2005-01-06 01:43:34 +00:00
|
|
|
/*-
|
2004-06-13 10:54:36 +00:00
|
|
|
* Copyright (c) 2004
|
|
|
|
* Doug Rabson
|
|
|
|
* Copyright (c) 2002-2003
|
|
|
|
* Hidetoshi Shimokawa. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
*
|
|
|
|
* This product includes software developed by Hidetoshi Shimokawa.
|
|
|
|
*
|
|
|
|
* 4. Neither the name of the author nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* $FreeBSD$
|
|
|
|
*/
|
|
|
|
|
2005-10-05 10:09:17 +00:00
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
|
|
#include "opt_device_polling.h"
|
2004-06-13 10:54:36 +00:00
|
|
|
#include "opt_inet.h"
|
2005-10-05 10:09:17 +00:00
|
|
|
#endif
|
2004-06-13 10:54:36 +00:00
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/mbuf.h>
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/sockio.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <sys/module.h>
|
|
|
|
#include <sys/bus.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <net/if.h>
|
|
|
|
#include <net/firewire.h>
|
|
|
|
#include <net/if_arp.h>
|
2005-06-10 16:49:24 +00:00
|
|
|
#include <net/if_types.h>
|
2004-06-13 10:54:36 +00:00
|
|
|
#ifdef __DragonFly__
|
|
|
|
#include <bus/firewire/firewire.h>
|
|
|
|
#include <bus/firewire/firewirereg.h>
|
|
|
|
#include "if_fwipvar.h"
|
|
|
|
#else
|
|
|
|
#include <dev/firewire/firewire.h>
|
|
|
|
#include <dev/firewire/firewirereg.h>
|
2004-06-13 13:58:00 +00:00
|
|
|
#include <dev/firewire/iec13213.h>
|
2004-06-13 10:54:36 +00:00
|
|
|
#include <dev/firewire/if_fwipvar.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We really need a mechanism for allocating regions in the FIFO
|
|
|
|
* address space. We pick a address in the OHCI controller's 'middle'
|
|
|
|
* address space. This means that the controller will automatically
|
|
|
|
* send responses for us, which is fine since we don't have any
|
|
|
|
* important information to put in the response anyway.
|
|
|
|
*/
|
|
|
|
#define INET_FIFO 0xfffe00000000LL
|
|
|
|
|
|
|
|
#define FWIPDEBUG if (fwipdebug) if_printf
|
|
|
|
#define TX_MAX_QUEUE (FWMAXQUEUE - 1)
|
|
|
|
|
|
|
|
/* network interface */
|
|
|
|
static void fwip_start (struct ifnet *);
|
|
|
|
static int fwip_ioctl (struct ifnet *, u_long, caddr_t);
|
|
|
|
static void fwip_init (void *);
|
|
|
|
|
|
|
|
static void fwip_post_busreset (void *);
|
|
|
|
static void fwip_output_callback (struct fw_xfer *);
|
|
|
|
static void fwip_async_output (struct fwip_softc *, struct ifnet *);
|
|
|
|
static void fwip_start_send (void *, int);
|
|
|
|
static void fwip_stream_input (struct fw_xferq *);
|
|
|
|
static void fwip_unicast_input(struct fw_xfer *);
|
|
|
|
|
|
|
|
static int fwipdebug = 0;
|
2004-07-20 08:58:27 +00:00
|
|
|
static int broadcast_channel = 0xc0 | 0x1f; /* tag | channel(XXX) */
|
2004-06-13 10:54:36 +00:00
|
|
|
static int tx_speed = 2;
|
|
|
|
static int rx_queue_len = FWMAXQUEUE;
|
|
|
|
|
2011-11-07 06:44:47 +00:00
|
|
|
static MALLOC_DEFINE(M_FWIP, "if_fwip", "IP over FireWire interface");
|
2004-06-13 10:54:36 +00:00
|
|
|
SYSCTL_INT(_debug, OID_AUTO, if_fwip_debug, CTLFLAG_RW, &fwipdebug, 0, "");
|
|
|
|
SYSCTL_DECL(_hw_firewire);
|
2011-11-07 15:43:11 +00:00
|
|
|
static SYSCTL_NODE(_hw_firewire, OID_AUTO, fwip, CTLFLAG_RD, 0,
|
2004-06-13 10:54:36 +00:00
|
|
|
"Firewire ip subsystem");
|
|
|
|
SYSCTL_INT(_hw_firewire_fwip, OID_AUTO, rx_queue_len, CTLFLAG_RW, &rx_queue_len,
|
|
|
|
0, "Length of the receive queue");
|
|
|
|
|
|
|
|
TUNABLE_INT("hw.firewire.fwip.rx_queue_len", &rx_queue_len);
|
|
|
|
|
|
|
|
#ifdef DEVICE_POLLING
|
|
|
|
static poll_handler_t fwip_poll;
|
|
|
|
|
2009-05-30 15:14:44 +00:00
|
|
|
static int
|
2004-06-13 10:54:36 +00:00
|
|
|
fwip_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
|
|
{
|
|
|
|
struct fwip_softc *fwip;
|
|
|
|
struct firewire_comm *fc;
|
|
|
|
|
Big polling(4) cleanup.
o Axe poll in trap.
o Axe IFF_POLLING flag from if_flags.
o Rework revision 1.21 (Giant removal), in such a way that
poll_mtx is not dropped during call to polling handler.
This fixes problem with idle polling.
o Make registration and deregistration from polling in a
functional way, insted of next tick/interrupt.
o Obsolete kern.polling.enable. Polling is turned on/off
with ifconfig.
Detailed kern_poll.c changes:
- Remove polling handler flags, introduced in 1.21. The are not
needed now.
- Forget and do not check if_flags, if_capenable and if_drv_flags.
- Call all registered polling handlers unconditionally.
- Do not drop poll_mtx, when entering polling handlers.
- In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx.
- In netisr_poll() axe the block, where polling code asks drivers
to unregister.
- In netisr_poll() and ether_poll() do polling always, if any
handlers are present.
- In ether_poll_[de]register() remove a lot of error hiding code. Assert
that arguments are correct, instead.
- In ether_poll_[de]register() use standard return values in case of
error or success.
- Introduce poll_switch() that is a sysctl handler for kern.polling.enable.
poll_switch() goes through interface list and enabled/disables polling.
A message that kern.polling.enable is deprecated is printed.
Detailed driver changes:
- On attach driver announces IFCAP_POLLING in if_capabilities, but
not in if_capenable.
- On detach driver calls ether_poll_deregister() if polling is enabled.
- In polling handler driver obtains its lock and checks IFF_DRV_RUNNING
flag. If there is no, then unlocks and returns.
- In ioctl handler driver checks for IFCAP_POLLING flag requested to
be set or cleared. Driver first calls ether_poll_[de]register(), then
obtains driver lock and [dis/en]ables interrupts.
- In interrupt handler driver checks IFCAP_POLLING flag in if_capenable.
If present, then returns.This is important to protect from spurious
interrupts.
Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
|
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
|
2009-05-30 15:14:44 +00:00
|
|
|
return (0);
|
Big polling(4) cleanup.
o Axe poll in trap.
o Axe IFF_POLLING flag from if_flags.
o Rework revision 1.21 (Giant removal), in such a way that
poll_mtx is not dropped during call to polling handler.
This fixes problem with idle polling.
o Make registration and deregistration from polling in a
functional way, insted of next tick/interrupt.
o Obsolete kern.polling.enable. Polling is turned on/off
with ifconfig.
Detailed kern_poll.c changes:
- Remove polling handler flags, introduced in 1.21. The are not
needed now.
- Forget and do not check if_flags, if_capenable and if_drv_flags.
- Call all registered polling handlers unconditionally.
- Do not drop poll_mtx, when entering polling handlers.
- In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx.
- In netisr_poll() axe the block, where polling code asks drivers
to unregister.
- In netisr_poll() and ether_poll() do polling always, if any
handlers are present.
- In ether_poll_[de]register() remove a lot of error hiding code. Assert
that arguments are correct, instead.
- In ether_poll_[de]register() use standard return values in case of
error or success.
- Introduce poll_switch() that is a sysctl handler for kern.polling.enable.
poll_switch() goes through interface list and enabled/disables polling.
A message that kern.polling.enable is deprecated is printed.
Detailed driver changes:
- On attach driver announces IFCAP_POLLING in if_capabilities, but
not in if_capenable.
- On detach driver calls ether_poll_deregister() if polling is enabled.
- In polling handler driver obtains its lock and checks IFF_DRV_RUNNING
flag. If there is no, then unlocks and returns.
- In ioctl handler driver checks for IFCAP_POLLING flag requested to
be set or cleared. Driver first calls ether_poll_[de]register(), then
obtains driver lock and [dis/en]ables interrupts.
- In interrupt handler driver checks IFCAP_POLLING flag in if_capenable.
If present, then returns.This is important to protect from spurious
interrupts.
Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
|
|
|
|
2004-06-13 10:54:36 +00:00
|
|
|
fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
|
|
|
|
fc = fwip->fd.fc;
|
|
|
|
fc->poll(fc, (cmd == POLL_AND_CHECK_STATUS)?0:1, count);
|
2009-05-30 15:14:44 +00:00
|
|
|
return (0);
|
2004-06-13 10:54:36 +00:00
|
|
|
}
|
Big polling(4) cleanup.
o Axe poll in trap.
o Axe IFF_POLLING flag from if_flags.
o Rework revision 1.21 (Giant removal), in such a way that
poll_mtx is not dropped during call to polling handler.
This fixes problem with idle polling.
o Make registration and deregistration from polling in a
functional way, insted of next tick/interrupt.
o Obsolete kern.polling.enable. Polling is turned on/off
with ifconfig.
Detailed kern_poll.c changes:
- Remove polling handler flags, introduced in 1.21. The are not
needed now.
- Forget and do not check if_flags, if_capenable and if_drv_flags.
- Call all registered polling handlers unconditionally.
- Do not drop poll_mtx, when entering polling handlers.
- In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx.
- In netisr_poll() axe the block, where polling code asks drivers
to unregister.
- In netisr_poll() and ether_poll() do polling always, if any
handlers are present.
- In ether_poll_[de]register() remove a lot of error hiding code. Assert
that arguments are correct, instead.
- In ether_poll_[de]register() use standard return values in case of
error or success.
- Introduce poll_switch() that is a sysctl handler for kern.polling.enable.
poll_switch() goes through interface list and enabled/disables polling.
A message that kern.polling.enable is deprecated is printed.
Detailed driver changes:
- On attach driver announces IFCAP_POLLING in if_capabilities, but
not in if_capenable.
- On detach driver calls ether_poll_deregister() if polling is enabled.
- In polling handler driver obtains its lock and checks IFF_DRV_RUNNING
flag. If there is no, then unlocks and returns.
- In ioctl handler driver checks for IFCAP_POLLING flag requested to
be set or cleared. Driver first calls ether_poll_[de]register(), then
obtains driver lock and [dis/en]ables interrupts.
- In interrupt handler driver checks IFCAP_POLLING flag in if_capenable.
If present, then returns.This is important to protect from spurious
interrupts.
Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
|
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
|
2004-06-13 10:54:36 +00:00
|
|
|
static void
|
|
|
|
fwip_identify(driver_t *driver, device_t parent)
|
|
|
|
{
|
|
|
|
BUS_ADD_CHILD(parent, 0, "fwip", device_get_unit(parent));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fwip_probe(device_t dev)
|
|
|
|
{
|
|
|
|
device_t pa;
|
|
|
|
|
|
|
|
pa = device_get_parent(dev);
|
|
|
|
if(device_get_unit(dev) != device_get_unit(pa)){
|
|
|
|
return(ENXIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
device_set_desc(dev, "IP over FireWire");
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fwip_attach(device_t dev)
|
|
|
|
{
|
|
|
|
struct fwip_softc *fwip;
|
|
|
|
struct ifnet *ifp;
|
|
|
|
int unit, s;
|
|
|
|
struct fw_hwaddr *hwaddr;
|
|
|
|
|
|
|
|
fwip = ((struct fwip_softc *)device_get_softc(dev));
|
|
|
|
unit = device_get_unit(dev);
|
2005-06-10 16:49:24 +00:00
|
|
|
ifp = fwip->fw_softc.fwip_ifp = if_alloc(IFT_IEEE1394);
|
|
|
|
if (ifp == NULL)
|
|
|
|
return (ENOSPC);
|
2004-06-13 10:54:36 +00:00
|
|
|
|
2007-06-06 14:31:36 +00:00
|
|
|
mtx_init(&fwip->mtx, "fwip", NULL, MTX_DEF);
|
2004-06-13 10:54:36 +00:00
|
|
|
/* XXX */
|
|
|
|
fwip->dma_ch = -1;
|
|
|
|
|
|
|
|
fwip->fd.fc = device_get_ivars(dev);
|
|
|
|
if (tx_speed < 0)
|
|
|
|
tx_speed = fwip->fd.fc->speed;
|
|
|
|
|
|
|
|
fwip->fd.dev = dev;
|
|
|
|
fwip->fd.post_explore = NULL;
|
|
|
|
fwip->fd.post_busreset = fwip_post_busreset;
|
|
|
|
fwip->fw_softc.fwip = fwip;
|
|
|
|
TASK_INIT(&fwip->start_send, 0, fwip_start_send, fwip);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Encode our hardware the way that arp likes it.
|
|
|
|
*/
|
2005-06-10 16:49:24 +00:00
|
|
|
hwaddr = &IFP2FWC(fwip->fw_softc.fwip_ifp)->fc_hwaddr;
|
2004-06-13 10:54:36 +00:00
|
|
|
hwaddr->sender_unique_ID_hi = htonl(fwip->fd.fc->eui.hi);
|
|
|
|
hwaddr->sender_unique_ID_lo = htonl(fwip->fd.fc->eui.lo);
|
|
|
|
hwaddr->sender_max_rec = fwip->fd.fc->maxrec;
|
|
|
|
hwaddr->sspd = fwip->fd.fc->speed;
|
|
|
|
hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32));
|
|
|
|
hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO);
|
|
|
|
|
|
|
|
/* fill the rest and attach interface */
|
|
|
|
ifp->if_softc = &fwip->fw_softc;
|
|
|
|
|
|
|
|
#if __FreeBSD_version >= 501113 || defined(__DragonFly__)
|
|
|
|
if_initname(ifp, device_get_name(dev), unit);
|
|
|
|
#else
|
|
|
|
ifp->if_unit = unit;
|
|
|
|
ifp->if_name = "fwip";
|
|
|
|
#endif
|
|
|
|
ifp->if_init = fwip_init;
|
|
|
|
ifp->if_start = fwip_start;
|
|
|
|
ifp->if_ioctl = fwip_ioctl;
|
2007-06-06 14:31:36 +00:00
|
|
|
ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST);
|
2004-06-13 10:54:36 +00:00
|
|
|
ifp->if_snd.ifq_maxlen = TX_MAX_QUEUE;
|
Big polling(4) cleanup.
o Axe poll in trap.
o Axe IFF_POLLING flag from if_flags.
o Rework revision 1.21 (Giant removal), in such a way that
poll_mtx is not dropped during call to polling handler.
This fixes problem with idle polling.
o Make registration and deregistration from polling in a
functional way, insted of next tick/interrupt.
o Obsolete kern.polling.enable. Polling is turned on/off
with ifconfig.
Detailed kern_poll.c changes:
- Remove polling handler flags, introduced in 1.21. The are not
needed now.
- Forget and do not check if_flags, if_capenable and if_drv_flags.
- Call all registered polling handlers unconditionally.
- Do not drop poll_mtx, when entering polling handlers.
- In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx.
- In netisr_poll() axe the block, where polling code asks drivers
to unregister.
- In netisr_poll() and ether_poll() do polling always, if any
handlers are present.
- In ether_poll_[de]register() remove a lot of error hiding code. Assert
that arguments are correct, instead.
- In ether_poll_[de]register() use standard return values in case of
error or success.
- Introduce poll_switch() that is a sysctl handler for kern.polling.enable.
poll_switch() goes through interface list and enabled/disables polling.
A message that kern.polling.enable is deprecated is printed.
Detailed driver changes:
- On attach driver announces IFCAP_POLLING in if_capabilities, but
not in if_capenable.
- On detach driver calls ether_poll_deregister() if polling is enabled.
- In polling handler driver obtains its lock and checks IFF_DRV_RUNNING
flag. If there is no, then unlocks and returns.
- In ioctl handler driver checks for IFCAP_POLLING flag requested to
be set or cleared. Driver first calls ether_poll_[de]register(), then
obtains driver lock and [dis/en]ables interrupts.
- In interrupt handler driver checks IFCAP_POLLING flag in if_capenable.
If present, then returns.This is important to protect from spurious
interrupts.
Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
|
|
|
#ifdef DEVICE_POLLING
|
|
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
|
|
#endif
|
2004-06-13 10:54:36 +00:00
|
|
|
|
|
|
|
s = splimp();
|
|
|
|
firewire_ifattach(ifp, hwaddr);
|
|
|
|
splx(s);
|
|
|
|
|
|
|
|
FWIPDEBUG(ifp, "interface created\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
fwip_stop(struct fwip_softc *fwip)
|
|
|
|
{
|
|
|
|
struct firewire_comm *fc;
|
|
|
|
struct fw_xferq *xferq;
|
2005-06-10 16:49:24 +00:00
|
|
|
struct ifnet *ifp = fwip->fw_softc.fwip_ifp;
|
2004-06-13 10:54:36 +00:00
|
|
|
struct fw_xfer *xfer, *next;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
fc = fwip->fd.fc;
|
|
|
|
|
|
|
|
if (fwip->dma_ch >= 0) {
|
|
|
|
xferq = fc->ir[fwip->dma_ch];
|
|
|
|
|
|
|
|
if (xferq->flag & FWXFERQ_RUNNING)
|
|
|
|
fc->irx_disable(fc, fwip->dma_ch);
|
|
|
|
xferq->flag &=
|
|
|
|
~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM |
|
|
|
|
FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK);
|
|
|
|
xferq->hand = NULL;
|
|
|
|
|
|
|
|
for (i = 0; i < xferq->bnchunk; i ++)
|
|
|
|
m_freem(xferq->bulkxfer[i].mbuf);
|
|
|
|
free(xferq->bulkxfer, M_FWIP);
|
|
|
|
|
|
|
|
fw_bindremove(fc, &fwip->fwb);
|
|
|
|
for (xfer = STAILQ_FIRST(&fwip->fwb.xferlist); xfer != NULL;
|
|
|
|
xfer = next) {
|
|
|
|
next = STAILQ_NEXT(xfer, link);
|
|
|
|
fw_xfer_free(xfer);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (xfer = STAILQ_FIRST(&fwip->xferlist); xfer != NULL;
|
|
|
|
xfer = next) {
|
|
|
|
next = STAILQ_NEXT(xfer, link);
|
|
|
|
fw_xfer_free(xfer);
|
|
|
|
}
|
|
|
|
STAILQ_INIT(&fwip->xferlist);
|
|
|
|
|
|
|
|
xferq->bulkxfer = NULL;
|
|
|
|
fwip->dma_ch = -1;
|
|
|
|
}
|
|
|
|
|
2005-08-09 10:20:02 +00:00
|
|
|
#if defined(__FreeBSD__)
|
|
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
#else
|
2004-06-13 10:54:36 +00:00
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
2005-08-09 10:20:02 +00:00
|
|
|
#endif
|
2004-06-13 10:54:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fwip_detach(device_t dev)
|
|
|
|
{
|
|
|
|
struct fwip_softc *fwip;
|
Big polling(4) cleanup.
o Axe poll in trap.
o Axe IFF_POLLING flag from if_flags.
o Rework revision 1.21 (Giant removal), in such a way that
poll_mtx is not dropped during call to polling handler.
This fixes problem with idle polling.
o Make registration and deregistration from polling in a
functional way, insted of next tick/interrupt.
o Obsolete kern.polling.enable. Polling is turned on/off
with ifconfig.
Detailed kern_poll.c changes:
- Remove polling handler flags, introduced in 1.21. The are not
needed now.
- Forget and do not check if_flags, if_capenable and if_drv_flags.
- Call all registered polling handlers unconditionally.
- Do not drop poll_mtx, when entering polling handlers.
- In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx.
- In netisr_poll() axe the block, where polling code asks drivers
to unregister.
- In netisr_poll() and ether_poll() do polling always, if any
handlers are present.
- In ether_poll_[de]register() remove a lot of error hiding code. Assert
that arguments are correct, instead.
- In ether_poll_[de]register() use standard return values in case of
error or success.
- Introduce poll_switch() that is a sysctl handler for kern.polling.enable.
poll_switch() goes through interface list and enabled/disables polling.
A message that kern.polling.enable is deprecated is printed.
Detailed driver changes:
- On attach driver announces IFCAP_POLLING in if_capabilities, but
not in if_capenable.
- On detach driver calls ether_poll_deregister() if polling is enabled.
- In polling handler driver obtains its lock and checks IFF_DRV_RUNNING
flag. If there is no, then unlocks and returns.
- In ioctl handler driver checks for IFCAP_POLLING flag requested to
be set or cleared. Driver first calls ether_poll_[de]register(), then
obtains driver lock and [dis/en]ables interrupts.
- In interrupt handler driver checks IFCAP_POLLING flag in if_capenable.
If present, then returns.This is important to protect from spurious
interrupts.
Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
|
|
|
struct ifnet *ifp;
|
2004-06-13 10:54:36 +00:00
|
|
|
int s;
|
|
|
|
|
|
|
|
fwip = (struct fwip_softc *)device_get_softc(dev);
|
Big polling(4) cleanup.
o Axe poll in trap.
o Axe IFF_POLLING flag from if_flags.
o Rework revision 1.21 (Giant removal), in such a way that
poll_mtx is not dropped during call to polling handler.
This fixes problem with idle polling.
o Make registration and deregistration from polling in a
functional way, insted of next tick/interrupt.
o Obsolete kern.polling.enable. Polling is turned on/off
with ifconfig.
Detailed kern_poll.c changes:
- Remove polling handler flags, introduced in 1.21. The are not
needed now.
- Forget and do not check if_flags, if_capenable and if_drv_flags.
- Call all registered polling handlers unconditionally.
- Do not drop poll_mtx, when entering polling handlers.
- In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx.
- In netisr_poll() axe the block, where polling code asks drivers
to unregister.
- In netisr_poll() and ether_poll() do polling always, if any
handlers are present.
- In ether_poll_[de]register() remove a lot of error hiding code. Assert
that arguments are correct, instead.
- In ether_poll_[de]register() use standard return values in case of
error or success.
- Introduce poll_switch() that is a sysctl handler for kern.polling.enable.
poll_switch() goes through interface list and enabled/disables polling.
A message that kern.polling.enable is deprecated is printed.
Detailed driver changes:
- On attach driver announces IFCAP_POLLING in if_capabilities, but
not in if_capenable.
- On detach driver calls ether_poll_deregister() if polling is enabled.
- In polling handler driver obtains its lock and checks IFF_DRV_RUNNING
flag. If there is no, then unlocks and returns.
- In ioctl handler driver checks for IFCAP_POLLING flag requested to
be set or cleared. Driver first calls ether_poll_[de]register(), then
obtains driver lock and [dis/en]ables interrupts.
- In interrupt handler driver checks IFCAP_POLLING flag in if_capenable.
If present, then returns.This is important to protect from spurious
interrupts.
Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
|
|
|
ifp = fwip->fw_softc.fwip_ifp;
|
|
|
|
|
|
|
|
#ifdef DEVICE_POLLING
|
|
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
|
|
ether_poll_deregister(ifp);
|
|
|
|
#endif
|
|
|
|
|
2004-06-13 10:54:36 +00:00
|
|
|
s = splimp();
|
|
|
|
|
|
|
|
fwip_stop(fwip);
|
Big polling(4) cleanup.
o Axe poll in trap.
o Axe IFF_POLLING flag from if_flags.
o Rework revision 1.21 (Giant removal), in such a way that
poll_mtx is not dropped during call to polling handler.
This fixes problem with idle polling.
o Make registration and deregistration from polling in a
functional way, insted of next tick/interrupt.
o Obsolete kern.polling.enable. Polling is turned on/off
with ifconfig.
Detailed kern_poll.c changes:
- Remove polling handler flags, introduced in 1.21. The are not
needed now.
- Forget and do not check if_flags, if_capenable and if_drv_flags.
- Call all registered polling handlers unconditionally.
- Do not drop poll_mtx, when entering polling handlers.
- In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx.
- In netisr_poll() axe the block, where polling code asks drivers
to unregister.
- In netisr_poll() and ether_poll() do polling always, if any
handlers are present.
- In ether_poll_[de]register() remove a lot of error hiding code. Assert
that arguments are correct, instead.
- In ether_poll_[de]register() use standard return values in case of
error or success.
- Introduce poll_switch() that is a sysctl handler for kern.polling.enable.
poll_switch() goes through interface list and enabled/disables polling.
A message that kern.polling.enable is deprecated is printed.
Detailed driver changes:
- On attach driver announces IFCAP_POLLING in if_capabilities, but
not in if_capenable.
- On detach driver calls ether_poll_deregister() if polling is enabled.
- In polling handler driver obtains its lock and checks IFF_DRV_RUNNING
flag. If there is no, then unlocks and returns.
- In ioctl handler driver checks for IFCAP_POLLING flag requested to
be set or cleared. Driver first calls ether_poll_[de]register(), then
obtains driver lock and [dis/en]ables interrupts.
- In interrupt handler driver checks IFCAP_POLLING flag in if_capenable.
If present, then returns.This is important to protect from spurious
interrupts.
Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
|
|
|
firewire_ifdetach(ifp);
|
|
|
|
if_free(ifp);
|
2007-06-06 14:31:36 +00:00
|
|
|
mtx_destroy(&fwip->mtx);
|
2004-06-13 10:54:36 +00:00
|
|
|
|
|
|
|
splx(s);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
fwip_init(void *arg)
|
|
|
|
{
|
|
|
|
struct fwip_softc *fwip = ((struct fwip_eth_softc *)arg)->fwip;
|
|
|
|
struct firewire_comm *fc;
|
2005-06-10 16:49:24 +00:00
|
|
|
struct ifnet *ifp = fwip->fw_softc.fwip_ifp;
|
2004-06-13 10:54:36 +00:00
|
|
|
struct fw_xferq *xferq;
|
|
|
|
struct fw_xfer *xfer;
|
|
|
|
struct mbuf *m;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
FWIPDEBUG(ifp, "initializing\n");
|
|
|
|
|
|
|
|
fc = fwip->fd.fc;
|
|
|
|
#define START 0
|
|
|
|
if (fwip->dma_ch < 0) {
|
2007-06-06 14:31:36 +00:00
|
|
|
fwip->dma_ch = fw_open_isodma(fc, /* tx */0);
|
|
|
|
if (fwip->dma_ch < 0)
|
|
|
|
return;
|
|
|
|
xferq = fc->ir[fwip->dma_ch];
|
|
|
|
xferq->flag |= FWXFERQ_EXTBUF |
|
2004-06-13 10:54:36 +00:00
|
|
|
FWXFERQ_HANDLER | FWXFERQ_STREAM;
|
|
|
|
xferq->flag &= ~0xff;
|
|
|
|
xferq->flag |= broadcast_channel & 0xff;
|
|
|
|
/* register fwip_input handler */
|
|
|
|
xferq->sc = (caddr_t) fwip;
|
|
|
|
xferq->hand = fwip_stream_input;
|
|
|
|
xferq->bnchunk = rx_queue_len;
|
|
|
|
xferq->bnpacket = 1;
|
|
|
|
xferq->psize = MCLBYTES;
|
|
|
|
xferq->queued = 0;
|
|
|
|
xferq->buf = NULL;
|
|
|
|
xferq->bulkxfer = (struct fw_bulkxfer *) malloc(
|
|
|
|
sizeof(struct fw_bulkxfer) * xferq->bnchunk,
|
|
|
|
M_FWIP, M_WAITOK);
|
|
|
|
if (xferq->bulkxfer == NULL) {
|
|
|
|
printf("if_fwip: malloc failed\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
STAILQ_INIT(&xferq->stvalid);
|
|
|
|
STAILQ_INIT(&xferq->stfree);
|
|
|
|
STAILQ_INIT(&xferq->stdma);
|
|
|
|
xferq->stproc = NULL;
|
|
|
|
for (i = 0; i < xferq->bnchunk; i ++) {
|
2012-12-04 09:32:43 +00:00
|
|
|
m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
|
2004-06-13 10:54:36 +00:00
|
|
|
xferq->bulkxfer[i].mbuf = m;
|
2008-03-25 09:39:02 +00:00
|
|
|
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
|
|
|
|
STAILQ_INSERT_TAIL(&xferq->stfree,
|
|
|
|
&xferq->bulkxfer[i], link);
|
2004-06-13 10:54:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
fwip->fwb.start = INET_FIFO;
|
|
|
|
fwip->fwb.end = INET_FIFO + 16384; /* S3200 packet size */
|
|
|
|
|
|
|
|
/* pre-allocate xfer */
|
|
|
|
STAILQ_INIT(&fwip->fwb.xferlist);
|
|
|
|
for (i = 0; i < rx_queue_len; i ++) {
|
|
|
|
xfer = fw_xfer_alloc(M_FWIP);
|
|
|
|
if (xfer == NULL)
|
|
|
|
break;
|
2012-12-04 09:32:43 +00:00
|
|
|
m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
|
2004-06-13 10:54:36 +00:00
|
|
|
xfer->recv.payload = mtod(m, uint32_t *);
|
|
|
|
xfer->recv.pay_len = MCLBYTES;
|
2007-03-16 05:39:33 +00:00
|
|
|
xfer->hand = fwip_unicast_input;
|
2004-06-13 10:54:36 +00:00
|
|
|
xfer->fc = fc;
|
|
|
|
xfer->sc = (caddr_t)fwip;
|
|
|
|
xfer->mbuf = m;
|
|
|
|
STAILQ_INSERT_TAIL(&fwip->fwb.xferlist, xfer, link);
|
|
|
|
}
|
|
|
|
fw_bindadd(fc, &fwip->fwb);
|
|
|
|
|
|
|
|
STAILQ_INIT(&fwip->xferlist);
|
|
|
|
for (i = 0; i < TX_MAX_QUEUE; i++) {
|
|
|
|
xfer = fw_xfer_alloc(M_FWIP);
|
|
|
|
if (xfer == NULL)
|
|
|
|
break;
|
|
|
|
xfer->send.spd = tx_speed;
|
|
|
|
xfer->fc = fwip->fd.fc;
|
|
|
|
xfer->sc = (caddr_t)fwip;
|
2007-03-16 05:39:33 +00:00
|
|
|
xfer->hand = fwip_output_callback;
|
2004-06-13 10:54:36 +00:00
|
|
|
STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link);
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
xferq = fc->ir[fwip->dma_ch];
|
|
|
|
|
|
|
|
fwip->last_dest.hi = 0;
|
|
|
|
fwip->last_dest.lo = 0;
|
|
|
|
|
|
|
|
/* start dma */
|
|
|
|
if ((xferq->flag & FWXFERQ_RUNNING) == 0)
|
|
|
|
fc->irx_enable(fc, fwip->dma_ch);
|
|
|
|
|
2005-08-09 10:20:02 +00:00
|
|
|
#if defined(__FreeBSD__)
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
#else
|
2004-06-13 10:54:36 +00:00
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
2005-08-09 10:20:02 +00:00
|
|
|
#endif
|
2004-06-13 10:54:36 +00:00
|
|
|
|
|
|
|
#if 0
|
|
|
|
/* attempt to start output */
|
|
|
|
fwip_start(ifp);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fwip_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
|
|
{
|
|
|
|
struct fwip_softc *fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
|
|
|
|
int s, error;
|
|
|
|
|
|
|
|
switch (cmd) {
|
|
|
|
case SIOCSIFFLAGS:
|
|
|
|
s = splimp();
|
|
|
|
if (ifp->if_flags & IFF_UP) {
|
2005-08-09 10:20:02 +00:00
|
|
|
#if defined(__FreeBSD__)
|
|
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
|
|
#else
|
2004-06-13 10:54:36 +00:00
|
|
|
if (!(ifp->if_flags & IFF_RUNNING))
|
2005-08-09 10:20:02 +00:00
|
|
|
#endif
|
2004-06-13 10:54:36 +00:00
|
|
|
fwip_init(&fwip->fw_softc);
|
|
|
|
} else {
|
2005-08-09 10:20:02 +00:00
|
|
|
#if defined(__FreeBSD__)
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
|
|
#else
|
2004-06-13 10:54:36 +00:00
|
|
|
if (ifp->if_flags & IFF_RUNNING)
|
2005-08-09 10:20:02 +00:00
|
|
|
#endif
|
2004-06-13 10:54:36 +00:00
|
|
|
fwip_stop(fwip);
|
|
|
|
}
|
|
|
|
splx(s);
|
|
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
|
|
case SIOCDELMULTI:
|
|
|
|
break;
|
Big polling(4) cleanup.
o Axe poll in trap.
o Axe IFF_POLLING flag from if_flags.
o Rework revision 1.21 (Giant removal), in such a way that
poll_mtx is not dropped during call to polling handler.
This fixes problem with idle polling.
o Make registration and deregistration from polling in a
functional way, insted of next tick/interrupt.
o Obsolete kern.polling.enable. Polling is turned on/off
with ifconfig.
Detailed kern_poll.c changes:
- Remove polling handler flags, introduced in 1.21. The are not
needed now.
- Forget and do not check if_flags, if_capenable and if_drv_flags.
- Call all registered polling handlers unconditionally.
- Do not drop poll_mtx, when entering polling handlers.
- In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx.
- In netisr_poll() axe the block, where polling code asks drivers
to unregister.
- In netisr_poll() and ether_poll() do polling always, if any
handlers are present.
- In ether_poll_[de]register() remove a lot of error hiding code. Assert
that arguments are correct, instead.
- In ether_poll_[de]register() use standard return values in case of
error or success.
- Introduce poll_switch() that is a sysctl handler for kern.polling.enable.
poll_switch() goes through interface list and enabled/disables polling.
A message that kern.polling.enable is deprecated is printed.
Detailed driver changes:
- On attach driver announces IFCAP_POLLING in if_capabilities, but
not in if_capenable.
- On detach driver calls ether_poll_deregister() if polling is enabled.
- In polling handler driver obtains its lock and checks IFF_DRV_RUNNING
flag. If there is no, then unlocks and returns.
- In ioctl handler driver checks for IFCAP_POLLING flag requested to
be set or cleared. Driver first calls ether_poll_[de]register(), then
obtains driver lock and [dis/en]ables interrupts.
- In interrupt handler driver checks IFCAP_POLLING flag in if_capenable.
If present, then returns.This is important to protect from spurious
interrupts.
Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
|
|
|
case SIOCSIFCAP:
|
|
|
|
#ifdef DEVICE_POLLING
|
|
|
|
{
|
|
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
2009-02-09 16:58:18 +00:00
|
|
|
struct firewire_comm *fc = fwip->fd.fc;
|
Big polling(4) cleanup.
o Axe poll in trap.
o Axe IFF_POLLING flag from if_flags.
o Rework revision 1.21 (Giant removal), in such a way that
poll_mtx is not dropped during call to polling handler.
This fixes problem with idle polling.
o Make registration and deregistration from polling in a
functional way, insted of next tick/interrupt.
o Obsolete kern.polling.enable. Polling is turned on/off
with ifconfig.
Detailed kern_poll.c changes:
- Remove polling handler flags, introduced in 1.21. The are not
needed now.
- Forget and do not check if_flags, if_capenable and if_drv_flags.
- Call all registered polling handlers unconditionally.
- Do not drop poll_mtx, when entering polling handlers.
- In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx.
- In netisr_poll() axe the block, where polling code asks drivers
to unregister.
- In netisr_poll() and ether_poll() do polling always, if any
handlers are present.
- In ether_poll_[de]register() remove a lot of error hiding code. Assert
that arguments are correct, instead.
- In ether_poll_[de]register() use standard return values in case of
error or success.
- Introduce poll_switch() that is a sysctl handler for kern.polling.enable.
poll_switch() goes through interface list and enabled/disables polling.
A message that kern.polling.enable is deprecated is printed.
Detailed driver changes:
- On attach driver announces IFCAP_POLLING in if_capabilities, but
not in if_capenable.
- On detach driver calls ether_poll_deregister() if polling is enabled.
- In polling handler driver obtains its lock and checks IFF_DRV_RUNNING
flag. If there is no, then unlocks and returns.
- In ioctl handler driver checks for IFCAP_POLLING flag requested to
be set or cleared. Driver first calls ether_poll_[de]register(), then
obtains driver lock and [dis/en]ables interrupts.
- In interrupt handler driver checks IFCAP_POLLING flag in if_capenable.
If present, then returns.This is important to protect from spurious
interrupts.
Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
|
|
|
|
|
|
|
if (ifr->ifr_reqcap & IFCAP_POLLING &&
|
|
|
|
!(ifp->if_capenable & IFCAP_POLLING)) {
|
|
|
|
error = ether_poll_register(fwip_poll, ifp);
|
|
|
|
if (error)
|
|
|
|
return(error);
|
|
|
|
/* Disable interrupts */
|
|
|
|
fc->set_intr(fc, 0);
|
2009-05-30 15:14:44 +00:00
|
|
|
ifp->if_capenable |= IFCAP_POLLING |
|
|
|
|
IFCAP_POLLING_NOCOUNT;
|
Big polling(4) cleanup.
o Axe poll in trap.
o Axe IFF_POLLING flag from if_flags.
o Rework revision 1.21 (Giant removal), in such a way that
poll_mtx is not dropped during call to polling handler.
This fixes problem with idle polling.
o Make registration and deregistration from polling in a
functional way, insted of next tick/interrupt.
o Obsolete kern.polling.enable. Polling is turned on/off
with ifconfig.
Detailed kern_poll.c changes:
- Remove polling handler flags, introduced in 1.21. The are not
needed now.
- Forget and do not check if_flags, if_capenable and if_drv_flags.
- Call all registered polling handlers unconditionally.
- Do not drop poll_mtx, when entering polling handlers.
- In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx.
- In netisr_poll() axe the block, where polling code asks drivers
to unregister.
- In netisr_poll() and ether_poll() do polling always, if any
handlers are present.
- In ether_poll_[de]register() remove a lot of error hiding code. Assert
that arguments are correct, instead.
- In ether_poll_[de]register() use standard return values in case of
error or success.
- Introduce poll_switch() that is a sysctl handler for kern.polling.enable.
poll_switch() goes through interface list and enabled/disables polling.
A message that kern.polling.enable is deprecated is printed.
Detailed driver changes:
- On attach driver announces IFCAP_POLLING in if_capabilities, but
not in if_capenable.
- On detach driver calls ether_poll_deregister() if polling is enabled.
- In polling handler driver obtains its lock and checks IFF_DRV_RUNNING
flag. If there is no, then unlocks and returns.
- In ioctl handler driver checks for IFCAP_POLLING flag requested to
be set or cleared. Driver first calls ether_poll_[de]register(), then
obtains driver lock and [dis/en]ables interrupts.
- In interrupt handler driver checks IFCAP_POLLING flag in if_capenable.
If present, then returns.This is important to protect from spurious
interrupts.
Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
|
|
|
return (error);
|
|
|
|
|
|
|
|
}
|
|
|
|
if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
|
|
|
|
ifp->if_capenable & IFCAP_POLLING) {
|
|
|
|
error = ether_poll_deregister(ifp);
|
|
|
|
/* Enable interrupts. */
|
|
|
|
fc->set_intr(fc, 1);
|
|
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
2009-05-30 15:14:44 +00:00
|
|
|
ifp->if_capenable &= ~IFCAP_POLLING_NOCOUNT;
|
Big polling(4) cleanup.
o Axe poll in trap.
o Axe IFF_POLLING flag from if_flags.
o Rework revision 1.21 (Giant removal), in such a way that
poll_mtx is not dropped during call to polling handler.
This fixes problem with idle polling.
o Make registration and deregistration from polling in a
functional way, insted of next tick/interrupt.
o Obsolete kern.polling.enable. Polling is turned on/off
with ifconfig.
Detailed kern_poll.c changes:
- Remove polling handler flags, introduced in 1.21. The are not
needed now.
- Forget and do not check if_flags, if_capenable and if_drv_flags.
- Call all registered polling handlers unconditionally.
- Do not drop poll_mtx, when entering polling handlers.
- In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx.
- In netisr_poll() axe the block, where polling code asks drivers
to unregister.
- In netisr_poll() and ether_poll() do polling always, if any
handlers are present.
- In ether_poll_[de]register() remove a lot of error hiding code. Assert
that arguments are correct, instead.
- In ether_poll_[de]register() use standard return values in case of
error or success.
- Introduce poll_switch() that is a sysctl handler for kern.polling.enable.
poll_switch() goes through interface list and enabled/disables polling.
A message that kern.polling.enable is deprecated is printed.
Detailed driver changes:
- On attach driver announces IFCAP_POLLING in if_capabilities, but
not in if_capenable.
- On detach driver calls ether_poll_deregister() if polling is enabled.
- In polling handler driver obtains its lock and checks IFF_DRV_RUNNING
flag. If there is no, then unlocks and returns.
- In ioctl handler driver checks for IFCAP_POLLING flag requested to
be set or cleared. Driver first calls ether_poll_[de]register(), then
obtains driver lock and [dis/en]ables interrupts.
- In interrupt handler driver checks IFCAP_POLLING flag in if_capenable.
If present, then returns.This is important to protect from spurious
interrupts.
Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
break;
|
2004-06-13 10:54:36 +00:00
|
|
|
#if defined(__FreeBSD__) && __FreeBSD_version >= 500000
|
|
|
|
default:
|
|
|
|
#else
|
|
|
|
case SIOCSIFADDR:
|
|
|
|
case SIOCGIFADDR:
|
|
|
|
case SIOCSIFMTU:
|
|
|
|
#endif
|
|
|
|
s = splimp();
|
|
|
|
error = firewire_ioctl(ifp, cmd, data);
|
|
|
|
splx(s);
|
|
|
|
return (error);
|
|
|
|
#if defined(__DragonFly__) || __FreeBSD_version < 500000
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
fwip_post_busreset(void *arg)
|
|
|
|
{
|
|
|
|
struct fwip_softc *fwip = arg;
|
2004-06-13 13:58:00 +00:00
|
|
|
struct crom_src *src;
|
|
|
|
struct crom_chunk *root;
|
|
|
|
|
|
|
|
src = fwip->fd.fc->crom_src;
|
|
|
|
root = fwip->fd.fc->crom_root;
|
|
|
|
|
|
|
|
/* RFC2734 IPv4 over IEEE1394 */
|
|
|
|
bzero(&fwip->unit4, sizeof(struct crom_chunk));
|
|
|
|
crom_add_chunk(src, root, &fwip->unit4, CROM_UDIR);
|
|
|
|
crom_add_entry(&fwip->unit4, CSRKEY_SPEC, CSRVAL_IETF);
|
|
|
|
crom_add_simple_text(src, &fwip->unit4, &fwip->spec4, "IANA");
|
|
|
|
crom_add_entry(&fwip->unit4, CSRKEY_VER, 1);
|
|
|
|
crom_add_simple_text(src, &fwip->unit4, &fwip->ver4, "IPv4");
|
|
|
|
|
|
|
|
/* RFC3146 IPv6 over IEEE1394 */
|
|
|
|
bzero(&fwip->unit6, sizeof(struct crom_chunk));
|
|
|
|
crom_add_chunk(src, root, &fwip->unit6, CROM_UDIR);
|
|
|
|
crom_add_entry(&fwip->unit6, CSRKEY_SPEC, CSRVAL_IETF);
|
|
|
|
crom_add_simple_text(src, &fwip->unit6, &fwip->spec6, "IANA");
|
|
|
|
crom_add_entry(&fwip->unit6, CSRKEY_VER, 2);
|
|
|
|
crom_add_simple_text(src, &fwip->unit6, &fwip->ver6, "IPv6");
|
2004-06-13 10:54:36 +00:00
|
|
|
|
|
|
|
fwip->last_dest.hi = 0;
|
|
|
|
fwip->last_dest.lo = 0;
|
2005-06-10 16:49:24 +00:00
|
|
|
firewire_busreset(fwip->fw_softc.fwip_ifp);
|
2004-06-13 10:54:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
fwip_output_callback(struct fw_xfer *xfer)
|
|
|
|
{
|
|
|
|
struct fwip_softc *fwip;
|
|
|
|
struct ifnet *ifp;
|
|
|
|
int s;
|
|
|
|
|
|
|
|
fwip = (struct fwip_softc *)xfer->sc;
|
2005-06-10 16:49:24 +00:00
|
|
|
ifp = fwip->fw_softc.fwip_ifp;
|
2004-06-13 10:54:36 +00:00
|
|
|
/* XXX error check */
|
|
|
|
FWIPDEBUG(ifp, "resp = %d\n", xfer->resp);
|
|
|
|
if (xfer->resp != 0)
|
|
|
|
ifp->if_oerrors ++;
|
|
|
|
|
|
|
|
m_freem(xfer->mbuf);
|
|
|
|
fw_xfer_unload(xfer);
|
|
|
|
|
|
|
|
s = splimp();
|
2007-06-06 14:31:36 +00:00
|
|
|
FWIP_LOCK(fwip);
|
2004-06-13 10:54:36 +00:00
|
|
|
STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link);
|
2007-06-06 14:31:36 +00:00
|
|
|
FWIP_UNLOCK(fwip);
|
2004-06-13 10:54:36 +00:00
|
|
|
splx(s);
|
|
|
|
|
|
|
|
/* for queue full */
|
2007-06-06 14:31:36 +00:00
|
|
|
if (ifp->if_snd.ifq_head != NULL) {
|
2004-06-13 10:54:36 +00:00
|
|
|
fwip_start(ifp);
|
2007-06-06 14:31:36 +00:00
|
|
|
}
|
2004-06-13 10:54:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
fwip_start(struct ifnet *ifp)
|
|
|
|
{
|
|
|
|
struct fwip_softc *fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
|
|
|
|
int s;
|
|
|
|
|
|
|
|
FWIPDEBUG(ifp, "starting\n");
|
|
|
|
|
|
|
|
if (fwip->dma_ch < 0) {
|
|
|
|
struct mbuf *m = NULL;
|
|
|
|
|
|
|
|
FWIPDEBUG(ifp, "not ready\n");
|
|
|
|
|
|
|
|
s = splimp();
|
|
|
|
do {
|
|
|
|
IF_DEQUEUE(&ifp->if_snd, m);
|
|
|
|
if (m != NULL)
|
|
|
|
m_freem(m);
|
|
|
|
ifp->if_oerrors ++;
|
|
|
|
} while (m != NULL);
|
|
|
|
splx(s);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
s = splimp();
|
2005-08-09 10:20:02 +00:00
|
|
|
#if defined(__FreeBSD__)
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
|
|
#else
|
2004-06-13 10:54:36 +00:00
|
|
|
ifp->if_flags |= IFF_OACTIVE;
|
2005-08-09 10:20:02 +00:00
|
|
|
#endif
|
2004-06-13 10:54:36 +00:00
|
|
|
|
|
|
|
if (ifp->if_snd.ifq_len != 0)
|
|
|
|
fwip_async_output(fwip, ifp);
|
|
|
|
|
2005-08-09 10:20:02 +00:00
|
|
|
#if defined(__FreeBSD__)
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
#else
|
2004-06-13 10:54:36 +00:00
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
2005-08-09 10:20:02 +00:00
|
|
|
#endif
|
2004-06-13 10:54:36 +00:00
|
|
|
splx(s);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Async. stream output */
|
|
|
|
static void
|
|
|
|
fwip_async_output(struct fwip_softc *fwip, struct ifnet *ifp)
|
|
|
|
{
|
|
|
|
struct firewire_comm *fc = fwip->fd.fc;
|
|
|
|
struct mbuf *m;
|
|
|
|
struct m_tag *mtag;
|
|
|
|
struct fw_hwaddr *destfw;
|
|
|
|
struct fw_xfer *xfer;
|
|
|
|
struct fw_xferq *xferq;
|
|
|
|
struct fw_pkt *fp;
|
|
|
|
uint16_t nodeid;
|
2004-06-14 09:34:20 +00:00
|
|
|
int error;
|
2004-06-13 10:54:36 +00:00
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
xfer = NULL;
|
2007-06-06 14:31:36 +00:00
|
|
|
xferq = fc->atq;
|
|
|
|
while ((xferq->queued < xferq->maxq - 1) &&
|
|
|
|
(ifp->if_snd.ifq_head != NULL)) {
|
|
|
|
FWIP_LOCK(fwip);
|
2004-06-13 10:54:36 +00:00
|
|
|
xfer = STAILQ_FIRST(&fwip->xferlist);
|
|
|
|
if (xfer == NULL) {
|
2007-06-06 14:31:36 +00:00
|
|
|
FWIP_UNLOCK(fwip);
|
|
|
|
#if 0
|
2004-06-13 10:54:36 +00:00
|
|
|
printf("if_fwip: lack of xfer\n");
|
2007-06-06 14:31:36 +00:00
|
|
|
#endif
|
|
|
|
break;
|
2004-06-13 10:54:36 +00:00
|
|
|
}
|
2007-06-06 14:31:36 +00:00
|
|
|
STAILQ_REMOVE_HEAD(&fwip->xferlist, link);
|
|
|
|
FWIP_UNLOCK(fwip);
|
|
|
|
|
2004-06-13 10:54:36 +00:00
|
|
|
IF_DEQUEUE(&ifp->if_snd, m);
|
2007-06-06 14:31:36 +00:00
|
|
|
if (m == NULL) {
|
|
|
|
FWIP_LOCK(fwip);
|
|
|
|
STAILQ_INSERT_HEAD(&fwip->xferlist, xfer, link);
|
|
|
|
FWIP_UNLOCK(fwip);
|
2004-06-13 10:54:36 +00:00
|
|
|
break;
|
2007-06-06 14:31:36 +00:00
|
|
|
}
|
2004-06-13 10:54:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Dig out the link-level address which
|
|
|
|
* firewire_output got via arp or neighbour
|
|
|
|
* discovery. If we don't have a link-level address,
|
|
|
|
* just stick the thing on the broadcast channel.
|
|
|
|
*/
|
|
|
|
mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, 0);
|
|
|
|
if (mtag == NULL)
|
|
|
|
destfw = 0;
|
|
|
|
else
|
|
|
|
destfw = (struct fw_hwaddr *) (mtag + 1);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We don't do any bpf stuff here - the generic code
|
|
|
|
* in firewire_output gives the packet to bpf before
|
|
|
|
* it adds the link-level encapsulation.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Put the mbuf in the xfer early in case we hit an
|
|
|
|
* error case below - fwip_output_callback will free
|
|
|
|
* the mbuf.
|
|
|
|
*/
|
|
|
|
xfer->mbuf = m;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We use the arp result (if any) to add a suitable firewire
|
|
|
|
* packet header before handing off to the bus.
|
|
|
|
*/
|
|
|
|
fp = &xfer->send.hdr;
|
|
|
|
nodeid = FWLOCALBUS | fc->nodeid;
|
|
|
|
if ((m->m_flags & M_BCAST) || !destfw) {
|
|
|
|
/*
|
|
|
|
* Broadcast packets are sent as GASP packets with
|
|
|
|
* specifier ID 0x00005e, version 1 on the broadcast
|
|
|
|
* channel. To be conservative, we send at the
|
|
|
|
* slowest possible speed.
|
|
|
|
*/
|
|
|
|
uint32_t *p;
|
|
|
|
|
2012-12-04 09:32:43 +00:00
|
|
|
M_PREPEND(m, 2*sizeof(uint32_t), M_NOWAIT);
|
2004-06-13 10:54:36 +00:00
|
|
|
p = mtod(m, uint32_t *);
|
|
|
|
fp->mode.stream.len = m->m_pkthdr.len;
|
|
|
|
fp->mode.stream.chtag = broadcast_channel;
|
|
|
|
fp->mode.stream.tcode = FWTCODE_STREAM;
|
|
|
|
fp->mode.stream.sy = 0;
|
|
|
|
xfer->send.spd = 0;
|
|
|
|
p[0] = htonl(nodeid << 16);
|
|
|
|
p[1] = htonl((0x5e << 24) | 1);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Unicast packets are sent as block writes to the
|
|
|
|
* target's unicast fifo address. If we can't
|
|
|
|
* find the node address, we just give up. We
|
|
|
|
* could broadcast it but that might overflow
|
|
|
|
* the packet size limitations due to the
|
|
|
|
* extra GASP header. Note: the hardware
|
|
|
|
* address is stored in network byte order to
|
|
|
|
* make life easier for ARP.
|
|
|
|
*/
|
|
|
|
struct fw_device *fd;
|
|
|
|
struct fw_eui64 eui;
|
|
|
|
|
|
|
|
eui.hi = ntohl(destfw->sender_unique_ID_hi);
|
|
|
|
eui.lo = ntohl(destfw->sender_unique_ID_lo);
|
|
|
|
if (fwip->last_dest.hi != eui.hi ||
|
|
|
|
fwip->last_dest.lo != eui.lo) {
|
|
|
|
fd = fw_noderesolve_eui64(fc, &eui);
|
|
|
|
if (!fd) {
|
|
|
|
/* error */
|
|
|
|
ifp->if_oerrors ++;
|
|
|
|
/* XXX set error code */
|
|
|
|
fwip_output_callback(xfer);
|
|
|
|
continue;
|
|
|
|
|
|
|
|
}
|
|
|
|
fwip->last_hdr.mode.wreqb.dst = FWLOCALBUS | fd->dst;
|
|
|
|
fwip->last_hdr.mode.wreqb.tlrt = 0;
|
|
|
|
fwip->last_hdr.mode.wreqb.tcode = FWTCODE_WREQB;
|
|
|
|
fwip->last_hdr.mode.wreqb.pri = 0;
|
|
|
|
fwip->last_hdr.mode.wreqb.src = nodeid;
|
|
|
|
fwip->last_hdr.mode.wreqb.dest_hi =
|
|
|
|
ntohs(destfw->sender_unicast_FIFO_hi);
|
|
|
|
fwip->last_hdr.mode.wreqb.dest_lo =
|
|
|
|
ntohl(destfw->sender_unicast_FIFO_lo);
|
|
|
|
fwip->last_hdr.mode.wreqb.extcode = 0;
|
|
|
|
fwip->last_dest = eui;
|
|
|
|
}
|
|
|
|
|
|
|
|
fp->mode.wreqb = fwip->last_hdr.mode.wreqb;
|
|
|
|
fp->mode.wreqb.len = m->m_pkthdr.len;
|
|
|
|
xfer->send.spd = min(destfw->sspd, fc->speed);
|
|
|
|
}
|
|
|
|
|
|
|
|
xfer->send.pay_len = m->m_pkthdr.len;
|
|
|
|
|
2004-06-14 09:34:20 +00:00
|
|
|
error = fw_asyreq(fc, -1, xfer);
|
|
|
|
if (error == EAGAIN) {
|
|
|
|
/*
|
|
|
|
* We ran out of tlabels - requeue the packet
|
|
|
|
* for later transmission.
|
|
|
|
*/
|
|
|
|
xfer->mbuf = 0;
|
2007-06-06 14:31:36 +00:00
|
|
|
FWIP_LOCK(fwip);
|
2004-06-14 09:34:20 +00:00
|
|
|
STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link);
|
2007-06-06 14:31:36 +00:00
|
|
|
FWIP_UNLOCK(fwip);
|
2004-06-14 09:34:20 +00:00
|
|
|
IF_PREPEND(&ifp->if_snd, m);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (error) {
|
2004-06-13 10:54:36 +00:00
|
|
|
/* error */
|
|
|
|
ifp->if_oerrors ++;
|
|
|
|
/* XXX set error code */
|
|
|
|
fwip_output_callback(xfer);
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
ifp->if_opackets ++;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#if 0
|
|
|
|
if (i > 1)
|
|
|
|
printf("%d queued\n", i);
|
|
|
|
#endif
|
2007-06-06 14:31:36 +00:00
|
|
|
if (i > 0)
|
2004-06-13 10:54:36 +00:00
|
|
|
xferq->start(fc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
fwip_start_send (void *arg, int count)
|
|
|
|
{
|
|
|
|
struct fwip_softc *fwip = arg;
|
|
|
|
|
|
|
|
fwip->fd.fc->atq->start(fwip->fd.fc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Async. stream output */
|
|
|
|
static void
|
|
|
|
fwip_stream_input(struct fw_xferq *xferq)
|
|
|
|
{
|
|
|
|
struct mbuf *m, *m0;
|
|
|
|
struct m_tag *mtag;
|
|
|
|
struct ifnet *ifp;
|
|
|
|
struct fwip_softc *fwip;
|
|
|
|
struct fw_bulkxfer *sxfer;
|
|
|
|
struct fw_pkt *fp;
|
|
|
|
uint16_t src;
|
|
|
|
uint32_t *p;
|
|
|
|
|
|
|
|
|
|
|
|
fwip = (struct fwip_softc *)xferq->sc;
|
2005-06-10 16:49:24 +00:00
|
|
|
ifp = fwip->fw_softc.fwip_ifp;
|
Big polling(4) cleanup.
o Axe poll in trap.
o Axe IFF_POLLING flag from if_flags.
o Rework revision 1.21 (Giant removal), in such a way that
poll_mtx is not dropped during call to polling handler.
This fixes problem with idle polling.
o Make registration and deregistration from polling in a
functional way, insted of next tick/interrupt.
o Obsolete kern.polling.enable. Polling is turned on/off
with ifconfig.
Detailed kern_poll.c changes:
- Remove polling handler flags, introduced in 1.21. The are not
needed now.
- Forget and do not check if_flags, if_capenable and if_drv_flags.
- Call all registered polling handlers unconditionally.
- Do not drop poll_mtx, when entering polling handlers.
- In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx.
- In netisr_poll() axe the block, where polling code asks drivers
to unregister.
- In netisr_poll() and ether_poll() do polling always, if any
handlers are present.
- In ether_poll_[de]register() remove a lot of error hiding code. Assert
that arguments are correct, instead.
- In ether_poll_[de]register() use standard return values in case of
error or success.
- Introduce poll_switch() that is a sysctl handler for kern.polling.enable.
poll_switch() goes through interface list and enabled/disables polling.
A message that kern.polling.enable is deprecated is printed.
Detailed driver changes:
- On attach driver announces IFCAP_POLLING in if_capabilities, but
not in if_capenable.
- On detach driver calls ether_poll_deregister() if polling is enabled.
- In polling handler driver obtains its lock and checks IFF_DRV_RUNNING
flag. If there is no, then unlocks and returns.
- In ioctl handler driver checks for IFCAP_POLLING flag requested to
be set or cleared. Driver first calls ether_poll_[de]register(), then
obtains driver lock and [dis/en]ables interrupts.
- In interrupt handler driver checks IFCAP_POLLING flag in if_capenable.
If present, then returns.This is important to protect from spurious
interrupts.
Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
|
|
|
|
2004-06-13 10:54:36 +00:00
|
|
|
while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) {
|
|
|
|
STAILQ_REMOVE_HEAD(&xferq->stvalid, link);
|
|
|
|
fp = mtod(sxfer->mbuf, struct fw_pkt *);
|
|
|
|
if (fwip->fd.fc->irx_post != NULL)
|
|
|
|
fwip->fd.fc->irx_post(fwip->fd.fc, fp->mode.ld);
|
|
|
|
m = sxfer->mbuf;
|
|
|
|
|
|
|
|
/* insert new rbuf */
|
2012-12-04 09:32:43 +00:00
|
|
|
sxfer->mbuf = m0 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
2004-06-13 10:54:36 +00:00
|
|
|
if (m0 != NULL) {
|
|
|
|
m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size;
|
|
|
|
STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link);
|
|
|
|
} else
|
|
|
|
printf("fwip_as_input: m_getcl failed\n");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We must have a GASP header - leave the
|
|
|
|
* encapsulation sanity checks to the generic
|
|
|
|
* code. Remeber that we also have the firewire async
|
|
|
|
* stream header even though that isn't accounted for
|
|
|
|
* in mode.stream.len.
|
|
|
|
*/
|
|
|
|
if (sxfer->resp != 0 || fp->mode.stream.len <
|
|
|
|
2*sizeof(uint32_t)) {
|
|
|
|
m_freem(m);
|
|
|
|
ifp->if_ierrors ++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
m->m_len = m->m_pkthdr.len = fp->mode.stream.len
|
|
|
|
+ sizeof(fp->mode.stream);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we received the packet on the broadcast channel,
|
|
|
|
* mark it as broadcast, otherwise we assume it must
|
|
|
|
* be multicast.
|
|
|
|
*/
|
|
|
|
if (fp->mode.stream.chtag == broadcast_channel)
|
|
|
|
m->m_flags |= M_BCAST;
|
|
|
|
else
|
|
|
|
m->m_flags |= M_MCAST;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Make sure we recognise the GASP specifier and
|
|
|
|
* version.
|
|
|
|
*/
|
|
|
|
p = mtod(m, uint32_t *);
|
|
|
|
if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) != 0x00005e
|
|
|
|
|| (ntohl(p[2]) & 0xffffff) != 1) {
|
|
|
|
FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n",
|
|
|
|
ntohl(p[1]), ntohl(p[2]));
|
|
|
|
m_freem(m);
|
|
|
|
ifp->if_ierrors ++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Record the sender ID for possible BPF usage.
|
|
|
|
*/
|
|
|
|
src = ntohl(p[1]) >> 16;
|
2006-12-29 13:59:50 +00:00
|
|
|
if (bpf_peers_present(ifp->if_bpf)) {
|
2004-06-13 10:54:36 +00:00
|
|
|
mtag = m_tag_alloc(MTAG_FIREWIRE,
|
|
|
|
MTAG_FIREWIRE_SENDER_EUID,
|
|
|
|
2*sizeof(uint32_t), M_NOWAIT);
|
|
|
|
if (mtag) {
|
|
|
|
/* bpf wants it in network byte order */
|
|
|
|
struct fw_device *fd;
|
|
|
|
uint32_t *p = (uint32_t *) (mtag + 1);
|
|
|
|
fd = fw_noderesolve_nodeid(fwip->fd.fc,
|
|
|
|
src & 0x3f);
|
|
|
|
if (fd) {
|
|
|
|
p[0] = htonl(fd->eui.hi);
|
|
|
|
p[1] = htonl(fd->eui.lo);
|
|
|
|
} else {
|
|
|
|
p[0] = 0;
|
|
|
|
p[1] = 0;
|
|
|
|
}
|
|
|
|
m_tag_prepend(m, mtag);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Trim off the GASP header
|
|
|
|
*/
|
|
|
|
m_adj(m, 3*sizeof(uint32_t));
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
firewire_input(ifp, m, src);
|
|
|
|
ifp->if_ipackets ++;
|
|
|
|
}
|
|
|
|
if (STAILQ_FIRST(&xferq->stfree) != NULL)
|
|
|
|
fwip->fd.fc->irx_enable(fwip->fd.fc, fwip->dma_ch);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline void
|
|
|
|
fwip_unicast_input_recycle(struct fwip_softc *fwip, struct fw_xfer *xfer)
|
|
|
|
{
|
|
|
|
struct mbuf *m;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We have finished with a unicast xfer. Allocate a new
|
|
|
|
* cluster and stick it on the back of the input queue.
|
|
|
|
*/
|
2012-12-04 09:32:43 +00:00
|
|
|
m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
|
2004-06-13 10:54:36 +00:00
|
|
|
xfer->mbuf = m;
|
|
|
|
xfer->recv.payload = mtod(m, uint32_t *);
|
|
|
|
xfer->recv.pay_len = MCLBYTES;
|
|
|
|
xfer->mbuf = m;
|
|
|
|
STAILQ_INSERT_TAIL(&fwip->fwb.xferlist, xfer, link);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
fwip_unicast_input(struct fw_xfer *xfer)
|
|
|
|
{
|
|
|
|
uint64_t address;
|
|
|
|
struct mbuf *m;
|
|
|
|
struct m_tag *mtag;
|
|
|
|
struct ifnet *ifp;
|
|
|
|
struct fwip_softc *fwip;
|
|
|
|
struct fw_pkt *fp;
|
|
|
|
//struct fw_pkt *sfp;
|
|
|
|
int rtcode;
|
|
|
|
|
|
|
|
fwip = (struct fwip_softc *)xfer->sc;
|
2005-06-10 16:49:24 +00:00
|
|
|
ifp = fwip->fw_softc.fwip_ifp;
|
2004-06-13 10:54:36 +00:00
|
|
|
m = xfer->mbuf;
|
|
|
|
xfer->mbuf = 0;
|
|
|
|
fp = &xfer->recv.hdr;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check the fifo address - we only accept addresses of
|
|
|
|
* exactly INET_FIFO.
|
|
|
|
*/
|
|
|
|
address = ((uint64_t)fp->mode.wreqb.dest_hi << 32)
|
|
|
|
| fp->mode.wreqb.dest_lo;
|
|
|
|
if (fp->mode.wreqb.tcode != FWTCODE_WREQB) {
|
|
|
|
rtcode = FWRCODE_ER_TYPE;
|
|
|
|
} else if (address != INET_FIFO) {
|
|
|
|
rtcode = FWRCODE_ER_ADDR;
|
|
|
|
} else {
|
|
|
|
rtcode = FWRCODE_COMPLETE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Pick up a new mbuf and stick it on the back of the receive
|
|
|
|
* queue.
|
|
|
|
*/
|
|
|
|
fwip_unicast_input_recycle(fwip, xfer);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we've already rejected the packet, give up now.
|
|
|
|
*/
|
|
|
|
if (rtcode != FWRCODE_COMPLETE) {
|
|
|
|
m_freem(m);
|
|
|
|
ifp->if_ierrors ++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2006-12-29 13:59:50 +00:00
|
|
|
if (bpf_peers_present(ifp->if_bpf)) {
|
2004-06-13 10:54:36 +00:00
|
|
|
/*
|
|
|
|
* Record the sender ID for possible BPF usage.
|
|
|
|
*/
|
|
|
|
mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID,
|
|
|
|
2*sizeof(uint32_t), M_NOWAIT);
|
|
|
|
if (mtag) {
|
|
|
|
/* bpf wants it in network byte order */
|
|
|
|
struct fw_device *fd;
|
|
|
|
uint32_t *p = (uint32_t *) (mtag + 1);
|
|
|
|
fd = fw_noderesolve_nodeid(fwip->fd.fc,
|
|
|
|
fp->mode.wreqb.src & 0x3f);
|
|
|
|
if (fd) {
|
|
|
|
p[0] = htonl(fd->eui.hi);
|
|
|
|
p[1] = htonl(fd->eui.lo);
|
|
|
|
} else {
|
|
|
|
p[0] = 0;
|
|
|
|
p[1] = 0;
|
|
|
|
}
|
|
|
|
m_tag_prepend(m, mtag);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hand off to the generic encapsulation code. We don't use
|
|
|
|
* ifp->if_input so that we can pass the source nodeid as an
|
|
|
|
* argument to facilitate link-level fragment reassembly.
|
|
|
|
*/
|
|
|
|
m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len;
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
firewire_input(ifp, m, fp->mode.wreqb.src);
|
|
|
|
ifp->if_ipackets ++;
|
|
|
|
}
|
|
|
|
|
|
|
|
static devclass_t fwip_devclass;
|
|
|
|
|
|
|
|
static device_method_t fwip_methods[] = {
|
|
|
|
/* device interface */
|
|
|
|
DEVMETHOD(device_identify, fwip_identify),
|
|
|
|
DEVMETHOD(device_probe, fwip_probe),
|
|
|
|
DEVMETHOD(device_attach, fwip_attach),
|
|
|
|
DEVMETHOD(device_detach, fwip_detach),
|
|
|
|
{ 0, 0 }
|
|
|
|
};
|
|
|
|
|
|
|
|
static driver_t fwip_driver = {
|
|
|
|
"fwip",
|
|
|
|
fwip_methods,
|
|
|
|
sizeof(struct fwip_softc),
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef __DragonFly__
|
|
|
|
DECLARE_DUMMY_MODULE(fwip);
|
|
|
|
#endif
|
|
|
|
DRIVER_MODULE(fwip, firewire, fwip_driver, fwip_devclass, 0, 0);
|
|
|
|
MODULE_VERSION(fwip, 1);
|
|
|
|
MODULE_DEPEND(fwip, firewire, 1, 1, 1);
|