Copyright (c) 1999 Matt Dillon
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#
# $FreeBSD$
#
# PROVIDE: initdiskless
# KEYWORD: FreeBSD nojail
2003-10-13 08:20:55 +00:00
# On entry to this script the entire system consists of a read-only root
# mounted via NFS. We use the contents of /conf to create and populate
# memory filesystems. The kernel has run BOOTP and configured an interface
# (otherwise it would not have been able to mount the NFS root!)
#
# The following directories are scanned. Each sucessive directory overrides
# (is merged into) the previous one.
#
# /conf/base universal base
# /conf/default modified by a secondary universal base
# /conf/${ipba} modified based on the assigned broadcast IP
# /conf/${ip} modified based on the machine's assigned IP
#
# Each of these directories may contain any number of subdirectories which
# represent directories in / on the diskless machine. The existance of
# these subdirectories causes this script to create a MEMORY FILESYSTEM for
# /<sub_directory_name>. For example, if /conf/base/etc exists then a
# memory filesystem will be created for /etc.
#
# If a subdirectory contains the file 'remount' the contents of the file
# is a mount command used to remount the subdirectory prior to it being
# copied. An example contents could be: "mount -o ro /dev/ad0s3". Note
# that the directory to be mounted on is supplied by this script.
#
# If a subdirectory contains the file 'diskless_remount' the contents of
# the file is used to remount the subdirectory prior to it being copied to
# the memory filesystem. For example, if /conf/base/etc/diskless_remount
# contains the string 'my.server.com:/etc' then my.server.com:/etc will be
# mounted in place of the subdirectory. This allows you to avoid making
# duplicates of system directories in /conf. Special processing is done
# to allow specifications relative to the root filesystem.
#
# If a subdirectory contains the file 'md_size', the contents of the
# file is used to determine the size of the memory filesystem, in 512
# byte sectors. The default is 10240 (5MB). You only have to specify an
# md_size if the default doesn't work for you (i.e. if it is too big or
# too small). For example, /conf/base/etc/md_size might contain '16384'.
#
# If /conf/<special_dir>/SUBDIR.cpio.gz exists, the file is cpio'd into
# the specified /SUBDIR (and a memory filesystem is created for /SUBDIR
# if necessary).
#
# If /conf/<special_dir>/SUBDIR.remove exists, the file contains a list
# of paths which are rm -rf'd relative to /SUBDIR.
#
# You will almost universally want to create a /conf/base/etc containing
# a diskless_remount and possibly an md_size file. You will then almost
# universally want to override rc.conf, rc.local, and fstab by creating
# /conf/default/etc/{rc.conf,rc.local,fstab}. Your fstab should be sure
# to mount a /usr... typically an NFS readonly /usr.
#
# NOTE! /var, /tmp, and /dev will be created elsewhere.
# Those filesystems should not be specified in /conf.
dlv=`/sbin/sysctl -n vfs.nfs.diskless_valid 2> /dev/null`
[ ${dlv:=0} -eq 0 ] && [ ! -f /etc/diskless ] && exit 0
# chkerr:
#
# Routine to check for error
#
# checks error code and drops into shell on failure.
# if shell exits, terminates script as well as /etc/rc.
#
chkerr() {
case $1 in
0)
;;
*)
echo "$2 failed: dropping into /bin/sh"
/bin/sh
# RESUME
;;
esac
}
# Create a generic memory disk
#
mount_md() {
/sbin/mdmfs -i 4096 -s $1 -M md $2
}
# Create the memory filesystem if it has not already been created
#
create_md() {
if [ "x`eval echo \\$md_created_$1`" = "x" ]; then
2003-02-15 16:29:20 +00:00
if [ "x`eval echo \\$md_size_$1`" = "x" ]; then
md_size=10240
else
md_size=`eval echo \\$md_size_$1`
fi
mount_md $md_size /$1
/bin/chmod 755 /$1
eval md_created_$1=created
fi
}
# DEBUGGING
#
# set -v
# Figure out our interface and IP.
#
bootp_ifc=""
bootp_ipa=""
bootp_ipbca=""
if [ ${dlv:=0} -ne 0 ] ; then
iflist=`ifconfig -l`
for i in ${iflist} ; do
set `ifconfig ${i}`
while [ $# -ge 1 ] ; do
if [ "${bootp_ifc}" = "" -a "$1" = "inet" ] ; then
bootp_ifc=${i} ; bootp_ipa=${2} ; shift
fi
if [ "${bootp_ipbca}" = "" -a "$1" = "broadcast" ] ; then
bootp_ipbca=$2; shift
fi
shift
done
if [ "${bootp_ifc}" != "" ] ; then
break
fi
done
# Insert the directories passed with the T134 bootp cookie
# in the list of paths used for templates.
i="`/sbin/sysctl -n kern.bootp_cookie`"
[ "${i}" != "" ] && bootp_ipbca="${bootp_ipbca} ${i}"
echo "Interface ${bootp_ifc} IP-Address ${bootp_ipa} Broadcast ${bootp_ipbca}"
fi
# Figure out our NFS root path
2003-10-13 08:20:55 +00:00
#
set `mount -t nfs`
while [ $# -ge 1 ] ; do
if [ "$2" = "on" -a "$3" = "/" ]; then
nfsroot="$1"
break
fi
shift
done
# The list of directories with template files
templates="base default ${bootp_ipbca} ${bootp_ipa}"
# The list of filesystems to umount after the copy
to_umount=""
# If /conf/diskless_remount exists, remount all of /conf. This allows
# multiple roots to share the same conf files.
if [ -d /conf -a -f /conf/diskless_remount ]; then
nfspt=`/bin/cat /conf/diskless_remount`
if [ `expr "$nfspt" : '\(.\)'` = "/" ]; then
nfspt="${nfsroot}${nfspt}"
fi
mount_nfs $nfspt /conf
chkerr $? "mount_nfs $nfspt /conf"
to_umount="/conf"
fi
# Resolve templates in /conf/base, /conf/default, /conf/${bootp_ipbca},
2003-10-13 08:20:55 +00:00
# and /conf/${bootp_ipa}. For each subdirectory found within these
# directories:
#
# - calculate memory filesystem sizes. If the subdirectory (prior to
# NFS remounting) contains the file 'md_size', the contents specified
# in 512 byte sectors will be used to size the memory filesystem. Otherwise
# 8192 sectors (4MB) is used.
#
# - handle NFS remounts. If the subdirectory contains the file
# diskless_remount, the contents of the file is NFS mounted over
# the directory. For example /conf/base/etc/diskless_remount
# might contain 'myserver:/etc'. NFS remounts allow you to avoid
# having to dup your system directories in /conf. Your server must
# be sure to export those filesystems -alldirs, however.
# If the diskless_remount file contains a string beginning with a
# '/' it is assumed that the local nfsroot should be prepended to
# it before attemping to the remount. This allows the root to be
# relocated without needing to change the remount files.
#
for i in ${templates} ; do
for j in /conf/$i/* ; do
# memory filesystem size specification
#
subdir=${j##*/}
if [ -d $j -a -f $j/md_size ]; then
eval md_size_$subdir=`cat $j/md_size`
fi
# remount
#
if [ -d $j -a -f $j/remount ]; then
nfspt=`/bin/cat $j/remount`
$nfspt $j
chkerr $? "$nfspt $j"
to_umount="${to_umount} $j" # XXX hope it is really a mount!
fi
# NFS remount
#
if [ -d $j -a -f $j/diskless_remount ]; then
nfspt=`/bin/cat $j/diskless_remount`
if [ `expr "$nfspt" : '\(.\)'` = "/" ]; then
nfspt="${nfsroot}${nfspt}"
fi
mount_nfs $nfspt $j
chkerr $? "mount_nfs $nfspt $j"
to_umount="${to_umount} $j"
fi
done
done
# - Create all required MFS filesystems and populate them from
# our templates. Support both a direct template and a dir.cpio.gz
# archive. Support dir.remove files containing a list of relative
# paths to remove.
#
# The dir.cpio.gz form is there to make the copy process more efficient,
# so if the cpio archive is present, it prevents the files from dir/
# from being copied.
for i in ${templates} ; do
for j in /conf/$i/* ; do
subdir=${j##*/}
if [ -d $j -a ! -f $j.cpio.gz ]; then
create_md $subdir
cp -Rp $j/* /$subdir
fi
done
for j in /conf/$i/*.cpio.gz ; do
subdir=${j%*.cpio.gz}
subdir=${subdir##*/}
if [ -f $j ]; then
create_md $subdir
echo "Loading /$subdir from cpio archive $j"
(cd / ; /stand/gzip -d < $j | /stand/cpio --extract -d )
fi
done
for j in /conf/$i/*.remove ; do
subdir=${j%*.remove}
subdir=${subdir##*/}
if [ -f $j ]; then
# doubly sure it is a memory disk before rm -rf'ing
create_md $subdir
(cd /$subdir; rm -rf `/bin/cat $j`)
fi
done
done
# umount partitions used to fill the memory filesystems
[ -n "${to_umount}" ] && umount $to_umount