Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 2013 The FreeBSD Foundation
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
|
|
|
|
* under sponsorship from the FreeBSD Foundation.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/bus.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/lock.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/memdesc.h>
|
|
|
|
#include <sys/mutex.h>
|
|
|
|
#include <sys/proc.h>
|
|
|
|
#include <sys/queue.h>
|
|
|
|
#include <sys/rman.h>
|
|
|
|
#include <sys/rwlock.h>
|
|
|
|
#include <sys/sched.h>
|
|
|
|
#include <sys/sf_buf.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/taskqueue.h>
|
2017-03-27 07:06:45 +00:00
|
|
|
#include <sys/time.h>
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
#include <sys/tree.h>
|
Use VT-d interrupt remapping block (IR) to perform FSB messages
translation. In particular, despite IO-APICs only take 8bit apic id,
IR translation structures accept 32bit APIC Id, which allows x2APIC
mode to function properly. Extend msi_cpu of struct msi_intrsrc and
io_cpu of ioapic_intsrc to full int from one byte.
KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid
bringing all dmar headers into interrupt code. The non-PCI(e) devices
which generate message interrupts on FSB require special handling. The
HPET FSB interrupts are remapped, while DMAR interrupts are not.
For each msi and ioapic interrupt source, the iommu cookie is added,
which is in fact index of the IRE (interrupt remap entry) in the IR
table. Cookie is made at the source allocation time, and then used at
the map time to fill both IRE and device registers. The MSI
address/data registers and IO-APIC redirection registers are
programmed with the special values which are recognized by IR and used
to restore the IRE index, to find proper delivery mode and target.
Map all MSI interrupts in the block when msi_map() is called.
Since an interrupt source setup and dismantle code are done in the
non-sleepable context, flushing interrupt entries cache in the IR
hardware, which is done async and ideally waits for the interrupt,
requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is
modified to take a boolean argument requesting busy-wait for the
written sequence number instead of waiting for interrupt.
Some interrupts are configured before IR is initialized, e.g. ACPI
SCI. Add intr_reprogram() function to reprogram all already
configured interrupts, and call it immediately before an IR unit is
enabled. There is still a small window after the IO-APIC redirection
entry is reprogrammed with cookie but before the unit is enabled, but
to fix this properly, IR must be started much earlier.
Add workarounds for 5500 and X58 northbridges, some revisions of which
have severe flaws in handling IR. Use the same identification methods
as employed by Linux.
Review: https://reviews.freebsd.org/D1892
Reviewed by: neel
Discussed with: jhb
Tested by: glebius, pho (previous versions)
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
|
|
|
#include <sys/vmem.h>
|
2014-04-01 15:48:46 +00:00
|
|
|
#include <dev/pci/pcivar.h>
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
#include <vm/vm.h>
|
|
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <vm/vm_kern.h>
|
|
|
|
#include <vm/vm_object.h>
|
|
|
|
#include <vm/vm_page.h>
|
|
|
|
#include <vm/vm_map.h>
|
|
|
|
#include <vm/vm_pageout.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <machine/cpu.h>
|
Use VT-d interrupt remapping block (IR) to perform FSB messages
translation. In particular, despite IO-APICs only take 8bit apic id,
IR translation structures accept 32bit APIC Id, which allows x2APIC
mode to function properly. Extend msi_cpu of struct msi_intrsrc and
io_cpu of ioapic_intsrc to full int from one byte.
KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid
bringing all dmar headers into interrupt code. The non-PCI(e) devices
which generate message interrupts on FSB require special handling. The
HPET FSB interrupts are remapped, while DMAR interrupts are not.
For each msi and ioapic interrupt source, the iommu cookie is added,
which is in fact index of the IRE (interrupt remap entry) in the IR
table. Cookie is made at the source allocation time, and then used at
the map time to fill both IRE and device registers. The MSI
address/data registers and IO-APIC redirection registers are
programmed with the special values which are recognized by IR and used
to restore the IRE index, to find proper delivery mode and target.
Map all MSI interrupts in the block when msi_map() is called.
Since an interrupt source setup and dismantle code are done in the
non-sleepable context, flushing interrupt entries cache in the IR
hardware, which is done async and ideally waits for the interrupt,
requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is
modified to take a boolean argument requesting busy-wait for the
written sequence number instead of waiting for interrupt.
Some interrupts are configured before IR is initialized, e.g. ACPI
SCI. Add intr_reprogram() function to reprogram all already
configured interrupts, and call it immediately before an IR unit is
enabled. There is still a small window after the IO-APIC redirection
entry is reprogrammed with cookie but before the unit is enabled, but
to fix this properly, IR must be started much earlier.
Add workarounds for 5500 and X58 northbridges, some revisions of which
have severe flaws in handling IR. Use the same identification methods
as employed by Linux.
Review: https://reviews.freebsd.org/D1892
Reviewed by: neel
Discussed with: jhb
Tested by: glebius, pho (previous versions)
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
|
|
|
#include <machine/intr_machdep.h>
|
|
|
|
#include <x86/include/apicvar.h>
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
#include <x86/include/busdma_impl.h>
|
|
|
|
#include <x86/iommu/intel_reg.h>
|
|
|
|
#include <x86/iommu/busdma_dmar.h>
|
|
|
|
#include <x86/iommu/intel_dmar.h>
|
|
|
|
|
|
|
|
u_int
|
|
|
|
dmar_nd2mask(u_int nd)
|
|
|
|
{
|
|
|
|
static const u_int masks[] = {
|
|
|
|
0x000f, /* nd == 0 */
|
|
|
|
0x002f, /* nd == 1 */
|
|
|
|
0x00ff, /* nd == 2 */
|
|
|
|
0x02ff, /* nd == 3 */
|
|
|
|
0x0fff, /* nd == 4 */
|
|
|
|
0x2fff, /* nd == 5 */
|
|
|
|
0xffff, /* nd == 6 */
|
|
|
|
0x0000, /* nd == 7 reserved */
|
|
|
|
};
|
|
|
|
|
|
|
|
KASSERT(nd <= 6, ("number of domains %d", nd));
|
|
|
|
return (masks[nd]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct sagaw_bits_tag {
|
|
|
|
int agaw;
|
|
|
|
int cap;
|
|
|
|
int awlvl;
|
|
|
|
int pglvl;
|
|
|
|
} sagaw_bits[] = {
|
|
|
|
{.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL,
|
|
|
|
.pglvl = 2},
|
|
|
|
{.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL,
|
|
|
|
.pglvl = 3},
|
|
|
|
{.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL,
|
|
|
|
.pglvl = 4},
|
|
|
|
{.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL,
|
|
|
|
.pglvl = 5},
|
|
|
|
{.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL,
|
|
|
|
.pglvl = 6}
|
|
|
|
};
|
|
|
|
|
|
|
|
bool
|
|
|
|
dmar_pglvl_supported(struct dmar_unit *unit, int pglvl)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
2015-06-26 07:01:29 +00:00
|
|
|
for (i = 0; i < nitems(sagaw_bits); i++) {
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
if (sagaw_bits[i].pglvl != pglvl)
|
|
|
|
continue;
|
|
|
|
if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
|
|
|
|
return (true);
|
|
|
|
}
|
|
|
|
return (false);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
2015-06-26 07:01:29 +00:00
|
|
|
domain_set_agaw(struct dmar_domain *domain, int mgaw)
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
{
|
|
|
|
int sagaw, i;
|
|
|
|
|
2015-06-26 07:01:29 +00:00
|
|
|
domain->mgaw = mgaw;
|
|
|
|
sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap);
|
|
|
|
for (i = 0; i < nitems(sagaw_bits); i++) {
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
if (sagaw_bits[i].agaw >= mgaw) {
|
2015-06-26 07:01:29 +00:00
|
|
|
domain->agaw = sagaw_bits[i].agaw;
|
|
|
|
domain->pglvl = sagaw_bits[i].pglvl;
|
|
|
|
domain->awlvl = sagaw_bits[i].awlvl;
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
}
|
2015-06-26 07:01:29 +00:00
|
|
|
device_printf(domain->dmar->dev,
|
|
|
|
"context request mgaw %d: no agaw found, sagaw %x\n",
|
|
|
|
mgaw, sagaw);
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Find a best fit mgaw for the given maxaddr:
|
|
|
|
* - if allow_less is false, must find sagaw which maps all requested
|
|
|
|
* addresses (used by identity mappings);
|
|
|
|
* - if allow_less is true, and no supported sagaw can map all requested
|
|
|
|
* address space, accept the biggest sagaw, whatever is it.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
2015-06-26 07:01:29 +00:00
|
|
|
for (i = 0; i < nitems(sagaw_bits); i++) {
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
if ((1ULL << sagaw_bits[i].agaw) >= maxaddr &&
|
|
|
|
(DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
|
|
|
|
break;
|
|
|
|
}
|
2015-06-26 07:01:29 +00:00
|
|
|
if (allow_less && i == nitems(sagaw_bits)) {
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
do {
|
|
|
|
i--;
|
|
|
|
} while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap)
|
|
|
|
== 0);
|
|
|
|
}
|
2015-06-26 07:01:29 +00:00
|
|
|
if (i < nitems(sagaw_bits))
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
return (sagaw_bits[i].agaw);
|
|
|
|
KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d",
|
|
|
|
(uintmax_t) maxaddr, allow_less));
|
|
|
|
return (-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Calculate the total amount of page table pages needed to map the
|
|
|
|
* whole bus address space on the context with the selected agaw.
|
|
|
|
*/
|
|
|
|
vm_pindex_t
|
|
|
|
pglvl_max_pages(int pglvl)
|
|
|
|
{
|
|
|
|
vm_pindex_t res;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (res = 0, i = pglvl; i > 0; i--) {
|
|
|
|
res *= DMAR_NPTEPG;
|
|
|
|
res++;
|
|
|
|
}
|
|
|
|
return (res);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return true if the page table level lvl supports the superpage for
|
|
|
|
* the context ctx.
|
|
|
|
*/
|
|
|
|
int
|
2015-06-26 07:01:29 +00:00
|
|
|
domain_is_sp_lvl(struct dmar_domain *domain, int lvl)
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
{
|
|
|
|
int alvl, cap_sps;
|
|
|
|
static const int sagaw_sp[] = {
|
|
|
|
DMAR_CAP_SPS_2M,
|
|
|
|
DMAR_CAP_SPS_1G,
|
|
|
|
DMAR_CAP_SPS_512G,
|
|
|
|
DMAR_CAP_SPS_1T
|
|
|
|
};
|
|
|
|
|
2015-06-26 07:01:29 +00:00
|
|
|
alvl = domain->pglvl - lvl - 1;
|
|
|
|
cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap);
|
|
|
|
return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0);
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
dmar_gaddr_t
|
|
|
|
pglvl_page_size(int total_pglvl, int lvl)
|
|
|
|
{
|
|
|
|
int rlvl;
|
|
|
|
static const dmar_gaddr_t pg_sz[] = {
|
|
|
|
(dmar_gaddr_t)DMAR_PAGE_SIZE,
|
|
|
|
(dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT,
|
|
|
|
(dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT),
|
|
|
|
(dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT),
|
|
|
|
(dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT),
|
|
|
|
(dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT)
|
|
|
|
};
|
|
|
|
|
|
|
|
KASSERT(lvl >= 0 && lvl < total_pglvl,
|
|
|
|
("total %d lvl %d", total_pglvl, lvl));
|
|
|
|
rlvl = total_pglvl - lvl - 1;
|
2015-06-26 07:01:29 +00:00
|
|
|
KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl));
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
return (pg_sz[rlvl]);
|
|
|
|
}
|
|
|
|
|
|
|
|
dmar_gaddr_t
|
2015-06-26 07:01:29 +00:00
|
|
|
domain_page_size(struct dmar_domain *domain, int lvl)
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
{
|
|
|
|
|
2015-06-26 07:01:29 +00:00
|
|
|
return (pglvl_page_size(domain->pglvl, lvl));
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
}
|
|
|
|
|
2013-11-01 17:38:52 +00:00
|
|
|
int
|
|
|
|
calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
|
|
|
|
dmar_gaddr_t *isizep)
|
|
|
|
{
|
|
|
|
dmar_gaddr_t isize;
|
|
|
|
int am;
|
|
|
|
|
|
|
|
for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) {
|
|
|
|
isize = 1ULL << (am + DMAR_PAGE_SHIFT);
|
|
|
|
if ((base & (isize - 1)) == 0 && size >= isize)
|
|
|
|
break;
|
|
|
|
if (am == 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
*isizep = isize;
|
|
|
|
return (am);
|
|
|
|
}
|
|
|
|
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
dmar_haddr_t dmar_high;
|
|
|
|
int haw;
|
|
|
|
int dmar_tbl_pagecnt;
|
|
|
|
|
|
|
|
vm_page_t
|
|
|
|
dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags)
|
|
|
|
{
|
|
|
|
vm_page_t m;
|
|
|
|
int zeroed;
|
|
|
|
|
|
|
|
zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0;
|
|
|
|
for (;;) {
|
|
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
|
|
VM_OBJECT_WLOCK(obj);
|
|
|
|
m = vm_page_lookup(obj, idx);
|
|
|
|
if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) {
|
|
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
m = vm_page_alloc_contig(obj, idx, VM_ALLOC_NOBUSY |
|
|
|
|
VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP | zeroed, 1, 0,
|
|
|
|
dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
|
|
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
|
|
if (m != NULL) {
|
|
|
|
if (zeroed && (m->flags & PG_ZERO) == 0)
|
|
|
|
pmap_zero_page(m);
|
|
|
|
atomic_add_int(&dmar_tbl_pagecnt, 1);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if ((flags & DMAR_PGF_WAITOK) == 0)
|
|
|
|
break;
|
|
|
|
if ((flags & DMAR_PGF_OBJL) != 0)
|
|
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
|
|
VM_WAIT;
|
|
|
|
if ((flags & DMAR_PGF_OBJL) != 0)
|
|
|
|
VM_OBJECT_WLOCK(obj);
|
|
|
|
}
|
|
|
|
return (m);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags)
|
|
|
|
{
|
|
|
|
vm_page_t m;
|
|
|
|
|
|
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
|
|
VM_OBJECT_WLOCK(obj);
|
|
|
|
m = vm_page_lookup(obj, idx);
|
|
|
|
if (m != NULL) {
|
|
|
|
vm_page_free(m);
|
|
|
|
atomic_subtract_int(&dmar_tbl_pagecnt, 1);
|
|
|
|
}
|
|
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
|
|
}
|
|
|
|
|
|
|
|
void *
|
|
|
|
dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
|
|
|
|
struct sf_buf **sf)
|
|
|
|
{
|
|
|
|
vm_page_t m;
|
|
|
|
bool allocated;
|
|
|
|
|
|
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
|
|
VM_OBJECT_WLOCK(obj);
|
|
|
|
m = vm_page_lookup(obj, idx);
|
|
|
|
if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) {
|
|
|
|
m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL);
|
|
|
|
allocated = true;
|
|
|
|
} else
|
|
|
|
allocated = false;
|
|
|
|
if (m == NULL) {
|
|
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
|
|
return (NULL);
|
|
|
|
}
|
|
|
|
/* Sleepable allocations cannot fail. */
|
|
|
|
if ((flags & DMAR_PGF_WAITOK) != 0)
|
|
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
|
|
sched_pin();
|
|
|
|
*sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK)
|
|
|
|
== 0 ? SFB_NOWAIT : 0));
|
|
|
|
if (*sf == NULL) {
|
|
|
|
sched_unpin();
|
|
|
|
if (allocated) {
|
|
|
|
VM_OBJECT_ASSERT_WLOCKED(obj);
|
|
|
|
dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL);
|
|
|
|
}
|
|
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
|
|
return (NULL);
|
|
|
|
}
|
|
|
|
if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) ==
|
|
|
|
(DMAR_PGF_WAITOK | DMAR_PGF_OBJL))
|
|
|
|
VM_OBJECT_WLOCK(obj);
|
|
|
|
else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0)
|
|
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
|
|
return ((void *)sf_buf_kva(*sf));
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
Right now, for non-coherent DMARs, page table update code flushes the
cache for whole page containing modified pte, and more, only last page
in the series of the consequtive pages is flushed (i.e. the affected
mappings should be larger than 2MB).
Avoid excessive flushing and do missed neccessary flushing, by
splitting invalidation and unmapping. For now, flush exactly the
range of the changed pte. This is still somewhat bigger than
neccessary, since pte is 8 bytes, while cache flush line is at least
32 bytes.
The originator of the issue reports that after the change,
'dmar_bus_dmamap_unload went from 13,288 cycles down to
3,257. dmar_bus_dmamap_load_buffer went from 9,686 cycles down to
3,517. and I am now able to get line 1GbE speed with Netperf TCP
(even with 1K message size).'
Diagnosed and tested by: Nadav Amit <nadav.amit@gmail.com>
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
2015-01-11 20:27:15 +00:00
|
|
|
dmar_unmap_pgtbl(struct sf_buf *sf)
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
sf_buf_free(sf);
|
|
|
|
sched_unpin();
|
Right now, for non-coherent DMARs, page table update code flushes the
cache for whole page containing modified pte, and more, only last page
in the series of the consequtive pages is flushed (i.e. the affected
mappings should be larger than 2MB).
Avoid excessive flushing and do missed neccessary flushing, by
splitting invalidation and unmapping. For now, flush exactly the
range of the changed pte. This is still somewhat bigger than
neccessary, since pte is 8 bytes, while cache flush line is at least
32 bytes.
The originator of the issue reports that after the change,
'dmar_bus_dmamap_unload went from 13,288 cycles down to
3,257. dmar_bus_dmamap_load_buffer went from 9,686 cycles down to
3,517. and I am now able to get line 1GbE speed with Netperf TCP
(even with 1K message size).'
Diagnosed and tested by: Nadav Amit <nadav.amit@gmail.com>
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
2015-01-11 20:27:15 +00:00
|
|
|
}
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
|
Right now, for non-coherent DMARs, page table update code flushes the
cache for whole page containing modified pte, and more, only last page
in the series of the consequtive pages is flushed (i.e. the affected
mappings should be larger than 2MB).
Avoid excessive flushing and do missed neccessary flushing, by
splitting invalidation and unmapping. For now, flush exactly the
range of the changed pte. This is still somewhat bigger than
neccessary, since pte is 8 bytes, while cache flush line is at least
32 bytes.
The originator of the issue reports that after the change,
'dmar_bus_dmamap_unload went from 13,288 cycles down to
3,257. dmar_bus_dmamap_load_buffer went from 9,686 cycles down to
3,517. and I am now able to get line 1GbE speed with Netperf TCP
(even with 1K message size).'
Diagnosed and tested by: Nadav Amit <nadav.amit@gmail.com>
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
2015-01-11 20:27:15 +00:00
|
|
|
static void
|
|
|
|
dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (DMAR_IS_COHERENT(unit))
|
|
|
|
return;
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
/*
|
|
|
|
* If DMAR does not snoop paging structures accesses, flush
|
|
|
|
* CPU cache to memory.
|
|
|
|
*/
|
Right now, for non-coherent DMARs, page table update code flushes the
cache for whole page containing modified pte, and more, only last page
in the series of the consequtive pages is flushed (i.e. the affected
mappings should be larger than 2MB).
Avoid excessive flushing and do missed neccessary flushing, by
splitting invalidation and unmapping. For now, flush exactly the
range of the changed pte. This is still somewhat bigger than
neccessary, since pte is 8 bytes, while cache flush line is at least
32 bytes.
The originator of the issue reports that after the change,
'dmar_bus_dmamap_unload went from 13,288 cycles down to
3,257. dmar_bus_dmamap_load_buffer went from 9,686 cycles down to
3,517. and I am now able to get line 1GbE speed with Netperf TCP
(even with 1K message size).'
Diagnosed and tested by: Nadav Amit <nadav.amit@gmail.com>
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
2015-01-11 20:27:15 +00:00
|
|
|
pmap_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz,
|
|
|
|
TRUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst)
|
|
|
|
{
|
|
|
|
|
|
|
|
dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst)
|
|
|
|
{
|
|
|
|
|
|
|
|
dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst)
|
|
|
|
{
|
|
|
|
|
|
|
|
dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Load the root entry pointer into the hardware, busily waiting for
|
|
|
|
* the completion.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
dmar_load_root_entry_ptr(struct dmar_unit *unit)
|
|
|
|
{
|
|
|
|
vm_page_t root_entry;
|
2017-03-27 07:06:45 +00:00
|
|
|
int error;
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Access to the GCMD register must be serialized while the
|
|
|
|
* command is submitted.
|
|
|
|
*/
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
|
|
|
2015-02-11 23:28:28 +00:00
|
|
|
VM_OBJECT_RLOCK(unit->ctx_obj);
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
root_entry = vm_page_lookup(unit->ctx_obj, 0);
|
2015-02-11 23:28:28 +00:00
|
|
|
VM_OBJECT_RUNLOCK(unit->ctx_obj);
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry));
|
|
|
|
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP);
|
2017-03-27 07:06:45 +00:00
|
|
|
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS)
|
|
|
|
!= 0));
|
|
|
|
return (error);
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Globally invalidate the context entries cache, busily waiting for
|
|
|
|
* the completion.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
dmar_inv_ctx_glob(struct dmar_unit *unit)
|
|
|
|
{
|
2017-03-27 07:06:45 +00:00
|
|
|
int error;
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Access to the CCMD register must be serialized while the
|
|
|
|
* command is submitted.
|
|
|
|
*/
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
2013-11-01 17:38:52 +00:00
|
|
|
KASSERT(!unit->qi_enabled, ("QI enabled"));
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The DMAR_CCMD_ICC bit in the upper dword should be written
|
|
|
|
* after the low dword write is completed. Amd64
|
|
|
|
* dmar_write8() does not have this issue, i386 dmar_write8()
|
|
|
|
* writes the upper dword last.
|
|
|
|
*/
|
|
|
|
dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB);
|
2017-03-27 07:06:45 +00:00
|
|
|
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32)
|
|
|
|
== 0));
|
|
|
|
return (error);
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Globally invalidate the IOTLB, busily waiting for the completion.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
dmar_inv_iotlb_glob(struct dmar_unit *unit)
|
|
|
|
{
|
2017-03-27 07:06:45 +00:00
|
|
|
int error, reg;
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
2013-11-01 17:38:52 +00:00
|
|
|
KASSERT(!unit->qi_enabled, ("QI enabled"));
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
|
|
|
|
reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap);
|
|
|
|
/* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */
|
|
|
|
dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
|
|
|
|
DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW);
|
2017-03-27 07:06:45 +00:00
|
|
|
DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) &
|
|
|
|
DMAR_IOTLB_IVT32) == 0));
|
|
|
|
return (error);
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Flush the chipset write buffers. See 11.1 "Write Buffer Flushing"
|
|
|
|
* in the architecture specification.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
dmar_flush_write_bufs(struct dmar_unit *unit)
|
|
|
|
{
|
2017-03-27 07:06:45 +00:00
|
|
|
int error;
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* DMAR_GCMD_WBF is only valid when CAP_RWBF is reported.
|
|
|
|
*/
|
|
|
|
KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0,
|
|
|
|
("dmar%d: no RWBF", unit->unit));
|
|
|
|
|
|
|
|
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF);
|
2017-03-27 07:06:45 +00:00
|
|
|
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS)
|
|
|
|
!= 0));
|
|
|
|
return (error);
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
dmar_enable_translation(struct dmar_unit *unit)
|
|
|
|
{
|
2017-03-27 07:06:45 +00:00
|
|
|
int error;
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
|
|
unit->hw_gcmd |= DMAR_GCMD_TE;
|
|
|
|
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
|
2017-03-27 07:06:45 +00:00
|
|
|
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
|
|
|
|
!= 0));
|
|
|
|
return (error);
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
dmar_disable_translation(struct dmar_unit *unit)
|
|
|
|
{
|
2017-03-27 07:06:45 +00:00
|
|
|
int error;
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
|
|
unit->hw_gcmd &= ~DMAR_GCMD_TE;
|
|
|
|
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
|
2017-03-27 07:06:45 +00:00
|
|
|
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
|
|
|
|
== 0));
|
|
|
|
return (error);
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
}
|
|
|
|
|
Use VT-d interrupt remapping block (IR) to perform FSB messages
translation. In particular, despite IO-APICs only take 8bit apic id,
IR translation structures accept 32bit APIC Id, which allows x2APIC
mode to function properly. Extend msi_cpu of struct msi_intrsrc and
io_cpu of ioapic_intsrc to full int from one byte.
KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid
bringing all dmar headers into interrupt code. The non-PCI(e) devices
which generate message interrupts on FSB require special handling. The
HPET FSB interrupts are remapped, while DMAR interrupts are not.
For each msi and ioapic interrupt source, the iommu cookie is added,
which is in fact index of the IRE (interrupt remap entry) in the IR
table. Cookie is made at the source allocation time, and then used at
the map time to fill both IRE and device registers. The MSI
address/data registers and IO-APIC redirection registers are
programmed with the special values which are recognized by IR and used
to restore the IRE index, to find proper delivery mode and target.
Map all MSI interrupts in the block when msi_map() is called.
Since an interrupt source setup and dismantle code are done in the
non-sleepable context, flushing interrupt entries cache in the IR
hardware, which is done async and ideally waits for the interrupt,
requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is
modified to take a boolean argument requesting busy-wait for the
written sequence number instead of waiting for interrupt.
Some interrupts are configured before IR is initialized, e.g. ACPI
SCI. Add intr_reprogram() function to reprogram all already
configured interrupts, and call it immediately before an IR unit is
enabled. There is still a small window after the IO-APIC redirection
entry is reprogrammed with cookie but before the unit is enabled, but
to fix this properly, IR must be started much earlier.
Add workarounds for 5500 and X58 northbridges, some revisions of which
have severe flaws in handling IR. Use the same identification methods
as employed by Linux.
Review: https://reviews.freebsd.org/D1892
Reviewed by: neel
Discussed with: jhb
Tested by: glebius, pho (previous versions)
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
|
|
|
int
|
|
|
|
dmar_load_irt_ptr(struct dmar_unit *unit)
|
|
|
|
{
|
|
|
|
uint64_t irta, s;
|
2017-03-27 07:06:45 +00:00
|
|
|
int error;
|
Use VT-d interrupt remapping block (IR) to perform FSB messages
translation. In particular, despite IO-APICs only take 8bit apic id,
IR translation structures accept 32bit APIC Id, which allows x2APIC
mode to function properly. Extend msi_cpu of struct msi_intrsrc and
io_cpu of ioapic_intsrc to full int from one byte.
KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid
bringing all dmar headers into interrupt code. The non-PCI(e) devices
which generate message interrupts on FSB require special handling. The
HPET FSB interrupts are remapped, while DMAR interrupts are not.
For each msi and ioapic interrupt source, the iommu cookie is added,
which is in fact index of the IRE (interrupt remap entry) in the IR
table. Cookie is made at the source allocation time, and then used at
the map time to fill both IRE and device registers. The MSI
address/data registers and IO-APIC redirection registers are
programmed with the special values which are recognized by IR and used
to restore the IRE index, to find proper delivery mode and target.
Map all MSI interrupts in the block when msi_map() is called.
Since an interrupt source setup and dismantle code are done in the
non-sleepable context, flushing interrupt entries cache in the IR
hardware, which is done async and ideally waits for the interrupt,
requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is
modified to take a boolean argument requesting busy-wait for the
written sequence number instead of waiting for interrupt.
Some interrupts are configured before IR is initialized, e.g. ACPI
SCI. Add intr_reprogram() function to reprogram all already
configured interrupts, and call it immediately before an IR unit is
enabled. There is still a small window after the IO-APIC redirection
entry is reprogrammed with cookie but before the unit is enabled, but
to fix this properly, IR must be started much earlier.
Add workarounds for 5500 and X58 northbridges, some revisions of which
have severe flaws in handling IR. Use the same identification methods
as employed by Linux.
Review: https://reviews.freebsd.org/D1892
Reviewed by: neel
Discussed with: jhb
Tested by: glebius, pho (previous versions)
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
|
|
|
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
|
|
irta = unit->irt_phys;
|
|
|
|
if (DMAR_X2APIC(unit))
|
|
|
|
irta |= DMAR_IRTA_EIME;
|
|
|
|
s = fls(unit->irte_cnt) - 2;
|
|
|
|
KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK &&
|
|
|
|
powerof2(unit->irte_cnt),
|
|
|
|
("IRTA_REG_S overflow %x", unit->irte_cnt));
|
|
|
|
irta |= s;
|
|
|
|
dmar_write8(unit, DMAR_IRTA_REG, irta);
|
|
|
|
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP);
|
2017-03-27 07:06:45 +00:00
|
|
|
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS)
|
|
|
|
!= 0));
|
|
|
|
return (error);
|
Use VT-d interrupt remapping block (IR) to perform FSB messages
translation. In particular, despite IO-APICs only take 8bit apic id,
IR translation structures accept 32bit APIC Id, which allows x2APIC
mode to function properly. Extend msi_cpu of struct msi_intrsrc and
io_cpu of ioapic_intsrc to full int from one byte.
KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid
bringing all dmar headers into interrupt code. The non-PCI(e) devices
which generate message interrupts on FSB require special handling. The
HPET FSB interrupts are remapped, while DMAR interrupts are not.
For each msi and ioapic interrupt source, the iommu cookie is added,
which is in fact index of the IRE (interrupt remap entry) in the IR
table. Cookie is made at the source allocation time, and then used at
the map time to fill both IRE and device registers. The MSI
address/data registers and IO-APIC redirection registers are
programmed with the special values which are recognized by IR and used
to restore the IRE index, to find proper delivery mode and target.
Map all MSI interrupts in the block when msi_map() is called.
Since an interrupt source setup and dismantle code are done in the
non-sleepable context, flushing interrupt entries cache in the IR
hardware, which is done async and ideally waits for the interrupt,
requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is
modified to take a boolean argument requesting busy-wait for the
written sequence number instead of waiting for interrupt.
Some interrupts are configured before IR is initialized, e.g. ACPI
SCI. Add intr_reprogram() function to reprogram all already
configured interrupts, and call it immediately before an IR unit is
enabled. There is still a small window after the IO-APIC redirection
entry is reprogrammed with cookie but before the unit is enabled, but
to fix this properly, IR must be started much earlier.
Add workarounds for 5500 and X58 northbridges, some revisions of which
have severe flaws in handling IR. Use the same identification methods
as employed by Linux.
Review: https://reviews.freebsd.org/D1892
Reviewed by: neel
Discussed with: jhb
Tested by: glebius, pho (previous versions)
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
dmar_enable_ir(struct dmar_unit *unit)
|
|
|
|
{
|
2017-03-27 07:06:45 +00:00
|
|
|
int error;
|
Use VT-d interrupt remapping block (IR) to perform FSB messages
translation. In particular, despite IO-APICs only take 8bit apic id,
IR translation structures accept 32bit APIC Id, which allows x2APIC
mode to function properly. Extend msi_cpu of struct msi_intrsrc and
io_cpu of ioapic_intsrc to full int from one byte.
KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid
bringing all dmar headers into interrupt code. The non-PCI(e) devices
which generate message interrupts on FSB require special handling. The
HPET FSB interrupts are remapped, while DMAR interrupts are not.
For each msi and ioapic interrupt source, the iommu cookie is added,
which is in fact index of the IRE (interrupt remap entry) in the IR
table. Cookie is made at the source allocation time, and then used at
the map time to fill both IRE and device registers. The MSI
address/data registers and IO-APIC redirection registers are
programmed with the special values which are recognized by IR and used
to restore the IRE index, to find proper delivery mode and target.
Map all MSI interrupts in the block when msi_map() is called.
Since an interrupt source setup and dismantle code are done in the
non-sleepable context, flushing interrupt entries cache in the IR
hardware, which is done async and ideally waits for the interrupt,
requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is
modified to take a boolean argument requesting busy-wait for the
written sequence number instead of waiting for interrupt.
Some interrupts are configured before IR is initialized, e.g. ACPI
SCI. Add intr_reprogram() function to reprogram all already
configured interrupts, and call it immediately before an IR unit is
enabled. There is still a small window after the IO-APIC redirection
entry is reprogrammed with cookie but before the unit is enabled, but
to fix this properly, IR must be started much earlier.
Add workarounds for 5500 and X58 northbridges, some revisions of which
have severe flaws in handling IR. Use the same identification methods
as employed by Linux.
Review: https://reviews.freebsd.org/D1892
Reviewed by: neel
Discussed with: jhb
Tested by: glebius, pho (previous versions)
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
|
|
|
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
|
|
unit->hw_gcmd |= DMAR_GCMD_IRE;
|
|
|
|
unit->hw_gcmd &= ~DMAR_GCMD_CFI;
|
|
|
|
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
|
2017-03-27 07:06:45 +00:00
|
|
|
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
|
|
|
|
!= 0));
|
|
|
|
return (error);
|
Use VT-d interrupt remapping block (IR) to perform FSB messages
translation. In particular, despite IO-APICs only take 8bit apic id,
IR translation structures accept 32bit APIC Id, which allows x2APIC
mode to function properly. Extend msi_cpu of struct msi_intrsrc and
io_cpu of ioapic_intsrc to full int from one byte.
KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid
bringing all dmar headers into interrupt code. The non-PCI(e) devices
which generate message interrupts on FSB require special handling. The
HPET FSB interrupts are remapped, while DMAR interrupts are not.
For each msi and ioapic interrupt source, the iommu cookie is added,
which is in fact index of the IRE (interrupt remap entry) in the IR
table. Cookie is made at the source allocation time, and then used at
the map time to fill both IRE and device registers. The MSI
address/data registers and IO-APIC redirection registers are
programmed with the special values which are recognized by IR and used
to restore the IRE index, to find proper delivery mode and target.
Map all MSI interrupts in the block when msi_map() is called.
Since an interrupt source setup and dismantle code are done in the
non-sleepable context, flushing interrupt entries cache in the IR
hardware, which is done async and ideally waits for the interrupt,
requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is
modified to take a boolean argument requesting busy-wait for the
written sequence number instead of waiting for interrupt.
Some interrupts are configured before IR is initialized, e.g. ACPI
SCI. Add intr_reprogram() function to reprogram all already
configured interrupts, and call it immediately before an IR unit is
enabled. There is still a small window after the IO-APIC redirection
entry is reprogrammed with cookie but before the unit is enabled, but
to fix this properly, IR must be started much earlier.
Add workarounds for 5500 and X58 northbridges, some revisions of which
have severe flaws in handling IR. Use the same identification methods
as employed by Linux.
Review: https://reviews.freebsd.org/D1892
Reviewed by: neel
Discussed with: jhb
Tested by: glebius, pho (previous versions)
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
dmar_disable_ir(struct dmar_unit *unit)
|
|
|
|
{
|
2017-03-27 07:06:45 +00:00
|
|
|
int error;
|
Use VT-d interrupt remapping block (IR) to perform FSB messages
translation. In particular, despite IO-APICs only take 8bit apic id,
IR translation structures accept 32bit APIC Id, which allows x2APIC
mode to function properly. Extend msi_cpu of struct msi_intrsrc and
io_cpu of ioapic_intsrc to full int from one byte.
KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid
bringing all dmar headers into interrupt code. The non-PCI(e) devices
which generate message interrupts on FSB require special handling. The
HPET FSB interrupts are remapped, while DMAR interrupts are not.
For each msi and ioapic interrupt source, the iommu cookie is added,
which is in fact index of the IRE (interrupt remap entry) in the IR
table. Cookie is made at the source allocation time, and then used at
the map time to fill both IRE and device registers. The MSI
address/data registers and IO-APIC redirection registers are
programmed with the special values which are recognized by IR and used
to restore the IRE index, to find proper delivery mode and target.
Map all MSI interrupts in the block when msi_map() is called.
Since an interrupt source setup and dismantle code are done in the
non-sleepable context, flushing interrupt entries cache in the IR
hardware, which is done async and ideally waits for the interrupt,
requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is
modified to take a boolean argument requesting busy-wait for the
written sequence number instead of waiting for interrupt.
Some interrupts are configured before IR is initialized, e.g. ACPI
SCI. Add intr_reprogram() function to reprogram all already
configured interrupts, and call it immediately before an IR unit is
enabled. There is still a small window after the IO-APIC redirection
entry is reprogrammed with cookie but before the unit is enabled, but
to fix this properly, IR must be started much earlier.
Add workarounds for 5500 and X58 northbridges, some revisions of which
have severe flaws in handling IR. Use the same identification methods
as employed by Linux.
Review: https://reviews.freebsd.org/D1892
Reviewed by: neel
Discussed with: jhb
Tested by: glebius, pho (previous versions)
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
|
|
|
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
|
|
unit->hw_gcmd &= ~DMAR_GCMD_IRE;
|
|
|
|
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
|
2017-03-27 07:06:45 +00:00
|
|
|
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
|
|
|
|
== 0));
|
|
|
|
return (error);
|
Use VT-d interrupt remapping block (IR) to perform FSB messages
translation. In particular, despite IO-APICs only take 8bit apic id,
IR translation structures accept 32bit APIC Id, which allows x2APIC
mode to function properly. Extend msi_cpu of struct msi_intrsrc and
io_cpu of ioapic_intsrc to full int from one byte.
KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid
bringing all dmar headers into interrupt code. The non-PCI(e) devices
which generate message interrupts on FSB require special handling. The
HPET FSB interrupts are remapped, while DMAR interrupts are not.
For each msi and ioapic interrupt source, the iommu cookie is added,
which is in fact index of the IRE (interrupt remap entry) in the IR
table. Cookie is made at the source allocation time, and then used at
the map time to fill both IRE and device registers. The MSI
address/data registers and IO-APIC redirection registers are
programmed with the special values which are recognized by IR and used
to restore the IRE index, to find proper delivery mode and target.
Map all MSI interrupts in the block when msi_map() is called.
Since an interrupt source setup and dismantle code are done in the
non-sleepable context, flushing interrupt entries cache in the IR
hardware, which is done async and ideally waits for the interrupt,
requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is
modified to take a boolean argument requesting busy-wait for the
written sequence number instead of waiting for interrupt.
Some interrupts are configured before IR is initialized, e.g. ACPI
SCI. Add intr_reprogram() function to reprogram all already
configured interrupts, and call it immediately before an IR unit is
enabled. There is still a small window after the IO-APIC redirection
entry is reprogrammed with cookie but before the unit is enabled, but
to fix this properly, IR must be started much earlier.
Add workarounds for 5500 and X58 northbridges, some revisions of which
have severe flaws in handling IR. Use the same identification methods
as employed by Linux.
Review: https://reviews.freebsd.org/D1892
Reviewed by: neel
Discussed with: jhb
Tested by: glebius, pho (previous versions)
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
2015-03-19 13:57:47 +00:00
|
|
|
}
|
|
|
|
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
#define BARRIER_F \
|
|
|
|
u_int f_done, f_inproc, f_wakeup; \
|
|
|
|
\
|
|
|
|
f_done = 1 << (barrier_id * 3); \
|
|
|
|
f_inproc = 1 << (barrier_id * 3 + 1); \
|
|
|
|
f_wakeup = 1 << (barrier_id * 3 + 2)
|
|
|
|
|
|
|
|
bool
|
|
|
|
dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id)
|
|
|
|
{
|
|
|
|
BARRIER_F;
|
|
|
|
|
|
|
|
DMAR_LOCK(dmar);
|
|
|
|
if ((dmar->barrier_flags & f_done) != 0) {
|
|
|
|
DMAR_UNLOCK(dmar);
|
|
|
|
return (false);
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((dmar->barrier_flags & f_inproc) != 0) {
|
|
|
|
while ((dmar->barrier_flags & f_inproc) != 0) {
|
|
|
|
dmar->barrier_flags |= f_wakeup;
|
|
|
|
msleep(&dmar->barrier_flags, &dmar->lock, 0,
|
|
|
|
"dmarb", 0);
|
|
|
|
}
|
|
|
|
KASSERT((dmar->barrier_flags & f_done) != 0,
|
|
|
|
("dmar%d barrier %d missing done", dmar->unit, barrier_id));
|
|
|
|
DMAR_UNLOCK(dmar);
|
|
|
|
return (false);
|
|
|
|
}
|
|
|
|
|
|
|
|
dmar->barrier_flags |= f_inproc;
|
|
|
|
DMAR_UNLOCK(dmar);
|
|
|
|
return (true);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id)
|
|
|
|
{
|
|
|
|
BARRIER_F;
|
|
|
|
|
|
|
|
DMAR_ASSERT_LOCKED(dmar);
|
|
|
|
KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc,
|
|
|
|
("dmar%d barrier %d missed entry", dmar->unit, barrier_id));
|
|
|
|
dmar->barrier_flags |= f_done;
|
|
|
|
if ((dmar->barrier_flags & f_wakeup) != 0)
|
|
|
|
wakeup(&dmar->barrier_flags);
|
|
|
|
dmar->barrier_flags &= ~(f_inproc | f_wakeup);
|
|
|
|
DMAR_UNLOCK(dmar);
|
|
|
|
}
|
|
|
|
|
|
|
|
int dmar_match_verbose;
|
2016-04-17 10:56:56 +00:00
|
|
|
int dmar_batch_coalesce = 100;
|
2017-03-27 07:06:45 +00:00
|
|
|
struct timespec dmar_hw_timeout = {
|
|
|
|
.tv_sec = 0,
|
|
|
|
.tv_nsec = 1000000
|
|
|
|
};
|
|
|
|
|
|
|
|
static const uint64_t d = 1000000000;
|
|
|
|
|
|
|
|
void
|
|
|
|
dmar_update_timeout(uint64_t newval)
|
|
|
|
{
|
|
|
|
|
|
|
|
/* XXXKIB not atomic */
|
|
|
|
dmar_hw_timeout.tv_sec = newval / d;
|
|
|
|
dmar_hw_timeout.tv_nsec = newval % d;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t
|
|
|
|
dmar_get_timeout(void)
|
|
|
|
{
|
|
|
|
|
|
|
|
return ((uint64_t)dmar_hw_timeout.tv_sec * d +
|
|
|
|
dmar_hw_timeout.tv_nsec);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS)
|
|
|
|
{
|
|
|
|
uint64_t val;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
val = dmar_get_timeout();
|
|
|
|
error = sysctl_handle_long(oidp, &val, 0, req);
|
|
|
|
if (error != 0 || req->newptr == NULL)
|
|
|
|
return (error);
|
|
|
|
dmar_update_timeout(val);
|
|
|
|
return (error);
|
|
|
|
}
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
|
2014-06-28 03:56:17 +00:00
|
|
|
static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, "");
|
|
|
|
SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD,
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
&dmar_tbl_pagecnt, 0,
|
|
|
|
"Count of pages used for DMAR pagetables");
|
2014-06-28 03:56:17 +00:00
|
|
|
SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN,
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
&dmar_match_verbose, 0,
|
|
|
|
"Verbose matching of the PCI devices to DMAR paths");
|
2016-04-17 10:56:56 +00:00
|
|
|
SYSCTL_INT(_hw_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN,
|
|
|
|
&dmar_batch_coalesce, 0,
|
|
|
|
"Number of qi batches between interrupt");
|
2017-03-27 07:06:45 +00:00
|
|
|
SYSCTL_PROC(_hw_dmar, OID_AUTO, timeout,
|
|
|
|
CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
|
|
|
|
dmar_timeout_sysctl, "QU",
|
|
|
|
"Timeout for command wait, in nanoseconds");
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
#ifdef INVARIANTS
|
|
|
|
int dmar_check_free;
|
2014-06-28 03:56:17 +00:00
|
|
|
SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN,
|
Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
2013-10-28 13:33:29 +00:00
|
|
|
&dmar_check_free, 0,
|
|
|
|
"Check the GPA RBtree for free_down and free_after validity");
|
|
|
|
#endif
|
|
|
|
|