freebsd-dev/sbin/fsirand/fsirand.c

237 lines
6.4 KiB
C
Raw Normal View History

/* $OpenBSD: fsirand.c,v 1.9 1997/02/28 00:46:33 millert Exp $ */
/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 1997 Todd C. Miller <Todd.Miller@courtesan.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Todd C. Miller.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef lint
static const char rcsid[] =
1999-08-28 00:22:10 +00:00
"$FreeBSD$";
#endif /* not lint */
#include <sys/param.h>
#include <sys/resource.h>
#include <ufs/ufs/dinode.h>
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
#include <ufs/ffs/fs.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <libufs.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
static void usage(void) __dead2;
int fsirand(char *);
static int printonly = 0, force = 0, ignorelabel = 0;
int
main(int argc, char *argv[])
{
int n, ex = 0;
struct rlimit rl;
while ((n = getopt(argc, argv, "bfp")) != -1) {
switch (n) {
case 'b':
ignorelabel++;
break;
case 'p':
printonly++;
break;
case 'f':
force++;
break;
default:
usage();
}
}
if (argc - optind < 1)
usage();
1997-06-14 00:17:53 +00:00
srandomdev();
/* Increase our data size to the max */
if (getrlimit(RLIMIT_DATA, &rl) == 0) {
rl.rlim_cur = rl.rlim_max;
if (setrlimit(RLIMIT_DATA, &rl) < 0)
warn("can't get resource limit to max data size");
} else
warn("can't get resource limit for data size");
for (n = optind; n < argc; n++) {
if (argc - optind != 1)
(void)puts(argv[n]);
ex += fsirand(argv[n]);
if (n < argc - 1)
putchar('\n');
}
exit(ex);
}
int
fsirand(char *device)
{
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
struct ufs1_dinode *dp1;
struct ufs2_dinode *dp2;
caddr_t inodebuf;
ssize_t ibufsize;
struct fs *sblock;
ino_t inumber;
ufs2_daddr_t dblk;
int devfd, n, cg, ret;
u_int32_t bsize = DEV_BSIZE;
if ((devfd = open(device, printonly ? O_RDONLY : O_RDWR)) < 0) {
warn("can't open %s", device);
return (1);
}
dp1 = NULL;
dp2 = NULL;
/* Read in master superblock */
Normally when an attempt is made to mount a UFS/FFS filesystem whose superblock has a check-hash error, an error message noting the superblock check-hash failure is printed and the mount fails. The administrator then runs fsck to repair the filesystem and when successful, the filesystem can once again be mounted. This approach fails if the filesystem in question is a root filesystem from which you are trying to boot. Here, the loader fails when trying to access the filesystem to get the kernel to boot. So it is necessary to allow the loader to ignore the superblock check-hash error and make a best effort to read the kernel. The filesystem may be suffiently corrupted that the read attempt fails, but there is no harm in trying since the loader makes no attempt to write to the filesystem. Once the kernel is loaded and starts to run, it attempts to mount its root filesystem. Once again, failure means that it breaks to its prompt to ask where to get its root filesystem. Unless you have an alternate root filesystem, you are stuck. Since the root filesystem is initially mounted read-only, it is safe to make an attempt to mount the root filesystem with the failed superblock check-hash. Thus, when asked to mount a root filesystem with a failed superblock check-hash, the kernel prints a warning message that the root filesystem superblock check-hash needs repair, but notes that it is ignoring the error and proceeding. It does mark the filesystem as needing an fsck which prevents it from being enabled for writing until fsck has been run on it. The net effect is that the reboot fails to single user, but at least at that point the administrator has the tools at hand to fix the problem. Reported by: Rick Macklem (rmacklem@) Discussed with: Warner Losh (imp@) Sponsored by: Netflix
2018-12-06 00:09:39 +00:00
if ((ret = sbget(devfd, &sblock, STDSB)) != 0) {
switch (ret) {
case ENOENT:
warn("Cannot find file system superblock");
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
return (1);
default:
warn("Unable to read file system superblock");
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
return (1);
}
}
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (sblock->fs_magic == FS_UFS1_MAGIC &&
sblock->fs_old_inodefmt < FS_44INODEFMT) {
warnx("file system format is too old, sorry");
return (1);
}
if (!force && !printonly && sblock->fs_clean != 1) {
warnx("file system is not clean, fsck %s first", device);
return (1);
}
/* XXX - should really cap buffer at 512kb or so */
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (sblock->fs_magic == FS_UFS1_MAGIC)
ibufsize = sizeof(struct ufs1_dinode) * sblock->fs_ipg;
else
ibufsize = sizeof(struct ufs2_dinode) * sblock->fs_ipg;
if ((inodebuf = malloc(ibufsize)) == NULL)
errx(1, "can't allocate memory for inode buffer");
if (printonly && (sblock->fs_id[0] || sblock->fs_id[1])) {
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (sblock->fs_id[0])
(void)printf("%s was randomized on %s", device,
ctime((void *)&(sblock->fs_id[0])));
(void)printf("fsid: %x %x\n", sblock->fs_id[0],
sblock->fs_id[1]);
}
/* Randomize fs_id unless old 4.2BSD file system */
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (!printonly) {
/* Randomize fs_id and write out new sblock and backups */
sblock->fs_id[0] = (u_int32_t)time(NULL);
sblock->fs_id[1] = random();
if (sbput(devfd, sblock, sblock->fs_ncg) != 0) {
warn("could not write updated superblock");
return (1);
}
}
/* For each cylinder group, randomize inodes and update backup sblock */
for (cg = 0, inumber = UFS_ROOTINO; cg < (int)sblock->fs_ncg; cg++) {
/* Read in inodes, then print or randomize generation nums */
dblk = fsbtodb(sblock, ino_to_fsba(sblock, inumber));
if (lseek(devfd, (off_t)dblk * bsize, SEEK_SET) < 0) {
warn("can't seek to %jd", (intmax_t)dblk * bsize);
return (1);
} else if ((n = read(devfd, inodebuf, ibufsize)) != ibufsize) {
warnx("can't read inodes: %s",
(n < ibufsize) ? "short read" : strerror(errno));
return (1);
}
dp1 = (struct ufs1_dinode *)(void *)inodebuf;
dp2 = (struct ufs2_dinode *)(void *)inodebuf;
for (n = cg > 0 ? 0 : UFS_ROOTINO;
n < (int)sblock->fs_ipg;
n++, inumber++) {
if (printonly) {
(void)printf("ino %ju gen %08x\n",
(uintmax_t)inumber,
sblock->fs_magic == FS_UFS1_MAGIC ?
dp1->di_gen : dp2->di_gen);
} else if (sblock->fs_magic == FS_UFS1_MAGIC) {
dp1->di_gen = arc4random();
dp1++;
} else {
dp2->di_gen = arc4random();
ffs_update_dinode_ckhash(sblock, dp2);
dp2++;
}
}
/* Write out modified inodes */
if (!printonly) {
if (lseek(devfd, (off_t)dblk * bsize, SEEK_SET) < 0) {
warn("can't seek to %jd",
(intmax_t)dblk * bsize);
return (1);
} else if ((n = write(devfd, inodebuf, ibufsize)) !=
ibufsize) {
warnx("can't write inodes: %s",
(n != ibufsize) ? "short write" :
strerror(errno));
return (1);
}
}
}
(void)close(devfd);
return(0);
}
static void
usage(void)
{
(void)fprintf(stderr,
"usage: fsirand [-b] [-f] [-p] special [special ...]\n");
exit(1);
}