freebsd-dev/sys/xen/xen_intr.h

278 lines
10 KiB
C
Raw Normal View History

Implement vector callback for PVHVM and unify event channel implementations Re-structure Xen HVM support so that: - Xen is detected and hypercalls can be performed very early in system startup. - Xen interrupt services are implemented using FreeBSD's native interrupt delivery infrastructure. - the Xen interrupt service implementation is shared between PV and HVM guests. - Xen interrupt handlers can optionally use a filter handler in order to avoid the overhead of dispatch to an interrupt thread. - interrupt load can be distributed among all available CPUs. - the overhead of accessing the emulated local and I/O apics on HVM is removed for event channel port events. - a similar optimization can eventually, and fairly easily, be used to optimize MSI. Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure, and misc Xen cleanups: Sponsored by: Spectra Logic Corporation Unification of PV & HVM interrupt infrastructure, bug fixes, and misc Xen cleanups: Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D sys/x86/x86/local_apic.c: sys/amd64/include/apicvar.h: sys/i386/include/apicvar.h: sys/amd64/amd64/apic_vector.S: sys/i386/i386/apic_vector.s: sys/amd64/amd64/machdep.c: sys/i386/i386/machdep.c: sys/i386/xen/exception.s: sys/x86/include/segments.h: Reserve IDT vector 0x93 for the Xen event channel upcall interrupt handler. On Hypervisors that support the direct vector callback feature, we can request that this vector be called directly by an injected HVM interrupt event, instead of a simulated PCI interrupt on the Xen platform PCI device. This avoids all of the overhead of dealing with the emulated I/O APIC and local APIC. It also means that the Hypervisor can inject these events on any CPU, allowing upcalls for different ports to be handled in parallel. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: Map Xen per-vcpu area during AP startup. sys/amd64/include/intr_machdep.h: sys/i386/include/intr_machdep.h: Increase the FreeBSD IRQ vector table to include space for event channel interrupt sources. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: Remove Xen HVM per-cpu variable data. These fields are now allocated via the dynamic per-cpu scheme. See xen_intr.c for details. sys/amd64/include/xen/hypercall.h: sys/dev/xen/blkback/blkback.c: sys/i386/include/xen/xenvar.h: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/xen/gnttab.c: Prefer FreeBSD primatives to Linux ones in Xen support code. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: sys/dev/xen/balloon/balloon.c: sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/console/xencons_ring.c: sys/dev/xen/control/control.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/xenpci/xenpci.c: sys/i386/i386/machdep.c: sys/i386/include/pmap.h: sys/i386/include/xen/xenfunc.h: sys/i386/isa/npx.c: sys/i386/xen/clock.c: sys/i386/xen/mp_machdep.c: sys/i386/xen/mptable.c: sys/i386/xen/xen_clock_util.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/xen_rtc.c: sys/xen/evtchn/evtchn_dev.c: sys/xen/features.c: sys/xen/gnttab.c: sys/xen/gnttab.h: sys/xen/hvm.h: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_if.m: sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusvar.h: sys/xen/xenstore/xenstore.c: sys/xen/xenstore/xenstore_dev.c: sys/xen/xenstore/xenstorevar.h: Pull common Xen OS support functions/settings into xen/xen-os.h. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: Remove constants, macros, and functions unused in FreeBSD's Xen support. sys/xen/xen-os.h: sys/i386/xen/xen_machdep.c: sys/x86/xen/hvm.c: Introduce new functions xen_domain(), xen_pv_domain(), and xen_hvm_domain(). These are used in favor of #ifdefs so that FreeBSD can dynamically detect and adapt to the presence of a hypervisor. The goal is to have an HVM optimized GENERIC, but more is necessary before this is possible. sys/amd64/amd64/machdep.c: sys/dev/xen/xenpci/xenpcivar.h: sys/dev/xen/xenpci/xenpci.c: sys/x86/xen/hvm.c: sys/sys/kernel.h: Refactor magic ioport, Hypercall table and Hypervisor shared information page setup, and move it to a dedicated HVM support module. HVM mode initialization is now triggered during the SI_SUB_HYPERVISOR phase of system startup. This currently occurs just after the kernel VM is fully setup which is just enough infrastructure to allow the hypercall table and shared info page to be properly mapped. sys/xen/hvm.h: sys/x86/xen/hvm.c: Add definitions and a method for configuring Hypervisor event delievery via a direct vector callback. sys/amd64/include/xen/xen-os.h: sys/x86/xen/hvm.c: sys/conf/files: sys/conf/files.amd64: sys/conf/files.i386: Adjust kernel build to reflect the refactoring of early Xen startup code and Xen interrupt services. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: sys/dev/xen/control/control.c: sys/dev/xen/evtchn/evtchn_dev.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/xen/xenstore/xenstore.c: sys/xen/evtchn/evtchn_dev.c: sys/dev/xen/console/console.c: sys/dev/xen/console/xencons_ring.c Adjust drivers to use new xen_intr_*() API. sys/dev/xen/blkback/blkback.c: Since blkback defers all event handling to a taskqueue, convert this task queue to a "fast" taskqueue, and schedule it via an interrupt filter. This avoids an unnecessary ithread context switch. sys/xen/xenstore/xenstore.c: The xenstore driver is MPSAFE. Indicate as much when registering its interrupt handler. sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbusvar.h: Remove unused event channel APIs. sys/xen/evtchn.h: Remove all kernel Xen interrupt service API definitions from this file. It is now only used for structure and ioctl definitions related to the event channel userland device driver. Update the definitions in this file to match those from NetBSD. Implementing this interface will be necessary for Dom0 support. sys/xen/evtchn/evtchnvar.h: Add a header file for implemenation internal APIs related to managing event channels event delivery. This is used to allow, for example, the event channel userland device driver to access low-level routines that typical kernel consumers of event channel services should never access. sys/xen/interface/event_channel.h: sys/xen/xen_intr.h: Standardize on the evtchn_port_t type for referring to an event channel port id. In order to prevent low-level event channel APIs from leaking to kernel consumers who should not have access to this data, the type is defined twice: Once in the Xen provided event_channel.h, and again in xen/xen_intr.h. The double declaration is protected by __XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared twice within a given compilation unit. sys/xen/xen_intr.h: sys/xen/evtchn/evtchn.c: sys/x86/xen/xen_intr.c: sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/xenpci/xenpcivar.h: New implementation of Xen interrupt services. This is similar in many respects to the i386 PV implementation with the exception that events for bound to event channel ports (i.e. not IPI, virtual IRQ, or physical IRQ) are further optimized to avoid mask/unmask operations that aren't necessary for these edge triggered events. Stubs exist for supporting physical IRQ binding, but will need additional work before this implementation can be fully shared between PV and HVM. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: sys/i386/xen/mp_machdep.c sys/x86/xen/hvm.c: Add support for placing vcpu_info into an arbritary memory page instead of using HYPERVISOR_shared_info->vcpu_info. This allows the creation of domains with more than 32 vcpus. sys/i386/i386/machdep.c: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/exception.s: Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
/******************************************************************************
* xen_intr.h
*
* APIs for managing Xen event channel, virtual IRQ, and physical IRQ
* notifications.
*
* Copyright (c) 2004, K A Fraser
* Copyright (c) 2012, Spectra Logic Corporation
*
* This file may be distributed separately from the Linux kernel, or
* incorporated into other software packages, subject to the following license:
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this source file (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* $FreeBSD$
*/
#ifndef _XEN_INTR_H_
#define _XEN_INTR_H_
#include <xen/interface/event_channel.h>
Implement vector callback for PVHVM and unify event channel implementations Re-structure Xen HVM support so that: - Xen is detected and hypercalls can be performed very early in system startup. - Xen interrupt services are implemented using FreeBSD's native interrupt delivery infrastructure. - the Xen interrupt service implementation is shared between PV and HVM guests. - Xen interrupt handlers can optionally use a filter handler in order to avoid the overhead of dispatch to an interrupt thread. - interrupt load can be distributed among all available CPUs. - the overhead of accessing the emulated local and I/O apics on HVM is removed for event channel port events. - a similar optimization can eventually, and fairly easily, be used to optimize MSI. Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure, and misc Xen cleanups: Sponsored by: Spectra Logic Corporation Unification of PV & HVM interrupt infrastructure, bug fixes, and misc Xen cleanups: Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D sys/x86/x86/local_apic.c: sys/amd64/include/apicvar.h: sys/i386/include/apicvar.h: sys/amd64/amd64/apic_vector.S: sys/i386/i386/apic_vector.s: sys/amd64/amd64/machdep.c: sys/i386/i386/machdep.c: sys/i386/xen/exception.s: sys/x86/include/segments.h: Reserve IDT vector 0x93 for the Xen event channel upcall interrupt handler. On Hypervisors that support the direct vector callback feature, we can request that this vector be called directly by an injected HVM interrupt event, instead of a simulated PCI interrupt on the Xen platform PCI device. This avoids all of the overhead of dealing with the emulated I/O APIC and local APIC. It also means that the Hypervisor can inject these events on any CPU, allowing upcalls for different ports to be handled in parallel. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: Map Xen per-vcpu area during AP startup. sys/amd64/include/intr_machdep.h: sys/i386/include/intr_machdep.h: Increase the FreeBSD IRQ vector table to include space for event channel interrupt sources. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: Remove Xen HVM per-cpu variable data. These fields are now allocated via the dynamic per-cpu scheme. See xen_intr.c for details. sys/amd64/include/xen/hypercall.h: sys/dev/xen/blkback/blkback.c: sys/i386/include/xen/xenvar.h: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/xen/gnttab.c: Prefer FreeBSD primatives to Linux ones in Xen support code. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: sys/dev/xen/balloon/balloon.c: sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/console/xencons_ring.c: sys/dev/xen/control/control.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/xenpci/xenpci.c: sys/i386/i386/machdep.c: sys/i386/include/pmap.h: sys/i386/include/xen/xenfunc.h: sys/i386/isa/npx.c: sys/i386/xen/clock.c: sys/i386/xen/mp_machdep.c: sys/i386/xen/mptable.c: sys/i386/xen/xen_clock_util.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/xen_rtc.c: sys/xen/evtchn/evtchn_dev.c: sys/xen/features.c: sys/xen/gnttab.c: sys/xen/gnttab.h: sys/xen/hvm.h: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_if.m: sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusvar.h: sys/xen/xenstore/xenstore.c: sys/xen/xenstore/xenstore_dev.c: sys/xen/xenstore/xenstorevar.h: Pull common Xen OS support functions/settings into xen/xen-os.h. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: Remove constants, macros, and functions unused in FreeBSD's Xen support. sys/xen/xen-os.h: sys/i386/xen/xen_machdep.c: sys/x86/xen/hvm.c: Introduce new functions xen_domain(), xen_pv_domain(), and xen_hvm_domain(). These are used in favor of #ifdefs so that FreeBSD can dynamically detect and adapt to the presence of a hypervisor. The goal is to have an HVM optimized GENERIC, but more is necessary before this is possible. sys/amd64/amd64/machdep.c: sys/dev/xen/xenpci/xenpcivar.h: sys/dev/xen/xenpci/xenpci.c: sys/x86/xen/hvm.c: sys/sys/kernel.h: Refactor magic ioport, Hypercall table and Hypervisor shared information page setup, and move it to a dedicated HVM support module. HVM mode initialization is now triggered during the SI_SUB_HYPERVISOR phase of system startup. This currently occurs just after the kernel VM is fully setup which is just enough infrastructure to allow the hypercall table and shared info page to be properly mapped. sys/xen/hvm.h: sys/x86/xen/hvm.c: Add definitions and a method for configuring Hypervisor event delievery via a direct vector callback. sys/amd64/include/xen/xen-os.h: sys/x86/xen/hvm.c: sys/conf/files: sys/conf/files.amd64: sys/conf/files.i386: Adjust kernel build to reflect the refactoring of early Xen startup code and Xen interrupt services. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: sys/dev/xen/control/control.c: sys/dev/xen/evtchn/evtchn_dev.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/xen/xenstore/xenstore.c: sys/xen/evtchn/evtchn_dev.c: sys/dev/xen/console/console.c: sys/dev/xen/console/xencons_ring.c Adjust drivers to use new xen_intr_*() API. sys/dev/xen/blkback/blkback.c: Since blkback defers all event handling to a taskqueue, convert this task queue to a "fast" taskqueue, and schedule it via an interrupt filter. This avoids an unnecessary ithread context switch. sys/xen/xenstore/xenstore.c: The xenstore driver is MPSAFE. Indicate as much when registering its interrupt handler. sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbusvar.h: Remove unused event channel APIs. sys/xen/evtchn.h: Remove all kernel Xen interrupt service API definitions from this file. It is now only used for structure and ioctl definitions related to the event channel userland device driver. Update the definitions in this file to match those from NetBSD. Implementing this interface will be necessary for Dom0 support. sys/xen/evtchn/evtchnvar.h: Add a header file for implemenation internal APIs related to managing event channels event delivery. This is used to allow, for example, the event channel userland device driver to access low-level routines that typical kernel consumers of event channel services should never access. sys/xen/interface/event_channel.h: sys/xen/xen_intr.h: Standardize on the evtchn_port_t type for referring to an event channel port id. In order to prevent low-level event channel APIs from leaking to kernel consumers who should not have access to this data, the type is defined twice: Once in the Xen provided event_channel.h, and again in xen/xen_intr.h. The double declaration is protected by __XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared twice within a given compilation unit. sys/xen/xen_intr.h: sys/xen/evtchn/evtchn.c: sys/x86/xen/xen_intr.c: sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/xenpci/xenpcivar.h: New implementation of Xen interrupt services. This is similar in many respects to the i386 PV implementation with the exception that events for bound to event channel ports (i.e. not IPI, virtual IRQ, or physical IRQ) are further optimized to avoid mask/unmask operations that aren't necessary for these edge triggered events. Stubs exist for supporting physical IRQ binding, but will need additional work before this implementation can be fully shared between PV and HVM. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: sys/i386/xen/mp_machdep.c sys/x86/xen/hvm.c: Add support for placing vcpu_info into an arbritary memory page instead of using HYPERVISOR_shared_info->vcpu_info. This allows the creation of domains with more than 32 vcpus. sys/i386/i386/machdep.c: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/exception.s: Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
/** Registered Xen interrupt callback handle. */
typedef void * xen_intr_handle_t;
/** If non-zero, the hypervisor has been configured to use a direct vector */
extern int xen_vector_callback_enabled;
xen: Code cleanup and small bug fixes xen/hypervisor.h: - Remove unused helpers: MULTI_update_va_mapping, is_initial_xendomain, is_running_on_xen - Remove unused define CONFIG_X86_PAE - Remove unused variable xen_start_info: note that it's used inpcifront which is not built at all - Remove forward declaration of HYPERVISOR_crash xen/xen-os.h: - Remove unused define CONFIG_X86_PAE - Drop unused helpers: test_and_clear_bit, clear_bit, force_evtchn_callback - Implement a generic version (based on ofed/include/linux/bitops.h) of set_bit and test_bit and prefix them by xen_ to avoid any use by other code than Xen. Note that It would be worth to investigate a generic implementation in FreeBSD. - Replace barrier() by __compiler_membar() - Replace cpu_relax() by cpu_spinwait(): it's exactly the same as rep;nop = pause xen/xen_intr.h: - Move the prototype of xen_intr_handle_upcall in it: Use by all the platform x86/xen/xen_intr.c: - Use BITSET* for the enabledbits: Avoid to use custom helpers - test_bit/set_bit has been renamed to xen_test_bit/xen_set_bit - Don't export the variable xen_intr_pcpu dev/xen/blkback/blkback.c: - Fix the string format when XBB_DEBUG is enabled: host_addr is typed uint64_t dev/xen/balloon/balloon.c: - Remove set but not used variable - Use the correct type for frame_list: xen_pfn_t represents the frame number on any architecture dev/xen/control/control.c: - Return BUS_PROBE_WILDCARD in xs_probe: Returning 0 in a probe callback means the driver can handle this device. If by any chance xenstore is the first driver, every new device with the driver is unset will use xenstore. dev/xen/grant-table/grant_table.c: - Remove unused cmpxchg - Drop unused include opt_pmap.h: Doesn't exist on ARM64 and it doesn't contain anything required for the code on x86 dev/xen/netfront/netfront.c: - Use the correct type for rx_pfn_array: xen_pfn_t represents the frame number on any architecture dev/xen/netback/netback.c: - Use the correct type for gmfn: xen_pfn_t represents the frame number on any architecture dev/xen/xenstore/xenstore.c: - Return BUS_PROBE_WILDCARD in xctrl_probe: Returning 0 in a probe callback means the driver can handle this device. If by any chance xenstore is the first driver, every new device with the driver is unset will use xenstore. Note that with the changes, x86/include/xen/xen-os.h doesn't contain anymore arch-specific code. Although, a new series will add some helpers that differ between x86 and ARM64, so I've kept the headers for now. Submitted by: Julien Grall <julien.grall@citrix.com> Reviewed by: royger Differential Revision: https://reviews.freebsd.org/D3921 Sponsored by: Citrix Systems R&D
2015-10-21 10:44:07 +00:00
void xen_intr_handle_upcall(struct trapframe *trap_frame);
Implement vector callback for PVHVM and unify event channel implementations Re-structure Xen HVM support so that: - Xen is detected and hypercalls can be performed very early in system startup. - Xen interrupt services are implemented using FreeBSD's native interrupt delivery infrastructure. - the Xen interrupt service implementation is shared between PV and HVM guests. - Xen interrupt handlers can optionally use a filter handler in order to avoid the overhead of dispatch to an interrupt thread. - interrupt load can be distributed among all available CPUs. - the overhead of accessing the emulated local and I/O apics on HVM is removed for event channel port events. - a similar optimization can eventually, and fairly easily, be used to optimize MSI. Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure, and misc Xen cleanups: Sponsored by: Spectra Logic Corporation Unification of PV & HVM interrupt infrastructure, bug fixes, and misc Xen cleanups: Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D sys/x86/x86/local_apic.c: sys/amd64/include/apicvar.h: sys/i386/include/apicvar.h: sys/amd64/amd64/apic_vector.S: sys/i386/i386/apic_vector.s: sys/amd64/amd64/machdep.c: sys/i386/i386/machdep.c: sys/i386/xen/exception.s: sys/x86/include/segments.h: Reserve IDT vector 0x93 for the Xen event channel upcall interrupt handler. On Hypervisors that support the direct vector callback feature, we can request that this vector be called directly by an injected HVM interrupt event, instead of a simulated PCI interrupt on the Xen platform PCI device. This avoids all of the overhead of dealing with the emulated I/O APIC and local APIC. It also means that the Hypervisor can inject these events on any CPU, allowing upcalls for different ports to be handled in parallel. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: Map Xen per-vcpu area during AP startup. sys/amd64/include/intr_machdep.h: sys/i386/include/intr_machdep.h: Increase the FreeBSD IRQ vector table to include space for event channel interrupt sources. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: Remove Xen HVM per-cpu variable data. These fields are now allocated via the dynamic per-cpu scheme. See xen_intr.c for details. sys/amd64/include/xen/hypercall.h: sys/dev/xen/blkback/blkback.c: sys/i386/include/xen/xenvar.h: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/xen/gnttab.c: Prefer FreeBSD primatives to Linux ones in Xen support code. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: sys/dev/xen/balloon/balloon.c: sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/console/xencons_ring.c: sys/dev/xen/control/control.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/xenpci/xenpci.c: sys/i386/i386/machdep.c: sys/i386/include/pmap.h: sys/i386/include/xen/xenfunc.h: sys/i386/isa/npx.c: sys/i386/xen/clock.c: sys/i386/xen/mp_machdep.c: sys/i386/xen/mptable.c: sys/i386/xen/xen_clock_util.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/xen_rtc.c: sys/xen/evtchn/evtchn_dev.c: sys/xen/features.c: sys/xen/gnttab.c: sys/xen/gnttab.h: sys/xen/hvm.h: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_if.m: sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusvar.h: sys/xen/xenstore/xenstore.c: sys/xen/xenstore/xenstore_dev.c: sys/xen/xenstore/xenstorevar.h: Pull common Xen OS support functions/settings into xen/xen-os.h. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: Remove constants, macros, and functions unused in FreeBSD's Xen support. sys/xen/xen-os.h: sys/i386/xen/xen_machdep.c: sys/x86/xen/hvm.c: Introduce new functions xen_domain(), xen_pv_domain(), and xen_hvm_domain(). These are used in favor of #ifdefs so that FreeBSD can dynamically detect and adapt to the presence of a hypervisor. The goal is to have an HVM optimized GENERIC, but more is necessary before this is possible. sys/amd64/amd64/machdep.c: sys/dev/xen/xenpci/xenpcivar.h: sys/dev/xen/xenpci/xenpci.c: sys/x86/xen/hvm.c: sys/sys/kernel.h: Refactor magic ioport, Hypercall table and Hypervisor shared information page setup, and move it to a dedicated HVM support module. HVM mode initialization is now triggered during the SI_SUB_HYPERVISOR phase of system startup. This currently occurs just after the kernel VM is fully setup which is just enough infrastructure to allow the hypercall table and shared info page to be properly mapped. sys/xen/hvm.h: sys/x86/xen/hvm.c: Add definitions and a method for configuring Hypervisor event delievery via a direct vector callback. sys/amd64/include/xen/xen-os.h: sys/x86/xen/hvm.c: sys/conf/files: sys/conf/files.amd64: sys/conf/files.i386: Adjust kernel build to reflect the refactoring of early Xen startup code and Xen interrupt services. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: sys/dev/xen/control/control.c: sys/dev/xen/evtchn/evtchn_dev.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/xen/xenstore/xenstore.c: sys/xen/evtchn/evtchn_dev.c: sys/dev/xen/console/console.c: sys/dev/xen/console/xencons_ring.c Adjust drivers to use new xen_intr_*() API. sys/dev/xen/blkback/blkback.c: Since blkback defers all event handling to a taskqueue, convert this task queue to a "fast" taskqueue, and schedule it via an interrupt filter. This avoids an unnecessary ithread context switch. sys/xen/xenstore/xenstore.c: The xenstore driver is MPSAFE. Indicate as much when registering its interrupt handler. sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbusvar.h: Remove unused event channel APIs. sys/xen/evtchn.h: Remove all kernel Xen interrupt service API definitions from this file. It is now only used for structure and ioctl definitions related to the event channel userland device driver. Update the definitions in this file to match those from NetBSD. Implementing this interface will be necessary for Dom0 support. sys/xen/evtchn/evtchnvar.h: Add a header file for implemenation internal APIs related to managing event channels event delivery. This is used to allow, for example, the event channel userland device driver to access low-level routines that typical kernel consumers of event channel services should never access. sys/xen/interface/event_channel.h: sys/xen/xen_intr.h: Standardize on the evtchn_port_t type for referring to an event channel port id. In order to prevent low-level event channel APIs from leaking to kernel consumers who should not have access to this data, the type is defined twice: Once in the Xen provided event_channel.h, and again in xen/xen_intr.h. The double declaration is protected by __XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared twice within a given compilation unit. sys/xen/xen_intr.h: sys/xen/evtchn/evtchn.c: sys/x86/xen/xen_intr.c: sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/xenpci/xenpcivar.h: New implementation of Xen interrupt services. This is similar in many respects to the i386 PV implementation with the exception that events for bound to event channel ports (i.e. not IPI, virtual IRQ, or physical IRQ) are further optimized to avoid mask/unmask operations that aren't necessary for these edge triggered events. Stubs exist for supporting physical IRQ binding, but will need additional work before this implementation can be fully shared between PV and HVM. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: sys/i386/xen/mp_machdep.c sys/x86/xen/hvm.c: Add support for placing vcpu_info into an arbritary memory page instead of using HYPERVISOR_shared_info->vcpu_info. This allows the creation of domains with more than 32 vcpus. sys/i386/i386/machdep.c: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/exception.s: Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
/**
* Associate an already allocated local event channel port an interrupt
* handler.
*
* \param dev The device making this bind request.
* \param local_port The event channel to bind.
* \param filter An interrupt filter handler. Specify NULL
* to always dispatch to the ithread handler.
* \param handler An interrupt ithread handler. Optional (can
* specify NULL) if all necessary event actions
* are performed by filter.
* \param arg Argument to present to both filter and handler.
* \param irqflags Interrupt handler flags. See sys/bus.h.
* \param handlep Pointer to an opaque handle used to manage this
* registration.
*
* \returns 0 on success, otherwise an errno.
*/
Implement vector callback for PVHVM and unify event channel implementations Re-structure Xen HVM support so that: - Xen is detected and hypercalls can be performed very early in system startup. - Xen interrupt services are implemented using FreeBSD's native interrupt delivery infrastructure. - the Xen interrupt service implementation is shared between PV and HVM guests. - Xen interrupt handlers can optionally use a filter handler in order to avoid the overhead of dispatch to an interrupt thread. - interrupt load can be distributed among all available CPUs. - the overhead of accessing the emulated local and I/O apics on HVM is removed for event channel port events. - a similar optimization can eventually, and fairly easily, be used to optimize MSI. Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure, and misc Xen cleanups: Sponsored by: Spectra Logic Corporation Unification of PV & HVM interrupt infrastructure, bug fixes, and misc Xen cleanups: Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D sys/x86/x86/local_apic.c: sys/amd64/include/apicvar.h: sys/i386/include/apicvar.h: sys/amd64/amd64/apic_vector.S: sys/i386/i386/apic_vector.s: sys/amd64/amd64/machdep.c: sys/i386/i386/machdep.c: sys/i386/xen/exception.s: sys/x86/include/segments.h: Reserve IDT vector 0x93 for the Xen event channel upcall interrupt handler. On Hypervisors that support the direct vector callback feature, we can request that this vector be called directly by an injected HVM interrupt event, instead of a simulated PCI interrupt on the Xen platform PCI device. This avoids all of the overhead of dealing with the emulated I/O APIC and local APIC. It also means that the Hypervisor can inject these events on any CPU, allowing upcalls for different ports to be handled in parallel. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: Map Xen per-vcpu area during AP startup. sys/amd64/include/intr_machdep.h: sys/i386/include/intr_machdep.h: Increase the FreeBSD IRQ vector table to include space for event channel interrupt sources. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: Remove Xen HVM per-cpu variable data. These fields are now allocated via the dynamic per-cpu scheme. See xen_intr.c for details. sys/amd64/include/xen/hypercall.h: sys/dev/xen/blkback/blkback.c: sys/i386/include/xen/xenvar.h: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/xen/gnttab.c: Prefer FreeBSD primatives to Linux ones in Xen support code. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: sys/dev/xen/balloon/balloon.c: sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/console/xencons_ring.c: sys/dev/xen/control/control.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/xenpci/xenpci.c: sys/i386/i386/machdep.c: sys/i386/include/pmap.h: sys/i386/include/xen/xenfunc.h: sys/i386/isa/npx.c: sys/i386/xen/clock.c: sys/i386/xen/mp_machdep.c: sys/i386/xen/mptable.c: sys/i386/xen/xen_clock_util.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/xen_rtc.c: sys/xen/evtchn/evtchn_dev.c: sys/xen/features.c: sys/xen/gnttab.c: sys/xen/gnttab.h: sys/xen/hvm.h: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_if.m: sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusvar.h: sys/xen/xenstore/xenstore.c: sys/xen/xenstore/xenstore_dev.c: sys/xen/xenstore/xenstorevar.h: Pull common Xen OS support functions/settings into xen/xen-os.h. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: Remove constants, macros, and functions unused in FreeBSD's Xen support. sys/xen/xen-os.h: sys/i386/xen/xen_machdep.c: sys/x86/xen/hvm.c: Introduce new functions xen_domain(), xen_pv_domain(), and xen_hvm_domain(). These are used in favor of #ifdefs so that FreeBSD can dynamically detect and adapt to the presence of a hypervisor. The goal is to have an HVM optimized GENERIC, but more is necessary before this is possible. sys/amd64/amd64/machdep.c: sys/dev/xen/xenpci/xenpcivar.h: sys/dev/xen/xenpci/xenpci.c: sys/x86/xen/hvm.c: sys/sys/kernel.h: Refactor magic ioport, Hypercall table and Hypervisor shared information page setup, and move it to a dedicated HVM support module. HVM mode initialization is now triggered during the SI_SUB_HYPERVISOR phase of system startup. This currently occurs just after the kernel VM is fully setup which is just enough infrastructure to allow the hypercall table and shared info page to be properly mapped. sys/xen/hvm.h: sys/x86/xen/hvm.c: Add definitions and a method for configuring Hypervisor event delievery via a direct vector callback. sys/amd64/include/xen/xen-os.h: sys/x86/xen/hvm.c: sys/conf/files: sys/conf/files.amd64: sys/conf/files.i386: Adjust kernel build to reflect the refactoring of early Xen startup code and Xen interrupt services. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: sys/dev/xen/control/control.c: sys/dev/xen/evtchn/evtchn_dev.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/xen/xenstore/xenstore.c: sys/xen/evtchn/evtchn_dev.c: sys/dev/xen/console/console.c: sys/dev/xen/console/xencons_ring.c Adjust drivers to use new xen_intr_*() API. sys/dev/xen/blkback/blkback.c: Since blkback defers all event handling to a taskqueue, convert this task queue to a "fast" taskqueue, and schedule it via an interrupt filter. This avoids an unnecessary ithread context switch. sys/xen/xenstore/xenstore.c: The xenstore driver is MPSAFE. Indicate as much when registering its interrupt handler. sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbusvar.h: Remove unused event channel APIs. sys/xen/evtchn.h: Remove all kernel Xen interrupt service API definitions from this file. It is now only used for structure and ioctl definitions related to the event channel userland device driver. Update the definitions in this file to match those from NetBSD. Implementing this interface will be necessary for Dom0 support. sys/xen/evtchn/evtchnvar.h: Add a header file for implemenation internal APIs related to managing event channels event delivery. This is used to allow, for example, the event channel userland device driver to access low-level routines that typical kernel consumers of event channel services should never access. sys/xen/interface/event_channel.h: sys/xen/xen_intr.h: Standardize on the evtchn_port_t type for referring to an event channel port id. In order to prevent low-level event channel APIs from leaking to kernel consumers who should not have access to this data, the type is defined twice: Once in the Xen provided event_channel.h, and again in xen/xen_intr.h. The double declaration is protected by __XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared twice within a given compilation unit. sys/xen/xen_intr.h: sys/xen/evtchn/evtchn.c: sys/x86/xen/xen_intr.c: sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/xenpci/xenpcivar.h: New implementation of Xen interrupt services. This is similar in many respects to the i386 PV implementation with the exception that events for bound to event channel ports (i.e. not IPI, virtual IRQ, or physical IRQ) are further optimized to avoid mask/unmask operations that aren't necessary for these edge triggered events. Stubs exist for supporting physical IRQ binding, but will need additional work before this implementation can be fully shared between PV and HVM. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: sys/i386/xen/mp_machdep.c sys/x86/xen/hvm.c: Add support for placing vcpu_info into an arbritary memory page instead of using HYPERVISOR_shared_info->vcpu_info. This allows the creation of domains with more than 32 vcpus. sys/i386/i386/machdep.c: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/exception.s: Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
int xen_intr_bind_local_port(device_t dev, evtchn_port_t local_port,
driver_filter_t filter, driver_intr_t handler, void *arg,
enum intr_type irqflags, xen_intr_handle_t *handlep);
/**
* Allocate a local event channel port, accessible by the specified
* remote/foreign domain and, if successful, associate the port with
* the specified interrupt handler.
*
* \param dev The device making this bind request.
* \param remote_domain Remote domain grant permission to signal the
* newly allocated local port.
* \param filter An interrupt filter handler. Specify NULL
* to always dispatch to the ithread handler.
* \param handler An interrupt ithread handler. Optional (can
* specify NULL) if all necessary event actions
* are performed by filter.
* \param arg Argument to present to both filter and handler.
* \param irqflags Interrupt handler flags. See sys/bus.h.
* \param handlep Pointer to an opaque handle used to manage this
* registration.
*
* \returns 0 on success, otherwise an errno.
*/
Implement vector callback for PVHVM and unify event channel implementations Re-structure Xen HVM support so that: - Xen is detected and hypercalls can be performed very early in system startup. - Xen interrupt services are implemented using FreeBSD's native interrupt delivery infrastructure. - the Xen interrupt service implementation is shared between PV and HVM guests. - Xen interrupt handlers can optionally use a filter handler in order to avoid the overhead of dispatch to an interrupt thread. - interrupt load can be distributed among all available CPUs. - the overhead of accessing the emulated local and I/O apics on HVM is removed for event channel port events. - a similar optimization can eventually, and fairly easily, be used to optimize MSI. Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure, and misc Xen cleanups: Sponsored by: Spectra Logic Corporation Unification of PV & HVM interrupt infrastructure, bug fixes, and misc Xen cleanups: Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D sys/x86/x86/local_apic.c: sys/amd64/include/apicvar.h: sys/i386/include/apicvar.h: sys/amd64/amd64/apic_vector.S: sys/i386/i386/apic_vector.s: sys/amd64/amd64/machdep.c: sys/i386/i386/machdep.c: sys/i386/xen/exception.s: sys/x86/include/segments.h: Reserve IDT vector 0x93 for the Xen event channel upcall interrupt handler. On Hypervisors that support the direct vector callback feature, we can request that this vector be called directly by an injected HVM interrupt event, instead of a simulated PCI interrupt on the Xen platform PCI device. This avoids all of the overhead of dealing with the emulated I/O APIC and local APIC. It also means that the Hypervisor can inject these events on any CPU, allowing upcalls for different ports to be handled in parallel. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: Map Xen per-vcpu area during AP startup. sys/amd64/include/intr_machdep.h: sys/i386/include/intr_machdep.h: Increase the FreeBSD IRQ vector table to include space for event channel interrupt sources. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: Remove Xen HVM per-cpu variable data. These fields are now allocated via the dynamic per-cpu scheme. See xen_intr.c for details. sys/amd64/include/xen/hypercall.h: sys/dev/xen/blkback/blkback.c: sys/i386/include/xen/xenvar.h: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/xen/gnttab.c: Prefer FreeBSD primatives to Linux ones in Xen support code. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: sys/dev/xen/balloon/balloon.c: sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/console/xencons_ring.c: sys/dev/xen/control/control.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/xenpci/xenpci.c: sys/i386/i386/machdep.c: sys/i386/include/pmap.h: sys/i386/include/xen/xenfunc.h: sys/i386/isa/npx.c: sys/i386/xen/clock.c: sys/i386/xen/mp_machdep.c: sys/i386/xen/mptable.c: sys/i386/xen/xen_clock_util.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/xen_rtc.c: sys/xen/evtchn/evtchn_dev.c: sys/xen/features.c: sys/xen/gnttab.c: sys/xen/gnttab.h: sys/xen/hvm.h: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_if.m: sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusvar.h: sys/xen/xenstore/xenstore.c: sys/xen/xenstore/xenstore_dev.c: sys/xen/xenstore/xenstorevar.h: Pull common Xen OS support functions/settings into xen/xen-os.h. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: Remove constants, macros, and functions unused in FreeBSD's Xen support. sys/xen/xen-os.h: sys/i386/xen/xen_machdep.c: sys/x86/xen/hvm.c: Introduce new functions xen_domain(), xen_pv_domain(), and xen_hvm_domain(). These are used in favor of #ifdefs so that FreeBSD can dynamically detect and adapt to the presence of a hypervisor. The goal is to have an HVM optimized GENERIC, but more is necessary before this is possible. sys/amd64/amd64/machdep.c: sys/dev/xen/xenpci/xenpcivar.h: sys/dev/xen/xenpci/xenpci.c: sys/x86/xen/hvm.c: sys/sys/kernel.h: Refactor magic ioport, Hypercall table and Hypervisor shared information page setup, and move it to a dedicated HVM support module. HVM mode initialization is now triggered during the SI_SUB_HYPERVISOR phase of system startup. This currently occurs just after the kernel VM is fully setup which is just enough infrastructure to allow the hypercall table and shared info page to be properly mapped. sys/xen/hvm.h: sys/x86/xen/hvm.c: Add definitions and a method for configuring Hypervisor event delievery via a direct vector callback. sys/amd64/include/xen/xen-os.h: sys/x86/xen/hvm.c: sys/conf/files: sys/conf/files.amd64: sys/conf/files.i386: Adjust kernel build to reflect the refactoring of early Xen startup code and Xen interrupt services. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: sys/dev/xen/control/control.c: sys/dev/xen/evtchn/evtchn_dev.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/xen/xenstore/xenstore.c: sys/xen/evtchn/evtchn_dev.c: sys/dev/xen/console/console.c: sys/dev/xen/console/xencons_ring.c Adjust drivers to use new xen_intr_*() API. sys/dev/xen/blkback/blkback.c: Since blkback defers all event handling to a taskqueue, convert this task queue to a "fast" taskqueue, and schedule it via an interrupt filter. This avoids an unnecessary ithread context switch. sys/xen/xenstore/xenstore.c: The xenstore driver is MPSAFE. Indicate as much when registering its interrupt handler. sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbusvar.h: Remove unused event channel APIs. sys/xen/evtchn.h: Remove all kernel Xen interrupt service API definitions from this file. It is now only used for structure and ioctl definitions related to the event channel userland device driver. Update the definitions in this file to match those from NetBSD. Implementing this interface will be necessary for Dom0 support. sys/xen/evtchn/evtchnvar.h: Add a header file for implemenation internal APIs related to managing event channels event delivery. This is used to allow, for example, the event channel userland device driver to access low-level routines that typical kernel consumers of event channel services should never access. sys/xen/interface/event_channel.h: sys/xen/xen_intr.h: Standardize on the evtchn_port_t type for referring to an event channel port id. In order to prevent low-level event channel APIs from leaking to kernel consumers who should not have access to this data, the type is defined twice: Once in the Xen provided event_channel.h, and again in xen/xen_intr.h. The double declaration is protected by __XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared twice within a given compilation unit. sys/xen/xen_intr.h: sys/xen/evtchn/evtchn.c: sys/x86/xen/xen_intr.c: sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/xenpci/xenpcivar.h: New implementation of Xen interrupt services. This is similar in many respects to the i386 PV implementation with the exception that events for bound to event channel ports (i.e. not IPI, virtual IRQ, or physical IRQ) are further optimized to avoid mask/unmask operations that aren't necessary for these edge triggered events. Stubs exist for supporting physical IRQ binding, but will need additional work before this implementation can be fully shared between PV and HVM. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: sys/i386/xen/mp_machdep.c sys/x86/xen/hvm.c: Add support for placing vcpu_info into an arbritary memory page instead of using HYPERVISOR_shared_info->vcpu_info. This allows the creation of domains with more than 32 vcpus. sys/i386/i386/machdep.c: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/exception.s: Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
int xen_intr_alloc_and_bind_local_port(device_t dev,
u_int remote_domain, driver_filter_t filter, driver_intr_t handler,
void *arg, enum intr_type irqflags, xen_intr_handle_t *handlep);
/**
* Associate the specified interrupt handler with the remote event
* channel port specified by remote_domain and remote_port.
*
* \param dev The device making this bind request.
* \param remote_domain The domain peer for this event channel connection.
* \param remote_port Remote domain's local port number for this event
* channel port.
* \param filter An interrupt filter handler. Specify NULL
* to always dispatch to the ithread handler.
* \param handler An interrupt ithread handler. Optional (can
* specify NULL) if all necessary event actions
* are performed by filter.
* \param arg Argument to present to both filter and handler.
* \param irqflags Interrupt handler flags. See sys/bus.h.
* \param handlep Pointer to an opaque handle used to manage this
* registration.
*
* \returns 0 on success, otherwise an errno.
*/
Implement vector callback for PVHVM and unify event channel implementations Re-structure Xen HVM support so that: - Xen is detected and hypercalls can be performed very early in system startup. - Xen interrupt services are implemented using FreeBSD's native interrupt delivery infrastructure. - the Xen interrupt service implementation is shared between PV and HVM guests. - Xen interrupt handlers can optionally use a filter handler in order to avoid the overhead of dispatch to an interrupt thread. - interrupt load can be distributed among all available CPUs. - the overhead of accessing the emulated local and I/O apics on HVM is removed for event channel port events. - a similar optimization can eventually, and fairly easily, be used to optimize MSI. Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure, and misc Xen cleanups: Sponsored by: Spectra Logic Corporation Unification of PV & HVM interrupt infrastructure, bug fixes, and misc Xen cleanups: Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D sys/x86/x86/local_apic.c: sys/amd64/include/apicvar.h: sys/i386/include/apicvar.h: sys/amd64/amd64/apic_vector.S: sys/i386/i386/apic_vector.s: sys/amd64/amd64/machdep.c: sys/i386/i386/machdep.c: sys/i386/xen/exception.s: sys/x86/include/segments.h: Reserve IDT vector 0x93 for the Xen event channel upcall interrupt handler. On Hypervisors that support the direct vector callback feature, we can request that this vector be called directly by an injected HVM interrupt event, instead of a simulated PCI interrupt on the Xen platform PCI device. This avoids all of the overhead of dealing with the emulated I/O APIC and local APIC. It also means that the Hypervisor can inject these events on any CPU, allowing upcalls for different ports to be handled in parallel. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: Map Xen per-vcpu area during AP startup. sys/amd64/include/intr_machdep.h: sys/i386/include/intr_machdep.h: Increase the FreeBSD IRQ vector table to include space for event channel interrupt sources. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: Remove Xen HVM per-cpu variable data. These fields are now allocated via the dynamic per-cpu scheme. See xen_intr.c for details. sys/amd64/include/xen/hypercall.h: sys/dev/xen/blkback/blkback.c: sys/i386/include/xen/xenvar.h: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/xen/gnttab.c: Prefer FreeBSD primatives to Linux ones in Xen support code. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: sys/dev/xen/balloon/balloon.c: sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/console/xencons_ring.c: sys/dev/xen/control/control.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/xenpci/xenpci.c: sys/i386/i386/machdep.c: sys/i386/include/pmap.h: sys/i386/include/xen/xenfunc.h: sys/i386/isa/npx.c: sys/i386/xen/clock.c: sys/i386/xen/mp_machdep.c: sys/i386/xen/mptable.c: sys/i386/xen/xen_clock_util.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/xen_rtc.c: sys/xen/evtchn/evtchn_dev.c: sys/xen/features.c: sys/xen/gnttab.c: sys/xen/gnttab.h: sys/xen/hvm.h: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_if.m: sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusvar.h: sys/xen/xenstore/xenstore.c: sys/xen/xenstore/xenstore_dev.c: sys/xen/xenstore/xenstorevar.h: Pull common Xen OS support functions/settings into xen/xen-os.h. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: Remove constants, macros, and functions unused in FreeBSD's Xen support. sys/xen/xen-os.h: sys/i386/xen/xen_machdep.c: sys/x86/xen/hvm.c: Introduce new functions xen_domain(), xen_pv_domain(), and xen_hvm_domain(). These are used in favor of #ifdefs so that FreeBSD can dynamically detect and adapt to the presence of a hypervisor. The goal is to have an HVM optimized GENERIC, but more is necessary before this is possible. sys/amd64/amd64/machdep.c: sys/dev/xen/xenpci/xenpcivar.h: sys/dev/xen/xenpci/xenpci.c: sys/x86/xen/hvm.c: sys/sys/kernel.h: Refactor magic ioport, Hypercall table and Hypervisor shared information page setup, and move it to a dedicated HVM support module. HVM mode initialization is now triggered during the SI_SUB_HYPERVISOR phase of system startup. This currently occurs just after the kernel VM is fully setup which is just enough infrastructure to allow the hypercall table and shared info page to be properly mapped. sys/xen/hvm.h: sys/x86/xen/hvm.c: Add definitions and a method for configuring Hypervisor event delievery via a direct vector callback. sys/amd64/include/xen/xen-os.h: sys/x86/xen/hvm.c: sys/conf/files: sys/conf/files.amd64: sys/conf/files.i386: Adjust kernel build to reflect the refactoring of early Xen startup code and Xen interrupt services. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: sys/dev/xen/control/control.c: sys/dev/xen/evtchn/evtchn_dev.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/xen/xenstore/xenstore.c: sys/xen/evtchn/evtchn_dev.c: sys/dev/xen/console/console.c: sys/dev/xen/console/xencons_ring.c Adjust drivers to use new xen_intr_*() API. sys/dev/xen/blkback/blkback.c: Since blkback defers all event handling to a taskqueue, convert this task queue to a "fast" taskqueue, and schedule it via an interrupt filter. This avoids an unnecessary ithread context switch. sys/xen/xenstore/xenstore.c: The xenstore driver is MPSAFE. Indicate as much when registering its interrupt handler. sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbusvar.h: Remove unused event channel APIs. sys/xen/evtchn.h: Remove all kernel Xen interrupt service API definitions from this file. It is now only used for structure and ioctl definitions related to the event channel userland device driver. Update the definitions in this file to match those from NetBSD. Implementing this interface will be necessary for Dom0 support. sys/xen/evtchn/evtchnvar.h: Add a header file for implemenation internal APIs related to managing event channels event delivery. This is used to allow, for example, the event channel userland device driver to access low-level routines that typical kernel consumers of event channel services should never access. sys/xen/interface/event_channel.h: sys/xen/xen_intr.h: Standardize on the evtchn_port_t type for referring to an event channel port id. In order to prevent low-level event channel APIs from leaking to kernel consumers who should not have access to this data, the type is defined twice: Once in the Xen provided event_channel.h, and again in xen/xen_intr.h. The double declaration is protected by __XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared twice within a given compilation unit. sys/xen/xen_intr.h: sys/xen/evtchn/evtchn.c: sys/x86/xen/xen_intr.c: sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/xenpci/xenpcivar.h: New implementation of Xen interrupt services. This is similar in many respects to the i386 PV implementation with the exception that events for bound to event channel ports (i.e. not IPI, virtual IRQ, or physical IRQ) are further optimized to avoid mask/unmask operations that aren't necessary for these edge triggered events. Stubs exist for supporting physical IRQ binding, but will need additional work before this implementation can be fully shared between PV and HVM. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: sys/i386/xen/mp_machdep.c sys/x86/xen/hvm.c: Add support for placing vcpu_info into an arbritary memory page instead of using HYPERVISOR_shared_info->vcpu_info. This allows the creation of domains with more than 32 vcpus. sys/i386/i386/machdep.c: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/exception.s: Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
int xen_intr_bind_remote_port(device_t dev, u_int remote_domain,
evtchn_port_t remote_port, driver_filter_t filter,
driver_intr_t handler, void *arg, enum intr_type irqflags,
xen_intr_handle_t *handlep);
/**
* Associate the specified interrupt handler with the specified Xen
* virtual interrupt source.
*
* \param dev The device making this bind request.
* \param virq The Xen virtual IRQ number for the Xen interrupt
* source being hooked.
* \param cpu The cpu on which interrupt events should be delivered.
* \param filter An interrupt filter handler. Specify NULL
* to always dispatch to the ithread handler.
* \param handler An interrupt ithread handler. Optional (can
* specify NULL) if all necessary event actions
* are performed by filter.
* \param arg Argument to present to both filter and handler.
* \param irqflags Interrupt handler flags. See sys/bus.h.
* \param handlep Pointer to an opaque handle used to manage this
* registration.
*
* \returns 0 on success, otherwise an errno.
*/
Implement vector callback for PVHVM and unify event channel implementations Re-structure Xen HVM support so that: - Xen is detected and hypercalls can be performed very early in system startup. - Xen interrupt services are implemented using FreeBSD's native interrupt delivery infrastructure. - the Xen interrupt service implementation is shared between PV and HVM guests. - Xen interrupt handlers can optionally use a filter handler in order to avoid the overhead of dispatch to an interrupt thread. - interrupt load can be distributed among all available CPUs. - the overhead of accessing the emulated local and I/O apics on HVM is removed for event channel port events. - a similar optimization can eventually, and fairly easily, be used to optimize MSI. Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure, and misc Xen cleanups: Sponsored by: Spectra Logic Corporation Unification of PV & HVM interrupt infrastructure, bug fixes, and misc Xen cleanups: Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D sys/x86/x86/local_apic.c: sys/amd64/include/apicvar.h: sys/i386/include/apicvar.h: sys/amd64/amd64/apic_vector.S: sys/i386/i386/apic_vector.s: sys/amd64/amd64/machdep.c: sys/i386/i386/machdep.c: sys/i386/xen/exception.s: sys/x86/include/segments.h: Reserve IDT vector 0x93 for the Xen event channel upcall interrupt handler. On Hypervisors that support the direct vector callback feature, we can request that this vector be called directly by an injected HVM interrupt event, instead of a simulated PCI interrupt on the Xen platform PCI device. This avoids all of the overhead of dealing with the emulated I/O APIC and local APIC. It also means that the Hypervisor can inject these events on any CPU, allowing upcalls for different ports to be handled in parallel. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: Map Xen per-vcpu area during AP startup. sys/amd64/include/intr_machdep.h: sys/i386/include/intr_machdep.h: Increase the FreeBSD IRQ vector table to include space for event channel interrupt sources. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: Remove Xen HVM per-cpu variable data. These fields are now allocated via the dynamic per-cpu scheme. See xen_intr.c for details. sys/amd64/include/xen/hypercall.h: sys/dev/xen/blkback/blkback.c: sys/i386/include/xen/xenvar.h: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/xen/gnttab.c: Prefer FreeBSD primatives to Linux ones in Xen support code. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: sys/dev/xen/balloon/balloon.c: sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/console/xencons_ring.c: sys/dev/xen/control/control.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/xenpci/xenpci.c: sys/i386/i386/machdep.c: sys/i386/include/pmap.h: sys/i386/include/xen/xenfunc.h: sys/i386/isa/npx.c: sys/i386/xen/clock.c: sys/i386/xen/mp_machdep.c: sys/i386/xen/mptable.c: sys/i386/xen/xen_clock_util.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/xen_rtc.c: sys/xen/evtchn/evtchn_dev.c: sys/xen/features.c: sys/xen/gnttab.c: sys/xen/gnttab.h: sys/xen/hvm.h: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_if.m: sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusvar.h: sys/xen/xenstore/xenstore.c: sys/xen/xenstore/xenstore_dev.c: sys/xen/xenstore/xenstorevar.h: Pull common Xen OS support functions/settings into xen/xen-os.h. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: Remove constants, macros, and functions unused in FreeBSD's Xen support. sys/xen/xen-os.h: sys/i386/xen/xen_machdep.c: sys/x86/xen/hvm.c: Introduce new functions xen_domain(), xen_pv_domain(), and xen_hvm_domain(). These are used in favor of #ifdefs so that FreeBSD can dynamically detect and adapt to the presence of a hypervisor. The goal is to have an HVM optimized GENERIC, but more is necessary before this is possible. sys/amd64/amd64/machdep.c: sys/dev/xen/xenpci/xenpcivar.h: sys/dev/xen/xenpci/xenpci.c: sys/x86/xen/hvm.c: sys/sys/kernel.h: Refactor magic ioport, Hypercall table and Hypervisor shared information page setup, and move it to a dedicated HVM support module. HVM mode initialization is now triggered during the SI_SUB_HYPERVISOR phase of system startup. This currently occurs just after the kernel VM is fully setup which is just enough infrastructure to allow the hypercall table and shared info page to be properly mapped. sys/xen/hvm.h: sys/x86/xen/hvm.c: Add definitions and a method for configuring Hypervisor event delievery via a direct vector callback. sys/amd64/include/xen/xen-os.h: sys/x86/xen/hvm.c: sys/conf/files: sys/conf/files.amd64: sys/conf/files.i386: Adjust kernel build to reflect the refactoring of early Xen startup code and Xen interrupt services. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: sys/dev/xen/control/control.c: sys/dev/xen/evtchn/evtchn_dev.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/xen/xenstore/xenstore.c: sys/xen/evtchn/evtchn_dev.c: sys/dev/xen/console/console.c: sys/dev/xen/console/xencons_ring.c Adjust drivers to use new xen_intr_*() API. sys/dev/xen/blkback/blkback.c: Since blkback defers all event handling to a taskqueue, convert this task queue to a "fast" taskqueue, and schedule it via an interrupt filter. This avoids an unnecessary ithread context switch. sys/xen/xenstore/xenstore.c: The xenstore driver is MPSAFE. Indicate as much when registering its interrupt handler. sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbusvar.h: Remove unused event channel APIs. sys/xen/evtchn.h: Remove all kernel Xen interrupt service API definitions from this file. It is now only used for structure and ioctl definitions related to the event channel userland device driver. Update the definitions in this file to match those from NetBSD. Implementing this interface will be necessary for Dom0 support. sys/xen/evtchn/evtchnvar.h: Add a header file for implemenation internal APIs related to managing event channels event delivery. This is used to allow, for example, the event channel userland device driver to access low-level routines that typical kernel consumers of event channel services should never access. sys/xen/interface/event_channel.h: sys/xen/xen_intr.h: Standardize on the evtchn_port_t type for referring to an event channel port id. In order to prevent low-level event channel APIs from leaking to kernel consumers who should not have access to this data, the type is defined twice: Once in the Xen provided event_channel.h, and again in xen/xen_intr.h. The double declaration is protected by __XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared twice within a given compilation unit. sys/xen/xen_intr.h: sys/xen/evtchn/evtchn.c: sys/x86/xen/xen_intr.c: sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/xenpci/xenpcivar.h: New implementation of Xen interrupt services. This is similar in many respects to the i386 PV implementation with the exception that events for bound to event channel ports (i.e. not IPI, virtual IRQ, or physical IRQ) are further optimized to avoid mask/unmask operations that aren't necessary for these edge triggered events. Stubs exist for supporting physical IRQ binding, but will need additional work before this implementation can be fully shared between PV and HVM. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: sys/i386/xen/mp_machdep.c sys/x86/xen/hvm.c: Add support for placing vcpu_info into an arbritary memory page instead of using HYPERVISOR_shared_info->vcpu_info. This allows the creation of domains with more than 32 vcpus. sys/i386/i386/machdep.c: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/exception.s: Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
int xen_intr_bind_virq(device_t dev, u_int virq, u_int cpu,
driver_filter_t filter, driver_intr_t handler,
void *arg, enum intr_type irqflags, xen_intr_handle_t *handlep);
/**
Implement PV IPIs for PVHVM guests and further converge PV and HVM IPI implmementations. Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D Submitted by: gibbs (misc cleanup, table driven config) Reviewed by: gibbs MFC after: 2 weeks sys/amd64/include/cpufunc.h: sys/amd64/amd64/pmap.c: Move invltlb_globpcid() into cpufunc.h so that it can be used by the Xen HVM version of tlb shootdown IPI handlers. sys/x86/xen/xen_intr.c: sys/xen/xen_intr.h: Rename xen_intr_bind_ipi() to xen_intr_alloc_and_bind_ipi(), and remove the ipi vector parameter. This api allocates an event channel port that can be used for ipi services, but knows nothing of the actual ipi for which that port will be used. Removing the unused argument and cleaning up the comments surrounding its declaration helps clarify its actual role. sys/amd64/amd64/mp_machdep.c: sys/amd64/include/cpu.h: sys/i386/i386/mp_machdep.c: sys/i386/include/cpu.h: Implement a generic framework for amd64 and i386 that allows the implementation of certain CPU management functions to be selected at runtime. Currently this is only used for the ipi send function, which we optimize for Xen when running on a Xen hypervisor, but can easily be expanded to support more operations. sys/x86/xen/hvm.c: Implement Xen PV IPI handlers and operations, replacing native send IPI. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: sys/i386/include/smp.h: Remove NR_VIRQS and NR_IPIS from FreeBSD headers. NR_VIRQS is defined already for us in the xen interface files. NR_IPIS is only needed in one file per Xen platform and is easily inferred by the IPI vector table that is defined in those files. sys/i386/xen/mp_machdep.c: Restructure to more closely match the HVM implementation by performing table driven IPI setup.
2013-09-06 22:17:02 +00:00
* Allocate a local event channel port for servicing interprocessor
* interupts and, if successful, associate the port with the specified
* interrupt handler.
Implement vector callback for PVHVM and unify event channel implementations Re-structure Xen HVM support so that: - Xen is detected and hypercalls can be performed very early in system startup. - Xen interrupt services are implemented using FreeBSD's native interrupt delivery infrastructure. - the Xen interrupt service implementation is shared between PV and HVM guests. - Xen interrupt handlers can optionally use a filter handler in order to avoid the overhead of dispatch to an interrupt thread. - interrupt load can be distributed among all available CPUs. - the overhead of accessing the emulated local and I/O apics on HVM is removed for event channel port events. - a similar optimization can eventually, and fairly easily, be used to optimize MSI. Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure, and misc Xen cleanups: Sponsored by: Spectra Logic Corporation Unification of PV & HVM interrupt infrastructure, bug fixes, and misc Xen cleanups: Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D sys/x86/x86/local_apic.c: sys/amd64/include/apicvar.h: sys/i386/include/apicvar.h: sys/amd64/amd64/apic_vector.S: sys/i386/i386/apic_vector.s: sys/amd64/amd64/machdep.c: sys/i386/i386/machdep.c: sys/i386/xen/exception.s: sys/x86/include/segments.h: Reserve IDT vector 0x93 for the Xen event channel upcall interrupt handler. On Hypervisors that support the direct vector callback feature, we can request that this vector be called directly by an injected HVM interrupt event, instead of a simulated PCI interrupt on the Xen platform PCI device. This avoids all of the overhead of dealing with the emulated I/O APIC and local APIC. It also means that the Hypervisor can inject these events on any CPU, allowing upcalls for different ports to be handled in parallel. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: Map Xen per-vcpu area during AP startup. sys/amd64/include/intr_machdep.h: sys/i386/include/intr_machdep.h: Increase the FreeBSD IRQ vector table to include space for event channel interrupt sources. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: Remove Xen HVM per-cpu variable data. These fields are now allocated via the dynamic per-cpu scheme. See xen_intr.c for details. sys/amd64/include/xen/hypercall.h: sys/dev/xen/blkback/blkback.c: sys/i386/include/xen/xenvar.h: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/xen/gnttab.c: Prefer FreeBSD primatives to Linux ones in Xen support code. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: sys/dev/xen/balloon/balloon.c: sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/console/xencons_ring.c: sys/dev/xen/control/control.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/xenpci/xenpci.c: sys/i386/i386/machdep.c: sys/i386/include/pmap.h: sys/i386/include/xen/xenfunc.h: sys/i386/isa/npx.c: sys/i386/xen/clock.c: sys/i386/xen/mp_machdep.c: sys/i386/xen/mptable.c: sys/i386/xen/xen_clock_util.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/xen_rtc.c: sys/xen/evtchn/evtchn_dev.c: sys/xen/features.c: sys/xen/gnttab.c: sys/xen/gnttab.h: sys/xen/hvm.h: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_if.m: sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusvar.h: sys/xen/xenstore/xenstore.c: sys/xen/xenstore/xenstore_dev.c: sys/xen/xenstore/xenstorevar.h: Pull common Xen OS support functions/settings into xen/xen-os.h. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: Remove constants, macros, and functions unused in FreeBSD's Xen support. sys/xen/xen-os.h: sys/i386/xen/xen_machdep.c: sys/x86/xen/hvm.c: Introduce new functions xen_domain(), xen_pv_domain(), and xen_hvm_domain(). These are used in favor of #ifdefs so that FreeBSD can dynamically detect and adapt to the presence of a hypervisor. The goal is to have an HVM optimized GENERIC, but more is necessary before this is possible. sys/amd64/amd64/machdep.c: sys/dev/xen/xenpci/xenpcivar.h: sys/dev/xen/xenpci/xenpci.c: sys/x86/xen/hvm.c: sys/sys/kernel.h: Refactor magic ioport, Hypercall table and Hypervisor shared information page setup, and move it to a dedicated HVM support module. HVM mode initialization is now triggered during the SI_SUB_HYPERVISOR phase of system startup. This currently occurs just after the kernel VM is fully setup which is just enough infrastructure to allow the hypercall table and shared info page to be properly mapped. sys/xen/hvm.h: sys/x86/xen/hvm.c: Add definitions and a method for configuring Hypervisor event delievery via a direct vector callback. sys/amd64/include/xen/xen-os.h: sys/x86/xen/hvm.c: sys/conf/files: sys/conf/files.amd64: sys/conf/files.i386: Adjust kernel build to reflect the refactoring of early Xen startup code and Xen interrupt services. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: sys/dev/xen/control/control.c: sys/dev/xen/evtchn/evtchn_dev.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/xen/xenstore/xenstore.c: sys/xen/evtchn/evtchn_dev.c: sys/dev/xen/console/console.c: sys/dev/xen/console/xencons_ring.c Adjust drivers to use new xen_intr_*() API. sys/dev/xen/blkback/blkback.c: Since blkback defers all event handling to a taskqueue, convert this task queue to a "fast" taskqueue, and schedule it via an interrupt filter. This avoids an unnecessary ithread context switch. sys/xen/xenstore/xenstore.c: The xenstore driver is MPSAFE. Indicate as much when registering its interrupt handler. sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbusvar.h: Remove unused event channel APIs. sys/xen/evtchn.h: Remove all kernel Xen interrupt service API definitions from this file. It is now only used for structure and ioctl definitions related to the event channel userland device driver. Update the definitions in this file to match those from NetBSD. Implementing this interface will be necessary for Dom0 support. sys/xen/evtchn/evtchnvar.h: Add a header file for implemenation internal APIs related to managing event channels event delivery. This is used to allow, for example, the event channel userland device driver to access low-level routines that typical kernel consumers of event channel services should never access. sys/xen/interface/event_channel.h: sys/xen/xen_intr.h: Standardize on the evtchn_port_t type for referring to an event channel port id. In order to prevent low-level event channel APIs from leaking to kernel consumers who should not have access to this data, the type is defined twice: Once in the Xen provided event_channel.h, and again in xen/xen_intr.h. The double declaration is protected by __XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared twice within a given compilation unit. sys/xen/xen_intr.h: sys/xen/evtchn/evtchn.c: sys/x86/xen/xen_intr.c: sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/xenpci/xenpcivar.h: New implementation of Xen interrupt services. This is similar in many respects to the i386 PV implementation with the exception that events for bound to event channel ports (i.e. not IPI, virtual IRQ, or physical IRQ) are further optimized to avoid mask/unmask operations that aren't necessary for these edge triggered events. Stubs exist for supporting physical IRQ binding, but will need additional work before this implementation can be fully shared between PV and HVM. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: sys/i386/xen/mp_machdep.c sys/x86/xen/hvm.c: Add support for placing vcpu_info into an arbritary memory page instead of using HYPERVISOR_shared_info->vcpu_info. This allows the creation of domains with more than 32 vcpus. sys/i386/i386/machdep.c: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/exception.s: Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
*
* \param cpu The cpu receiving the IPI.
Implement PV IPIs for PVHVM guests and further converge PV and HVM IPI implmementations. Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D Submitted by: gibbs (misc cleanup, table driven config) Reviewed by: gibbs MFC after: 2 weeks sys/amd64/include/cpufunc.h: sys/amd64/amd64/pmap.c: Move invltlb_globpcid() into cpufunc.h so that it can be used by the Xen HVM version of tlb shootdown IPI handlers. sys/x86/xen/xen_intr.c: sys/xen/xen_intr.h: Rename xen_intr_bind_ipi() to xen_intr_alloc_and_bind_ipi(), and remove the ipi vector parameter. This api allocates an event channel port that can be used for ipi services, but knows nothing of the actual ipi for which that port will be used. Removing the unused argument and cleaning up the comments surrounding its declaration helps clarify its actual role. sys/amd64/amd64/mp_machdep.c: sys/amd64/include/cpu.h: sys/i386/i386/mp_machdep.c: sys/i386/include/cpu.h: Implement a generic framework for amd64 and i386 that allows the implementation of certain CPU management functions to be selected at runtime. Currently this is only used for the ipi send function, which we optimize for Xen when running on a Xen hypervisor, but can easily be expanded to support more operations. sys/x86/xen/hvm.c: Implement Xen PV IPI handlers and operations, replacing native send IPI. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: sys/i386/include/smp.h: Remove NR_VIRQS and NR_IPIS from FreeBSD headers. NR_VIRQS is defined already for us in the xen interface files. NR_IPIS is only needed in one file per Xen platform and is easily inferred by the IPI vector table that is defined in those files. sys/i386/xen/mp_machdep.c: Restructure to more closely match the HVM implementation by performing table driven IPI setup.
2013-09-06 22:17:02 +00:00
* \param filter The interrupt filter servicing this IPI.
Implement vector callback for PVHVM and unify event channel implementations Re-structure Xen HVM support so that: - Xen is detected and hypercalls can be performed very early in system startup. - Xen interrupt services are implemented using FreeBSD's native interrupt delivery infrastructure. - the Xen interrupt service implementation is shared between PV and HVM guests. - Xen interrupt handlers can optionally use a filter handler in order to avoid the overhead of dispatch to an interrupt thread. - interrupt load can be distributed among all available CPUs. - the overhead of accessing the emulated local and I/O apics on HVM is removed for event channel port events. - a similar optimization can eventually, and fairly easily, be used to optimize MSI. Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure, and misc Xen cleanups: Sponsored by: Spectra Logic Corporation Unification of PV & HVM interrupt infrastructure, bug fixes, and misc Xen cleanups: Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D sys/x86/x86/local_apic.c: sys/amd64/include/apicvar.h: sys/i386/include/apicvar.h: sys/amd64/amd64/apic_vector.S: sys/i386/i386/apic_vector.s: sys/amd64/amd64/machdep.c: sys/i386/i386/machdep.c: sys/i386/xen/exception.s: sys/x86/include/segments.h: Reserve IDT vector 0x93 for the Xen event channel upcall interrupt handler. On Hypervisors that support the direct vector callback feature, we can request that this vector be called directly by an injected HVM interrupt event, instead of a simulated PCI interrupt on the Xen platform PCI device. This avoids all of the overhead of dealing with the emulated I/O APIC and local APIC. It also means that the Hypervisor can inject these events on any CPU, allowing upcalls for different ports to be handled in parallel. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: Map Xen per-vcpu area during AP startup. sys/amd64/include/intr_machdep.h: sys/i386/include/intr_machdep.h: Increase the FreeBSD IRQ vector table to include space for event channel interrupt sources. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: Remove Xen HVM per-cpu variable data. These fields are now allocated via the dynamic per-cpu scheme. See xen_intr.c for details. sys/amd64/include/xen/hypercall.h: sys/dev/xen/blkback/blkback.c: sys/i386/include/xen/xenvar.h: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/xen/gnttab.c: Prefer FreeBSD primatives to Linux ones in Xen support code. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: sys/dev/xen/balloon/balloon.c: sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/console/xencons_ring.c: sys/dev/xen/control/control.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/xenpci/xenpci.c: sys/i386/i386/machdep.c: sys/i386/include/pmap.h: sys/i386/include/xen/xenfunc.h: sys/i386/isa/npx.c: sys/i386/xen/clock.c: sys/i386/xen/mp_machdep.c: sys/i386/xen/mptable.c: sys/i386/xen/xen_clock_util.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/xen_rtc.c: sys/xen/evtchn/evtchn_dev.c: sys/xen/features.c: sys/xen/gnttab.c: sys/xen/gnttab.h: sys/xen/hvm.h: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_if.m: sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusvar.h: sys/xen/xenstore/xenstore.c: sys/xen/xenstore/xenstore_dev.c: sys/xen/xenstore/xenstorevar.h: Pull common Xen OS support functions/settings into xen/xen-os.h. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: Remove constants, macros, and functions unused in FreeBSD's Xen support. sys/xen/xen-os.h: sys/i386/xen/xen_machdep.c: sys/x86/xen/hvm.c: Introduce new functions xen_domain(), xen_pv_domain(), and xen_hvm_domain(). These are used in favor of #ifdefs so that FreeBSD can dynamically detect and adapt to the presence of a hypervisor. The goal is to have an HVM optimized GENERIC, but more is necessary before this is possible. sys/amd64/amd64/machdep.c: sys/dev/xen/xenpci/xenpcivar.h: sys/dev/xen/xenpci/xenpci.c: sys/x86/xen/hvm.c: sys/sys/kernel.h: Refactor magic ioport, Hypercall table and Hypervisor shared information page setup, and move it to a dedicated HVM support module. HVM mode initialization is now triggered during the SI_SUB_HYPERVISOR phase of system startup. This currently occurs just after the kernel VM is fully setup which is just enough infrastructure to allow the hypercall table and shared info page to be properly mapped. sys/xen/hvm.h: sys/x86/xen/hvm.c: Add definitions and a method for configuring Hypervisor event delievery via a direct vector callback. sys/amd64/include/xen/xen-os.h: sys/x86/xen/hvm.c: sys/conf/files: sys/conf/files.amd64: sys/conf/files.i386: Adjust kernel build to reflect the refactoring of early Xen startup code and Xen interrupt services. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: sys/dev/xen/control/control.c: sys/dev/xen/evtchn/evtchn_dev.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/xen/xenstore/xenstore.c: sys/xen/evtchn/evtchn_dev.c: sys/dev/xen/console/console.c: sys/dev/xen/console/xencons_ring.c Adjust drivers to use new xen_intr_*() API. sys/dev/xen/blkback/blkback.c: Since blkback defers all event handling to a taskqueue, convert this task queue to a "fast" taskqueue, and schedule it via an interrupt filter. This avoids an unnecessary ithread context switch. sys/xen/xenstore/xenstore.c: The xenstore driver is MPSAFE. Indicate as much when registering its interrupt handler. sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbusvar.h: Remove unused event channel APIs. sys/xen/evtchn.h: Remove all kernel Xen interrupt service API definitions from this file. It is now only used for structure and ioctl definitions related to the event channel userland device driver. Update the definitions in this file to match those from NetBSD. Implementing this interface will be necessary for Dom0 support. sys/xen/evtchn/evtchnvar.h: Add a header file for implemenation internal APIs related to managing event channels event delivery. This is used to allow, for example, the event channel userland device driver to access low-level routines that typical kernel consumers of event channel services should never access. sys/xen/interface/event_channel.h: sys/xen/xen_intr.h: Standardize on the evtchn_port_t type for referring to an event channel port id. In order to prevent low-level event channel APIs from leaking to kernel consumers who should not have access to this data, the type is defined twice: Once in the Xen provided event_channel.h, and again in xen/xen_intr.h. The double declaration is protected by __XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared twice within a given compilation unit. sys/xen/xen_intr.h: sys/xen/evtchn/evtchn.c: sys/x86/xen/xen_intr.c: sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/xenpci/xenpcivar.h: New implementation of Xen interrupt services. This is similar in many respects to the i386 PV implementation with the exception that events for bound to event channel ports (i.e. not IPI, virtual IRQ, or physical IRQ) are further optimized to avoid mask/unmask operations that aren't necessary for these edge triggered events. Stubs exist for supporting physical IRQ binding, but will need additional work before this implementation can be fully shared between PV and HVM. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: sys/i386/xen/mp_machdep.c sys/x86/xen/hvm.c: Add support for placing vcpu_info into an arbritary memory page instead of using HYPERVISOR_shared_info->vcpu_info. This allows the creation of domains with more than 32 vcpus. sys/i386/i386/machdep.c: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/exception.s: Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
* \param irqflags Interrupt handler flags. See sys/bus.h.
* \param handlep Pointer to an opaque handle used to manage this
* registration.
*
* \returns 0 on success, otherwise an errno.
*/
int xen_intr_alloc_and_bind_ipi(u_int cpu,
Implement vector callback for PVHVM and unify event channel implementations Re-structure Xen HVM support so that: - Xen is detected and hypercalls can be performed very early in system startup. - Xen interrupt services are implemented using FreeBSD's native interrupt delivery infrastructure. - the Xen interrupt service implementation is shared between PV and HVM guests. - Xen interrupt handlers can optionally use a filter handler in order to avoid the overhead of dispatch to an interrupt thread. - interrupt load can be distributed among all available CPUs. - the overhead of accessing the emulated local and I/O apics on HVM is removed for event channel port events. - a similar optimization can eventually, and fairly easily, be used to optimize MSI. Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure, and misc Xen cleanups: Sponsored by: Spectra Logic Corporation Unification of PV & HVM interrupt infrastructure, bug fixes, and misc Xen cleanups: Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D sys/x86/x86/local_apic.c: sys/amd64/include/apicvar.h: sys/i386/include/apicvar.h: sys/amd64/amd64/apic_vector.S: sys/i386/i386/apic_vector.s: sys/amd64/amd64/machdep.c: sys/i386/i386/machdep.c: sys/i386/xen/exception.s: sys/x86/include/segments.h: Reserve IDT vector 0x93 for the Xen event channel upcall interrupt handler. On Hypervisors that support the direct vector callback feature, we can request that this vector be called directly by an injected HVM interrupt event, instead of a simulated PCI interrupt on the Xen platform PCI device. This avoids all of the overhead of dealing with the emulated I/O APIC and local APIC. It also means that the Hypervisor can inject these events on any CPU, allowing upcalls for different ports to be handled in parallel. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: Map Xen per-vcpu area during AP startup. sys/amd64/include/intr_machdep.h: sys/i386/include/intr_machdep.h: Increase the FreeBSD IRQ vector table to include space for event channel interrupt sources. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: Remove Xen HVM per-cpu variable data. These fields are now allocated via the dynamic per-cpu scheme. See xen_intr.c for details. sys/amd64/include/xen/hypercall.h: sys/dev/xen/blkback/blkback.c: sys/i386/include/xen/xenvar.h: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/xen/gnttab.c: Prefer FreeBSD primatives to Linux ones in Xen support code. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: sys/dev/xen/balloon/balloon.c: sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/console/xencons_ring.c: sys/dev/xen/control/control.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/xenpci/xenpci.c: sys/i386/i386/machdep.c: sys/i386/include/pmap.h: sys/i386/include/xen/xenfunc.h: sys/i386/isa/npx.c: sys/i386/xen/clock.c: sys/i386/xen/mp_machdep.c: sys/i386/xen/mptable.c: sys/i386/xen/xen_clock_util.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/xen_rtc.c: sys/xen/evtchn/evtchn_dev.c: sys/xen/features.c: sys/xen/gnttab.c: sys/xen/gnttab.h: sys/xen/hvm.h: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_if.m: sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusvar.h: sys/xen/xenstore/xenstore.c: sys/xen/xenstore/xenstore_dev.c: sys/xen/xenstore/xenstorevar.h: Pull common Xen OS support functions/settings into xen/xen-os.h. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: Remove constants, macros, and functions unused in FreeBSD's Xen support. sys/xen/xen-os.h: sys/i386/xen/xen_machdep.c: sys/x86/xen/hvm.c: Introduce new functions xen_domain(), xen_pv_domain(), and xen_hvm_domain(). These are used in favor of #ifdefs so that FreeBSD can dynamically detect and adapt to the presence of a hypervisor. The goal is to have an HVM optimized GENERIC, but more is necessary before this is possible. sys/amd64/amd64/machdep.c: sys/dev/xen/xenpci/xenpcivar.h: sys/dev/xen/xenpci/xenpci.c: sys/x86/xen/hvm.c: sys/sys/kernel.h: Refactor magic ioport, Hypercall table and Hypervisor shared information page setup, and move it to a dedicated HVM support module. HVM mode initialization is now triggered during the SI_SUB_HYPERVISOR phase of system startup. This currently occurs just after the kernel VM is fully setup which is just enough infrastructure to allow the hypercall table and shared info page to be properly mapped. sys/xen/hvm.h: sys/x86/xen/hvm.c: Add definitions and a method for configuring Hypervisor event delievery via a direct vector callback. sys/amd64/include/xen/xen-os.h: sys/x86/xen/hvm.c: sys/conf/files: sys/conf/files.amd64: sys/conf/files.i386: Adjust kernel build to reflect the refactoring of early Xen startup code and Xen interrupt services. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: sys/dev/xen/control/control.c: sys/dev/xen/evtchn/evtchn_dev.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/xen/xenstore/xenstore.c: sys/xen/evtchn/evtchn_dev.c: sys/dev/xen/console/console.c: sys/dev/xen/console/xencons_ring.c Adjust drivers to use new xen_intr_*() API. sys/dev/xen/blkback/blkback.c: Since blkback defers all event handling to a taskqueue, convert this task queue to a "fast" taskqueue, and schedule it via an interrupt filter. This avoids an unnecessary ithread context switch. sys/xen/xenstore/xenstore.c: The xenstore driver is MPSAFE. Indicate as much when registering its interrupt handler. sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbusvar.h: Remove unused event channel APIs. sys/xen/evtchn.h: Remove all kernel Xen interrupt service API definitions from this file. It is now only used for structure and ioctl definitions related to the event channel userland device driver. Update the definitions in this file to match those from NetBSD. Implementing this interface will be necessary for Dom0 support. sys/xen/evtchn/evtchnvar.h: Add a header file for implemenation internal APIs related to managing event channels event delivery. This is used to allow, for example, the event channel userland device driver to access low-level routines that typical kernel consumers of event channel services should never access. sys/xen/interface/event_channel.h: sys/xen/xen_intr.h: Standardize on the evtchn_port_t type for referring to an event channel port id. In order to prevent low-level event channel APIs from leaking to kernel consumers who should not have access to this data, the type is defined twice: Once in the Xen provided event_channel.h, and again in xen/xen_intr.h. The double declaration is protected by __XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared twice within a given compilation unit. sys/xen/xen_intr.h: sys/xen/evtchn/evtchn.c: sys/x86/xen/xen_intr.c: sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/xenpci/xenpcivar.h: New implementation of Xen interrupt services. This is similar in many respects to the i386 PV implementation with the exception that events for bound to event channel ports (i.e. not IPI, virtual IRQ, or physical IRQ) are further optimized to avoid mask/unmask operations that aren't necessary for these edge triggered events. Stubs exist for supporting physical IRQ binding, but will need additional work before this implementation can be fully shared between PV and HVM. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: sys/i386/xen/mp_machdep.c sys/x86/xen/hvm.c: Add support for placing vcpu_info into an arbritary memory page instead of using HYPERVISOR_shared_info->vcpu_info. This allows the creation of domains with more than 32 vcpus. sys/i386/i386/machdep.c: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/exception.s: Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
driver_filter_t filter, enum intr_type irqflags,
xen_intr_handle_t *handlep);
/**
* Register a physical interrupt vector and setup the interrupt source.
*
* \param vector The global vector to use.
* \param trig Default trigger method.
* \param pol Default polarity of the interrupt.
*
* \returns 0 on success, otherwise an errno.
*/
int xen_register_pirq(int vector, enum intr_trigger trig,
enum intr_polarity pol);
Implement vector callback for PVHVM and unify event channel implementations Re-structure Xen HVM support so that: - Xen is detected and hypercalls can be performed very early in system startup. - Xen interrupt services are implemented using FreeBSD's native interrupt delivery infrastructure. - the Xen interrupt service implementation is shared between PV and HVM guests. - Xen interrupt handlers can optionally use a filter handler in order to avoid the overhead of dispatch to an interrupt thread. - interrupt load can be distributed among all available CPUs. - the overhead of accessing the emulated local and I/O apics on HVM is removed for event channel port events. - a similar optimization can eventually, and fairly easily, be used to optimize MSI. Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure, and misc Xen cleanups: Sponsored by: Spectra Logic Corporation Unification of PV & HVM interrupt infrastructure, bug fixes, and misc Xen cleanups: Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D sys/x86/x86/local_apic.c: sys/amd64/include/apicvar.h: sys/i386/include/apicvar.h: sys/amd64/amd64/apic_vector.S: sys/i386/i386/apic_vector.s: sys/amd64/amd64/machdep.c: sys/i386/i386/machdep.c: sys/i386/xen/exception.s: sys/x86/include/segments.h: Reserve IDT vector 0x93 for the Xen event channel upcall interrupt handler. On Hypervisors that support the direct vector callback feature, we can request that this vector be called directly by an injected HVM interrupt event, instead of a simulated PCI interrupt on the Xen platform PCI device. This avoids all of the overhead of dealing with the emulated I/O APIC and local APIC. It also means that the Hypervisor can inject these events on any CPU, allowing upcalls for different ports to be handled in parallel. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: Map Xen per-vcpu area during AP startup. sys/amd64/include/intr_machdep.h: sys/i386/include/intr_machdep.h: Increase the FreeBSD IRQ vector table to include space for event channel interrupt sources. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: Remove Xen HVM per-cpu variable data. These fields are now allocated via the dynamic per-cpu scheme. See xen_intr.c for details. sys/amd64/include/xen/hypercall.h: sys/dev/xen/blkback/blkback.c: sys/i386/include/xen/xenvar.h: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/xen/gnttab.c: Prefer FreeBSD primatives to Linux ones in Xen support code. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: sys/dev/xen/balloon/balloon.c: sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/console/xencons_ring.c: sys/dev/xen/control/control.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/xenpci/xenpci.c: sys/i386/i386/machdep.c: sys/i386/include/pmap.h: sys/i386/include/xen/xenfunc.h: sys/i386/isa/npx.c: sys/i386/xen/clock.c: sys/i386/xen/mp_machdep.c: sys/i386/xen/mptable.c: sys/i386/xen/xen_clock_util.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/xen_rtc.c: sys/xen/evtchn/evtchn_dev.c: sys/xen/features.c: sys/xen/gnttab.c: sys/xen/gnttab.h: sys/xen/hvm.h: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_if.m: sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusvar.h: sys/xen/xenstore/xenstore.c: sys/xen/xenstore/xenstore_dev.c: sys/xen/xenstore/xenstorevar.h: Pull common Xen OS support functions/settings into xen/xen-os.h. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: Remove constants, macros, and functions unused in FreeBSD's Xen support. sys/xen/xen-os.h: sys/i386/xen/xen_machdep.c: sys/x86/xen/hvm.c: Introduce new functions xen_domain(), xen_pv_domain(), and xen_hvm_domain(). These are used in favor of #ifdefs so that FreeBSD can dynamically detect and adapt to the presence of a hypervisor. The goal is to have an HVM optimized GENERIC, but more is necessary before this is possible. sys/amd64/amd64/machdep.c: sys/dev/xen/xenpci/xenpcivar.h: sys/dev/xen/xenpci/xenpci.c: sys/x86/xen/hvm.c: sys/sys/kernel.h: Refactor magic ioport, Hypercall table and Hypervisor shared information page setup, and move it to a dedicated HVM support module. HVM mode initialization is now triggered during the SI_SUB_HYPERVISOR phase of system startup. This currently occurs just after the kernel VM is fully setup which is just enough infrastructure to allow the hypercall table and shared info page to be properly mapped. sys/xen/hvm.h: sys/x86/xen/hvm.c: Add definitions and a method for configuring Hypervisor event delievery via a direct vector callback. sys/amd64/include/xen/xen-os.h: sys/x86/xen/hvm.c: sys/conf/files: sys/conf/files.amd64: sys/conf/files.i386: Adjust kernel build to reflect the refactoring of early Xen startup code and Xen interrupt services. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: sys/dev/xen/control/control.c: sys/dev/xen/evtchn/evtchn_dev.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/xen/xenstore/xenstore.c: sys/xen/evtchn/evtchn_dev.c: sys/dev/xen/console/console.c: sys/dev/xen/console/xencons_ring.c Adjust drivers to use new xen_intr_*() API. sys/dev/xen/blkback/blkback.c: Since blkback defers all event handling to a taskqueue, convert this task queue to a "fast" taskqueue, and schedule it via an interrupt filter. This avoids an unnecessary ithread context switch. sys/xen/xenstore/xenstore.c: The xenstore driver is MPSAFE. Indicate as much when registering its interrupt handler. sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbusvar.h: Remove unused event channel APIs. sys/xen/evtchn.h: Remove all kernel Xen interrupt service API definitions from this file. It is now only used for structure and ioctl definitions related to the event channel userland device driver. Update the definitions in this file to match those from NetBSD. Implementing this interface will be necessary for Dom0 support. sys/xen/evtchn/evtchnvar.h: Add a header file for implemenation internal APIs related to managing event channels event delivery. This is used to allow, for example, the event channel userland device driver to access low-level routines that typical kernel consumers of event channel services should never access. sys/xen/interface/event_channel.h: sys/xen/xen_intr.h: Standardize on the evtchn_port_t type for referring to an event channel port id. In order to prevent low-level event channel APIs from leaking to kernel consumers who should not have access to this data, the type is defined twice: Once in the Xen provided event_channel.h, and again in xen/xen_intr.h. The double declaration is protected by __XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared twice within a given compilation unit. sys/xen/xen_intr.h: sys/xen/evtchn/evtchn.c: sys/x86/xen/xen_intr.c: sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/xenpci/xenpcivar.h: New implementation of Xen interrupt services. This is similar in many respects to the i386 PV implementation with the exception that events for bound to event channel ports (i.e. not IPI, virtual IRQ, or physical IRQ) are further optimized to avoid mask/unmask operations that aren't necessary for these edge triggered events. Stubs exist for supporting physical IRQ binding, but will need additional work before this implementation can be fully shared between PV and HVM. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: sys/i386/xen/mp_machdep.c sys/x86/xen/hvm.c: Add support for placing vcpu_info into an arbritary memory page instead of using HYPERVISOR_shared_info->vcpu_info. This allows the creation of domains with more than 32 vcpus. sys/i386/i386/machdep.c: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/exception.s: Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
/**
* Unbind an interrupt handler from its interrupt source.
*
* \param handlep A pointer to the opaque handle that was initialized
* at the time the interrupt source was bound.
*
* \returns 0 on success, otherwise an errno.
*
* \note The event channel, if any, that was allocated at bind time is
* closed upon successful return of this method.
*
* \note It is always safe to call xen_intr_unbind() on a handle that
* has been initilized to NULL.
*/
Implement vector callback for PVHVM and unify event channel implementations Re-structure Xen HVM support so that: - Xen is detected and hypercalls can be performed very early in system startup. - Xen interrupt services are implemented using FreeBSD's native interrupt delivery infrastructure. - the Xen interrupt service implementation is shared between PV and HVM guests. - Xen interrupt handlers can optionally use a filter handler in order to avoid the overhead of dispatch to an interrupt thread. - interrupt load can be distributed among all available CPUs. - the overhead of accessing the emulated local and I/O apics on HVM is removed for event channel port events. - a similar optimization can eventually, and fairly easily, be used to optimize MSI. Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure, and misc Xen cleanups: Sponsored by: Spectra Logic Corporation Unification of PV & HVM interrupt infrastructure, bug fixes, and misc Xen cleanups: Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D sys/x86/x86/local_apic.c: sys/amd64/include/apicvar.h: sys/i386/include/apicvar.h: sys/amd64/amd64/apic_vector.S: sys/i386/i386/apic_vector.s: sys/amd64/amd64/machdep.c: sys/i386/i386/machdep.c: sys/i386/xen/exception.s: sys/x86/include/segments.h: Reserve IDT vector 0x93 for the Xen event channel upcall interrupt handler. On Hypervisors that support the direct vector callback feature, we can request that this vector be called directly by an injected HVM interrupt event, instead of a simulated PCI interrupt on the Xen platform PCI device. This avoids all of the overhead of dealing with the emulated I/O APIC and local APIC. It also means that the Hypervisor can inject these events on any CPU, allowing upcalls for different ports to be handled in parallel. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: Map Xen per-vcpu area during AP startup. sys/amd64/include/intr_machdep.h: sys/i386/include/intr_machdep.h: Increase the FreeBSD IRQ vector table to include space for event channel interrupt sources. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: Remove Xen HVM per-cpu variable data. These fields are now allocated via the dynamic per-cpu scheme. See xen_intr.c for details. sys/amd64/include/xen/hypercall.h: sys/dev/xen/blkback/blkback.c: sys/i386/include/xen/xenvar.h: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/xen/gnttab.c: Prefer FreeBSD primatives to Linux ones in Xen support code. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: sys/dev/xen/balloon/balloon.c: sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/console/xencons_ring.c: sys/dev/xen/control/control.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/xenpci/xenpci.c: sys/i386/i386/machdep.c: sys/i386/include/pmap.h: sys/i386/include/xen/xenfunc.h: sys/i386/isa/npx.c: sys/i386/xen/clock.c: sys/i386/xen/mp_machdep.c: sys/i386/xen/mptable.c: sys/i386/xen/xen_clock_util.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/xen_rtc.c: sys/xen/evtchn/evtchn_dev.c: sys/xen/features.c: sys/xen/gnttab.c: sys/xen/gnttab.h: sys/xen/hvm.h: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_if.m: sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusvar.h: sys/xen/xenstore/xenstore.c: sys/xen/xenstore/xenstore_dev.c: sys/xen/xenstore/xenstorevar.h: Pull common Xen OS support functions/settings into xen/xen-os.h. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: Remove constants, macros, and functions unused in FreeBSD's Xen support. sys/xen/xen-os.h: sys/i386/xen/xen_machdep.c: sys/x86/xen/hvm.c: Introduce new functions xen_domain(), xen_pv_domain(), and xen_hvm_domain(). These are used in favor of #ifdefs so that FreeBSD can dynamically detect and adapt to the presence of a hypervisor. The goal is to have an HVM optimized GENERIC, but more is necessary before this is possible. sys/amd64/amd64/machdep.c: sys/dev/xen/xenpci/xenpcivar.h: sys/dev/xen/xenpci/xenpci.c: sys/x86/xen/hvm.c: sys/sys/kernel.h: Refactor magic ioport, Hypercall table and Hypervisor shared information page setup, and move it to a dedicated HVM support module. HVM mode initialization is now triggered during the SI_SUB_HYPERVISOR phase of system startup. This currently occurs just after the kernel VM is fully setup which is just enough infrastructure to allow the hypercall table and shared info page to be properly mapped. sys/xen/hvm.h: sys/x86/xen/hvm.c: Add definitions and a method for configuring Hypervisor event delievery via a direct vector callback. sys/amd64/include/xen/xen-os.h: sys/x86/xen/hvm.c: sys/conf/files: sys/conf/files.amd64: sys/conf/files.i386: Adjust kernel build to reflect the refactoring of early Xen startup code and Xen interrupt services. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: sys/dev/xen/control/control.c: sys/dev/xen/evtchn/evtchn_dev.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/xen/xenstore/xenstore.c: sys/xen/evtchn/evtchn_dev.c: sys/dev/xen/console/console.c: sys/dev/xen/console/xencons_ring.c Adjust drivers to use new xen_intr_*() API. sys/dev/xen/blkback/blkback.c: Since blkback defers all event handling to a taskqueue, convert this task queue to a "fast" taskqueue, and schedule it via an interrupt filter. This avoids an unnecessary ithread context switch. sys/xen/xenstore/xenstore.c: The xenstore driver is MPSAFE. Indicate as much when registering its interrupt handler. sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbusvar.h: Remove unused event channel APIs. sys/xen/evtchn.h: Remove all kernel Xen interrupt service API definitions from this file. It is now only used for structure and ioctl definitions related to the event channel userland device driver. Update the definitions in this file to match those from NetBSD. Implementing this interface will be necessary for Dom0 support. sys/xen/evtchn/evtchnvar.h: Add a header file for implemenation internal APIs related to managing event channels event delivery. This is used to allow, for example, the event channel userland device driver to access low-level routines that typical kernel consumers of event channel services should never access. sys/xen/interface/event_channel.h: sys/xen/xen_intr.h: Standardize on the evtchn_port_t type for referring to an event channel port id. In order to prevent low-level event channel APIs from leaking to kernel consumers who should not have access to this data, the type is defined twice: Once in the Xen provided event_channel.h, and again in xen/xen_intr.h. The double declaration is protected by __XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared twice within a given compilation unit. sys/xen/xen_intr.h: sys/xen/evtchn/evtchn.c: sys/x86/xen/xen_intr.c: sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/xenpci/xenpcivar.h: New implementation of Xen interrupt services. This is similar in many respects to the i386 PV implementation with the exception that events for bound to event channel ports (i.e. not IPI, virtual IRQ, or physical IRQ) are further optimized to avoid mask/unmask operations that aren't necessary for these edge triggered events. Stubs exist for supporting physical IRQ binding, but will need additional work before this implementation can be fully shared between PV and HVM. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: sys/i386/xen/mp_machdep.c sys/x86/xen/hvm.c: Add support for placing vcpu_info into an arbritary memory page instead of using HYPERVISOR_shared_info->vcpu_info. This allows the creation of domains with more than 32 vcpus. sys/i386/i386/machdep.c: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/exception.s: Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
void xen_intr_unbind(xen_intr_handle_t *handle);
/**
* Add a description to an interrupt handler.
*
* \param handle The opaque handle that was initialized at the time
* the interrupt source was bound.
*
* \param fmt The sprintf compatible format string for the description,
* followed by optional sprintf arguments.
*
* \returns 0 on success, otherwise an errno.
*/
Implement vector callback for PVHVM and unify event channel implementations Re-structure Xen HVM support so that: - Xen is detected and hypercalls can be performed very early in system startup. - Xen interrupt services are implemented using FreeBSD's native interrupt delivery infrastructure. - the Xen interrupt service implementation is shared between PV and HVM guests. - Xen interrupt handlers can optionally use a filter handler in order to avoid the overhead of dispatch to an interrupt thread. - interrupt load can be distributed among all available CPUs. - the overhead of accessing the emulated local and I/O apics on HVM is removed for event channel port events. - a similar optimization can eventually, and fairly easily, be used to optimize MSI. Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure, and misc Xen cleanups: Sponsored by: Spectra Logic Corporation Unification of PV & HVM interrupt infrastructure, bug fixes, and misc Xen cleanups: Submitted by: Roger Pau Monné Sponsored by: Citrix Systems R&D sys/x86/x86/local_apic.c: sys/amd64/include/apicvar.h: sys/i386/include/apicvar.h: sys/amd64/amd64/apic_vector.S: sys/i386/i386/apic_vector.s: sys/amd64/amd64/machdep.c: sys/i386/i386/machdep.c: sys/i386/xen/exception.s: sys/x86/include/segments.h: Reserve IDT vector 0x93 for the Xen event channel upcall interrupt handler. On Hypervisors that support the direct vector callback feature, we can request that this vector be called directly by an injected HVM interrupt event, instead of a simulated PCI interrupt on the Xen platform PCI device. This avoids all of the overhead of dealing with the emulated I/O APIC and local APIC. It also means that the Hypervisor can inject these events on any CPU, allowing upcalls for different ports to be handled in parallel. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: Map Xen per-vcpu area during AP startup. sys/amd64/include/intr_machdep.h: sys/i386/include/intr_machdep.h: Increase the FreeBSD IRQ vector table to include space for event channel interrupt sources. sys/amd64/include/pcpu.h: sys/i386/include/pcpu.h: Remove Xen HVM per-cpu variable data. These fields are now allocated via the dynamic per-cpu scheme. See xen_intr.c for details. sys/amd64/include/xen/hypercall.h: sys/dev/xen/blkback/blkback.c: sys/i386/include/xen/xenvar.h: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/xen/gnttab.c: Prefer FreeBSD primatives to Linux ones in Xen support code. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: sys/dev/xen/balloon/balloon.c: sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/console/xencons_ring.c: sys/dev/xen/control/control.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/xenpci/xenpci.c: sys/i386/i386/machdep.c: sys/i386/include/pmap.h: sys/i386/include/xen/xenfunc.h: sys/i386/isa/npx.c: sys/i386/xen/clock.c: sys/i386/xen/mp_machdep.c: sys/i386/xen/mptable.c: sys/i386/xen/xen_clock_util.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/xen_rtc.c: sys/xen/evtchn/evtchn_dev.c: sys/xen/features.c: sys/xen/gnttab.c: sys/xen/gnttab.h: sys/xen/hvm.h: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_if.m: sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusvar.h: sys/xen/xenstore/xenstore.c: sys/xen/xenstore/xenstore_dev.c: sys/xen/xenstore/xenstorevar.h: Pull common Xen OS support functions/settings into xen/xen-os.h. sys/amd64/include/xen/xen-os.h: sys/i386/include/xen/xen-os.h: sys/xen/xen-os.h: Remove constants, macros, and functions unused in FreeBSD's Xen support. sys/xen/xen-os.h: sys/i386/xen/xen_machdep.c: sys/x86/xen/hvm.c: Introduce new functions xen_domain(), xen_pv_domain(), and xen_hvm_domain(). These are used in favor of #ifdefs so that FreeBSD can dynamically detect and adapt to the presence of a hypervisor. The goal is to have an HVM optimized GENERIC, but more is necessary before this is possible. sys/amd64/amd64/machdep.c: sys/dev/xen/xenpci/xenpcivar.h: sys/dev/xen/xenpci/xenpci.c: sys/x86/xen/hvm.c: sys/sys/kernel.h: Refactor magic ioport, Hypercall table and Hypervisor shared information page setup, and move it to a dedicated HVM support module. HVM mode initialization is now triggered during the SI_SUB_HYPERVISOR phase of system startup. This currently occurs just after the kernel VM is fully setup which is just enough infrastructure to allow the hypercall table and shared info page to be properly mapped. sys/xen/hvm.h: sys/x86/xen/hvm.c: Add definitions and a method for configuring Hypervisor event delievery via a direct vector callback. sys/amd64/include/xen/xen-os.h: sys/x86/xen/hvm.c: sys/conf/files: sys/conf/files.amd64: sys/conf/files.i386: Adjust kernel build to reflect the refactoring of early Xen startup code and Xen interrupt services. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: sys/dev/xen/control/control.c: sys/dev/xen/evtchn/evtchn_dev.c: sys/dev/xen/netback/netback.c: sys/dev/xen/netfront/netfront.c: sys/xen/xenstore/xenstore.c: sys/xen/evtchn/evtchn_dev.c: sys/dev/xen/console/console.c: sys/dev/xen/console/xencons_ring.c Adjust drivers to use new xen_intr_*() API. sys/dev/xen/blkback/blkback.c: Since blkback defers all event handling to a taskqueue, convert this task queue to a "fast" taskqueue, and schedule it via an interrupt filter. This avoids an unnecessary ithread context switch. sys/xen/xenstore/xenstore.c: The xenstore driver is MPSAFE. Indicate as much when registering its interrupt handler. sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbusvar.h: Remove unused event channel APIs. sys/xen/evtchn.h: Remove all kernel Xen interrupt service API definitions from this file. It is now only used for structure and ioctl definitions related to the event channel userland device driver. Update the definitions in this file to match those from NetBSD. Implementing this interface will be necessary for Dom0 support. sys/xen/evtchn/evtchnvar.h: Add a header file for implemenation internal APIs related to managing event channels event delivery. This is used to allow, for example, the event channel userland device driver to access low-level routines that typical kernel consumers of event channel services should never access. sys/xen/interface/event_channel.h: sys/xen/xen_intr.h: Standardize on the evtchn_port_t type for referring to an event channel port id. In order to prevent low-level event channel APIs from leaking to kernel consumers who should not have access to this data, the type is defined twice: Once in the Xen provided event_channel.h, and again in xen/xen_intr.h. The double declaration is protected by __XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared twice within a given compilation unit. sys/xen/xen_intr.h: sys/xen/evtchn/evtchn.c: sys/x86/xen/xen_intr.c: sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/xenpci/xenpcivar.h: New implementation of Xen interrupt services. This is similar in many respects to the i386 PV implementation with the exception that events for bound to event channel ports (i.e. not IPI, virtual IRQ, or physical IRQ) are further optimized to avoid mask/unmask operations that aren't necessary for these edge triggered events. Stubs exist for supporting physical IRQ binding, but will need additional work before this implementation can be fully shared between PV and HVM. sys/amd64/amd64/mp_machdep.c: sys/i386/i386/mp_machdep.c: sys/i386/xen/mp_machdep.c sys/x86/xen/hvm.c: Add support for placing vcpu_info into an arbritary memory page instead of using HYPERVISOR_shared_info->vcpu_info. This allows the creation of domains with more than 32 vcpus. sys/i386/i386/machdep.c: sys/i386/xen/clock.c: sys/i386/xen/xen_machdep.c: sys/i386/xen/exception.s: Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
int
xen_intr_describe(xen_intr_handle_t port_handle, const char *fmt, ...)
__attribute__((format(printf, 2, 3)));
/**
* Signal the remote peer of an interrupt source associated with an
* event channel port.
*
* \param handle The opaque handle that was initialized at the time
* the interrupt source was bound.
*
* \note For xen interrupt sources other than event channel ports,
* this method takes no action.
*/
void xen_intr_signal(xen_intr_handle_t handle);
/**
* Get the local event channel port number associated with this interrupt
* source.
*
* \param handle The opaque handle that was initialized at the time
* the interrupt source was bound.
*
* \returns 0 if the handle is invalid, otherwise positive port number.
*/
evtchn_port_t xen_intr_port(xen_intr_handle_t handle);
msi: add Xen MSI implementation This patch adds support for MSI interrupts when running on Xen. Apart from adding the Xen related code needed in order to register MSI interrupts this patch also makes the msi_init function a hook in init_ops, so different MSI implementations can have different initialization functions. Sponsored by: Citrix Systems R&D xen/interface/physdev.h: - Add the MAP_PIRQ_TYPE_MULTI_MSI to map multi-vector MSI to the Xen public interface. x86/include/init.h: - Add a hook for setting custom msi_init methods. amd64/amd64/machdep.c: i386/i386/machdep.c: - Set the default msi_init hook to point to the native MSI initialization method. x86/xen/pv.c: - Set the Xen MSI init hook when running as a Xen guest. x86/x86/local_apic.c: - Call the msi_init hook instead of directly calling msi_init. xen/xen_intr.h: x86/xen/xen_intr.c: - Introduce support for registering/releasing MSI interrupts with Xen. - The MSI interrupts will use the same PIC as the IO APIC interrupts. xen/xen_msi.h: x86/xen/xen_msi.c: - Introduce a Xen MSI implementation. x86/xen/xen_nexus.c: - Overwrite the default MSI hooks in the Xen Nexus to use the Xen MSI implementation. x86/xen/xen_pci.c: - Introduce a Xen specific PCI bus that inherits from the ACPI PCI bus and overwrites the native MSI methods. - This is needed because when running under Xen the MSI messages used to configure MSI interrupts on PCI devices are written by Xen itself. dev/acpica/acpi_pci.c: - Lower the quality of the ACPI PCI bus so the newly introduced Xen PCI bus can take over when needed. conf/files.i386: conf/files.amd64: - Add the newly created files to the build process.
2014-09-30 16:46:45 +00:00
/**
* Setup MSI vector interrupt(s).
*
* \param dev The device that requests the binding.
*
* \param vector Requested initial vector to bind the MSI interrupt(s) to.
*
* \param count Number of vectors to allocate.
*
* \returns 0 on success, otherwise an errno.
*/
int xen_register_msi(device_t dev, int vector, int count);
/**
* Teardown a MSI vector interrupt.
*
* \param vector Requested vector to release.
*
* \returns 0 on success, otherwise an errno.
*/
int xen_release_msi(int vector);
/**
* Bind an event channel port with a handler
*
* \param dev The device making this bind request.
* \param filter An interrupt filter handler. Specify NULL
* to always dispatch to the ithread handler.
* \param handler An interrupt ithread handler. Optional (can
* specify NULL) if all necessary event actions
* are performed by filter.
* \param arg Argument to present to both filter and handler.
* \param irqflags Interrupt handler flags. See sys/bus.h.
* \param handle Opaque handle used to manage this registration.
*
* \returns 0 on success, otherwise an errno.
*/
int xen_intr_add_handler(const char *name, driver_filter_t filter,
driver_intr_t handler, void *arg, enum intr_type flags,
xen_intr_handle_t handle);
/**
* Get a reference to an event channel port
*
* \param port Event channel port to which we get a reference.
* \param handlep Pointer to an opaque handle used to manage this
* registration.
*
* \returns 0 on success, otherwise an errno.
*/
int xen_intr_get_evtchn_from_port(evtchn_port_t port,
xen_intr_handle_t *handlep);
#endif /* _XEN_INTR_H_ */