freebsd-dev/sys/x86/iommu/intel_quirks.c

239 lines
6.5 KiB
C
Raw Normal View History

Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
/*-
Use VT-d interrupt remapping block (IR) to perform FSB messages translation. In particular, despite IO-APICs only take 8bit apic id, IR translation structures accept 32bit APIC Id, which allows x2APIC mode to function properly. Extend msi_cpu of struct msi_intrsrc and io_cpu of ioapic_intsrc to full int from one byte. KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid bringing all dmar headers into interrupt code. The non-PCI(e) devices which generate message interrupts on FSB require special handling. The HPET FSB interrupts are remapped, while DMAR interrupts are not. For each msi and ioapic interrupt source, the iommu cookie is added, which is in fact index of the IRE (interrupt remap entry) in the IR table. Cookie is made at the source allocation time, and then used at the map time to fill both IRE and device registers. The MSI address/data registers and IO-APIC redirection registers are programmed with the special values which are recognized by IR and used to restore the IRE index, to find proper delivery mode and target. Map all MSI interrupts in the block when msi_map() is called. Since an interrupt source setup and dismantle code are done in the non-sleepable context, flushing interrupt entries cache in the IR hardware, which is done async and ideally waits for the interrupt, requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is modified to take a boolean argument requesting busy-wait for the written sequence number instead of waiting for interrupt. Some interrupts are configured before IR is initialized, e.g. ACPI SCI. Add intr_reprogram() function to reprogram all already configured interrupts, and call it immediately before an IR unit is enabled. There is still a small window after the IO-APIC redirection entry is reprogrammed with cookie but before the unit is enabled, but to fix this properly, IR must be started much earlier. Add workarounds for 5500 and X58 northbridges, some revisions of which have severe flaws in handling IR. Use the same identification methods as employed by Linux. Review: https://reviews.freebsd.org/D1892 Reviewed by: neel Discussed with: jhb Tested by: glebius, pho (previous versions) Sponsored by: The FreeBSD Foundation MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
* Copyright (c) 2013, 2015 The FreeBSD Foundation
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
* All rights reserved.
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/memdesc.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/rwlock.h>
#include <sys/smp.h>
#include <sys/taskqueue.h>
#include <sys/tree.h>
Use VT-d interrupt remapping block (IR) to perform FSB messages translation. In particular, despite IO-APICs only take 8bit apic id, IR translation structures accept 32bit APIC Id, which allows x2APIC mode to function properly. Extend msi_cpu of struct msi_intrsrc and io_cpu of ioapic_intsrc to full int from one byte. KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid bringing all dmar headers into interrupt code. The non-PCI(e) devices which generate message interrupts on FSB require special handling. The HPET FSB interrupts are remapped, while DMAR interrupts are not. For each msi and ioapic interrupt source, the iommu cookie is added, which is in fact index of the IRE (interrupt remap entry) in the IR table. Cookie is made at the source allocation time, and then used at the map time to fill both IRE and device registers. The MSI address/data registers and IO-APIC redirection registers are programmed with the special values which are recognized by IR and used to restore the IRE index, to find proper delivery mode and target. Map all MSI interrupts in the block when msi_map() is called. Since an interrupt source setup and dismantle code are done in the non-sleepable context, flushing interrupt entries cache in the IR hardware, which is done async and ideally waits for the interrupt, requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is modified to take a boolean argument requesting busy-wait for the written sequence number instead of waiting for interrupt. Some interrupts are configured before IR is initialized, e.g. ACPI SCI. Add intr_reprogram() function to reprogram all already configured interrupts, and call it immediately before an IR unit is enabled. There is still a small window after the IO-APIC redirection entry is reprogrammed with cookie but before the unit is enabled, but to fix this properly, IR must be started much earlier. Add workarounds for 5500 and X58 northbridges, some revisions of which have severe flaws in handling IR. Use the same identification methods as employed by Linux. Review: https://reviews.freebsd.org/D1892 Reviewed by: neel Discussed with: jhb Tested by: glebius, pho (previous versions) Sponsored by: The FreeBSD Foundation MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
#include <sys/vmem.h>
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
#include <machine/bus.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <dev/acpica/acpivar.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vm_map.h>
#include <x86/include/busdma_impl.h>
#include <x86/iommu/intel_reg.h>
#include <x86/iommu/busdma_dmar.h>
#include <x86/iommu/intel_dmar.h>
#include <dev/pci/pcivar.h>
Use VT-d interrupt remapping block (IR) to perform FSB messages translation. In particular, despite IO-APICs only take 8bit apic id, IR translation structures accept 32bit APIC Id, which allows x2APIC mode to function properly. Extend msi_cpu of struct msi_intrsrc and io_cpu of ioapic_intsrc to full int from one byte. KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid bringing all dmar headers into interrupt code. The non-PCI(e) devices which generate message interrupts on FSB require special handling. The HPET FSB interrupts are remapped, while DMAR interrupts are not. For each msi and ioapic interrupt source, the iommu cookie is added, which is in fact index of the IRE (interrupt remap entry) in the IR table. Cookie is made at the source allocation time, and then used at the map time to fill both IRE and device registers. The MSI address/data registers and IO-APIC redirection registers are programmed with the special values which are recognized by IR and used to restore the IRE index, to find proper delivery mode and target. Map all MSI interrupts in the block when msi_map() is called. Since an interrupt source setup and dismantle code are done in the non-sleepable context, flushing interrupt entries cache in the IR hardware, which is done async and ideally waits for the interrupt, requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is modified to take a boolean argument requesting busy-wait for the written sequence number instead of waiting for interrupt. Some interrupts are configured before IR is initialized, e.g. ACPI SCI. Add intr_reprogram() function to reprogram all already configured interrupts, and call it immediately before an IR unit is enabled. There is still a small window after the IO-APIC redirection entry is reprogrammed with cookie but before the unit is enabled, but to fix this properly, IR must be started much earlier. Add workarounds for 5500 and X58 northbridges, some revisions of which have severe flaws in handling IR. Use the same identification methods as employed by Linux. Review: https://reviews.freebsd.org/D1892 Reviewed by: neel Discussed with: jhb Tested by: glebius, pho (previous versions) Sponsored by: The FreeBSD Foundation MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
typedef void (*dmar_quirk_cpu_fun)(struct dmar_unit *);
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
struct intel_dmar_quirk_cpu {
u_int ext_family;
u_int ext_model;
u_int family_code;
u_int model;
u_int stepping;
Use VT-d interrupt remapping block (IR) to perform FSB messages translation. In particular, despite IO-APICs only take 8bit apic id, IR translation structures accept 32bit APIC Id, which allows x2APIC mode to function properly. Extend msi_cpu of struct msi_intrsrc and io_cpu of ioapic_intsrc to full int from one byte. KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid bringing all dmar headers into interrupt code. The non-PCI(e) devices which generate message interrupts on FSB require special handling. The HPET FSB interrupts are remapped, while DMAR interrupts are not. For each msi and ioapic interrupt source, the iommu cookie is added, which is in fact index of the IRE (interrupt remap entry) in the IR table. Cookie is made at the source allocation time, and then used at the map time to fill both IRE and device registers. The MSI address/data registers and IO-APIC redirection registers are programmed with the special values which are recognized by IR and used to restore the IRE index, to find proper delivery mode and target. Map all MSI interrupts in the block when msi_map() is called. Since an interrupt source setup and dismantle code are done in the non-sleepable context, flushing interrupt entries cache in the IR hardware, which is done async and ideally waits for the interrupt, requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is modified to take a boolean argument requesting busy-wait for the written sequence number instead of waiting for interrupt. Some interrupts are configured before IR is initialized, e.g. ACPI SCI. Add intr_reprogram() function to reprogram all already configured interrupts, and call it immediately before an IR unit is enabled. There is still a small window after the IO-APIC redirection entry is reprogrammed with cookie but before the unit is enabled, but to fix this properly, IR must be started much earlier. Add workarounds for 5500 and X58 northbridges, some revisions of which have severe flaws in handling IR. Use the same identification methods as employed by Linux. Review: https://reviews.freebsd.org/D1892 Reviewed by: neel Discussed with: jhb Tested by: glebius, pho (previous versions) Sponsored by: The FreeBSD Foundation MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
dmar_quirk_cpu_fun quirk;
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
const char *descr;
};
Use VT-d interrupt remapping block (IR) to perform FSB messages translation. In particular, despite IO-APICs only take 8bit apic id, IR translation structures accept 32bit APIC Id, which allows x2APIC mode to function properly. Extend msi_cpu of struct msi_intrsrc and io_cpu of ioapic_intsrc to full int from one byte. KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid bringing all dmar headers into interrupt code. The non-PCI(e) devices which generate message interrupts on FSB require special handling. The HPET FSB interrupts are remapped, while DMAR interrupts are not. For each msi and ioapic interrupt source, the iommu cookie is added, which is in fact index of the IRE (interrupt remap entry) in the IR table. Cookie is made at the source allocation time, and then used at the map time to fill both IRE and device registers. The MSI address/data registers and IO-APIC redirection registers are programmed with the special values which are recognized by IR and used to restore the IRE index, to find proper delivery mode and target. Map all MSI interrupts in the block when msi_map() is called. Since an interrupt source setup and dismantle code are done in the non-sleepable context, flushing interrupt entries cache in the IR hardware, which is done async and ideally waits for the interrupt, requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is modified to take a boolean argument requesting busy-wait for the written sequence number instead of waiting for interrupt. Some interrupts are configured before IR is initialized, e.g. ACPI SCI. Add intr_reprogram() function to reprogram all already configured interrupts, and call it immediately before an IR unit is enabled. There is still a small window after the IO-APIC redirection entry is reprogrammed with cookie but before the unit is enabled, but to fix this properly, IR must be started much earlier. Add workarounds for 5500 and X58 northbridges, some revisions of which have severe flaws in handling IR. Use the same identification methods as employed by Linux. Review: https://reviews.freebsd.org/D1892 Reviewed by: neel Discussed with: jhb Tested by: glebius, pho (previous versions) Sponsored by: The FreeBSD Foundation MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
typedef void (*dmar_quirk_nb_fun)(struct dmar_unit *, device_t nb);
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
struct intel_dmar_quirk_nb {
u_int dev_id;
u_int rev_no;
Use VT-d interrupt remapping block (IR) to perform FSB messages translation. In particular, despite IO-APICs only take 8bit apic id, IR translation structures accept 32bit APIC Id, which allows x2APIC mode to function properly. Extend msi_cpu of struct msi_intrsrc and io_cpu of ioapic_intsrc to full int from one byte. KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid bringing all dmar headers into interrupt code. The non-PCI(e) devices which generate message interrupts on FSB require special handling. The HPET FSB interrupts are remapped, while DMAR interrupts are not. For each msi and ioapic interrupt source, the iommu cookie is added, which is in fact index of the IRE (interrupt remap entry) in the IR table. Cookie is made at the source allocation time, and then used at the map time to fill both IRE and device registers. The MSI address/data registers and IO-APIC redirection registers are programmed with the special values which are recognized by IR and used to restore the IRE index, to find proper delivery mode and target. Map all MSI interrupts in the block when msi_map() is called. Since an interrupt source setup and dismantle code are done in the non-sleepable context, flushing interrupt entries cache in the IR hardware, which is done async and ideally waits for the interrupt, requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is modified to take a boolean argument requesting busy-wait for the written sequence number instead of waiting for interrupt. Some interrupts are configured before IR is initialized, e.g. ACPI SCI. Add intr_reprogram() function to reprogram all already configured interrupts, and call it immediately before an IR unit is enabled. There is still a small window after the IO-APIC redirection entry is reprogrammed with cookie but before the unit is enabled, but to fix this properly, IR must be started much earlier. Add workarounds for 5500 and X58 northbridges, some revisions of which have severe flaws in handling IR. Use the same identification methods as employed by Linux. Review: https://reviews.freebsd.org/D1892 Reviewed by: neel Discussed with: jhb Tested by: glebius, pho (previous versions) Sponsored by: The FreeBSD Foundation MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
dmar_quirk_nb_fun quirk;
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
const char *descr;
};
Use VT-d interrupt remapping block (IR) to perform FSB messages translation. In particular, despite IO-APICs only take 8bit apic id, IR translation structures accept 32bit APIC Id, which allows x2APIC mode to function properly. Extend msi_cpu of struct msi_intrsrc and io_cpu of ioapic_intsrc to full int from one byte. KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid bringing all dmar headers into interrupt code. The non-PCI(e) devices which generate message interrupts on FSB require special handling. The HPET FSB interrupts are remapped, while DMAR interrupts are not. For each msi and ioapic interrupt source, the iommu cookie is added, which is in fact index of the IRE (interrupt remap entry) in the IR table. Cookie is made at the source allocation time, and then used at the map time to fill both IRE and device registers. The MSI address/data registers and IO-APIC redirection registers are programmed with the special values which are recognized by IR and used to restore the IRE index, to find proper delivery mode and target. Map all MSI interrupts in the block when msi_map() is called. Since an interrupt source setup and dismantle code are done in the non-sleepable context, flushing interrupt entries cache in the IR hardware, which is done async and ideally waits for the interrupt, requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is modified to take a boolean argument requesting busy-wait for the written sequence number instead of waiting for interrupt. Some interrupts are configured before IR is initialized, e.g. ACPI SCI. Add intr_reprogram() function to reprogram all already configured interrupts, and call it immediately before an IR unit is enabled. There is still a small window after the IO-APIC redirection entry is reprogrammed with cookie but before the unit is enabled, but to fix this properly, IR must be started much earlier. Add workarounds for 5500 and X58 northbridges, some revisions of which have severe flaws in handling IR. Use the same identification methods as employed by Linux. Review: https://reviews.freebsd.org/D1892 Reviewed by: neel Discussed with: jhb Tested by: glebius, pho (previous versions) Sponsored by: The FreeBSD Foundation MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
#define QUIRK_NB_ALL_REV 0xffffffff
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
static void
dmar_match_quirks(struct dmar_unit *dmar,
const struct intel_dmar_quirk_nb *nb_quirks, int nb_quirks_len,
const struct intel_dmar_quirk_cpu *cpu_quirks, int cpu_quirks_len)
{
device_t nb;
const struct intel_dmar_quirk_nb *nb_quirk;
const struct intel_dmar_quirk_cpu *cpu_quirk;
u_int p[4];
u_int dev_id, rev_no;
u_int ext_family, ext_model, family_code, model, stepping;
int i;
if (nb_quirks != NULL) {
nb = pci_find_bsf(0, 0, 0);
if (nb != NULL) {
dev_id = pci_get_device(nb);
rev_no = pci_get_revid(nb);
for (i = 0; i < nb_quirks_len; i++) {
nb_quirk = &nb_quirks[i];
if (nb_quirk->dev_id == dev_id &&
Use VT-d interrupt remapping block (IR) to perform FSB messages translation. In particular, despite IO-APICs only take 8bit apic id, IR translation structures accept 32bit APIC Id, which allows x2APIC mode to function properly. Extend msi_cpu of struct msi_intrsrc and io_cpu of ioapic_intsrc to full int from one byte. KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid bringing all dmar headers into interrupt code. The non-PCI(e) devices which generate message interrupts on FSB require special handling. The HPET FSB interrupts are remapped, while DMAR interrupts are not. For each msi and ioapic interrupt source, the iommu cookie is added, which is in fact index of the IRE (interrupt remap entry) in the IR table. Cookie is made at the source allocation time, and then used at the map time to fill both IRE and device registers. The MSI address/data registers and IO-APIC redirection registers are programmed with the special values which are recognized by IR and used to restore the IRE index, to find proper delivery mode and target. Map all MSI interrupts in the block when msi_map() is called. Since an interrupt source setup and dismantle code are done in the non-sleepable context, flushing interrupt entries cache in the IR hardware, which is done async and ideally waits for the interrupt, requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is modified to take a boolean argument requesting busy-wait for the written sequence number instead of waiting for interrupt. Some interrupts are configured before IR is initialized, e.g. ACPI SCI. Add intr_reprogram() function to reprogram all already configured interrupts, and call it immediately before an IR unit is enabled. There is still a small window after the IO-APIC redirection entry is reprogrammed with cookie but before the unit is enabled, but to fix this properly, IR must be started much earlier. Add workarounds for 5500 and X58 northbridges, some revisions of which have severe flaws in handling IR. Use the same identification methods as employed by Linux. Review: https://reviews.freebsd.org/D1892 Reviewed by: neel Discussed with: jhb Tested by: glebius, pho (previous versions) Sponsored by: The FreeBSD Foundation MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
(nb_quirk->rev_no == rev_no ||
nb_quirk->rev_no == QUIRK_NB_ALL_REV)) {
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
if (bootverbose) {
device_printf(dmar->dev,
"NB IOMMU quirk %s\n",
nb_quirk->descr);
}
Use VT-d interrupt remapping block (IR) to perform FSB messages translation. In particular, despite IO-APICs only take 8bit apic id, IR translation structures accept 32bit APIC Id, which allows x2APIC mode to function properly. Extend msi_cpu of struct msi_intrsrc and io_cpu of ioapic_intsrc to full int from one byte. KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid bringing all dmar headers into interrupt code. The non-PCI(e) devices which generate message interrupts on FSB require special handling. The HPET FSB interrupts are remapped, while DMAR interrupts are not. For each msi and ioapic interrupt source, the iommu cookie is added, which is in fact index of the IRE (interrupt remap entry) in the IR table. Cookie is made at the source allocation time, and then used at the map time to fill both IRE and device registers. The MSI address/data registers and IO-APIC redirection registers are programmed with the special values which are recognized by IR and used to restore the IRE index, to find proper delivery mode and target. Map all MSI interrupts in the block when msi_map() is called. Since an interrupt source setup and dismantle code are done in the non-sleepable context, flushing interrupt entries cache in the IR hardware, which is done async and ideally waits for the interrupt, requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is modified to take a boolean argument requesting busy-wait for the written sequence number instead of waiting for interrupt. Some interrupts are configured before IR is initialized, e.g. ACPI SCI. Add intr_reprogram() function to reprogram all already configured interrupts, and call it immediately before an IR unit is enabled. There is still a small window after the IO-APIC redirection entry is reprogrammed with cookie but before the unit is enabled, but to fix this properly, IR must be started much earlier. Add workarounds for 5500 and X58 northbridges, some revisions of which have severe flaws in handling IR. Use the same identification methods as employed by Linux. Review: https://reviews.freebsd.org/D1892 Reviewed by: neel Discussed with: jhb Tested by: glebius, pho (previous versions) Sponsored by: The FreeBSD Foundation MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
nb_quirk->quirk(dmar, nb);
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
}
}
} else {
device_printf(dmar->dev, "cannot find northbridge\n");
}
}
if (cpu_quirks != NULL) {
do_cpuid(1, p);
ext_family = (p[0] & CPUID_EXT_FAMILY) >> 20;
ext_model = (p[0] & CPUID_EXT_MODEL) >> 16;
family_code = (p[0] & CPUID_FAMILY) >> 8;
model = (p[0] & CPUID_MODEL) >> 4;
stepping = p[0] & CPUID_STEPPING;
for (i = 0; i < cpu_quirks_len; i++) {
cpu_quirk = &cpu_quirks[i];
if (cpu_quirk->ext_family == ext_family &&
cpu_quirk->ext_model == ext_model &&
cpu_quirk->family_code == family_code &&
cpu_quirk->model == model &&
(cpu_quirk->stepping == -1 ||
cpu_quirk->stepping == stepping)) {
if (bootverbose) {
device_printf(dmar->dev,
"CPU IOMMU quirk %s\n",
cpu_quirk->descr);
}
cpu_quirk->quirk(dmar);
}
}
}
}
static void
Use VT-d interrupt remapping block (IR) to perform FSB messages translation. In particular, despite IO-APICs only take 8bit apic id, IR translation structures accept 32bit APIC Id, which allows x2APIC mode to function properly. Extend msi_cpu of struct msi_intrsrc and io_cpu of ioapic_intsrc to full int from one byte. KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid bringing all dmar headers into interrupt code. The non-PCI(e) devices which generate message interrupts on FSB require special handling. The HPET FSB interrupts are remapped, while DMAR interrupts are not. For each msi and ioapic interrupt source, the iommu cookie is added, which is in fact index of the IRE (interrupt remap entry) in the IR table. Cookie is made at the source allocation time, and then used at the map time to fill both IRE and device registers. The MSI address/data registers and IO-APIC redirection registers are programmed with the special values which are recognized by IR and used to restore the IRE index, to find proper delivery mode and target. Map all MSI interrupts in the block when msi_map() is called. Since an interrupt source setup and dismantle code are done in the non-sleepable context, flushing interrupt entries cache in the IR hardware, which is done async and ideally waits for the interrupt, requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is modified to take a boolean argument requesting busy-wait for the written sequence number instead of waiting for interrupt. Some interrupts are configured before IR is initialized, e.g. ACPI SCI. Add intr_reprogram() function to reprogram all already configured interrupts, and call it immediately before an IR unit is enabled. There is still a small window after the IO-APIC redirection entry is reprogrammed with cookie but before the unit is enabled, but to fix this properly, IR must be started much earlier. Add workarounds for 5500 and X58 northbridges, some revisions of which have severe flaws in handling IR. Use the same identification methods as employed by Linux. Review: https://reviews.freebsd.org/D1892 Reviewed by: neel Discussed with: jhb Tested by: glebius, pho (previous versions) Sponsored by: The FreeBSD Foundation MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
nb_5400_no_low_high_prot_mem(struct dmar_unit *unit, device_t nb __unused)
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
{
unit->hw_cap &= ~(DMAR_CAP_PHMR | DMAR_CAP_PLMR);
}
Use VT-d interrupt remapping block (IR) to perform FSB messages translation. In particular, despite IO-APICs only take 8bit apic id, IR translation structures accept 32bit APIC Id, which allows x2APIC mode to function properly. Extend msi_cpu of struct msi_intrsrc and io_cpu of ioapic_intsrc to full int from one byte. KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid bringing all dmar headers into interrupt code. The non-PCI(e) devices which generate message interrupts on FSB require special handling. The HPET FSB interrupts are remapped, while DMAR interrupts are not. For each msi and ioapic interrupt source, the iommu cookie is added, which is in fact index of the IRE (interrupt remap entry) in the IR table. Cookie is made at the source allocation time, and then used at the map time to fill both IRE and device registers. The MSI address/data registers and IO-APIC redirection registers are programmed with the special values which are recognized by IR and used to restore the IRE index, to find proper delivery mode and target. Map all MSI interrupts in the block when msi_map() is called. Since an interrupt source setup and dismantle code are done in the non-sleepable context, flushing interrupt entries cache in the IR hardware, which is done async and ideally waits for the interrupt, requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is modified to take a boolean argument requesting busy-wait for the written sequence number instead of waiting for interrupt. Some interrupts are configured before IR is initialized, e.g. ACPI SCI. Add intr_reprogram() function to reprogram all already configured interrupts, and call it immediately before an IR unit is enabled. There is still a small window after the IO-APIC redirection entry is reprogrammed with cookie but before the unit is enabled, but to fix this properly, IR must be started much earlier. Add workarounds for 5500 and X58 northbridges, some revisions of which have severe flaws in handling IR. Use the same identification methods as employed by Linux. Review: https://reviews.freebsd.org/D1892 Reviewed by: neel Discussed with: jhb Tested by: glebius, pho (previous versions) Sponsored by: The FreeBSD Foundation MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
static void
nb_no_ir(struct dmar_unit *unit, device_t nb __unused)
{
unit->hw_ecap &= ~(DMAR_ECAP_IR | DMAR_ECAP_EIM);
}
static void
nb_5500_no_ir_rev13(struct dmar_unit *unit, device_t nb)
{
u_int rev_no;
rev_no = pci_get_revid(nb);
if (rev_no <= 0x13)
nb_no_ir(unit, nb);
}
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
static const struct intel_dmar_quirk_nb pre_use_nb[] = {
{
.dev_id = 0x4001, .rev_no = 0x20,
.quirk = nb_5400_no_low_high_prot_mem,
.descr = "5400 E23" /* no low/high protected memory */
},
{
.dev_id = 0x4003, .rev_no = 0x20,
.quirk = nb_5400_no_low_high_prot_mem,
.descr = "5400 E23" /* no low/high protected memory */
},
Use VT-d interrupt remapping block (IR) to perform FSB messages translation. In particular, despite IO-APICs only take 8bit apic id, IR translation structures accept 32bit APIC Id, which allows x2APIC mode to function properly. Extend msi_cpu of struct msi_intrsrc and io_cpu of ioapic_intsrc to full int from one byte. KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid bringing all dmar headers into interrupt code. The non-PCI(e) devices which generate message interrupts on FSB require special handling. The HPET FSB interrupts are remapped, while DMAR interrupts are not. For each msi and ioapic interrupt source, the iommu cookie is added, which is in fact index of the IRE (interrupt remap entry) in the IR table. Cookie is made at the source allocation time, and then used at the map time to fill both IRE and device registers. The MSI address/data registers and IO-APIC redirection registers are programmed with the special values which are recognized by IR and used to restore the IRE index, to find proper delivery mode and target. Map all MSI interrupts in the block when msi_map() is called. Since an interrupt source setup and dismantle code are done in the non-sleepable context, flushing interrupt entries cache in the IR hardware, which is done async and ideally waits for the interrupt, requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is modified to take a boolean argument requesting busy-wait for the written sequence number instead of waiting for interrupt. Some interrupts are configured before IR is initialized, e.g. ACPI SCI. Add intr_reprogram() function to reprogram all already configured interrupts, and call it immediately before an IR unit is enabled. There is still a small window after the IO-APIC redirection entry is reprogrammed with cookie but before the unit is enabled, but to fix this properly, IR must be started much earlier. Add workarounds for 5500 and X58 northbridges, some revisions of which have severe flaws in handling IR. Use the same identification methods as employed by Linux. Review: https://reviews.freebsd.org/D1892 Reviewed by: neel Discussed with: jhb Tested by: glebius, pho (previous versions) Sponsored by: The FreeBSD Foundation MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
{
.dev_id = 0x3403, .rev_no = QUIRK_NB_ALL_REV,
.quirk = nb_5500_no_ir_rev13,
.descr = "5500 E47, E53" /* interrupt remapping does not work */
},
{
.dev_id = 0x3405, .rev_no = QUIRK_NB_ALL_REV,
.quirk = nb_5500_no_ir_rev13,
.descr = "5500 E47, E53" /* interrupt remapping does not work */
},
{
.dev_id = 0x3405, .rev_no = 0x22,
.quirk = nb_no_ir,
.descr = "5500 E47, E53" /* interrupt remapping does not work */
},
{
.dev_id = 0x3406, .rev_no = QUIRK_NB_ALL_REV,
.quirk = nb_5500_no_ir_rev13,
.descr = "5500 E47, E53" /* interrupt remapping does not work */
},
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
};
static void
cpu_e5_am9(struct dmar_unit *unit)
{
unit->hw_cap &= ~(0x3fULL << 48);
unit->hw_cap |= (9ULL << 48);
}
static const struct intel_dmar_quirk_cpu post_ident_cpu[] = {
{
.ext_family = 0, .ext_model = 2, .family_code = 6, .model = 13,
.stepping = 6, .quirk = cpu_e5_am9,
.descr = "E5 BT176" /* AM should be at most 9 */
},
};
void
dmar_quirks_pre_use(struct dmar_unit *dmar)
{
if (!dmar_barrier_enter(dmar, DMAR_BARRIER_USEQ))
return;
DMAR_LOCK(dmar);
dmar_match_quirks(dmar, pre_use_nb, nitems(pre_use_nb),
NULL, 0);
dmar_barrier_exit(dmar, DMAR_BARRIER_USEQ);
}
void
dmar_quirks_post_ident(struct dmar_unit *dmar)
{
dmar_match_quirks(dmar, NULL, 0, post_ident_cpu,
nitems(post_ident_cpu));
}